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Abstract
A multivariate extension of the exponential continuous time GARCH(p, q) model
(ECOGARCH) is introduced and studied. Stationarity and mixing properties
of the new stochastic volatility model are investigated and ways to model a
component-wise leverage effect are presented.
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1 INTRODUCTION

GARCH type processes have become very popular in financial econometrics to model returns
of stocks, exchange rates and other series observed at equidistant time points. They have been
designed (see Engle (1982) and Bollerslev (1986)) to capture so-called stylised facts of such
data, which are e.g. stochastic volatility clustering, dependence without correlation and tail
heaviness. Another characteristic is that stock returns seem to be negatively correlated with
changes in the volatility, i.e. that volatility tends to increase after negative shocks in the price
and to fall after positive ones. This effect is called leverage effect and cannot be modelled by a
GARCH type process without further extensions. This finding led Nelson (1991) to introduce
the exponential GARCH process, which is able to model this asymmetry. In that paper the
log-volatility of the EGARCH(p, q) process was modelled as an ARMA(q, p − 1) process.

Starting with Nelson (1990) continuous time models related to GARCH processes have
been investigated for a long time. As several important characteristic features of GARCH
processes get lost in the originally studied diffusion limits of GARCH processes, Küppelberg
et al. (2004) introduced the COGARCH process as a continuous time analogue of the GARCH
process, which inherits many of the characteristic features of GARCH processes. Likewise,
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Haug and Czado (2007) recently defined and analysed an EGARCH process in continuous
time and Czado and Haug (2009) presented first estimation results.

In this paper we develop and analyse a multivariate version of the exponential continuous
time GARCH process (ECOGARCH) of Haug and Czado (2007). Note that in discrete time
matrix exponential GARCH processes have for the first time been studied by Kawakatsu
(2006) in a truly multivariate sense, whereas before only the variances, but not the whole
covariance matrix, have been modelled as EGARCH processes (cf. Östermark (2001), Tse
and Hackard (2004) or Yang and Doong (2004) for some typical examples).

In our EGARCH specification we model the logarithm of the covariance matrix process as
a CARMA process in the symmetric matrices using the multivariate continuous time ARMA
processes (CARMA) introduced in Marquardt and Stelzer (2007). Taking the exponential
then automatically ensures positive definiteness of the covariance matrix process. The stand-
ard mathematical fact that the exponential of a symmetric matrix is positive definite seems
to have been used only very rarely in order to model covariance matrices so far (the recent
paper Kawakatsu (2006), for instance, does not credit any references for this idea). To the
best of our knowledge the first appearance in the statistics literature is Chiu et al. (1996).

One main feature of our model is the inclusion of the leverage effect. We will give some
(approximate) calculations and examples which show how to choose the parameters to obtain
a leverage effect. In other multivariate models in continuous time inclusion of this effect
is far from easy. The multivariate Ornstein-Uhlenbeck type model of Pigorsch and Stelzer
(2009) looses (like in the univariate case, see Barndorff-Nielsen and Shepard (2001)) much
of its tractability and its pure stochastic volatility nature. In the multivariate COGARCH
of Stelzer (2009) it seems necessary to have only positive jumps in the volatility, thus one
cannot have positive shocks which lead to a lower volatility. In the multivariate variance
Gamma model of Semeraro (2008) one does not have a volatility process and needs the
multidimensional time process to be independent of the multidimensional Brownian motion.
Finally, in purely Brownian motion based models, e.g. the Wishart models of Gourieroux
(2006), one can have negative dependence between volatility and price, but one can no longer
speak of shocks and look at the relation between jumps in the price and in the volatility,
because there are no jumps. Hence, in these models one has to quantify the leverage effect
differently than we do later on.

The paper is now organised as follows. At the end of this section some notation used
throughout is given. In Section 2 we first recall some basic facts on multivariate Lévy pro-
cesses and on the multivariate Lévy-driven CARMA process, as defined in Marquardt and
Stelzer (2007). We further give a sufficient condition for the existence of the α-th exponential
moment of a CARMA process. In the second part of the section we introduce a general
specification of the discrete time multivariate EGARCH process and propose two ways of
modelling asymmetric behaviour in the vectorised log-volatility process. In the first part of
Section 3 the multivariate ECOGARCH process is defined and stationarity conditions are
discussed. In the second part we show the strong mixing property of the volatility and the
return process and shortly consider the mean and autocovariance function of the return pro-
cess. The third part provides an approximate calculation of the leverage effect. In the last
part we briefly discuss a result of Stelzer (2009), viz. that for an ECOGARCH(1,1) process
there exists a sequence of EGARCH(1,1) processes converging to the ECOGARCH process,
which adds important insight regarding the relation between our continuous time model and
discrete time multivariate EGARCH processes. Finally, we present some explicit examples
along with simulations in the final Section 4.
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1.1 Notation

Throughout this paper we write R+ for the positive real numbers including zero and we
denote the set of real d ×m matrices by Md,m(R). If d = m, we simply write Md(R) and
denote the group of invertible d × d matrices by GLd(R), the linear subspace of symmetric
matrices by Sd, the (closed) positive semi-definite cone by S

+
d and the open (in Sd) positive

definite cone by S
++
d . Id stands for the d × d identity matrix, det(A) for the determinant

and σ(A) for the spectrum (the set of all eigenvalues) of a matrix A ∈ Md(R). Moreover,
vech : Sd → Rd(d+1)/2 denotes the “vector-half” operator that stacks the columns of the lower
triangular part of a symmetric matrix below another. Finally, A∗ is the adjoint of a matrix
A ∈Md(R).

Norms of vectors and matrices are denoted by ‖ · ‖. If the norm is not specified then it is
irrelevant which particular norm is used.

The exponential of a matrix A is denoted by exp(A) or eA (see (Horn and Johnson, 1991,
Ch. 6) for a detailed discussion). Recall that for square matrices it is defined by functional
calculus and it holds that

exp(A) =

∞∑

k=0

Ak

k!
.

From functional calculus it is immediately clear that the matrix exponential maps the sym-
metric d× d matrices to the positive definite ones. Moreover, we denote by A1/2 the unique
positive semi-definite square root of a matrix A ∈ S

+
d .

For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given ap-
propriate filtered probability space (Ω,F , P, (Ft)t∈R+) satisfying the usual hypotheses (com-
plete and right continuous filtration). Lp denotes as usual the space of all random variables
with a finite p-th moment, i.e. all random variables X with E(‖X‖p) < ∞ in a multivariate
setting.

2 THE BUILDING BLOCKS

Before we introduce a general specification of the discrete time multivariate EGARCH process,
we briefly review multivariate Lévy and CARMA processes.

2.1 Multivariate Lévy and Lévy-driven CARMA processes

2.1.1 Basic facts on multivariate Lévy processes

Now we state some elementary properties of multivariate Lévy processes that will be needed.
For a more general treatment and proofs we refer to Sato (1999), Applebaum (2004) or Protter
(2004).

