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In most real life situations we are not only confronted with one single source of risk or one
single risk, but with several sources of risk or combinations of risks. An important question
is whether individual risks influence each other or not. This may concern the time of their
occurrence and/or their severity. In other words, we need to understand how to model and
describe the dependence structure of risks. Clearly, if risks influence each other in such a way
that they tend to occur together and increase the severity of the overall risk, then the situation
may be much more dangerous than otherwise.

We illustrate this with a concrete example. Consider a building which could be hit by an
earthquake and a flood. If the building is situated on the Japanese coast, an earthquake may
damage the building and cause a tsunami, which in turn floods the building. Hence, it is quite
likely that by these two combined sources of risk a particularly disastrous event occurs. In other
words, there is a strong positive dependence between these two risks (high damage from an
earthquake will often come along with high damage from a flood). This does not mean that
they always occur together, since an earthquake does not necessarily cause a tsunami or there
may be a flood only due to heavy rain.

The facts.

• Dependence between risks and/or sources of risks are crucial for risk assessment, quantifi-
cation and management.

• Adequate mathematical measures for the dependence of risks (or more general of random
variables) are needed.

• Correlation measures linear dependence, but characterises the full dependence structure
only in special parametric models (the multivariate normal distribution is the typical ex-
ample).

• Correlation is also useful in spherical and elliptical distributions.

• Rank correlations are appropriate dependence measures in certain situations.

• Copulae provide a way to characterise the dependence structure completely, but are rather
complex objects.

• For risk assessment it is mainly the dependence structure of extreme events that mat-
ters. Thus, measures for dependence in extreme observations provide useful dependence
measures for combined risks.
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1 Introduction

In most situations (both in our professional and our daily life) risks are present. Often there
exist various sources of risk which, in the end, determine the overall risk of a more or less
complex system. This is a common situation in the financial world (i.e., for any bank and
insurance company), in any engineering system, when working as a physician or when dealing
with environmental consequences. It is then necessary to assess and deal with combinations of
risks in an appropriate way.

There is a huge difference between two risks possibly occurring together and risks happening
at different times. In one situation you need to be prepared to deal with both risks at the same
time, whereas in the other situation it suffices to cope with one risk at a time. For example,
if you consider the people needed on stand-by for the emergency services, you will need many
more people in the first case. However, in almost all situations life is not even that easy, risks do
not have to occur at the same time, instead they may or tend to occur at the same time. Then
we need to understand and quantify this tendency. This is exactly what this paper is about, to
understand how to model the statistical dependence between different risks.

There are two classical approaches. The first one assesses the single risk factors by some
monetary risk measure appropriately, and simply adds the different values of the single risk
measures together. The second one is to combine the monetary risks with a multivariate normal
model, and assess the dependence via the pairwise correlations.

Both approaches only capture part of the truth, and in this chapter we discuss their ap-
propriateness, other approaches and the pros and cons of different approaches to model and
measure risks of complex systems.

We are concerned with risk under dependence and thus we briefly have to make precise what
we mean by this. In the end we want to use risk measures (see the chapter Biagini, Meyer-
Brandis, and Svindland [4] in this book for a detailed introduction) to quantify risks, as well as
to asses the effects of risk management strategies. Essentially, we want to understand the effects
the dependence structure has on these risk measures. In models it is of utmost importance to
have an appropriate dependence structure capturing all effects relevant for the risk measures. So
we want to discuss both how to model dependence and the effects of different ways of modelling
on the final risk assessment.

Therefore let us briefly introduce two risk measures and note that we identify risk with a
random variable; i.e., the outcome of a risky event.

Definition 1.1 (Examples of “risk measures”) For a random variable X with distribution
function F (x) = P (X ≤ x) for x ∈ R we define the following risk measures:
(a) Variance: var(X) = E((X − E[X])2) = E(X2) − (E(X))2 is the mean squared deviation
from the mean or expected value of X.
(b) Value-at-Risk: Define the quantile function of F as

F−1(α) = inf{x : F (x) ≥ α}, α ∈ (0, 1). (1.1)

Note that for strictly increasing F this is simply the analytic inverse.
Then for a large value of α (usually α = 0.95 or larger) VaRα = F−1(α) is called the Value-at-
Risk (for the level α).

The first risk measure, i.e. the variance, gives the average squared difference between a
random variable (the realisation of a risk) and its mean outcome. It measures how widely
spread various outcomes are. Clearly, it is a very simplistic risk measure, since e.g. it does
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not differentiate between values higher and values lower than the mean, as it looks only at the
squared distance. Normally, only one direction really matters when considering a particular risk.
For instance, if we consider the level of a river in a German city and the flood risk, then it is
irrelevant when the level is far smaller than the mean (of course, the “downside” direction may
well matter for other risks, e.g. that water becomes scarce) .

The Value-at-Risk or VaR is a very popular risk measure in particular in the financial world.
Above it has been assumed that the high realizations of X are “risky”, but this is only a
convention and can be changed to low realizations being risky. Intuitively, the value at risk
gives the level which is not exceeded in 100 · α% of all cases (e.g. if the VaR at the level 0.95
is 500, then the relevant variable, “the risk”, is above 500 in 5% of all cases and in 95% of all
cases it is below 500). Moreover, the VaR has been incorporated into the Basel II regulations
(the international rules governing how much capital banks must set aside to cover future losses
from their business) and Solvency II (similar international rules for insurance companies), and
the national legislation which enforces these international standards. VaR is the standard risk
measure to be used there (cf. Fasen, Klüppelberg, and Menzel [9] for estimation methods).

We will see later, in particular in Illustration 2.3, that changing the dependence structure
usually has tremendous effects on the VaR. But note that VaR has been rightly criticized for
various reasons:

a) VaR takes only the event of large losses into account, but not the size of losses. In this
sense the so called Tail-VaR is preferable, which measures the average of all losses exceed-
ing VaR. So if a bank sets aside capital equal to its VaR it certainly goes bankrupt (or
needs to be “rescued”), as soon as a loss occurs which is higher than VaR. In contrast to
this, if it used the Tail-VaR to determine its risk capital, it has set aside enough capital to
withstand such an event on average. So there should be a realistic chance that the capital
is sufficient to cover the loss.

b) VaR is not always a coherent risk measure. For a risk measure to be coherent (cf. Biagini
et al. [4]) it is necessary that the risk measure of the sum of two risks is always below
the sum of the two risk measures. Since e.g. banks estimate the VaR for each unit and
add all resulting VaRs up to estimate the risk of the whole bank, the use of VaR may
underestimate the true bank’s VaR considerably.

As a very readable paper on dependence measures and their properties and pitfalls, which goes
far beyond the present chapter, we recommend [2].

This paper is structured as follows. In Section 2 we introduce the mathematical definitions of
(in)dependence of random variables and illustrate the effects of different dependence structures.
In Section 3 we recall the multivariate normal distribution and discuss which kind of dependence
it is able to model. We continue this in Section 4 where we consider the correlation as a pop-
ular dependence measure discussing in detail its properties, problems, limitations and popular
misconceptions. As the next natural step we present spherical and elliptical distributions in
Section 5. Thereafter, we turn our focus on alternative dependence measures starting with rank
correlations in Section 6. Then in Section 7 we consider a concept – copulae – at length which in
principle is able to completely encode all possible dependence structures. As typically extreme
events are the really dangerous risks, we indicate how to quantify and model the dependence
of extreme events in Section 8. Finally, we give you as our readers some Food for Thought in
Section 9 and provide a brief summary in Section 10.
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2 Independence and dependence

The first simple question to answer is, when exactly do we have dependence between risks?
The best answer seems to be a negative one, viz. risks are dependent whenever they are not
independent.

Clearly, this means that we have to give a mathematical definition of independence. We do
this for two random variables X and Y (which represent the risks we are interested in). Think for
instance, of our example of an earthquake and a flood at the beginning. Intuitively, independence
should mean that whatever happens in one random variable, say X (the earthquake), should in
no way affect what happens in Y (the flood). If we know the value of X, this should not change
our knowledge of what might happen with which probability in Y . In proper mathematical terms
one says that two random variables are independent if their joint distribution is the product of
the two marginal distributions; i.e., P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x, y ∈ R

(note: P (A) means the probability that some event A occurs.) This implies that the probability
distribution of Y conditional on X does not depend on X, but is simply equal to the distribution
of Y ; i.e., P (Y ≤ y | X ≤ x) := P (X ≤ x, Y ≤ y)/(P (X ≤ x)) = P (Y ≤ y) for all x, y ∈ R.
Obviously this is in line with the intuition given above.

Note that the necessity of a negative definition of dependence tells us that there are (too)
many ways in which risks can be dependent. Hence, any mathematical object completely de-
scribing the dependence of arbitrary random variables has to be a very complex object. Turned
the other way around any simple quantification of dependence – like one real number obtained
from the joint distribution of two random variables – will necessarily only reflect a very special
aspect of dependence, or describe the dependence completely only in very special situations/set-
ups. This should be kept in mind throughout the rest of this chapter and whenever trying to
quantify dependence in applications.

In truly realistic situations we are interested in the (in)dependence of more than two random
variables. We give the general definition and discuss and illustrate it afterwards.

Definition 2.1 (Independence) Let X1,X2, . . . ,Xn for n ∈ N be random variables. Then
X1,X2, . . . ,Xn are called independent if

P (X1 ≤ x1, . . . ,Xd ≤ xd) = P (X1 ≤ x1) · · ·P (Xd ≤ xd) (2.1)

holds for all x1, . . . , xd ∈ R.

