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Abstract. A multivariate Lévy-driven continuous time autoregressive moving average (CARMA)

model of order (p, q), q < p, is introduced. It extends the well-known univariate CARMA and multivariate

discrete time ARMA models. We give an explicit construction using a state space representation and a

spectral representation of the driving Lévy process. Furthermore, various probabilistic properties of the

state space model and the multivariate CARMA process itself are discussed in detail.
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1. Introduction.
Being the continuous time analogue of the well-known ARMA processes (see e.g. [1]),
continuous time ARMA (CARMA) processes, dating back to [2], have been extensively
studied over the recent years (see e.g. [3, 4, 5] and references therein) and widely used
in various areas of application like engineering, finance and the natural sciences (e.g.
[6, 7, 5]). The advantage of continuous time modelling is that it allows handling irregu-
larly spaced time series and in particular high-frequency data often appearing in finance.
Originally, driving processes of CARMA models were restricted to Brownian motion,
however, [4] allowed for Lévy processes which have a finite r-th moment for some r > 0.

As CARMA processes are short memory moving average processes, [8] developed
fractionally integrated CARMA (FICARMA) processes, which exhibit long range depen-
dence. So far only univariate CARMA processes have been defined and investigated.
However, in order to model the joint behaviour of several time series (e.g. prices of var-
ious stocks) multivariate models are required. Thus, we develop multivariate CARMA
processes and study their probabilistic properties in this paper.

Unfortunately, it is not straightforward to define multivariate CARMA processes
analogously to the univariate ones, as the state space representation (see Section 3.1)
relies on the ability to exchange the autoregressive and moving average operators, which
is only possible in one dimension. Simply taking this approach would lead to a spectral
representation which does not reflect the autoregressive moving average structure. Our
approach leads to a model which can be interpreted as a solution to the formal differential
equation P (D)Y (t) = Q(D)DL(t), where D denotes the differential operator with respect
to t, L a Lévy process and P and Q the autoregressive and moving average polynomial,
respectively. Moreover, it is the continuous time analogue of the multivariate ARMA
model.

The paper is organized as follows. In section 2 we review elementary properties of
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multidimensional Lévy processes and the stochastic integration theory for deterministic
functions with respect to them. A brief summary of univariate Lévy-driven CARMA
processes forms the first part of the third section and is followed by the development
of what will turn out to be the state space representation of multivariate CARMA
(MCARMA) processes. We start by constructing a random orthogonal measure allow-
ing for a spectral representation of the driving Lévy process and continue by studying
a stochastic differential equation. Analysing the spectral representation of its solution
shows that it can be used to define multivariate CARMA processes. After spending a
closer look on the probabilistic properties of this SDE (second moments, Markov prop-
erty, stationary and limiting distributions and path behaviour), we state the definition of
MCARMA processes in section 3.3. Furthermore, we establish a kernel representation,
which enables us to derive some further probabilistic properties of MCARMA models.
In particular, we characterize the stationary distribution and path behaviour and give
conditions for the existence of moments, the existence of a C∞b density as well as for
strong mixing.

Throughout this paper we use the following notation. We call the space of all real or
complex m ×m-matrices Mm(R) or Mm(C), respectively, and the space of all complex
invertible m×m-matrices Glm(C). Furthermore, A∗ denotes the adjoint of the matrix A

and KerA its kernel. Im ∈ Mm(C) is the identity matrix and ‖A‖ is the operator norm
corresponding to the norm ‖x‖ for x ∈ Cm. Finally, IB(·) is the indicator function of the
set B and N0 = N ∪ {0}.

2. Multivariate Lévy Processes.

2.1. Basic Facts on Multivariate Lévy Processes.
We state some elementary properties of multivariate Lévy processes that will be needed.
For a more general treatment and proofs we refer to [9, 10, 11].