We consider a Lévy process L = (Lt)t∈R+ (where L0 = 0 a.s.) in Rd determined by its
characteristic function E

[
ei〈u,Lt〉

]
= exp{tψL(u)}, t ≥ 0, in the Lévy-Khintchine form where

ψL(u) =i〈γL, u〉 −
1

2
〈u,CLu〉+

∫

Rd

(
ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖)

)
νL(dx)
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for u ∈ Rd, γL ∈ Rd, CL ∈ S
+
d and νL is a measure on (Rd,B(Rd)) that satisfies νL({0}) = 0

and
∫
Rd

(‖x‖2 ∧ 1) νL(dx) <∞. The measure νL is referred to as the Lévy measure of L.

A Lévy process is said to be a pure jump one if the Brownian part vanishes, i.e. CL = 0.
It is a well-known fact that to every càdlàg Lévy process L onRd one can associate a random

measure NL on R+×Rd \ {0} describing the jumps of L (see e.g. (Jacod and Shiryaev, 2003,
Section II.1)). For any measurable set B ⊂ R+ ×Rd \ {0},

NL(B) = ♯{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure NL is a Poisson random measure (as defined in (Jacod and Shiryaev, 2003,
Definition II.1.20)) on R+ ×Rd \ {0} with intensity measure nL(ds, dx) = ds νL(dx). By the
Lévy-Itô decomposition we can rewrite L almost surely as

Lt = γLt+Bt +

∫

‖x‖≥1

∫ t

0
xNL(ds, dx) + lim

ε↓0

∫

ε≤‖x‖≤1

∫ t

0
xÑL(ds, dx) (2.1)

for every t ≥ 0. Here B is a Brownian motion in Rd with covariance matrix CL, ÑL(ds, dx) =
NL(ds, dx)− dsνL(dx) is the compensated jump measure, the terms in (2.1) are independent
and the convergence in the last term is a.s. and locally uniform in t ≥ 0.

In the sequel we will sometimes work with a two-sided Lévy process L = (Lt)t∈R, construc-
ted by taking two independent copies (L1,t)t∈R+ , (L2,t)t∈R+ of a one-sided Lévy process and
setting

Lt =

{
L1,t if t ≥ 0

−L2,−t− if t < 0.

Assuming that νL satisfies additionally
∫

‖x‖>1

‖x‖2 νL(dx) <∞, L has finite mean and covari-

ance matrix ΣL given by ΣL = CL +
∫
Rd

xx∗ νL(dx).

For the theory of stochastic integration and SDEs (with respect to Lévy processes and/or
random measures) we refer to any of the standard texts, e.g. Jacod and Shiryaev (2003),
Protter (2004) or Applebaum (2004).

2.1.2 Multivariate Lévy-driven CARMA processes

As the name “continuous time ARMA” (CARMA) already suggests, these processes are the
continuous time analogue of the well-known ARMA processes. A d-dimensional CARMA(q, p)
process Y with q, p ∈ N0 can be viewed as the stationary solution to the formal differential
equation:

Q(D)Yt = P (D)DLt ,

where L = (Lt)t∈R is a d-dimensional Lévy process and D the differential operator with
respect to t.

Q(z) = zq +A1z
q−1 +A2z

q−2 + . . .+Aq

P (z) = B0z
p +B1z

p−1 + . . .+Bp

with B0, . . . , Bp, A1, . . . , Aq ∈ Md(R), Aq ∈ GLd(R) and B0 6= 0 are referred to as the
autoregressive and moving average polynomial, respectively. In order to be able to define
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CARMA processes properly one needs q > p and that the zeros of det(Q(z)) have all strictly
negative real parts. Then the CARMA(q, p) process Y is defined as the unique stationary
solution of

Yt = (Id, 0, . . . , 0)Xt (2.2)

dXt = AXtdt+ B̃dLt, (2.3)

where

A =




0 Id 0 · · · 0
0 0 Id · · · 0
...

...
...

. . .
...

0 0 0 · · · Id
−Aq −Aq−1 −Aq−2 · · · −A1




∈Mdq(R)

and B̃ = (B̃∗
1 , B̃

∗
2 , . . . , B̃

∗
q )

∗ is a qd×dmatrix with elements B̃q−j = −
∑q−j−1

i=1 AiB̃q−j−i+Bp−j

for j = 0, 1, . . . , q − 1 (setting Bi = 0 for i < 0). The process X is usually called state space
representation.

Later on we need the following result on the existence of exponential moments. By Ei :
R\{0} → R we denote the exponential integral, i.e.

Ei(x) =

∫ x

−∞

et

t
dt = γ + ln |x|+

∞∑

k=1

xk

k · k!
for all x ∈ R\{0} (2.4)

taking the Cauchy principal value of the integral for x > 0 and γ being the Euler constant.

PROPOSITION 2.1. Let Y be a stationary d-dimensional CARMA(q, p) process satisfying

σ(A) ⊂ (−∞, 0) + iR ,

‖ · ‖ a norm on Rd and its induced operator norm, α > 0 and C, b > 0 such that

‖(Id, 0, . . . , 0)e
AsB̃‖ ≤ Ce−bs

for all s ≥ 0. If ∫

‖x‖≥1
Ei(αC‖x‖)νL(dx) <∞ , (2.5)

then E
(
eα‖Y0‖

)
<∞.

Let max(ℜ(σ(A))) be the maximal real part of all eigenvalues of A. Then for all
0 < b < −max(ℜ(σ(A))) there exists a C > 0 such that ‖(Id, 0, . . . , 0)e

AsB̃‖ ≤ Ce−bs holds
for all s ≥ 0. If A is diagonalisable this holds also for b = −max(ℜ(σ(A))). Furthermore,
(2.5) is implied by ∫

‖x‖≥1
eαC‖x‖νL(dx) <∞. (2.6)

Proof. It is elementary to see (using e.g. the Jordan decomposition of A) that σ(A) ⊂
(−∞, 0) + iR implies for all 0 < b < −max(ℜ(σ(A))) that there exists a C > 0 such that
‖(Id, 0, . . . , 0)e

AsB̃‖ ≤ Ce−bs holds for all s ≥ 0. If A is diagonalisable, this also shows that
one can take b = −max(ℜ(σ(A))).
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From Proposition 3.27 of Marquardt and Stelzer (2007) we know that the stationary dis-
tribution of Y is infinitely divisible. Denote by (γY , σY , νY ) the characteristic triplet of the
stationary distribution of Y . (Sato, 1999, Theorem 25.3) implies that for all α > 0 we have
E(eα‖Y1‖) <∞ if and only if ∫

‖x‖≥1
eα‖x‖νY (dx) <∞.

Proposition 3.27 of Marquardt and Stelzer (2007) implies

∫

‖x‖≥1
eα‖x‖νY (dx) =

∫ ∞

0

∫

Rd

eα‖(Id,0,...,0)e
AsB̃x‖

1[1,∞)(‖(Id, 0, . . . , 0)e
AsB̃x‖)νL(dx)ds

≤

∫ ∞

0

∫

Rd

eαCe−bs‖x‖
1[1,∞)(αCe

−bs‖x‖)νL(dx)ds

=

∫

‖x‖≥1/(αC)

∫ ln(αC‖x‖)/b

0
eαCe−bs‖x‖dsνL(dx)

=
1

b

∫

‖x‖≥1/(αC)

∫ αC‖x‖

1

ez

z
dzνL(dx)

=
1

b

∫

‖x‖≥1/(αC)
(Ei(αC‖x‖) − Ei(1)) νL(dx).