Let us consider two special cases that are particularly relevant in applications.

a) Assume the random variables X1,X2, . . . ,Xn are discrete; i.e., they can only assume count-
ably many values (e.g. all random variables take only values 0 or 1, or all possible outcomes
are natural numbers). Then X1,X2, . . . ,Xn are independent if and only if

P (X1 = x1, . . . ,Xd = xd) = P (X1 = x1) · · ·P (Xd = xd)

for all possible values of x1, . . . , xd.

b) Assume that the random variables X1,X2, . . . ,Xn have densities (non-negative functions
fi such that P (Xi ≤ x) =

∫ x
−∞ fi(t)dt for all i ∈ {1, . . . , n} and x ∈ R). Provided they

have also a joint density; i.e., a non-negative function f such that P (X1 ≤ x1, . . . ,Xd ≤
xd) =

∫ x1

−∞
∫ x2

−∞ · · ·
∫ xd

−∞ f(t1, t2, . . . , td)dt1dt2 · · · dtd, then they are independent if and only
if

f(x1, x2, . . . , xd) = f1(x1)f2(x2) · · · fd(xd)

for all x1, . . . , xd ∈ R.
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2.1 Misconceptions of the independence concept

Unfortunately, there are several popular misunderstandings regarding independence, which we
shall discuss now.

Misconception 1: Pairwise independence does not necessarily entail independence
One may be tempted to believe that instead of checking the definition of independence, which
involves all random variables, one could check whether all possible pairs of two variables are
independent. Unfortunately, such pairwise independence does not imply independence in the
sense of Defintion 2.1 above. This is illustrated by the following example. Simple random
variables (indicator variables) are defined via events A,B,C by 1A, 1B and 1C , where 1A is
equal to one if the event A occurs and equal to zero else; analogously for B and C. Then
our Definition 2.1 is consistent with the usual definition of independent events, which says that
events A,B,C are independent, if P (A ∩ B ∩ C) = P (A)P (B)P (C), P (A ∩ B) = P (A)P (B),
P (A ∩ C) = P (A)P (C) and P (B ∩ C) = P (B)P (C) all hold. The following examples shows
that independence of all pairs of indicator variables (or events) does not imply independence of
all three indicator variables (or events).

Illustration 2.2 Think of two thunderstorms which we assume to be independent. We only
care whether a thunderstorm comes accompanied by hail or not. The probability for a single
thunderstorm to come with hail shall be 1/2. Let A be the event that it hails during the first
thunderstorm and B the event that it hails during the second thunderstorm. Finally, let C be
the event that it either hails or does not hail in both the first and the second thunderstorm.
One easily calculates P (A) = P (B) = P (C) = 1/2. However, P (A ∩ B ∩ C) = P (A ∩ B) =
1/4 6= 1/8 = P (A)P (B)P (C), because if it hails both in the first and the second thunderstorm,
the event C given by no hail in both thunderstorms can no longer occur. So clearly A,B,C are
not independent. However, A,B are independent by construction and P (A ∩C) = P (A ∩B) =
P (B ∩C) = 1/4; and thus we have pairwise independence. 2

Misconception 2: Total risk is not smallest/largest for independent events
One cannot conclude in general that the situation of independent risks is particularly (un)fa-
vourable from the point of view of the total risk. The reason is that dependence can act both
in a risk reducing and risk enhancing way, since typically risk measures are non-linear. We will
present some real life examples and discuss the variance and the Value-at-Risk as risk measures.

Illustration 2.3 Assume that we are confronted with two different risks modelled by two ran-
dom variables X,Y . Both random variables are either 0 or 1 (in some monetary unit like 1
million Euros), corresponding to no loss or loss of one monetary unit, each with probability
1/2. For example, in an insurance company X,Y may describe whether or not damages have
been reported for two different insurance contracts and the claim had to be paid (then the
corresponding variable is 1, else it is zero). The insurer regards X + Y as the random variable
describing the total risk of both contracts.

When using the variance as risk measure, we simply have to apply the formula

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

Consequently, the risk (in terms of the variance) is equal to the sum of the risks, if X and Y are
uncorrelated (see Section 4 for the use of the correlation as a dependence measure). The risk of
the sum is larger than the sum of risks, if X and Y are positively correlated, and likewise the
risk of the sum is smaller than the sum of the risks if they are negatively correlated. For the
VaR (as well as other more advanced risk measures) the situation is not quite as simple.

Situation 1: X and Y are independent (e.g. X models a life insurance contract and Y a personal
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liability insurance of the same person). Then the loss X + Y is 0 with probability 1/4, 1 with
probability 1/2, or 2 with probability 1/4. When using the Value-at-Risk at the 90% or 70%
level as risk measures, one obtains VaR0.9(X + Y ) = 2 and VaR0.7(X + Y ) = 1.

Situation 2: X,Y are “completely positive dependent” (e.g. X,Y are insurance risks for two
neighbouring houses of same value against hurricanes; i.e., X = Y ). Then the lossX+Y is 0 with
probability 1/2, or 2 with probability 1/2. It can never be 1 and one obtains VaR0.9(X + Y ) =
VaR0.7(X + Y ) = 2.

Situation 3: X,Y are “completely negative dependent” (e.g. X is an insurance cover for a
farmer against too little rain measured by the annual amount of rain being below a level c, and
Y is an insurance cover for a holiday resort at the same place against bad weather which pays 1
if the amount of rain is above the same level c; i.e., X = 1− Y ). Then the loss X + Y is 1 with
probability 1. It can never be 0 or 2 and one obtains VaR0.9(X + Y ) = VaR0.7(X + Y ) = 1.

Comparing the values of the VaR for the two different levels in the three examples shows that the
risk in the independent situation is neither an upper nor a lower bound on the risk in dependent
situations. Note that in the last situation there is actually no risk at all in the sense of an
uncertain outcome, because X + Y is always equal to 1.

Note here also that typical risk measures are non-linear. This is in contrast to the expected
value, which for X + Y is in all situations equal to 1. Hence, our examples illustrate also that
the expected value does not at all care about the dependence structure. 2

3 Normal distribution

The normal distribution is probably the most widely used probability distribution in applica-
tions. Its popularity is due to the facts that it is rather easy to handle, that many properties are
known completely explicitly, and often there are arguments that it is a natural distribution to
use. By a classical result called the central limit theorem, one can argue that whenever a variable
of interest is generated by the averaged results of many different small random effects, then this
random variable should be approximately normally distributed. However, this argument has to
be used with care and one should always check in detail whether data at hand may reasonably
come from a normal distribution.

Definition 3.1 A random variable X is said to be normally distributed with mean µ ∈ R and
variance σ2 > 0, if it has a probability density given by

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R. (3.1)

If µ = 0 and σ2 = 1, we speak of a standard normal random variable.

Dependence issues make sense only for at least two random variables, hence we now turn
our focus to multivariate normal distributions. We summarize all risks in a (column) vector
X = (X1, . . . ,Xd)

>. We also need the notion of a positive definite d × d matrix Σ that is a
matrix which is symmetric (i.e., the transposed Σ> = Σ) and satisfies x>Σx > 0 for all x ∈ R

d

not equal to the zero vector. We are now ready to define the multivariate normal distribution;
cf. the book [11] for many interesting details.

Definition 3.2 A d-dimensional random vector X is called normally distributed with mean
µ ∈ R

d and covariance matrix Σ (a positive definite d× d matrix), if it has probability density

fX(x) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x − µ)

)
, x ∈ R

d. (3.2)
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Figure 1: Bivariate normal densities: standard normal (independent components; upper left),
normal with variance 1 and covariance ρ = 0.9 (highly positively correlated; upper right), normal
with variance 1 and covariance ρ = −0.9 (highly negatively correlated; lower).

If µ = 0 and Σ = Id (Id being the d× d-identity matrix), we speak of a d-dimensional standard
normal vector.

Note that one can also define normal distributions with only a positive semi-definite covari-
ance matrix Σ (i.e., a symmetric matrix satisfying x>Σx ≥ 0 for all x ∈ R

d not equal to the zero
vector). One way to do this is by demanding that X = µ +AY where Y is standard normally
distributed (with lower dimension) and A is chosen such that AA> = Σ.

The parameter µ is the mean vector of X and changing it shifts the distribution (i.e., it only
changes the location of the distribution in a non-random way). Hence, it has nothing to do with
the dependence structure between the vector components X1, . . . ,Xd, which therefore must be
totally described by Σ.

Each diagonal element Σii of the matrix Σ gives the variance of the i-th coordinate Xi,
whereas the off-diagonal element Σij with i 6= j gives the covariance of Xi and Xj, a dependence
measure we shall investigate in detail below.

In Figure 1 we depict the densities of several bivariate normal distributions. For the standard
normal density the surface is very homogeneous (it is left invariant by rotations), whereas in
the two other cases the mass of the distribution (i.e., the area with a high value for the density)
is concentrated around the diagonal (i.e., the line where x1 = x2), or the negative diagonal
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Figure 2: Contour plots of bivariate normal densities: standard normal (independent compo-
nents; left), normal with variance 1 and covariance ρ = 0.9 (highly positively correlated; middle),
normal with variance 1 and covariance ρ = −0.9 (highly negatively correlated; right).
The levels of the contours are 0.15, 0.1, 0.04, 0.01, 0.001

(i.e., the line where x1 = −x2), respectively. Intuitively it seems that in the standard normal
distribution the two components X1 and X2 are rather independent, whereas in the other two
cases they appear to be rather dependent. This intuition is indeed true.