We consider a Lévy process L = {L(t)}t≥0 (where L(0) = 0 a.s.) in Rm without
Brownian component determined by its characteristic function in the Lévy-Khintchine
form E

[
ei〈u,L(t)〉] = exp{tψL(u)}, t ≥ 0, where

ψL(u) = i〈γ, u〉+
∫

Rm

(ei〈u,x〉 − 1− i〈u, x〉I{‖x‖≤1}) ν(dx), u ∈ Rm, (2.1)

where γ ∈ Rm and ν is a measure on Rm that satisfies ν({0}) = 0 and
∫
Rm

(‖x‖2∧1) ν(dx) <

∞. The measure ν is referred to as the Lévy measure of L. It is a well-known fact that to
every càdlàg Lévy process L on Rm one can associate a random measure J on R×Rm\{0}
describing the jumps of L. For any measurable set B ⊂ R× Rm \ {0},

J(B) = ]{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure J is a Poisson random measure on R× Rm \ {0} (see e.g. Definition
2.18 in [12]) with intensity measure n(ds, dx) = ds ν(dx). By the Lévy-Itô decomposition
we can rewrite L almost surely as

L(t) = γt +
∫

‖x‖≥1,s∈[0,t]

xJ(ds, dx) + lim
ε↓0

∫

ε≤‖x‖≤1, s∈[0,t]

xJ̃(ds, dx), t ≥ 0. (2.2)
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Here J̃(ds, dx) = J(ds, dx) − dsν(dx) is the compensated jump measure, the terms in
(2.2) are independent and the convergence in the last term is a.s. and locally uniform in
t ≥ 0.

In the sequel we will work with a two-sided Lévy process L = {L(t)}t∈R, constructed
by taking two independent copies {L1(t)}t≥0, {L2(t)}t≥0 of a one-sided Lévy process and
setting

L(t) =





L1(t) if t ≥ 0

−L2(−t−) if t < 0.
(2.3)

Assuming that ν satisfies additionally
∫

‖x‖>1

‖x‖2 ν(dx) < ∞, (2.4)

L has finite mean and covariance matrix ΣL given by

ΣL =
∫

Rm

xx∗ ν(dx). (2.5)

Furthermore, if we suppose that E[L(1)] = γ +
∫
‖x‖>1

x ν(dx) = 0, then it follows that
(2.1) can be written in the form

ψL(u) =
∫

Rm

(ei〈u,x〉 − 1− i〈u, x〉) ν(dx), u ∈ Rm, (2.6)

and (2.2) simplifies to

L(t) =
∫

x∈Rm\{0}, s∈[0,t]

xJ̃(ds, dx), t ∈ R. (2.7)

In this case L = {L(t)}t≥0 is a martingale.

2.2. Stochastic Integrals with Respect to Lévy Processes.
In this section we consider the stochastic process X = {X(t)}∈R given by

X(t) =
∫

R

f(t, s) L(ds), t ∈ R, (2.8)

where f : R × R → Mm(R) is a measurable function and L = {L(t)}t∈R is an m-
dimensional Lévy process without Brownian component. For integration with respect to
Brownian motion we refer to any of the standard books.

We first assume that the process L in (2.8) is an m-dimensional Lévy process without
a Gaussian component satisfying E[L(1)] = 0 and E[L(1)L(1)∗] < ∞, i.e., L can be
represented as in (2.7).

In this case it follows from (2.7) that the process X can be represented by

X(t) =
∫

R×Rm

f(t, s)x J̃(ds, dx), t ∈ R, (2.9)
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where J̃(ds, dx) = J(ds, dx)− dsν(dx) is the compensated jump measure of L. A neces-
sary and sufficient condition for the existence of the stochastic integral (2.9) in L2(Ω, P )
(see e.g. [13] or [14]) is that

∫

R

∫

Rm

(‖f(t, s)x‖2 ∧ ‖f(t, s)x‖) ν(dx) ds < ∞, ∀ t ∈ R.