Since νL is a Lévy measure,
∫
‖x‖≥1/(αC) Ei(1)νL(dx) < ∞ for all α > 0 and the integral∫

‖x‖≥1/(αC) Ei(αC‖x‖)νL(dx) is finite if and only if
∫
‖x‖≥1 Ei(αC‖x‖)νL(dx) < ∞. Therefore

(2.5) is sufficient for E(eα‖Y1‖) <∞.
From (2.4) it follows that for any c > 0 there exists a K(c) > 0 such that |Ei(x)| ≤ K(c)ex

for all x ≥ c. This shows that (2.6) implies (2.5).

If (q, p) = (1, 0), A1 is diagonal or unitarily diagonalisable, ‖ · ‖ is the Euclidean norm
and B0 = Id, then one can take b = −max(ℜ(σ(A))) and C = 1. So a d-dimensional
CARMA(1,0) process (OU process) with unitarily diagonalisable A has at least as many
exponential moments as the driving Lévy process.

2.2 Multivariate EGARCH processes in discrete time

Multivariate EGARCH processes have been introduced recently in Kawakatsu (2006) as a
natural extension of the univariate model of Nelson (1991). Yet, it should be noted that
the definition below is more general than the one of Kawakatsu (2006). For the necessary
background on multivariate ARMA processes we refer to Brockwell and Davis (1991).

DEFINITION 2.2 (Multivariate Discrete Time EGARCH(p,q)). Let d, p, q ∈ N, µ ∈ Sd,

α1, . . . , αq, β1, . . . , βp ∈ Mm(R) with m = d(d+1)
2 , ǫ = (ǫn)n∈Z an i.i.d. sequence of Rd-valued

random variables with E(ǫ1) = 0 and var(ǫ1) = Id and f : Rd → Rm a measurable function
such that f(ǫ1) ∈ L2. Suppose αq 6= 0 , βp 6= 0 and that

det(1− α1z − · · · − αqz
q) 6= 0

on {z ∈ C | |z| ≤ 1}. Then the process Y = (Yt)t∈Z, where

Yt = exp((µ+Ht)/2)ǫt
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and the vectorised log volatility H is given by

vech(Ht) =

p∑

k=1

βkf(ǫt−k) +

q∑

k=1

αkvech(Ht−k)

for all t ∈ Z, is called an EGARCH(p, q) process.

Above we have considered a general transformation f of the noise sequence ǫ. Concrete
specifications should be made in such a way that the model exhibits some desired properties,
e.g. a leverage effect (i.e. an asymmetric response to positive and negative shocks). In the
univariate case the “standard choice” introduced originally in Nelson (1991) is

f(η) = θη + γ(|η| − E(|ǫ1|))

with some real parameters θ, γ. This choice allows for a leverage effect, is at the same time
of a simple structure and ensures E(f(ǫ1)) = 0. The logarithmic volatility models put forth
in Kawakatsu (2006) can all be transformed into our above model using appropriate choices
of f . However, all of them lead to functional forms involving only the individual components
ǫi,t, i = 1, . . . , d, of the innovation sequence ǫ and their absolute values |ǫi,t| in a linear
manner. In particular, crossproducts of the form ǫi,tǫj,t do not enter the specification of f .
Dependence on these crossproducts seems, however, desirable, especially when comparing
things to multivariate GARCH specifications. We thus suggest two new possible choices for
f now. The first possible choice

f(η) = Θη + Γ
(
vech

(
(ηη∗)1/2

)
− E

(
vech

(
(ǫ1ǫ

∗
1)

1/2
)))

(2.7)

with η ∈ Rd,Θ ∈ Mm,d(R) and Γ ∈ Mm(R) is a straightforward multivariate extension of
the standard choice. Note that (ηη∗)1/2 can be interpreted as an extension of the absolute

value to a multidimensional setting and that
(
(ηη∗)1/2

)
ij

= ηiηj/‖η‖2 with ‖ · ‖2 denoting

the Euclidean norm on Rd. The second possibility we suggest is to use a generalised standard
choice component-wise, viz.

f(η) = vech(g(η) − E(g(ǫ1))) with (2.8)

g : R
d → Sd, (η1, η2, · · · , ηd) 7→ (gij(ηi, ηj))1≤i,j≤d

gii(ηi, ηi) := θi,iηi + γi,i|ηi| for i = 1, 2, . . . , d

gij(ηi, ηj) := θi,j
ηiηj√
|ηiηj|

+ γi,j

√
|ηiηj | for i = 1, 2, . . . , d, j = 1, 2, . . . , i− 1

gij(ηi, ηi) := gji(ηi, ηj) for i = 1, 2, . . . , d, j = i+ 1, i+ 2, . . . , d

where θi,j, γi,j with i = 1, 2, . . . , d, j = 1, 2 . . . , i are real parameters.

The following proposition shows that f as specified in (2.7) or (2.8) satisfies the required
conditions for EGARCH processes.

PROPOSITION 2.3. Let ǫ1 be an Rd-valued random variable with ǫ1 ∈ L2 and f : Rd →
Rm as specified in Equation (2.7) or (2.8). Then f is well-defined and f(ǫ1) ∈ L2.
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Proof. If f is specified by (2.8) this follows from an element-wise application of the Cauchy-
Schwarz inequality.

If f is given by (2.7) we are free to choose any norm for the proof. Thus we work in the
following with the Euclidean norm ‖ · ‖2 on Rd, resp. Rm, and the induced operator norm
on matrix spaces. Elementary calculations give

∥∥(ǫ1ǫ1∗)1/2
∥∥
2
= ‖ǫ1‖2, which implies the well-

definedness. Likewise, we use the operator norm ‖ · ‖ induced by these choices for the vech
operator. We have

‖f(ǫ1)‖2 ≤ ‖Θ‖2‖ǫ1‖2 + ‖Γ‖2

(
‖vech‖

∥∥∥(ǫ1ǫ1∗)1/2
∥∥∥
2
+
∥∥∥E
(
vech

(
(ǫ1ǫ1

∗)1/2
))∥∥∥

2

)
.

Using Jensen’s inequality one obtains
∥∥∥E
(
vech

(
(ǫ1ǫ1

∗)1/2
))∥∥∥

2
≤ ‖vech‖E(‖ǫ1‖2).

Thus
‖f(ǫ1)‖2 ≤ (‖Θ‖2 + ‖Γ‖2‖vech‖) ‖ǫ1‖2 + ‖Γ‖2‖vech‖E(‖ǫ1‖2).

Since ǫ1 ∈ L2 this immediately implies f(ǫ1) ∈ L
2.

3 MULTIVARIATE EXPONENTIAL COGARCH

3.1 Definition and stationarity

Now we define the exponential continuous time GARCH(p, q) process by specifying the vech-
transformed log-volatility process as a CARMA(q, p − 1) process.