However, there is more to be learned from these plots. A natural questions is, what do the
lines look like where the density has a fixed specified value; i.e., what are the sets of possible
values (x1, x2) satisfying fX(x1, x2) = c for some c > 0. From the plot of the density, we guess
that for the standard normal density, these contour lines should be circles around the origin.
Note that the standard normal density has its maximum at 0 with value fX(0, 0) = 1/(2π). We
calculate the following for c ∈ (0, 1/(2π)] from (3.1) (by ln we denote the the natural logarithm;
i.e., the analytical inverse of the exponential function):

fX(x1, x2) = c

⇔ −1

2
(x2

1 + x2
2) = ln(2πc)

⇔ x2
1 + x2

2 = −2 ln(2πc)

From elementary geometry we recall that this last equation describes the circle around zero with
radius

√
−2 ln(2πc) (note that 2πc < 1, and hence ln(2πc) < 0).

In the general case (with arbitrary mean and covariance matrix) we may still assume that
µ = 0, since the mean changes only the location, not the dependence structure. For arbitrary
Σ the sets with equal values for the normal density can also be calculated and we obtain (again
only for possible values of c) from Definition 3.2 and the formula for the explicit inversion of a
2 × 2 matrix:

fX(x1, x2) = c

⇔ Σ22x
2
1 − 2Σ12x1x2 + Σ11x

2
2 = −2 det(Σ) ln(2π

√
det(Σ)c).

Since this is again a quadratic equation, elementary geometry tells us that these sets are ellipses
centered at the origin. As we shall also discuss in detail later on, the distributions where the
contour lines of the density (the lines characterised by the density assuming the same value) are
circles or, more generally, ellipses play a special role regarding the description of dependence.
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4 Correlation as a linear dependence measure

We now discuss the usage of the covariance or correlation as a measure of dependence. We start
with a pair X,Y of random variables representing two different risks. Throughout this section
we assume that all random variables have a finite variance; i.e., E(X2) < ∞ (equivalently,∫

R
x2fX(x)dx <∞ if X has a density fX).

Recall that the variance of a random variable X is given by var(X) = E((X − E(X))2)
and can be seen as a measure of the variability of the random variable or, in other words, how
much realisations of X tend to fluctuate around the mean value E(X). Note that when X has
a density fX then its mean or expectation is E(X) =

∫
R
xfX(x)dx. The covariance of X and

Y is given by cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY ) −E(X)E(Y ). From the first
expression it is obvious that the covariance is a positive number if X and Y are “usually” both
below or above their mean and negative if “usually” one is above its mean and one below.

The covariance carries information on the dependence, but is also affected by the variability
(the typical spread around the mean) of the involved random variables. To get rid of the latter
effect and to get a number measuring only dependence aspects one normalises the covariance by
dividing the covariance by the product of the involved standard deviations (square roots of the
variances).

Definition 4.1 (Correlation coefficient) For two random variables with finite second mo-
ment the dependence measure

ρ(X,Y ) =
cov(X,Y )√
var(X)var(Y )

(4.1)

is called (Pearson’s) correlation coefficient.

The correlation coefficient is usually estimated by its empirical version: Given independent
bivariate data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of joint observations from two random variables
X and Y , respectively, the empirical correlation or correlation estimator is given by

ρ̂(X,Y ) =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2
. (4.2)

where

X =
1

n

n∑

i=1

Xi and Y =
1

n

n∑

i=1

Yi

is the empirical mean of the Xi and Y the empirical mean of the Yi.

Classical results (the Cauchy-Schwarz inequality) ensure that the correlation of any two
random variables has to be between −1 and 1 (as well as for its empirical estimator), and for
independent random variables cov(X,Y ) = 0 and, thus, the correlation ρ(X,Y ) = 0 as well.

The correlation is a measure of linear dependence. In particular, perfect linear dependence
is equivalent to ρ(X,Y ) = ±1.

Theorem 4.2 Two random variables X,Y are perfectly linearly dependent; i.e., Y = aX + b
with some a 6= 0 and b ∈ R, if and only if ρ(X,Y ) = ±1.

Proof. Assume first Y = aX + b. Then

cov(X,Y ) = E((X − E(X))(aX + b− (aE(X) + b))) = aE((X − E(X))2) = a var(X)

var(Y ) = var(aX + b) = a2var(X)
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and, hence, ρ(X,Y ) = a/
√
a2 = ±1, depending on the sign of a.

To ease notation for the converse implication we set X̃ = X − E(X) and Ỹ = Y − E(Y ) in the
following. Assume now that

ρ(X,Y ) =
E(X̃Ỹ )√

E(X̃2)E(Ỹ 2)
= ±1.

Then E(X̃2), E(Ỹ 2) > 0 and we have that

E(Ỹ 2)
(
E(X̃2)E(Ỹ 2) − (E(X̃Ỹ ))2

)
= 0.

However, calculations show that

E(Ỹ 2)
(
E(X̃2)E(Ỹ 2) − (E(X̃Ỹ ))2

)
= E

((
E(Ỹ 2)X̃ − E(X̃Ỹ )Ỹ

)2)
. (4.3)

Since the expectation of a non-negative random variable is zero if and only if the random variable
is zero (strictly speaking this has to hold only almost surely, but we ignore such technicalities),
(4.3) implies that

Y − E(Y ) =
E(Ỹ 2)

E(X̃Ỹ )
(X − E(X))

and thus Y is of the form aX + b as claimed. 2

Proposition 4.3 (First properties of correlation) Let X and Y be two random variables.

a) Symmetry:
ρ(X,Y ) = ρ(Y,X)

b) Effect of linear transformations:
For all α, γ 6= 0 and β, δ ∈ R,

ρ(αX + β, γY + δ) = sign(αγ)ρ(X,Y ),

where sign(x) is equal to +1 for x > 0 and -1 for x < 0. Hence, the correlation is invariant
under strictly increasing linear transformations (the case when α, γ > 0).

The concepts of covariance and correlation extend to multivariate random vectors as follows.

Definition 4.4 Let X = (X1, . . . ,Xd)
> be a d-dimensional and Y = (Y1, . . . , Ym)> an m-

dimensional random vector. Then we can take covariances and correlations between every pair
of components of X and Y and summarize them in d×m-matrices, called the covariance matrix
and the correlation matrix:

cov(X,Y) = (cov(Xi, Yj))1≤i≤d,1≤j≤m

corr(X,Y) = (ρ(Xi, Yj))1≤i≤d,1≤j≤m

The covariance matrix of a random vector cov(X,X) with itself is called the covariance matrix
of X and we write var(X) := cov(X,X).

Proposition 4.5 (Further properties of correlations and covariances)
Let X = (X1, . . . ,Xd)

> be a d-dimensional and Y = (Y1, . . . , Ym)> an m-dimensional random
vector.
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a) Symmetry:
var(X) and corr(X,X) are symmetric positive semi-definite matrices (cf. before Defini-
tion 3.2).

b) Linear transformations:

cov(AX + a,BY + b) = A cov(X,Y)B>

for every n× d matrix A, k ×m matrix B and every a ∈ R
n and b ∈ R

k.

c) Linear combinations:
For every a ∈ R

d the variance of the linear combination a>X is given by

var(a>X) = a>cov(X)a.

d) Additivity:
cov(X,Y + Z) = cov(X,Y) + cov(X,Z)

for every m-dimensional random vector Z = (Z1, . . . , Zd)
>.

Illustration 4.6 Suppose we model the water flow R (in litres per second) of a river at a certain
point and assume that the river is formed by two independent rivers just a bit upstream. The
water flow in the first river shall be R1 and the one in the second river R2. Then cov(R1, R2) =
ρ(R1, R2) = 0 by the assumed independence. Clearly, it should hold that R = R1+R2 (assuming
some kind of equilibrium state). Thus cov(R,R1) = cov(R1, R1) + cov(R1, R2) = var(R1) and,
hence,

ρ(R,R1) =
var(R1)√

var(R1)var(R)
=

var(R1)√
var(R1)(var(R1) + var(R2))

=

√
var(R1)

(var(R1) + var(R2))

and, likewise, if we replace R1 by R2. For example, if both original rivers; i.e., R1 and R2, have
the same variance we get ρ(R,R1) = 1/

√
2. 2

Illustration 4.7 (Danish Fire) Throughout this paper we will illustrate the various depen-
dence measures using a data set of Danish fire insurance claims from 1980 to 1990 available from
http://www.ma.hw.ac.uk/~mcneil/data.html.

The original data set includes data on the losses of the fire insurance coming from the
damages of the building, coming from the burnt content of the building, and from losses to
profits (of companies in the burnt buildings). Since the last variable is zero in most cases, we
consider only the losses of building and content. To avoid strange artefacts due to the fact that
the data set considers only events where the total loss (sum of the loss in the three categories)
exceeded one million Danish Kroner, we consider only events where both the losses in building
and of content individually exceed this threshold.

In Figure 3 we provide a time series plot of the data.

To assess the dependence we provide scatter plots of the loss data as well as the logarithms
of the losses in Figure 4. At the original scale it is hard to see what is going on in the majority of
the observations, since they form a cloud at the origin and only the extreme events can be seen,
for which it is hard to see any clear dependence structure. On the logarithmic scale one sees that
there is no clear trend/dependence in the data, but that the two loss variables tend to behave
similar and thus should be positively dependent. This can also be seen from the correlations
which are 0.51 for the original data and 0.38 after taking logarithms. 2

Correlation is a very popular dependence measure. The reasons are that it can be easily
estimated from data by its empirical version, and that it is the natural dependence measure for
the multivariate normal distribution. In this model it describes the dependence of the random
components completely, and also in the more general class of elliptical distributions.
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Figure 3: Time series plot of the losses in building (left) and the losses in content of the Danish
fire insurance data from 1980 to 1990. The time is in days starting January 3rd, 1980, leaving
out weekends and holidays.