Then the law of X(t) is for all t ∈ R infinitely divisible with characteristic function

E [exp {i〈u, X(t)〉}] = exp





∫

R

∫

Rm

(
ei〈u,f(t,s)x〉 − 1− i〈u, f(t, s)x〉

)
ν(dx) ds



 .

Furthermore, if f(t, ·) ∈ L2(R; Mm(R)), the integral (2.9) exists in L2(Ω, P ) and

E [X(t)X(t)∗] =
∫

R

f(t, s)ΣLf∗(t, s) ds. (2.10)

If
∫

R

∫

Rm

(‖f(t, s)x‖ ∧ 1) ν(dx) ds < ∞, ∀ t ∈ R,

the stochastic integral (2.8) exists without a compensator and we can write

X(t) =
∫

R×Rm

f(t, s)x J(ds, dx), t ∈ R. (2.11)

Finally, in the general case, where condition (2.4) is not satisfied, necessary and
sufficient conditions for the integral (2.8) to exist are (see [13, 15])

∫

R

∫

Rm

(‖f(t, s)x‖2 ∧ 1) ν(dx) ds < ∞, ∀ t ∈ R, (2.12)

and

∫

R

∥∥∥∥∥∥
f(t, s)γ +

∫

Rm

f(t, s)x
(
I{‖f(t,s)x‖≤1} − I{‖x‖≤1}

)
ν(dx)

∥∥∥∥∥∥
ds < ∞. (2.13)

Then we represent X as

X(t) =
∫

R

∫

Rm

f(t, s)x
[
J(ds, dx)− (1 ∨ ‖f(t, s)x‖)−1 ν(dx) ds

]
+

∫

R

f(t, s)γ ds, t ∈ R.

Moreover, if the integral in (2.8) is well-defined, the distribution of X(t) is infinitely
divisible with characteristic triplet (γt

X , 0, νt
X) given by

γt
X =

∫

R

f(t, s)γ ds +
∫

R

∫

Rm

f(t, s)x[I{‖f(t,s)x‖≤1} − I{‖x‖≤1}] ν(dx) ds, (2.14)

νt
X(B) =

∫

R

∫

Rm

1B(f(t, s)x) ν(dx) ds. (2.15)



Multivariate CARMA Processes 5

It follows that the characteristic function of X(t) can be written as

E
[
ei〈u,X(t)〉

]
= exp



i〈γt

X , u〉+
∫

Rm

[ei〈u,x〉 − 1− i〈u, x〉I{‖x‖≤1}] νt
X(dx)





= exp





∫

R

ψL(f(t, s)∗u) ds



 , (2.16)

where ψL is given as in (2.1). These facts follow from [15, Theorem 3.1, Proposition 2.17
and Corollary 2.19].

3. Multivariate CARMA Processes.
In this section we discuss CARMA processes driven by general Lévy processes, i.e., the
Lévy processes may have a Brownian component and does not need to have finite variance,
if not stated otherwise. We start with a brief review of the well-known one-dimensional
case.

3.1. Univariate Lévy-driven CARMA Processes.
Continuous-time ARMA (CARMA) processes constitute a special class of short memory
moving average (MA) processes (see, for instance, [9, Section 4.3.5]) and are the continu-
ous time analogues of the well-known autoregressive moving average (ARMA) processes.
We give here a short summary of their definition and properties. For further details see
[3, 4, 16].

Definition 3.1 (CARMA Process). Let {L(t)}t∈R be a Lévy process satisfying∫
|x|≥1

log |x|ν(dx) < ∞, p, q be in N0 with p > q and a1, . . . , ap, b0, . . . , bq ∈ R, ap, b0 6= 0

such that A :=

[
0 Ip−1

−ap −ap−1 . . . −a1

]
has only eigenvalues with strictly negative

real part. Furthermore, denote by {X(t)}t∈R the stationary solution to

dX(t) = AX(t)dt + e L(dt), t ∈ R, (3.1)

where eT = [0, . . . , 0, 1]. Then the process

Y (t) = bT X(t), (3.2)

with bT =
[

bq, bq−1, . . . , bq−p+1

]
, is called a Lévy-driven continuous time autoregressive

moving average process of order (p, q) (CARMA(p, q), for short). If q < p − 1, we set
b−1 = . . . = bq−p+1 = 0.