DEFINITION 3.1. Let L = (Lt)t≥0 be a d-dimensional zero-mean Lévy process with Lévy
measure νL such that

∫
‖x‖≥1 ‖x‖

2νL(dx) <∞ and associated jump measure NL. Furthermore,

let h : Rd → Rm with m = d(d+1)
2 be a measurable function satisfying

∫

Rd

‖h(x)‖2νL(dx) <∞, (3.1)

p, q ∈ N with q ≥ p and A1, . . . , Aq, B0, . . . , Bp−1 ∈ Mm(R) with Aq ∈ GLd(R) and B0 6= 0
such that all zeros of the determinant det(Q(z)) of the autoregressive polynomial Q(z) :=
zq +A1z

q−1 +A2z
q−2 + . . .+Aq, z ∈ C, have strictly negative real part.

Then we define the d-dimensional exponential COGARCH(p, q) process G, abbreviated to
ECOGARCH(p, q), as the stochastic process satisfying,

dGt := exp((µ +Ht−)/2)dLt, t > 0, G0 = 0,

where µ ∈ Sd and the log-volatility process H = (Ht)t≥0 is a process in Sd with vectorial state
space representation

vech(Ht) := (Im, 0, . . . , 0)Xt, t ≥ 0, (3.2)

dXt = AXtdt+ B̃dMt , t > 0, (3.3)

with the initial value X0 ∈ Rqm being independent of the driving Lévy process L and

Mt :=

∫ t

0

∫

Rd\{0}
h(x)ÑL(ds, dx) , t ≥ 0,
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being a zero-mean Lévy process. The matrices A ∈ Mqm(R) and B̃ ∈ Mqm,m(R) are defined
by

A =




0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
−Aq −Aq−1 −Aq−2 · · · −A1



, B̃ =




B̃1

B̃2
...

B̃q−1

B̃q



,

with coefficients B̃q−j = −
∑q−j−1

i=1 AiB̃q−j−i + Bp−1−j for j = 0, 1, . . . , q − 1 (setting Bi = 0
for i < 0). If p = q = 1, we have A = −A1 and B̃ = B0.

In a financial context G is understood to be the log price process of d stocks with volatility
(instantaneous variance) process exp(µ +H). Moreover, the log returns over a time interval
of length r > 0 ending at time t, which are especially relevant in a financial context, are
described by the increments of G

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]
exp((µ+Hs−)/2) dLs , t ≥ r > 0 . (3.4)

Thus our continuous time model gives us the possibility to model ultra high frequency data,
which consists of returns over varying time intervals. On the other hand an equidistant

sequence of such non-overlapping returns of length r is given by (G
(r)
nr )n∈N. Such a sequence

then corresponds to a discrete time multivariate EGARCH process Y .

Remark 3.2. (a) The condition (3.1) ensures that the integral defining the Lévy process M
is indeed well-defined and that M has a finite variance.

(b) After extending the Lévy process (Mt)t∈R+ to one defined on the whole real line the
unique stationary version of H can be written as

vech(Ht) =

∫ t

−∞
(Im, 0, . . . , 0)e

A(t−s)B̃dMs .

(c) If q ≥ p+ 1 the log-volatility process is continuous and (q − p− 1) times differentiable,
which follows from the state space representation of vech(H) (cf. (Marquardt and Stelzer,
2007, Proposition 3.32)). In particular, the volatility will only contain jumps for p = q.

So far we have considered a general transformation h of the jumps of the driving Lévy
process L. Concrete specifications should be made in such a way that the model exhibits
similar properties, e.g. a leverage effect, as in the discrete time case. The choice

h(η) = Θη + Γvech
(
(ηη∗)1/2

)
, (3.5)

with Θ ∈ Mm,d(R) and Γ ∈ Mm(R), being the continuous time analogue of (2.7) clearly is
always a valid choice, as an inspection of the proof of Proposition 2.3 shows. Again it is
noteworthy that this extends the standard choice from the univariate literature.

A choice analogous to (2.8) is
h(η) = vech(g(η)) (3.6)

with g as in (2.8). That
∫
Rd ‖h(x)‖

2νL(dx) is finite is elementary to see.
Both specifications (3.5) and (3.6) obviously allow for asymmetric responses to positive

and negative shocks in the logarithmic (co)variance components. Concrete examples for the
choice of Θ and Γ in (3.5) are given in Section 4.
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PROPOSITION 3.3. Let H and G be as in Definition 3.1 with h satisfying (3.1). If the
eigenvalues of A, which are the same as the zeros of det(Q(z)), all have negative real parts
and X0 has the same distribution as

∫∞
0 eAuB̃dMu, then X,H and exp((µ+H)/2) are strictly

stationary. Further (G
(r)
nr )n∈N is strictly stationary.

Proof. The result on X and H follows from (Marquardt and Stelzer, 2007, Theorem 3.12).

If H is stationary the stationarity of (G
(r)
nr )n∈N is obvious, since the increments of L are

stationary and independent by definition.

Remark 3.4. Necessary and sufficient condition for the existence of a unique stationary
volatility process exist up to now only in the univariate case. Suppose that d = 1, q ≥ 1,
(B0, . . . , Bq) 6= 0 and the Lévy process M is not deterministic. Then equations (3.2) and
(3.3) have a unique strictly stationary solution H if and only if E(log+(|M1|)) < ∞ and
all singularities of the meromorphic function z 7→ Q(z)/P (z) on the imaginary axis are
removable. This result follows from (Brockwell and Lindner, 2009, Theorem 4.2). Moreover,
(Marquardt and Stelzer, 2007, Proposition 3.30) show that a multivariate CARMA process
has finite second moments if and only if the driving Lévy process has finite second moments,
provided B̃ is injective. This shows that in the univariate case the conditions of Definition 3.1
are (up to adding common zeros in Q and P ) basically the necessary and sufficient conditions
for the existence of the logarithmic volatility process H in L2. We conjecture that a comparable
result is true in the multivariate case, but this first requires extending the results of Brockwell
and Lindner (2009) to the multivariate case which is intricate and hence beyond the scope of
the present paper.

3.2 Mixing and second order properties

Mixing properties (see Doukhan (1994) for a comprehensive treatment) are useful for a number
of applications. In particular for asymptotic statistics, since consistency results and central
limit theorems exist for mixing processes. Thus we will derive mixing properties of the strictly
stationary volatility process and the return process. First we recall the definition of strong
mixing, which is also called α-mixing for a process with continuous time parameter.

DEFINITION 3.5 (Davydov (1973)). For a process Y = (Ys)s≥0 define the σ-algebras
FY
[0,u] := σ((Ys)s∈[0,u]) and FY

[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then Y is called strongly
or α-mixing, if

α(t) = sup
u≥0

α(FY
[0,u],F

Y
[u+t,∞))

:= sup
u≥0

sup{|P (A ∩B)− P (A)P (B)| : A ∈ FY
[0,u], B ∈ FY

[u+t,∞)} → 0,

as t→ ∞.