Figure 4: Scatter plot of the Danish fire insurance data: losses of buildings and losses of content,
original scale (left) and logarithmic scale (right)

12



4.1 Disadvantages of correlation

Correlation has certain disadvantages that one should be aware of when using it.

a) It is only defined when the variances of the random variables exist. In particular, for
extreme risks this is not always guaranteed. A relevant example in the context of risk
is the t-distribution with ν degrees of freedom with density f(x) = c(1 + x2/ν)−(d+ν)/2,
x ∈ R. For two t-distributed random variables with ν ≤ 2 the correlation is not defined.
Also for two Pareto-distributed random variables with densities f1(x) = α1/x

α1+1, x > 1,
and f2(x) = α2/x

α2+1, x > 1, and shape parameters α1 ≤ 2 or α2 ≤ 2, the correlation is
not defined.

b) Two independent random variables with finite variances are uncorrelated. However, the
converse is not true. There exists an abundance of cases where random variables are
uncorrelated, but not independent.

On a simple level, if X is a standard normal random variable, and Y = X2, then X and
Y are obviously not independent, since X2 is a function of X. However, cov(X,Y ) =
cov(X,X2) = E(X3) − E(X)E(X2) = 0, since all odd moments of a normal random
variable are equal to 0.

Examples on a more advanced level include variance mixtures of normal random variables
(cf. Example 5.3) and, in a dynamic context, stochastic volatility models in finance and
stochastic intermittency models in turbulent and other environmental data.

Only in special parametric models (the multivariate normal distribution is the typical
example), uncorrelatedness implies independence.

c) Covariances and correlations depend on the distribution in a highly non-trivial way. For
instance, if one knows only the correlation of X,Y , then nothing can be said about the
correlation of T (X), T (Y ) for a non-linear increasing transformation T .

d) The correlation depends on the whole distribution. However, in the context of risk one does
not really care about the dependence for the “usual outcomes” but about the dependence
of the extreme outcomes. The correlation thus typically provides at most very limited
information about the dependence of risks.

4.2 Misconceptions of correlation

Unfortunately, there are several popular misunderstandings regarding correlation which we shall
explain now.

Misconception 1: Marginals and correlation matrix determine the distribution:

It is often wrongly thought that, if one knows the distributions of the random variables X1 and
X2 and their correlation ρ(X1,X2), then one knows already the bivariate distribution of the
random vector X = (X1,X2)

>. This is not only false in general, but already in a normally
distributed world. In particular, as we shall see in a moment, if X1 and X2 are known to be
standard normally distributed with correlation ρ one cannot conclude that (X1,X2)

> is bivariate

normally distributed with mean zero and covariance matrix Σ =

(
1 ρ
ρ 1

)
.

13



Illustration 4.8 Let X1 be a standard normally distributed random variable and define X2 by

X2 =

{
X1 if |X1| ≤ 1,
−X1 if |X1| > 1.

Then X2 is also standard normally distributed, because X1 is and the standard normal distri-
bution is symmetric around zero. Since both X1 and X2 have a finite variance, ρ := ρ(X1,X2)
exists and is some number in (−1, 1), which is hard to compute explicitly. Note that it is clear
that the correlation is different from ±1 because of Theorem 4.2. We now prove that the random
vector (X1,X2)

T is not bivariate normally distributed by contradiction. Thus, assume (X1,X2)
T

was bivariate normally distributed, then X1 +X2 is also normally distributed with mean 0 and
variance 2 + 2ρ > 0. However, from the construction of X2 we see that

X1 +X2 =

{
2X1 if |X1| ≤ 1,
0 if |X1| > 1.

Thus, the probability that X1 +X2 is strictly bigger than two in absolute value is zero. Since
this probability is strictly positive for every normally distributed random variable, we have the
desired contradiction. Hence, our assumption that (X1,X2)

T was bivariate normally distributed
must be wrong. 2

Misconception 2: In all multivariate models it is possible to have all values between
-1 and 1 as correlation:

Likewise, the belief is widespread that in every multivariate model one may have all values
between −1 and 1 for the correlation. Unfortunately, not all combinations of valid pairwise
correlations lead to a valid (i.e., positive semi-definite) overall correlation matrix.

However, this is not the only pitfall. Very often the model structure implies additional
constraints on the correlation, like having to be non-negative. The following is an example for
this.

Illustration 4.9 Assume that an insurance company has sold insurance policies against dam-
ages by storm (S) and heavy rain (R). There are three types of insurance claims, those which
regard damages by storm only, those which regard damages by heavy rain only, and those with
both types of damages (caused e.g. by a thunderstorm with heavy rain and storm). We now
want to model the number of claims regarding storm S(t) which arrived until time t (since the
initial time 0), and the number of claims regarding heavy rain R(t) which arrived until time t.

The classical insurance claim number model is a Poisson process (e.g. Resnick [18]) for the
arrivals of insurance claims. A Poisson process with rate (or frequency) λ > 0 is a counting
process, where the number of claims at any time t > 0 is Poisson distributed with a mean linear
in t with some rate λ > 0. We have E(X(t)) = λt and var(X(t)) = λt for all times t > 0 for
a Poisson process X. An alternative stochastic description of a Poisson process is as follows:
it starts at zero at the initial time zero. After an exponentially distributed (with mean 1/λ)
waiting time, during which it remains 0, it jumps to one. Afterwards it remains again constant
for an exponentially distributed (with mean 1/λ) waiting time and then it jumps to two and so
on. The rate λ gives the mean number of jumps (all of height one) in a unit time interval.

We use three independent Poisson processes, {NR(t)}t≥0 giving the arrival of claims regard-
ing only heavy rain, {NS(t)}t≥0 giving the arrival of claims regarding only storm and {NB(t)}t≥0

giving the arrival of claims regarding both. The corresponding rates shall be denoted λR, λS

and λB . Clearly, we have R(t) = NR(t) + NB(t) and S(t) = NS(t) + NB(t) for t ≥ 0 and we
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want to understand the dependence of R(t) and S(t). The process R(t) is (as a sum of Poisson
processes) again a Poisson process with rate (or frequency) λS + λB and S(t) is one with rate
λR + λB . Hence, for all t ≥ 0, we have

ρ(R(t), S(t)) =
cov(R(t), S(t))√
var(R(t))var(S(t))

=
var(NB(t))√

var(R(t))var(S(t))
=

λB

√
(λB + λR)(λB + λS)

In this model the correlation can only be between 0 and 1.

Assume further that we have already done univariate modelling of both R,S and obtained
Poisson processes with rates µR and µS and then consider the joint model. We must then have
that λB + λR = µR and λB + λS = µS to be consistent with the univariate models. Hence,
λB ≤ min{µR, µS} is immediate interpreting the rates as the frequencies of the arrival of claims.
Going back to our correlation we get for all t ≥ 0

ρ(R(t), S(t)) =
λB

√
µRµS

≤ min





√
µR

µS
,

√
µS

µR



 .

If µR 6= µS , then the possible correlations are thus below an upper bound strictly smaller
than one. This result has been obtained in the framework of Operational Risk in Böcker and
Klüppelberg [5], Equation 11. 2

For more details on the problematic issues of correlation we refer to [1, 2].

5 Spherical and elliptical distributions

We have already seen that the contours of equal density are circles in the standard normal
bivariate distribution and they are ellipses in the non-standard normal case. Likewise, one
can show that in general dimensions the contours of equal density of the normal distribution
are ellipsoids and spheres in the standard normal case (actually whenever all components are
independent; i.e., all off-diagonal entries of the covariance matrix are zero, and have the same
variance).

The spherical distributions extend the standard normal distribution Nd(0, Id) (i.e., the dis-
tribution of d independent standard normal components). The density of a spherical distribution
satisfies

f(x) = ψ(x>x), x = (x1, . . . , xd) ∈ R
d

where ψ : R → R
+ is an appropriate function.

Examples are the multivariate t-distribution with ν degrees of freedom with density f(x) =
c(1 + x>x/ν)−(d+ν)/2 and the logistic distribution with density f(x) = c exp(−x>x)/(1 +
exp(−x>x))2. Here c are the norming constants, which guarantee the densities to integrate
to 1. It should be noted that random variables with a non-normal joint distribution that is
spherical are uncorrelated random variables, which are not independent (see e.g. [13]).

There are various ways how to think about a spherical distribution.
(i) From the densities above we see that the contours of equal density are circles in the bivariate
models; i.e., “spheres” in arbitrary dimensions.
(ii) Equivalently, we can think of a spherical random vector X as having the same distribution
under every orthogonal transformation; i.e., if we multiply it by a d × d matrix M with the
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property that M>M = MM> = Id, then MX has the same distribution as X.
(iii) Finally, a spherical random vector X has the same distribution as RU, where U is uniformly
distributed on the unit sphere Sd−1 = {s ∈ R

d : s>s = 1}, and R is a positive random variable,
independent of U.

Elliptical distributions generalize multivariate normal distributions Nd(µ,Σ) with mean vec-
tor µ and covariance matrix Σ, and also have contours of equal density which are ellipsoids.
Moreover, just as ellipsoids are linear transformations of spheres, elliptical distributions are
obtained as linear transformations of spherical distributions.

For a general treatment of elliptical distributions we refer to Fang, Kotz, and Ng [4].