The CARMA(p, q) process can be interpreted as the stationary solution of the p-th
order linear differential equation,

p(D)Y (t) = q(D)DL(t), t ≥ 0, (3.3)

where D denotes differentiation with respect to t and

p(z) := zp + a1z
p−1 + ... + ap and q(z) := b0z

q + b1z
q−1 + .... + bq,

are the so-called autoregressive and moving-average polynomials, respectively. To see
this note first that in the case q(z) = 1 (i.e. q = 0 and bT = (1, 0, . . . , 0)) rewriting
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(3.3) as a system of first-order differential equations in the standard way gives (3.1)
and (3.2) with XT

t = (Yt, DYt, . . . , D
p−1Yt). In the general case we transform (3.3) to

Y (t) = p(D)−1q(D)DL(t) = q(D)p(D)−1DL(t) (note that we may commute p−1(D) and
q(D), since the real coefficients and the operator D all commute). From the previous case
we infer that the process in (3.1) is formed by p(D)−1DL(t) and the first p−1 derivatives
of this process. Now one can immediately see that Yt = bT Xt = q(D)p(D)−1DLt.

Remark 3.2. Observe that the process {X(t)}t∈R can be represented as

X(t) =

t∫

−∞
eA(t−u)eL(du), t ∈ R, (3.4)

and is a multivariate Ornstein-Uhlenbeck-type process ([17, 18, 19]). Hence, we have

Y (t) =

t∫

−∞
bT eA(t−u)e L(du), t ∈ R. (3.5)

From (3.5) it is obvious that {Y (t)}t∈R is a causal short memory moving average process,
since it has the form

Y (t) =

∞∫

−∞
g(t− u) L(du), t ∈ R, (3.6)

with kernel g(t) = bT eAteI[0,∞)(t). Replacing eAt by its spectral representation, the
kernel g can be expressed as

g(t) =
1
2π

∞∫

−∞
eitλ q(iλ)

p(iλ)
dλ, t ∈ R. (3.7)

Note that the representation of {Y (t)}t∈R given by (3.6) together with (3.7) defines
a strictly stationary process even if there are eigenvalues of A with strictly positive real
part. However, if there are eigenvalues with positive real part, the CARMA process will
be no longer causal. Henceforth, we focus on causal CARMA processes.

Proposition 3.3 ([16, Section 2]). If E[L(1)2] < ∞, the spectral density fY of
Y = {Y (t)}t∈R is given by

fY (λ) =
var(L(1))

2π

|q(iλ)|2
|p(iλ)|2 , λ ∈ R.

Consequently, the autocovariance function γY of the CARMA process Y can be expressed
as

γY (h) = cov(Y (t + h), Y (t)) =
var(L(1))

2π

∞∫

−∞
eihλ

∣∣∣∣
q(iλ)
p(iλ)

∣∣∣∣
2

dλ, h ∈ R.

Moreover, for a causal CARMA process an application of the residue theorem leads to

γY (h) = var(L(1))
p∑

r=1

q(λr)q(−λr)
p′(λr)p(−λr)

eλr|h|, h ∈ R,

provided all eigenvalues λ1, . . . , λp of the matrix A are algebraically simple.
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3.2. State Space Representation of Multivariate CARMA Processes.
This section contains the necessary results and insights enabling us to define multivariate
CARMA processes in the next section. As we shall heavily make use of spectral repre-
sentations of stationary processes (see [20, 21, 22] for comprehensive treatments), let us
briefly recall the notions and results we shall employ.