Above we denote by σ(·) the generated completed σ-algebra. The strong mixing property
with exponential rate of the log-volatility, volatility and return process is the subject of the
next theorem. Here strong mixing with exponential rate (exponential α-mixing) means that
α(t) decays to zero exponentially fast for t → ∞ .

THEOREM 3.6. Let vech(H) be defined by (3.2) and (3.3). Assume that the eigenvalues
of A all have negative real parts and X0 has the same distribution as

∫∞
0 eAuB̃dMu, hence H

10
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and exp(µ +H) are strictly stationary.
(i) Then there exist constants K > 0 and a > 0 such that

αH(t) ≤ K · e−at and αexp(µ+H)(t) ≤ K · e−at , as t→ ∞,

where αH(t) and αexp(µ+H)(t) are the α-mixing coefficients of the log-volatility and volatility
process, respectively.

(ii) Then for all r > 0 the discrete time process (G
(r)
nr )n∈N, where G

(r)
nr is defined in (3.4), is

strongly mixing with exponential rate and ergodic.

Proof. (i) Since vech(H) is a CARMA(q, p − 1) process the result follows from (Marquardt
and Stelzer, 2007, Proposition 3.34) and the fact that α-mixing is preserved under continuous
transformations.
(ii) The proof works along the lines of the proof of (Haug and Czado, 2007, Theorem 3.1).

COROLLARY 3.7. Let (tn)n∈N0 be a strictly increasing sequence of observation time points
with
limn→∞ tn = ∞ and tn = knc for all n ∈ N0, where kn ∈ N0 and c > 0. Then the dis-

crete time process (G
(∆n)
tn )n∈N,

G
(∆n)
tn := Gtn −Gtn−1 ,

with ∆n = tn − tn−1, is strongly mixing with exponential rate.

Proof. Simply expand the grid of observation times to an equidistant one with step size c.
Then clearly

FG(∆·)

1,2,...,l ⊂ FG(c)

1,2,...,tl/c
and FG(∆·)

k+l,k+l+1,... ⊂ FG(c)

tk+l/c,tk+l+1/c,...
,

where FG(∆·)

1,2,...,l is the σ-algebra generated from the random vectors G
(∆1)
t1 , . . . , G

(∆l)
tl

and the
other σ-algebras are defined analogously. An application of Theorem 3.6 then provides the
result.

Now we derive the second order moment structure of the return process (G
(r)
t )t≥r considering

only the case of a strictly stationary volatility process.

PROPOSITION 3.8. Let L be a Lévy process with E(L1) = 0 and E(‖L1‖
2) <∞. Assume

that the log-volatility process H is strictly stationary and E(‖ exp((µ +Ht)/2)‖) < ∞. Then
E(‖Gt‖

2) <∞ for all t ≥ 0, and for every t, h ≥ r > 0 it holds that

EG
(r)
t = 0

E(G
(r)
t (G

(r)
t )∗) =

∫ r

0
E(exp((µ+Hs−)/2)E(L1L

∗
1) exp((µ+Hs−)/2))ds

cov(G
(r)
t , G

(r)
t+h) = 0.

The results follow analogously to the univariate case in (Haug and Czado, 2007, Proposition
5.1). Note that the second order moment structure of vech(H) is clear from Marquardt and

Stelzer (2007), whereas for the volatility exp(µ +H) and the “squared returns” G
(r)
t (G

(r)
t )∗

the formulae obtained in the univariate case are already not explicit. Thus we refrain from
stating them in our multivariate setting.

Regarding the finiteness of “exponential moments” of H needed above we have the following
result.
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PROPOSITION 3.9. (i) Let ‖ · ‖∗ be an algebra norm on Sd and the ECOGARCH log-
volatility process H be strictly stationary. Then

E(eα1α2‖H1‖∗) <∞ with α1, α2 > 0 (3.7)

implies
E (‖ exp(α1(µ+H1))‖

α2
∗ ) <∞. (3.8)

(ii) Let moreover C > 0 be such that

sup
x∈Rm,‖vech−1(x)‖∗=1

{∥∥∥vech−1
(
(Im, 0 . . . , 0)e

AsB̃x
)∥∥∥

∗

}
≤ Ce−bs

for all s ≥ 0 and some b > 0. Then (3.7) is in turn implied by

∫

x∈Rd,‖vech−1(h(x))‖∗≥1
Ei
(
α1α2C‖vech−1(h(x))‖∗

)
νL(dx) <∞

or ∫

x∈Rd,‖vech−1(h(x))‖∗≥1
exp

(
α1α2C‖vech−1(h(x))‖∗

)
νL(dx) <∞.

Proof. (i) Since ‖ · ‖∗ is an algebra norm, ‖ exp(α1(µ +H1))‖
α2
∗ ≤ eα1α2‖µ‖∗eα1α2‖H1‖∗ . This

immediately shows (i).
(ii) The second part follows from Proposition 2.1 using the norm ‖ · ‖ = ‖vech−1(·)‖∗

on Rm and the definition of M implying νM (dx) = νL(h
−1(dx)), because vech(H) is an

m-dimensional stationary CARMA process.

3.3 Approximate Calculation of the Leverage effect

Intuitively it seems obvious that our model is capable of reproducing the leverage effect (for
the first asset) when one specifies the function h in such a way that h(ǫ)1 is larger when ǫ1 is
negative (price of the first asset goes down) than when ǫ1 is negative. However, quantifying
the leverage effect in our model is a very intricate issue. Therefore, we will below only give
an approximate calculation in the general case. However, in Section 4 we will show the
presence in concrete simulated examples and also one general class of models in dimension
two where the presence of the leverage effect can be shown rigorously. Note that we quantify
the leverage effect by looking at the covariance cov(∆Gt, vec(exp(µ +Ht))) of a jump in the
price process and the volatility immediately after the jump. It is easy to see that this quantity
equals cov(∆Gt,∆(vec(exp(µ + Ht)))) if E(∆Lt) = 0. To make everything well-defined all
these expectations and covariances have to be understood as being conditional on ‖∆Lt‖ > ǫ
for some ǫ > 0 (if L is a compound Poisson process, ǫ = 0 may also be taken). Based
on this quantity we say that the leverage effect is present (in e.g. the first component) if
(cov(∆Gt, vec(exp(µ+Ht))))11 < 0 (for all “sufficiently small” minimal jump sizes ǫ).

One of the main problems, why it is much more complicated to quantify the leverage effect
compared to the univariate case, is the following. In the univariate case the sign of ∆Gt equals
the sign of ∆Lt. However, in the multivariate case (∆G)1,t =

∑d
i=1(exp((µ+Ht−)/2))1i(∆Li,t)

maybe for instance negative and (∆L1,t) positive, since the current covariance structure allows
also jumps in the other components of L to affect (∆G1,t). Another problem is that the matrix
exponential is not an operator monotone function (see (Bhatia, 1997, Problem V.5.1) or (Horn
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and Johnson, 1991, p. 554)). This means that if X,Y ∈ Sd satisfy X ≥ Y , i.e. X − Y ∈ S
+
d ,

this does not imply that eX ≥ eY . Likewise no componentwise monotonicity holds, since in
principle all components of X ∈ Sd contribute to, say, (eX)11. These problems are probably
also the reason why Kawakatsu (2006) claims but does not show that his models may capture
the leverage effect.