Definition 5.1 A random vector X ∈ R
d has an elliptical distribution if there exist µ ∈ R

d, a
positive semi-definite d× d matrix Σ = (σij)1≤i,j≤d, a positive random variable G and a random
vector U(d) ∼ unif{s ∈ R

d : s>s = 1} (i.e., U(q) is uniformly distributed on the unit sphere

in R
d) independent of G such that X satisfies (

d
= means that the distributions of the random

variables on both sides are equal)

X
d
= µ +GAU(d) with A ∈ R

d×d and AA> = Σ. (5.1)

We write X ∼ Ed(µ,Σ, G).

The random variable G is called generating variable. Furthermore, if the first moment exists,
then E(X) = µ, and if the second moment exists, then G can be chosen such that var(X) = Σ.

Note that we write X ∼ Ed(µ,Σ) if we consider only quantities, which do not depend on the
concrete generating random variable G, and we denote E(X) = µ, var(X) = Σ, provided they
exist.

Furthermore, note that in the following we always call Σ = AA> the covariance matrix (its
elements the covariances) of an elliptical distribution even if the second moments do not exist.

In elliptical models covariances and correlations are natural dependence measures. This is a
consequence of the following properties:

Proposition 5.2 (Properties of elliptical distributions) Let X ∼ Ed(µ,Σ) be elliptically
distributed.

a) Consider the map T (X) = BX + b for a q × d-matrix B and a vector b ∈ R
q. Then

BX + b ∼ Eq(Bµ + b, BΣB>).

b) From this follows immediately that all marginal distributions of X are elliptical; in partic-
ular, the components of X are one-dimensional elliptical, which means they are symmetric
around their means (or the median, if the mean does not exist).

Moreover, for an arbitrary component Xi there are a > 0, b ∈ R such that Xi
d
= aX1 + b,

where instead of X1 we could also have chosen any other component. Hence, in distribution
any component can be realised as a linear transformation of one fixed component.

Let X = (X1,X2)
> ∼ Ed(µ,Σ) with X1 ∈ R

p, X2 ∈ R
q with p+ q = d. Let µ = (µ1, µ2)

>

with µ1 ∈ R
p, µ2 ∈ R

q, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Then

X1 ∼ Ep(µ1,Σ11) and X2 ∼ Eq(µ2,Σ22).

Hence, subvectors of elliptically distributed random vectors are again elliptically distributed,
and the parameters are known explicitly.
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Figure 5: Contour plots of bivariate tν-densities:
Upper row: uncorrelated components; i.e., Σ is the identity matrix; different degrees of freedom:
ν = 1 (left), ν = 10 (middle), ν = 500 (right).
Lower row (ν = 1): strongly correlated components, with ρ = 0.9 (left), and ρ = −0.9 (right).
The levels for the individual contour lines are the same as in Figure 2.

c) Assume that Σ is positive definite. The conditional distribution of X1 given X2 is also
elliptical:

X1 | X2 ∼ Ep(µ1|2,Σ11|2),

where µ1|2 = µ1 + Σ12Σ
−1
22 (X2 − µ2) and Σ11|2 = Σ11 − Σ12Σ

−1
22 Σ21.

d) Every elliptical distribution is uniquely determined by the mean, the covariance matrix Σ,
and the distribution of the generating random variable G.

A very important class of elliptical distributions is given by the normal variance mixture
models.

Example 5.3 [Normal variance mixture model]

(a) Let X
d
= µ +

√
WAZ with µ ∈ R

d, A ∈ R
d×m a matrix of rank d < m, Z ∈ R

m a
standard normal vector and W > 0 a random variable, independent of Z. Then X is said to
follow a normal variance mixture model, and one can show that the contours of equal density
are ellipsoids, hence it is an elliptical distribution.

(b) In the situation of part a), if W has an inverse gamma distribution with parameters (ν
2 ,

ν
2 ),

then for ν being an integer ν/W ∼ χ2
ν , i.e. ν/W is χ2 (chi-square) distributed with ν degrees

of freedom. This implies that 1
d (X−µ)>Σ−1(X−µ) ∼ νχ2

d

dχ2
ν
, which is F (d, ν)-distributed (recall

that Σ = AA>).
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Moreover, we have X − µ = AZ√
W

∼ tttν(0,Σ); i.e., X − µ is a d-dimensional t-distributed vector

with ν degrees of freedom. Further, if ν > 2, then X− µ has covariance matrix ν
ν−2Σ. If ν ≤ 2

the covariance matrix does not exist.

Hence, the t-distribution - occurring frequently in statistics - is an example of a normal variance
mixture. It is often used in risk management as an alternative to the normal distribution,
because it puts more mass on large events (cf. Figure 5) and, in its multivariate version, it
allows for modelling joint large events (cf. Example 8.5(c)).

Some contour plots for the densities of t-distributions can be found in Figure 5. As can be seen
they are quite similar to the corresponding plots for the normal distribution in Figure 2, but
especially for small ν the density decays much slower than a normal density. 2 2

6 Rank correlations

Correlations depend on the underlying distribution, and may even not exist (when there is no
finite second moment). Non-parametric and robust alternatives have been proposed, which are
based only on the ranks of the observations. Here ranking refers to a data transformation, where
numerical or ordinal values are replaced by their ranks. For instance, if numerical data 1.7, 9.3,
7.2 and 5.3 are observed, then the ranks of these data would be 1,4,3,2. The actual size of
the data is completely ignored. Obviously, ranking is not unique, when data of equal value are
observed. There is a simple way how to deal with these so-called ties, and we explain this with
an example. Assume that we observe 1.7, 7.2, 9.3, 7.2 and 5.3 then we would take the mean
rank for the two equal observations, and obtain ranks 1, 3.5, 5, 3.5, 2. Similarly, one deals with
3 or more equal values.

Often this situation is excluded from the beginning by requiring that the underlying distri-
bution has a density. Then equal values do (with probability 1) not happen in a sample.

Definition 6.1 (Spearman’s rank correlation coefficient) Let X,Y be random variables
with continuous distribution functions F1, F2 and joint distribution function F . Let ρ be Pear-
son’s correlation coefficient from Definition 4.1. Then Spearman’s rank correlation is given
by

ρS(X,Y ) = ρ(F1(X), F2(Y )).

We have to explain, why this is a rank correlation coefficient. Recall that for a distribution
function F we denote by F−1 its generalized inverse function as defined in (1.1) and recall that
F−1 is the analytic inverse of F , if F is strictly increasing.

First of all note that F1(X) is a random variable with values in [0, 1]. Moreover, since F1 is
continuous, P (F1(X) ≤ x) = P (X ≤ F−1

1 (x)) = F1(F
−1
1 (x)) = x for x ∈ [0, 1]. This implies that

F1(X) is a standard uniform random variable (i.e., it is uniformly distributed on the interval
[0, 1]). Consequently, ρS measures the correlation between two uniform random variables, the
original sizes of X and Y have become irrelevant.

One can say that rank correlations measure the degree of monotone dependence.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be bivariate independent observations from two random
variables X and Y respectively, such that all the values of (Xi) and (Yi) are different (there are
no ties).

We estimate Spearman’s rank correlation coefficient by its empirical version, which is based
on replacing F1(X) and F2(Y ) by its empirical versions. To this end the data (X1, Y1), . . . , (Xn, Yn)

18



are converted into ranks, which we denote by (rank(Xi), rank(Yi)) and the empirical correlation
coefficient as given in (4.2) is calculated for these ranks.

The formula simplifies by the fact that 1
n

∑n
i=1 rank(Xi) = 1

n

∑n
i=1 i = n+1

2 , and

n∑

i=1

(
rank(Xi) −

n+ 1

2

)2

=
n∑

i=1

(
rank(Yi) −

n+ 1

2

)2

=
n∑

i=1

(
i− n+ 1

2

)2

=
1

12
n(n2 − 1).

Then the empirical Spearman’s rank correlation coefficient is given by

ρ̂S(X,Y ) =
1

2
n(n2 − 1)

n∑

i=1

(
rank(Xi) −

n+ 1

2

)(
rank(Yi) −

n+ 1

2

)
.

Definition 6.2 (Kendall’s rank correlation) Let (X1, Y1) and (X2, Y2) be two independent
pairs of random vectors with bivariate distribution function F . Then Kendall’s tau is given by

τ(X,Y ) = P ((X1 −X2)(Y1 − Y2) > 0) − P ((X1 −X2)(Y1 − Y2) < 0).

The dependence Kendall’s tau captures is better understood in its empirical version. Let
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample of bivariate observations from two random variables
X and Y respectively, such that all the values of (Xi) and (Yi) are different, respectively. Any
pair of observations (Xi, Yi) and (Xj , Yj) are said to be concordant, if the ranks for both elements
agree: that is, if both Xi > Xj and Yi > Yj or if both Xi < Xj and Yi < Yj. They are said to
be discordant, if Xi > Xj and Yi < Yj or if Xi < Xj and Yi > Yj.

Definition 6.3 (Empirical Kendall’s rank correlation coefficient)
The empirical version of Kendall’s rank correlation is defined as:

τ̂ =
(number of concordant pairs) − (number of discordant pairs)

1
2n(n− 1)

=
2

n(n− 1)

∑

1≤i≤j≤n

sign((Xi −Xj)(Yi − Yj)).

Note that the sign is equal to 1, whenever the two pairs are concordant, and it is −1,
whenever the two pairs are discordant.

Rank correlation coefficients share some of the properties of Pearson’s correlation coefficient:
they are symmetric, lie between −1 and 1, and if X and Y are independent, they are equal
to 0. Moreover, since they are based on ranks, rank correlations are invariant with respect to
increasing transformations; i.e., if T (x) ≤ T (y) for all x < y, then ρS(T (X), T (Y )) = ρS(X,Y )
and the same holds for Kendall’s tau.