Definition 3.4. Let B(R) denote the Borel-σ-algebra over R. A family
{ζ(∆)}∆∈B(R) of Cm-valued random variables is called an m-dimensional random orthog-
onal measure, if

(a) ζ(∆) ∈ L2 for all bounded ∆ ∈ B(R),
(b) ζ(∅) = 0,
(c) ζ(∆1 ∪∆2) = ζ(∆1) + ζ(∆2) a.s., if ∆1 ∩∆2 = ∅ and
(d) F : B(R) → Mm(C), ∆ 7→ E[ζ(∆)ζ(∆)∗] defines a σ-additive positive definite

matrix measure (i.e., a σ-additive set function that assumes values in the positive
semi-definite matrices) and it holds that E[ζ(∆1)ζ(∆2)∗] = F (∆1 ∩∆2) for all
∆1,∆2 ∈ B(R).

F is referred to as the spectral measure of ζ.

The definition above obviously implies E[ζ(∆1)ζ(∆2)∗] = 0 for disjoint Borel sets
∆1,∆2.

Stochastic integrals
∫
∆

f(t)ζ(dt) of deterministic Lebesgue-measurable functions f :
R→ Mm(C) with respect to a random orthogonal measure ζ are now as usually defined
in an L2-sense (see, in particular, [22, Ch. 1] for details). Note that the integration can be
understood component-wise: Denoting the coordinates of ζ by ζi, i.e. ζ = (ζ1, . . . , ζm)∗,
the i-th element

(∫
∆

f(t)ζ(dt)
)
i

of
∫
∆

f(t)ζ(dt) is given by
∑m

k=1

∫
∆

fik(t)ζk(dt), where
the integrals are standard one-dimensional stochastic integrals in an L2-sense and fik(t)
denotes the element in the i-th row and k-th column of f(t). The above integral is defined
whenever the integral

∫

∆

f(t)F (dt)f(t)∗ :=




m∑

k,l=1

∫

R
fik(t)f jl(t)Fkl(dt)




1≤i,j≤m

exists. Functions satisfying this condition are said to be in L2(F ). For two functions
f, g ∈ L2(F ) we have

E

[∫

∆

f(t)ζ(dt)
(∫

∆

g(t)ζ(dt)
)∗]

=
∫

∆

f(t)F (dt)g(t)∗. (3.8)

In the following we will only encounter random orthogonal measures, whose associated
spectral measures have constant density with respect to the Lebesgue measure λ on R,
i.e. F (dt) = Cλ(dt) := C dt for some positive definite C ∈ Mm(C), which simplifies
the integration theory considerably. In this case it is easy to see that it is sufficient for∫
∆

f(t)F (dt)f(t)∗ to exist that
∫
∆
‖f(t)‖2 dt is finite, where ‖·‖ is some norm on Mm(C).

To ease notation we define the space of square-integrable matrix-valued functions

L2(R; Mm(C)) :=
{

f : R→ Mm(C),
∫

R
‖f(t)‖2dt < ∞

}
. (3.9)



8 Marquardt, T. and Stelzer, R.

In the following we abbreviate L2(R; Mm(C)) by L2(Mm(C)). This space is independent
of the norm ‖ · ‖ on Mm(C) used in the definition and is equal to the space of functions
f = (fij) : R→ Mm(C) where all components fij are in the usual space L2(R;C).

‖f‖L2(Mm(C)) =
(∫

R
‖f(t)‖2dt

)1/2

(3.10)

defines a norm on L2(Mm(C)) and again it is immaterial, which norm we use, as all norms
‖ · ‖ on Mm(C) lead to equivalent norms ‖ · ‖L2(Mm(C)). With this norm L2(Mm(C)) is
a Banach space and even a Hilbert space, provided the original norm ‖ · ‖ on Mm(C) is
induced by a scalar product. Observe that as usual we do not distinguish between func-
tions and equivalence classes in L2(·). The integrals

∫
∆

f(t)ζ(dt) and
∫
∆

g(t)ζ(dt) agree
(in L2), if f and g are identical in L2(Mm(C)), and a sequence of integrals

∫
∆
‖fn(t)‖2 dt

converges (in L2) to
∫
∆
‖f(t)‖2 dt for n →∞, if ‖fn(t)− f(t)‖L2(Mm(C)) → 0 as n →∞.