Now we give an approximate calculation quantifying the leverage effect.
Denoting Frechet/total differentials with D and setting f :Md(R) →Md(R),X 7→ exp(X)

we have

Df(A) :Md(R) →Md(R),X 7→

∫ 1

0
e(1−t)AXetAdt.

see (Bhatia, 1997, Example X.4.2 (v)). Below all expectations and covariances have formally
to be understood as being conditional on ‖∆Lt‖ > ǫ with some ǫ > 0. If L is compound
Poisson, we can take ǫ = 0. Let G now be an ECOGARCH(p, p) process driven by a Lévy
process L satisfying E(∆Lt) = 0. Then using a first order Taylor approximation

cov(∆Gt, vec(exp(µ+Ht))
∗)

= E
(
exp((µ+Ht−)/2)∆Ltvec(exp(µ+Ht− + vech−1(B̃1∆Mt)))

∗
)

≈ E (exp((µ+Ht−)/2)∆Ltvec(exp(µ+Ht−))
∗) + E

(
exp((µ +Ht−)/2)∆Lt

×

∫ 1

0
vec
(
exp((1 − u)(µ+Ht−))vech

−1(B̃1∆Mt) exp(u(µ +Ht−))
)∗
du

)

= E

(
exp((µ +Ht−)/2)∆Ltvec(vech

−1(B̃1∆Mt))
∗

×

∫ 1

0
exp(u(µ+Ht−))⊗ exp((1− u)(µ +Ht−)) du

)

Hence, using the stochastic continuity of H

vec (cov(∆Gt, vec(exp(µ+Ht))
∗))

≈ E

(∫ 1

0
exp(u(µ +Ht−))⊗ exp((1− u)(µ +Ht−)) du⊗ exp((µ+Ht−)/2)

)

×E
(
vec
(
∆Ltvec(vech

−1(B̃1∆Mt))
∗
))

= E

(∫ 1

0
exp(u(µ+Ht))⊗ exp((1 − u)(µ+Ht)) du ⊗ exp((µ+Ht)/2)

)

×E
(
vec(vech−1(B0h(∆Lt))⊗∆Lt)

)
. (3.9)

A very nice property of the above expression is that this approximation of cov(∆Gt,
vec(exp(µ + Ht))

∗) factorises into one quantity which only depends on the stationary dis-
tribution of H and a second factor depending only on the jumps of L. The second factor can
be easily calculated from the Lévy measure of L as

E
(
vec(vech−1(B0h(∆Lt))⊗∆Lt)

)
= νL(‖x‖ > ǫ)−1

∫

‖x‖>ǫ
vec(vech−1(B0h(x)) ⊗ x)νL(dx)
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and regarding the first factor one should note that the stationary distribution of H is known
via its characteristic function/characteristic triplet (see (Marquardt and Stelzer, 2007, Propos-
ition 3.27)), since H is an MCARMA process. The second factor also resembles our intuition
that we have the leverage effect, if B0 and h are such that B0h(x) is bigger for “negative” x
than for “positive” ones. Of course, this is only valid when the first factor is such that the
signs of the elements corresponding to the variance (=diagonal) components of exp(µ +Ht)
are preserved.

Let us illustrate this with a concrete example where we without loss of generality consider
the first component. Assume h is of the form (3.5) and the components of L are completely
independent, i.e. if L jumps then only one component jumps or in other words νL is concen-
trated on the axes. Then we have that

E
(
vec(vech−1(B0h(∆Lt))⊗∆Lt)1

)
= E ((B0h(∆Lt))11∆L1,t)

= E

((
m∑

i=1

B0,1i (Θi1∆L1,t + Γi1|∆L1,t|)

)
∆L1,t

)

This shows – assuming the first factor in (3.9) does not change the sign of the first component –
that we have a leverage effect in the first component when

∑m
i=1B0,1i (Θi1∆L1,t + Γi1|∆L1,t|)

is always positive, but larger for negative values of ∆Lt than for positive ones, and the
jumps of L have a symmetric distribution. Thus, like in the standard univariate case we
have the leverage effect in the first component if ∆L has a symmetric distribution and
B0,1i,Γi,1,−Θi1,Γi,1 +Θi,1 ≥ 0 for all i = 1, . . . ,m.

3.4 Approximation of ECOGARCH(1,1) processes by EGARCH(1,1) processes

In this section we summarise a result of Stelzer (2009) which provides an important link
to discrete time EGARCH models and may serve as a starting point for estimating ECO-
GARCH(1,1) processes based on discrete observations. As Stelzer (2009) is concerned with
approximations of SDEs in general and the presentation and lengthy proofs there are rather
technical, it seems worthwhile to summarise the results for the ECOGARCH(1,1) process
here.

For the rest of the section we will just consider the ECOGARCH(1,1) process G satisfying,

dGt = exp((µ+Ht−)/2)dLt, t > 0, G0 = 0,

where the vectorised log-volatility process Xt := (vech(Ht))t≥0 is the process in Rm satisfying

dXt = −A1Xtdt+B0dMt , t > 0,

with the initial value X0 ∈ Rm being independent of the driving Lévy process L. In Stelzer
(2009) a first jump approximation of multivariate Lévy driven stochastic differential equa-
tions is introduced. This result was then used to show the convergence of a sequence of piece-
wise constant processes determined by discrete time EGARCH(1,1) to the ECOGARCH(1,1)
process in the Skorokhod topology in probability. For a complete and separable normed
space (E, ‖ · ‖E) we denote the convergence of a sequence (Z(n))n∈N of E-valued càdlàg ran-
dom processes in probability in the Skorokhod topology to a càdlàg random process Z by
plimn→∞dE(Z

(n), Z) = 0 with plim denoting the limit in probability and dE is a metric in-
ducing the Skorokhod topology (see e.g. Kurtz and Protter (1996)). The result is then the
following
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THEOREM 3.10 (Stelzer (2009), Theorem 4.1). Let (G,X) in Rd×Rm be a d-dimensional
ECOGARCH(1,1) process G and its associated vectorised log-volatility process X = vech(H)

with initial value (G0,X0). Let (t
(n)
i )i∈N0 for each n ∈ N be a strictly increasing sequence in

R+ with t
(n)
0 = 0 and limi→∞ t

(n)
i = ∞. Defining δ(n) = supi∈N

{
t
(n)
i − t

(n)
i−1

}
assume that

limn→∞ δ(n) = 0.
Then there exists for each n ∈ N a function hn : Rd × R+ → Rm and a sequence of

independent random variables (ǫ
(n)
i )i∈N in Rd with finite variance and E(ǫ

(n)
i ) = 0 ∀ i, n ∈ N

such that hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
has finite variance, E

(
hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

))
= 0 and

plimn→∞dRd×Rm

(
(IY (n),X(n)), (G,X)

)
= 0 ,

where for each n ∈ N the process (IY (n),X(n)) in Rd ×Rm is defined by

(IY
(n)
0 ,X

(n)
0 ) = (G0,X0),

IY
(n)

t
(n)
i

= IY
(n)

t
(n)
i−1

+ exp

((
µ+ vech−1

(
X

(n)

t
(n)
i−1

))
/2

)
ǫ
(n)
i ,

X
(n)

t
(n)
i

= e
−A1

(

t
(n)
i −t

(n)
i−1

)

X
(n)

t
(n)
i−1

+B0hn

(
ǫ
(n)
i , t

(n)
i − t

(n)
i−1

)
for all i ∈ N and

(IY
(n)
t ,X

(n)
t ) =

(
IY

(n)

t
(n)
i−1

,X
(n)

t
(n)
i−1

)
for t ∈ (t

(n)
i−1, t

(n)
i ), i ∈ N.