Both Kendall’s τ and Spearman’s ρ can be calculated from the copula of a bivariate random
vector with continuous marginal distributions (for a proof see Section 5.2.3 of McNeil, Frey, and
Embrechts [8]); see next section for definitions and discussions of copulae. This means that both
rank correlation coefficients are defined by the dependence structure only and not the marginal
distributions. Intuitively, both dependence measures check whether the ranks are similar, but
there are important differences in what they actually measure, which are rather technical and
thus beyond the scope of this introductory chapter (see [10, 16]).

Illustration 6.4 (Danish Fire continued) In Figure 6 the ranks of the losses in building are
plotted against the ranks of the losses of content. The fact that there are very few points at
the lower right and upper left corner hints again at positive dependence. Indeed, we obtain for
the empirical versions of Spearman’s ρ the estimate ρ̂S = 0.32 and of Kendall’s τ the estimate
τ̂ = 0.21. 2
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Figure 6: Scatter plot of the Danish fire insurance data losses in building and losses in content
after conversion to ranks.

7 Copulae

The idea to model dependence in terms of ranks culminates in the concept of a copula. A copula
describes completely the dependence structure and, thus, is in general a very complex object.

We start recalling that for a random variable X with continuous distribution function F
(recall that then we have (with probability 1) no ties in the observations) the transformed
random variable U := F (X) has a standard uniform distribution (i.e., is uniformly distributed
on the interval [0, 1]).

This concept is now extended to a multivariate distribution as follows. Let X = (X1, . . . ,Xd)
>

be a random vector with distribution function F , and Fj denote the marginal distribution func-
tion of Xj for j = 1, . . . , d. If all Fj are continuous functions, then we can do the same trans-
formation as above componentwise, which yields a random vector (F1(X1), . . . , Fd(Xd))

> taking
values only in the unit cube [0, 1]d. Note that all components of this vector are standard uniform
random variables. This motivates the following definition.

Definition 7.1 (Copula) A copula is the joint distribution function of marginally uniformly
distributed random variables. More precisely, if U1, . . . , Ud are U(0, 1), then the function C :
[0, 1]d → [0, 1] defined by

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud)

is a copula.

Applying this concept to the componentwise transformed random variables above, the vector
(F1(X1), . . . , Fd(Xd))

> has distribution function given by

CF (u1, . . . , ud) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)

for (u1, . . . , ud)
> ∈ [0, 1]d. CF is the copula of the vector (X1, . . . ,Xd)

>.

In the way we have defined/constructed a copula above, it covers only the continuous case.
The case of non-continuous random variables can be covered as well, but this becomes much
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more technical. A thorough introduction to copulae can be found in the book by Nelsen [9], for
instance, or in [3, 8], which are of special interest in connection with risk modelling.

Before we discuss the use of copulae in risk analysis further, we present some examples. We
formulate them for d = 2, and for most of the models it should be obvious, how they generalize
to arbitrary dimension d.

Example 7.2 [Bivariate copula families] Let u1, u2 ∈ [0, 1]2.

(a) Independence copula:
Cind(u1, u2) = u1u2.

As the name already suggests, this is the copula of two independent random variables. Recall
that two random variables (with continuous distributions) are independent if and only if their
joint distribution function is the product of the marginals. This is inherited by the copula.

(b) Copula of perfect dependence:

Cdep(u1, u2) = min(u1, u2).

This copula models the situation, when the observations are perfectly dependent. For the two
uniform random variables corresponding to the copula this means that they are identical. In
general two random variables X,Y have the copula of perfect dependence if and only if there
exists a random variable Z and two increasing functions f and g such that X = f(Z) and
Y = g(Z). Note that intuitively this means that as soon as you know the value of one variable
you also know the value of the other random variable for sure.

(c) Normal copula: for θ ∈ (−1, 1),

CNo(u1, u2; θ) = Φ2(Φ
−1(u1),Φ

−1(u2))

=
1

2π
√

1 − θ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
exp

(−(x2
1 − 2θx1x2 + x2

2)

2(1 − θ2)

)
dx1dx2,

where Φ2 and Φ denote the distribution functions of the bivariate and the univariate standard
normal distribution, respectively, and Φ−1 is the inverse function of the cumulative standard
normal distribution function Φ.

Again the name already tells the idea behind this copula. It is the copula of two standard
normally distributed random variables with correlation θ which are also jointly normally dis-
tributed. A sample from this copula can easily be obtained by drawing from a bivariate standard
normal distribution with correlation θ and then applying the function Φ−1 to every coordinate.

Note that θ = 0 gives the independence copula, whereas θ = 1 gives the one of perfect
dependence. For θ = −1 one obtains perfect negative dependence (i.e., the copula max(u1 +
u2 − 1, 0) which, in contrast to the other examples, is a copula only for dimension d = 2). 2

As mentioned before and explained in more detail and by examples in Fasen et al. [9], extreme
value models are important for risk management. When considering copula models in the context
of bivariate extreme value models, then so-called extreme value copulae occur. These copulae
have to be of a very special form; i.e., their dependence structure can be represented in terms of a
so-called Pickands dependence function A, a convex function satisfying max(s, 1−s) ≤ A(s) ≤ 1
for all s ∈ [0, 1]; see e.g., Beirlant, Goegebeur, Segers, and Teugels [3], Chapter 8.2.5. In terms
of such a Pickands dependence function an extreme value copula C has the form

C(u1, u2) = exp

{
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)}
. (7.1)
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Note that the right hand side is equal to u1u2 for the Pickands dependence function A ≡ 1;
this is the independent case. A quantity often considered and estimated is the value in (7.1) for
u1 = u2; i.e. A(1

2 ). For symmetric copulae it is the minimum of A, hence gives a measure of
maximal dependence in the model. We come back to this in Section 8.

Example 7.3 [Extreme value copulae and their Pickands dependence function]
Throughout u1, u2 ∈ [0, 1]2 and s ∈ [0, 1].

(a) Gumbel copula:
Using the Pickands dependence function the Gumbel copula with parameter θ ∈ [1,∞) is given
by

AGu(s) =
(
sθ + (1 − s)θ

)1/θ
.

Elementary calculations show that the Gumbel copula is thus

CGu(u1, u2) = exp

{
−
(
(− ln(u1))

θ + (− ln(u2))
θ
)1/θ

}
. (7.2)

For θ = 1 the Gumbel copula is actually the independence copula, whereas for θ → ∞
the Gumbel copula converges to the copula of perfect dependence. Thus the Gumbel copula
allows modelling a continuum of possible dependencies from independence to perfect positive
dependence giving a nice parametric model for different dependence scenarios.

(b) t-EV copula:
Using the Pickands dependence function the t-EV copula with parameter θ = (θ1, θ2) ∈ (0,∞)×
(−1, 1) is given by

At−EV (s;θ) = s tθ1+1




(
s

1−s

)1/θ1

− θ2
√

1 − θ2
2

√
θ1 + 1


+ (1 − s) tθ1+1




(
1−s

s

)1/θ1

− θ2
√

1 − θ2
2

√
θ1 + 1


 ,

with tν for ν ∈ (0,∞) representing the distribution function of the tν-distribution (i.e., the
t-distribution with ν degrees of freedom). The t-EV copula (with “EV” standing for “extreme
value”) arises as the limiting dependence structure of componentwise maxima of independent
and identically distributed bivariate tθ1-distributed random variables with the correlation of the
underlying bivariate normal distribution being θ2. For more details see e.g. [8]. 2 2

Statistically, parametric copulae are rather easy to fit, since it is not necessary to specify
marginal models. One can simply take the empirical distribution functions, plug them into a
parametric copula model and estimate the copula parameters for instance by likelihood methods.
Various copula models are presented in Haug, Klüppelberg, and Peng [5], where also R codes for
fitting such copula models are provided. The problem is obviously the choice of the parametric
model.

Abstractly speaking a copula encodes the dependence structure of a d-dimensional random
vector by transforming it to a d-dimensional random vector with standard uniform margins. In
principle, one could just as well transform it to any other d-dimensional random vector with
prescribed marginals to encode the dependence structure. So the question arises whether the
use of a copula is the best way to transform data. Alternative transformations are indeed used
in relation to some special applications. For instance, in reliability theory marginals have been
transformed to normal random variables, which is admittedly not as easy as the transformation
to uniform, since the normal distribution function is given as an integral, which cannot be
calculated explicitly. See [11], [15] and [10] for details.
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Figure 7: Simulation of 500 independent and identically distributed standard normally dis-
tributed random variables (left) and their transformations to standard uniform (middle) and
standard Fréchet random variables.

Experts from extreme value theory often normalize marginals to standard extreme value dis-
tributions, when interested in the maximum of a sample. Typically the standard Fréchet distri-
bution is used (see e.g. Proposition 5.10 of [18] for more details). Here the transformation is given
by −1/ ln(F (X)), which has distribution function P (−1/ ln(F (X)) ≤ z) = exp{−1/z}1[0,∞)(z).
When interested in the minimum of a sample, then often the transformation is to the stan-
dard exponential distribution given by F (x) = (1 − e−x)1[0,∞)(x) (i.e., the transformation is
− ln(1 − F (X))); cf. e.g. [12] for multivariate exponential distributions.

A Taylor expansion to the standard Fréchet distribution function gives P (−1/ ln(F (X)) >
z) ∼ 1/z (equivalently, zP (−1/ ln(F (X)) > z) → 1) as z → ∞, so that large values of z
happen with substantial probability (in particular compared to the normal distribution where
P (N(0, 1) > z) ∼ zφ(z) = (

√
2πz)−1 exp{−(z2/2)} as z → ∞ (φ denotes the standard normal

density). Taking z = 10, one obtains for the Fréchet distribution the probability 0.09516258 and
for the standard normal distribution 7.619853 · 10−24. For the uniform distribution, no value
larger than 1 can happen (with probability 1). As you can see in Figure 7, it may be advantageous
to transform data to Fréchet marginals when interested in the dependence structure of extreme
events, as then the extremes really stick out.

Illustration 7.4 Because of the simple transformation in the marginals the use of copulae to
model dependence had a striking success in particular in the financial industry. The mostly
applied copula has been the normal copula which means that in the end all dependence is like
in a multivariate Gaussian situation and completely described by the correlation matrix of the
underlying multivariate Gaussian random variable.

For example, this model was used as a model for the probability of joint defaults - the
probability that any two members (say A and B) of a pool of credits will both default within
the next year or some other pre-specified period (i.e., the credit taker fails to pay the interest
or the credit notional amount back). Denoting by TA the time when A defaults and likewise by
TB that B defaults, this model describes the probability that both credits will default as

P (TA < 1, TB < 1) = Φ2(Φ
−1(FA(1)),Φ−1(FB(1)); ρ),

where FA and FB are the marginal distribution functions of the default times and ρ the corre-
lation of the used normal copula.

This model, suggested in [14], was heavily blamed (and obviously before the subprime crisis
heavily used) in a by now famous article from 2009 (still to be found on the internet at http://
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www.wired.com/techbiz/it/magazine/17-03/wp_quant) entitled “The Formula That Killed
Wall Street”. The reason is that in a bivariate (and likewise in higher dimensional) normal model
with the correlation different from 1 the probability that both variables X and Y are very big
at the same time is extremely small: asymptotically for z → ∞ the events that X > z and
Y > z become independent. Now it turned out during the subprime crises that the dependence
between different credits is much higher. In the US American subprime credit market it became
obvious that many more creditors could not serve their credits than the credit models predicted
to be likely. The problem was that these credits had been pooled by the issuing banks and -
sliced up into packets - sold to investors all over the world; the prices agreed upon in these sales
were based usually on the above model (as were the triple-A ratings of some of these products
by all rating agencies). Additionally, many derivatives based upon them - credit default swaps
or credit default options were originally designed as insurance against defaults - were traded and
very often they were bought or sold not to insure oneself, but for purely speculative reasons.
So when many credits started to default, financial institutions all over the world had to realize
that their assets were worth much less than what they had thought, which implied tremendous
losses in particular for the financial industry. An interesting paper on how to model these risks
more realistically is [7]. 2

Consequently, the financial crisis of the last years is a clear warning that one should not
use models without basic knowledge of what they can model and what they cannot. Model
risk is abundant and needs a critical mind concerning the application of various models and the
interpretation of their resulting outcome, when applied with care. In the above normal copula
model dependence is modelled by the correlation of the underlying normal distribution. It has
long been known that a normal copula is by no means a model that captures dependent risks:
in a normal copula model very high risks are always independent (see Example 8.5).

As we have seen in Section 5 the elliptical distributions are natural extensions of multivariate
normal distributions and are also characterised mainly by their mean and covariance structure,
only that additionally a positive generating random variable comes into play. Likewise, we can
extend the normal copula to an elliptical copula by using the copula corresponding to a general
elliptical distribution.

Definition 7.5 (Elliptical copula)
We define an elliptical copula as the copula of X ∼ Ed(µ,Σ, G) and write ECd(R,G) for short,
where R is the correlation matrix of the elliptical distribution and G the generating random
variable.

The notation ECd(R,G) for an elliptical copula makes sense, since it is characterized by the
generating variable G (unique up to a multiplicative constant) and the copula correlation matrix
R. This follows as a simple consequence of the definition and the fact that copulae are invariant
under strictly increasing transformations.

Example 7.6 (a) Let Z be a d-dimensional mean 0 normal vector with arbitrary covariance
matrix Σ, and denote by Φ the one-dimensional standard normal distribution function, then the
distribution of (Φ(Z1), . . . ,Φ(Zd)) is a Gaussian copula.

(b) Let X ∼ √
ν Z√

W
with W being a χ2-distributed random variable with ν degrees of freedom

and Z a d-dimensional mean 0 normal vector with arbitrary covariance matrix Σ. So X follows

a d-dimensional t-distribution with ν degrees of freedom and we write X
d
= tttν(0,Σ); i.e., X

is distributed as in Example 5.3 b). Denoting by tν the one-dimensional t-distribution with ν
degrees of freedom, then the distribution of (tν(X1), . . . , tν(Xd)) is the corresponding copula,
which we call a tttν-copula. 2 2
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Figure 8: Upper row: simulation of 10 000 bivariate normally distributed random variables (left)
and bivariate t4-distributed random variables (right)
Lower row: simulation of 10 000 bivariate random variables with normal marginal distributions
and a t4-copula (left), and with t4 marginal distributions and a normal copula (right).
In all cases the correlation parameter was ρ = 0.9.

In Figure 8 we show the differences between the normal distribution, the t4-distribution, and
in Figure 9 their copulae. Comparing the figures in the left column we see that, for the same
normal margins, the dependence structure given by the t4 copula yields more data in the left
lower and right upper corners. The right column shows first that t-margins are heavier tailed
than normal margins. Furthermore, for the t4-distribution we see more data in the left lower
and right upper corners than for the normal copula. Moreover, for the t4-copula data spread
out more in direction of the right lower and left upper corners than for the normal copula.

Illustration 7.7 (Danish Fire continued) In Figure 6 the ranks of the losses in building are
plotted against the ranks of the losses of content. Up to a normalization this is a plot of the
copula (the data transformed to uniform margins as in Figure 9). As we already said, the fact
that there are very few points at the lower right and upper left corner hints again at positive
dependence. 2

Illustration 7.8 (Engineering risk analysis) Engineers often deal with complex systems
with a large number of components. Suppose such a system consists of d components. As
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Figure 9: The copulae corresponding to Figure 8; i.e., normal copula (left) and t4-copula (right).

the consequence of a risky event Y (e.g. an accident, an earthquake, a tsunami, a hurricane or a
cyber attack) each component can be damaged. Typically the degree of damage will be different
for every component.

A realisation y of Y would give the strength of such an events above. The damage done
to component n is measured by a random variable Xn for n = 1, . . . , d which gives the costs
of repairing or replacing when necessary the component. Assume that all damage variables Xn

have continuous distribution functions Fn with densities fXn for n = 1, . . . , d, and that together
with Y they have a joint density fX1,...,Xd,Y . Depending on the realised damage due to the risk
event Y , summarized in the vector (x1, . . . , xd), the monetary amount K(x1, . . . , xd) is needed
to repair the system; some components would have to be repaired, some to be replaced. Note
that K could simply be the sum of the xn, but we allow for more general functions, since cost
reductions or increases occur when you have to repair/replace several components.

In engineering, risk is often calculated as expected costs due to possible damages. We
calculate the expected costs for repairing the system as

E(K) =

∫ ∞

0
. . .

∫ ∞

0
K(x1, . . . , xd)fX1,...,Xd

(x1, . . . , xd)dx1 · · · dxd

=

∫ ∞

0

(∫ ∞

0
. . .

∫ ∞

0
K(x1, . . . , xd)fX1,...,Xd|Y (x1, . . . , xd | y)dx1 · · · dxd

)
fY (y)dy,

where fY is the density of the risky event variable Y and fX1,...,Xd|Y the joint density of the
damages to the individual components given the risky event Y . From this calculation we see
immediately that we need a model for the random vector taking the dependence structure
between the damages to the different components (X1, . . . ,Xd) | Y into account.

The dependence structure of (X1, . . . ,Xd)|Y can be described via a copula. An unrealistic
but simple scenario is the independence copula (i.e. we assume that the damages to the individ-
ual components are independent given Y ). If additionally K is simply the sum of the individual
damages, we obtain:

E(K) =

∫ ∞

0

(
d∑

n=1

∫ ∞

0
xnfXn|Y (xn | y)dxn

)
fY (y)dy,

where fXn|Y is the conditional density of the damage in component n given the risky event Y .

Clearly these assumptions will be too simple in most real life applications, because the
damages to the individual components are most likely dependent given Y or the costs of repairing
the system are not the sum of the costs of repairing/replacing the individual components. 2
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Remark 7.9 (a) Whereas bivariate copula models are well-known in great detail, higher dimen-
sional models are usually hard to analyse and to fit to real data, not at least due to numerical
problems when optimizing the likelihood function. Exceptions are the normal and t-copula mod-
els. A fairly new approach opens up the way to copulae of arbitrary dimension; cf. [1] and the
book [7].
(c) In general the usage of copulae seems rather demanding at first and most statistical software
does not include functions to handle copulae in their basic distributions. However, for many sta-
tistical programmes there are very well implemented and documented extensions available which
make the use of copulae rather easy in applications. For example, for the programme R there are
the packages copula and fCopulae available at http://cran.r-project.org/web/packages/.
They include e.g. functions to handle Archimedean, elliptical and extreme value copulae.
(b) For a parsimonious model with respect to parameters, dimension reduction is an important
first step. There exist many well-known methods (as e.g. principal component analysis) in clas-
sical multivariate statistics. Therefore, the use of copulae often needs to be combined with such
methods. Dimension-reduction methods based on elliptical copula models have been suggested
in Klüppelberg and Kuhn [6].