The sequence (ǫ
(n)
i )i∈N can be chosen to be i.i.d. provided t

(n)
i − t

(n)
i−1 = δ(n) for all i ∈ N.

If h is continuous, hn can be chosen such that the sequence of functions hn : Rd×R+ → Rm

satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn
(
z, t

(n)
i − t

(n)
i−1

)
− h(z)

∥∥∥
})

= 0 (3.10)

for all compact K ⊂ Rd. If h is uniformly continuous, hn can be chosen such that (3.10)
holds with Rd instead of K.

When the time grids are equidistant, i.e. t
(n)
i − t

(n)
i−1 = δ(n) for all i ∈ N, and (ǫ

(n)
i )i∈N

is chosen i.i.d., then the increments

(
Y

(n)

t
(n)
i

)

i∈N

:=

(
IY

(n)

t
(n)
i

− IY
(n)

t
(n)
i−1

)

i∈N

of IY (n) are a dis-

crete time multivariate EGARCH(1,1) process with associated vectorised log-volatility process(
X

(n)

t
(n)
i−1

)

i∈N

. Only var(ǫ
(n)
i ) = Id will usually not be satisfied, but (Stelzer, 2009, Theorem

4.4) provides a variant of the above statement ensuring also this property up to a scaling
corresponding to the size of the time grid.

Remark 3.11. The function hn in Theorem 3.10 can be specified as hn : Rd ×R+ → Rm,

(z, t) 7→ h

(
z +

1− e−νL(J(n))t

νL
(
J (n)

)
∫

J(n)

xνL(dx)

)
−

1− e−νL(J(n))t

νL
(
J (n)

)
∫

J(n)

h(x)νL(dx) ,

where J (n) =
{
x ∈ Rd : ‖(x∗, h(x)∗)∗‖ > m(n)

}
and (m(n))n∈N is a positive sequence such that

condition (3.1) in Stelzer (2009) is satisfied. Based on a choice for h and given observations
Gt1 , . . . , Gtn a quasi maximum likehood type estimator for the unknown parameters could be
defined similar as in Maller et al. (2008).
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4 EXAMPLES AND SIMULATIONS

In this section we demonstrate how to choose the parameters in the model to obtain a leverage
effect. We simulate sample path trajectories for three different examples. The first two
examples are such that a leverage effect is present. To empirically control the leverage effect
we compute estimates for the following quantities

corr(∆G1,t1,∗ , exp(µ+Ht1,∗)11) and corr(∆G2,t2,∗ , exp(µ+Ht2,∗)22) , (4.1)

where ti,∗, i = 1, 2, is a jump time in the i-th component.
As a first example we consider a bivariate ECOGARCH(1,1) process. The driving Lévy

process L has the characteristic function

E[ei〈u,Lt〉] = exp

[
−
1

2
〈u, I2u〉+

∫

R2

(ei〈u,x〉 − 1)νL(dx)

]
,

where νL is a finite measure with density

f(x) = λ

√
n1λ

n1 − 2

√
n2λ

n2 − 2
tn1

(√
n1λ

n1 − 2
x1

)
tn2

(√
n2λ

n2 − 2
x2

)

and tn denotes the density of the t-distribution with n degrees of freedom. In this particular
example we choose n1 = 4, n2 = 10 and the rate λ is set equal to 2. The log-volatility process
H has the vectorial state space representation

vech(Ht) = Xt

dXt = −A1Xtdt+ B̃1dMt

with

−A1 =




−1.0490 −1.5078 −0.4814
−0.1496 0.1065 0.5105
1.1074 0.6021 −0.9310


 , B̃1 = B0 = I3

The Lévy process M is defined by the function

h(η) =




−0.40 −0.40
−0.01 −0.01
−0.40 −0.40


 η +




0.01 0 0
0 0.1 0
0 0 0.01


 vech

(
(ηη∗)1/2

)
.

From the choice of Θ and Γ it follows that future volatility should be negatively correlated

with current jumps in the price. The remaining parameter µ ∈ S2 is set to

(
−8 0
0 −8

)
.

In Figure 1 parts of the trajectories of the bivariate log-price G as well as the diagonal
elements of the volatility process exp(µ+H) are shown. The trajectories of the log-volatility
process where simulated by applying a stochastic Euler scheme over the time points consisting
of the jump times of the two compound Poisson processes and a grid with step size 0.01.

The driving Lévy process L has independent components. Nevertheless we get dependent
volatilities exp(µ+H)11 and exp(µ+H)22 due to the choice of parameters, as can be seen from
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Figure 1: Simulated trajectories of the log-price process G in the top row and the diagonal
elements of the volatility process exp(µ +H) in the bottom row.
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Figure 2: Empirical autocorrelation function ρ̂1 (top) and ρ̂2 (middle) of exp(µ +H)11 and
exp(µ+H)22, respectively, and the empirical crosscorrelationfunction ρ̂12 (bottom).
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the empirical estimate of the crosscorrelation function ρ12(h) = corr(exp(µ+Ht+h)11, exp(µ+
Ht)22) in Figure 2, where a lag of one corresponds to 0.01 units of time.

To estimate the quantities in (4.1) we simulated the trajectories 1000 times and then
averaged over the 1000 estimates to get

ĉorr(∆G1,t1,∗ , exp(µ+Ht1,∗)11) = −0.4665

ĉorr(∆G2,t2,∗ , exp(µ+Ht2,∗)22) = −0.4570 .

The corresponding empirical standard errors are 0.0083 and 0.0074, respectively.
This empirical result is also confirmed by the following Proposition.

PROPOSITION 4.1. Let d = 2 and G a d-dimensional ECOGARCH(p, p) process with h
given by (3.5). Assume that the driving Lévy process L has independent components and that
the distribution of the jumps of Lk, k = 1, 2, is symmetric, i.e. for all ǫ > 0,

P (∆Lk,t ∈ dx | |∆Lk,t| > ǫ) = P (∆Lk,t ∈ −dx | |∆Lk,t| > ǫ) , t ≥ 0, k = 1, 2 .

Then conditionally on the event |∆Lk,t| > ǫ, the sign of

cov(∆Gk,t, exp(µ+Ht)kk | |∆Lk,t| > ǫ)

is negative if

{
(B̃1Θ)11 = (B̃1Θ)31 < 0 and (B̃1Θ)21 ≤ 0, k = 1

(B̃1Θ)32 = (B̃1Θ)12 < 0 and (B̃1Θ)22 ≤ 0, k = 2
.

Proof. In case |∆Lk,t| > ǫ and ∆Li,t = 0 for some timepoint t, the log-volatility matrix is
equal to

Ht =

(
h1,t h2,t
h2,t h3,t

)
,

where
hj,t = Xj,t− + (B̃1Θ)jk∆Lk,t + (B̃1Γ)ji(k)|∆Lk,t| , j = 1, 2, 3,

and i(k) = 1{1}(k) + 3 · 1{2}(k).
The volatility matrix at time t is then given by

exp(µ+Ht) =
1

τ

(
σ211,t σ212,t
σ212,t σ222,t

)

with

σ211,t = e(µ11+µ22+h1+h3)/2
(
τ cosh

(τ
2

)
+ (µ11 − µ22 + h1 − h3) sinh

(τ
2

))

σ212,t = 2(µ12 + h2)e
(µ11+µ22+h1+h3)/2 sinh

(τ
2

)

σ222,t = e(µ11+µ22+h1+h3)/2
(
τ cosh

(τ
2

)
+ (µ22 − µ11 + h3 − h1) sinh

(τ
2

))

and τ =
√

(µ11 − µ22 + h1 − h3)2 + 4(µ12 + h2)2 (see e.g. Rowland and Weisstein (2009)).
Since the distribution of the jumps of Lk is symmetric, we obtain

E(∆Gk,t | |∆Lk,t| > ǫ) = 0 .
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Define PL
ǫ (dx) = P (∆L1,t ∈ dx | |∆L1,t| > ǫ). Then we get for k = 1

cov(∆G1,t, exp(µ+Ht)11 | |∆L1,t| > ǫ) = E(∆G1,t exp(µ +Ht)11 | |∆L1,t| > ǫ)

=

∫

{X−1
t− (R3)}

exp

(
1

2
(µ+Ht(ω))

)

11

I(ω)dP (ω) ,

where

I(ω) =

∫

x>ǫ
xe

1
2(µ11+µ22+X1,t−(ω)+X3,t−(ω)+((B̃1Γ)11+(B̃1Γ)31)x)

{
e(B̃1Θ)11+(B̃1Θ)31)

x
2

[
cosh

(
τ+(x)

2

)
+
τ̃+(x)

τ+(x)
sinh

(
τ+(x)

2

)]

− e−(B̃1Θ)11+(B̃1Θ)31)
x
2

[
cosh

(
τ−(x)

2

)
+
τ̃−(x)

τ−(x)
sinh

(
τ−(x)

2

)]}
PL
ǫ (dx)

with

τ̃ s(x) = µ11 − µ22 + hs1,t(x)− hs3,t(x) , s ∈ {+,−},

τ s(x) =
√

(τ̃ s(x))2 + 4(µ12 + hs2,t(x))
2 ,

and

hsj,t(x) =

{
Xj,t− + (B̃1Θ)j1x+ (B̃1Γ)j1x, s = +

Xj,t− − (B̃1Θ)j1x+ (B̃1Γ)j1x, s = −
, j = 1, 2, 3.

An inspection of the integrand of I(ω) reveals that I(ω) is almost surely negative if
(B̃1Θ)11 = (B̃1Θ)31 < 0 and (B̃1Θ)21 ≤ 0, which implies that the sign of

cov(∆G1,t, exp(µ+Ht)11 | |∆L1,t| > ǫ)

is negative. The same reasoning leads to the desired result for k = 2.

Remark 4.2. Jumps in the k-th component of G can of course also occur due to jumps in
the j-th component in L, j 6= k. The sign of

cov(∆Gk,t, exp(µ +Ht)kk | |∆Lj,t| > ǫ) , j, k ∈ {1, 2}, j 6= k,

depends in this case also on the sign of exp
(
1
2 (µ+Ht(ω))

)
kj
. To assure that the off-diagonal

elements in exp
(
1
2 (µ+H)

)
are also positive almost surely, we would have to assume that H

is positive almost surely. But this seems to be too restrictive.

In the second example we study a bivariate ECOGARCH(2,2) process. The driving Lévy
process L is the same as in the first example. The vectorial state space representation is in
this case given by

vech(Ht) = (I3, 0)Xt

dXt =

(
0 I3

−A2 −A1

)
Xtdt+

(
B̃1

B̃2

)
dMt ,
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with

−A1 =




−1.0890 1.3086 0.2193
−1.2412 −0.6910 0.1966
−1.7537 −0.6331 −0.4548


 , −A2 =




0.0466 −0.5511 0.3881
0.2271 −1.6854 0.7785
−0.9972 0.9893 0.0554




B̃1 = B0 = I3 B̃2 = −A1B0 +B1 =




−0.0890 1.3086 0.2193
−1.2412 0.3090 0.1966
−1.7537 −0.6331 0.5452




The remaining parameters are chosen as for the ECOGARCH(1,1) process. In Figure 3 we
see again parts of the trajectories of the bivariate log-price G as well as the diagonal elements
of the volatility process exp(µ+H).
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Figure 3: Simulated trajectories of the log-price process G in the top row and the diagonal
elements of the volatility process exp(µ +H) in the bottom row.

As in the first example we would again expect future volatilities to be negatively correlated
with current jumps in the price. To check this assumption we estimated again (4.1) from
1000 simulated trajectories and the average values are

ĉorr(∆G1,t1,∗ , exp(µ+Ht1,∗)11) = −0.2018

ĉorr(∆G2,t2,∗ , exp(µ+Ht2,∗)22) = −0.2243 .

The corresponding empirical standard errors are 0.0074 and 0.0116, respectively. We see again
a negative correlation between current returns and future volatility. The negative correlation
between jumps in the log-price and the future volatility can also be seen from the plots in
Figure 3.

As a third example we consider again the ECOGARCH(1,1) process of the first example.
The only differences are the matrices Θ and Γ. Now they are chosen in such a way that we
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will have a positive correlation between current returns and future volatility. In particular
they are given by

Θ =




0.40 0.40
0.01 0.01
0.40 0.40


 and Γ =




0.01 0 0
0 0.10 0
0 0 0.01




Averaging again over 1000 simulations we get the following empirical correlations

ĉorr(∆G1,t1,∗ , exp(µ +Ht1,∗)11) = 0.3238

ĉorr(∆G2,t2,∗ , exp(µ +Ht2,∗)22) = 0.2921 .

The corresponding empirical standard errors are 0.0073 and 0.00067, respectively, which shows
that this is an example for the non-leverage case. Sample trajectories for one of the simulations
are shown in Figure 4.

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

G
1

G
2

ex
p
(µ

+
H
) 1

1

ex
p
(µ

+
H
) 2

2

timetime

Figure 4: Simulated trajectories of the log-price process G in the top row and the diagonal
elements of the volatility process exp(µ +H) in the bottom row.
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