8 Extremal dependence measures

As explained in Fasen et al. [9] extremal risks can be modelled and estimated in a stochastic
framework. In contrast to the book chapter [9], in the present chapter we are concerned about
joint extreme risks, which can be particularly dangerous. Hence, it is of utmost importance
to model and assess the joint occurrences of extreme events correctly. In other words it is
not important to get the dependence of the “typical” observations right, but one must get the
dependence of the extreme events right. One of the first questions for a statistical model is then,
if it is likely to model joint extreme events.

In this section we briefly present models and methods to allow for a realistic assessment
of the dependence of extremal events. An interesting collection of theoretical results and case
studies for further reading is Reiss and Thomas [17]. Another very accessible book on extreme
value statistics is Coles [6]; more advanced is Beirlant et al. [3].

One way to consider the question whether extremal events are dependent or not, is by
asking the question, what is the probability that a random variable Y assumes a large value
given that we already know that another random variable X takes a large value. Consequently,
one natural way to model extremal dependence is to consider the asymptotic behaviour of the
probability that Y > z given that X > z as z → ∞. If X and Y are independent, we have that
P (Y > z | X > z) = P (Y > z) → 0 as z → ∞. Thus we call any pair X,Y of random variables
with P (Y > z | X > z) → 0 as z → ∞ tail independent. Intuitively this means that extreme
events typically occur only in one variable, provided they occur. In contrast to this, we speak
of tail dependence whenever the limit is non-zero which implies that with a positive probability
extreme events occur in both random variables at the same time. It turns out that this intuitive
approach only makes sense when X,Y have the same distribution (or at least distributions with
comparable tails). To account for this, one normalises the tails first using the same trick as we
know already from the copulae. To be precise one defines tail dependence coefficients (for the
upper tail) as follows. Again we invoke the quantile function from (1.1).

Definition 8.1 (Tail dependence coefficients) Let X,Y be two random variables with con-
tinuous distribution functions FX and FY . The upper tail dependence coefficient of (X,Y ) is
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defined by

λU = lim
α↑1

P (FY (Y ) > α | FX(X) > α) = lim
α↑1

P (Y > F−1
Y (α) | X > F−1

X (α)),

provided the limit exists (α ↑ 1 stands for taking the limit for α going to 1 from below). If
λU ∈ (0, 1], then X and Y are called upper tail dependent. If λU = 0, they are called upper tail
independent.

Remark 8.2 (i) The assumption of continuous distributions is not really necessary, if one
restricts the definition to the right limit.
(ii) Noting that P (FY (Y ) > 1− t | FX(X) > 1− t) = P (FY (Y )>1−t,FX(X)>1−t)

P (FX(X)>1−t) and P (FX(X) >

1 − t) = t, we obtain the equivalent definition

λU = lim
t→0

t−1P (FX(X) > 1 − t, FY (Y ) > 1 − t).

(iii) The link to the Value-at-Risk as defined in Definition 1.1(b) is obvious:

λU = lim
α↑1

P (Y > VaRα(Y )) | X > VaRα(X)).

One can show that the tail dependence is a copula property; i.e., the marginal distributions
have no effect on the value of λU .

Theorem 8.3 If X,Y have copula C, then

λU = lim
α↑1

1 − 2α+ C(α,α)

1 − α
. (8.1)

Remark 8.4 Theorem 8.3 provides a useful link of λU to the Pickands dependence function:

1 − 2α +C(α,α)

1 − α
=

1 − 2α+ exp
(
2 ln(α)A

(
1
2

))

1 − α
= 2

(
1 −A

(
1

2

) − lnα+ o(lnα)

1 − α

)

by a Taylor expansion of the exponential function around 0. Using l’Hospital’s rule we calculate

lim
α↑1

− lnα+ o(lnα)

1 − α
= lim

α↑1

1
α(1 + o(1))

α
= 1

giving

λU = 2

(
1 −A

(
1

2

))
. (8.2)

For each copula model we can determine if it allows for tail dependence or not.

Example 8.5 (a) Since by Proposition 5.2(c) the conditional distribution of a bivariate Gaus-
sian random vector is normal (Ep is in this case, of course, the normal distribution), the Gaussian
copula (or Gaussian distribution) with correlation ρ < 1 has

λU = 2 lim
x→∞

(
1 − Φ

(√
1 − ρ√
1 + ρ

x

))
= 0.

Hence, when using a Gaussian copula one always has tail independence unless one considers the
degenerate situation where ρ = 1. Therefore, one must never use the Gaussian copula when
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one wants to model phenomena where extreme events occur jointly in different variables. The
financial industry has learnt this the hard way (see Illustration 7.4).

(b) For a Gumbel copula (8.2) gives λU = 2 − 21/θ. Hence, whenever θ > 1 we have a positive
tail dependence and the tail dependence coefficient can assume any value in (0, 1).

(c) For the bivariate tν-copula with ν degrees of freedom and correlation ρ ∈ [−1, 1] one
calculates using again (8.2)

λU = 2

(
1 − tν+1

(√
ν + 1

√
1 − ρ√

1 + ρ

))

with tν+1 being the distribution function of a t-distributed random variable with ν + 1 degrees
of freedom. This implies that for every ρ > −1 the upper tail dependence coefficient λU > 0;
i.e., that even for negative correlation it is far more likely to have both variables large at the
same time than in the Gaussian copula. 2

Illustration 8.6 (Danish Fire continued) Estimation of the tail dependence coefficient is
rather tricky, since it is an asymptotic property (an asymptotic conditional probability). There-
fore, it may depend rather strongly on the choice of the threshold approximating this asymptotic.
We refer to Haug et al. [5] for a detailed analysis of these issues. For the Danish fire data [5]
reports a value of λ̂U = 0.416 for the tail dependence coefficient between the losses in building
and content. Therefore, there is a non-negligible tail dependence and thus an insurance company
needs to be prepared to meet large losses in its fire insurance for buildings and its insurance for
the contents at the same time. Of course, intuitively this is not surprising.

To sum up our simple data example using the fire insurance data, we see that all dependence
measures in this context report a positive dependence. But they focus on different aspects and
thus the most adequate one should be used in any particular application. In particular, you
should be aware that using correlations a simple order preserving transformation like taking
logarithms may have a big impact, whereas this has no effect, if the dependence measure only
depends on the ranks (or the copula). 2

9 Food for Thought

We list some questions, which should be seriously considered for every real risk problem at hand.

• Is my risk problem multivariate? What are the risk factors involved?

• Which techniques do I use to model dependence? Does risk occur from the usual data
around the mean or rather from extreme events? Is it important to get the bulk of the
data right or the extremes? Should I use all data or only extreme values for a statistical
analysis?

• What model should I use? What does the model I use assume about the dependence
structure?

• How will I deal with the model risk?

• How sensitive are the outcomes of my research to assumptions about dependence? Should
I apply several models and check robustness of the outcomes by a sensitivity analysis?
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Important final call: We could only give a brief introduction into dependence modelling and
some related problems. Likewise, we could only give an overview over some techniques and a
very limited number of examples without going into details. Much more can be found in the
literature and in the end every application calls for a tailor-made model. Therefore, it may
well be necessary to extend and adapt the existing techniques in line with what is needed for a
concrete application.

10 Summary

In this paper we showed that the dependence structure matters severely when facing different
risks. The overall risk may change completely when the dependence changes. We discussed vari-
ous approaches to model the dependence structure. The most popular measure of dependence is
correlation which, however, only covers linear effects and has other drawbacks and limitations.
As alternative dependence measures we considered rank correlations and copulae. The latter
are theoretically able to encode the complete dependence structure, but for a statistical risk
analysis one chooses a certain parametric families which may introduce severe limitations and
also model risk; cf. Bannör and Scherer [2]. Furthermore, we explained that elliptical distri-
butions are natural generalisations of the multivariate normal distribution where mainly the
correlation structure matters. Finally, we introduced tail dependence and explained that it is
of utmost importance in connection with risk modelling, because it captures the dependence of
the extremes, which is what typically matters in risk assessment, risk evaluation and consequen-
tial risk handling, and which may be rather different from the dependence of the bulk of the
observations.

Acknowledgment. The authors thank Wilson Lauw for preparing large parts of the figures
during his research internship at Ulm University. Financial support of the Institute for Advanced
Study of the Technische Universität München (TUM-IAS) is gratefully acknowledged.

Selected bibliography

[1] P. Embrechts, A. J. McNeil, and D. Straumann. Correlation: Pitfalls and alternatives.
RISK Magazine, pages 69–71, May 1999.

[2] P. Embrechts, A. J. McNeil, and D. Straumann. Correlation and dependence in risk manage-
ment: properties and pitfalls. In Risk management: value at risk and beyond (Cambridge,
1998), pages 176–223. Cambridge Univ. Press, Cambridge, 2002.

[3] P. Embrechts, F. Lindskog, and A. McNeil. Modelling dependence with copulas and appli-
cations to risk management. In S. Rachev, editor, Handbook of Heavy Tailed Distributions
in Finance, chapter 8, pages 329–384. Elsevier, Amsterdam, 2003.

[4] K.-T. Fang, S. Kotz, and K.-W. Ng. Symmetric Multivariate and Related Distributions.
Chapman & Hall, London, 1990.
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Risk - A Multidisciplinary Introduction. 2013.

[11] Y. Tong. The Multivariate Normal Distribution. Springer, New York, 1990.

Additional literature

[1] K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics, 44(2):182–198, 2009.

[2] K. Bannör and M. Scherer. Handling model risk and uncertainty; illustrated with examples
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