Moreover,

E

[∫

∆

f(t)ζ(dt)
(∫

∆

g(t)ζ(dt)
)∗]

=
∫

∆

f(t)Cg(t)∗dt. (3.11)

Our first step in the construction of multivariate CARMA processes is the following
theorem extending the well-known fact that

W (t) =

∞∫

−∞

eiµt − 1
iµ

φ(dµ), t ∈ R,

is an m-dimensional standard Wiener process, if φ is an m-dimensional Gaussian random
orthogonal measure satisfying E[φ(A)] = 0 and E[φ(A)φ(A)∗] = Im

2π λ(A) for all A ∈ B(R)
(see e.g. [23, Section 2.1, Lemma 5]).

Theorem 3.5. Let L = {L(t)}t∈R be a two-sided square integrable m-dimensional
Lévy process with E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL. Then there exists an m-
dimensional random orthogonal measure ΦL with spectral measure FL such that
E[ΦL(∆)] = 0 for any bounded Borel set ∆,

FL(dt) =
ΣL

2π
dt (3.12)

and

L(t) =

∞∫

−∞

eiµt − 1
iµ

ΦL(dµ). (3.13)

The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∞∫

−∞

e−iµa − e−iµb

2πiµ
L(dµ) (3.14)

for all −∞ < a < b < ∞.
Proof. Observe that setting Φ̃([a, b)) = L(b) − L(a) defines a random orthogonal

measure on the semi-ring of intervals [a; b), with −∞ < a < b < ∞. Using an obvious
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multidimensional extension of [22, Theorem 2.1], we extend Φ̃L to a random orthogonal
measure on the Borel sets. It is immediate that the associated spectral measure F̃L

satisfies F̃L(dt) = ΣL dt and that integrating with respect to Φ̃L is the same as integrating
with respect to the Lévy process L.

Now define ΦL([a, b)) for −∞ < a < b < ∞ by (3.14) which is equivalent to

ΦL([a, b)) =

∞∫

−∞

e−iµa − e−iµb

2πiµ
Φ̃L(dµ). (3.15)

Using (3.11) we obtain for any two intervals [a, b) and [a′, b′)

E[ΦL([a, b))ΦL([a′, b′))∗] =

∞∫

−∞

e−iµa − e−iµb

2πiµ
ΣL

(
e−iµa′ − e−iµb′

2πiµ

)
dµ (3.16)

=

∞∫

−∞

e−iµa − e−iµb

2πiµ
Σ1/2

L

(
e−iµa′ − e−iµb′

2πiµ
Σ1/2

L

)∗

dµ,

where Σ1/2
L denotes the unique square root of ΣL defined by spectral calculus. The

crucial point is now to observe that the function φ̂a,b(µ) = e−iµa−e−iµb√
2πiµ

Σ1/2
L is the Fourier

transform of the function I[a,b)(t)Σ
1/2
L , i.e.,

φ̂a,b(µ) =
1√
2π

∫ ∞

−∞
e−iµtI[a,b)(t)Σ

1/2
L dt.

The standard theory of Fourier-Plancherel transforms F (see e.g. [24, Chapter II] or
[25, Chapter 6]) extends immediately to the space L2(Mm(C)) by setting

Fm : L2(Mm(C)) → L2(Mm(C)), f(t) 7→ f̂(µ) =
1√
2π

∞∫

−∞
e−iµtf(t)dt

where
∫∞
−∞ e−iµtf(t)dt is the limit in L2(Mm(C)) of

∫ R

−R
e−iµtf(t)dt as R →∞, because

this can be interpreted as a component-wise Fourier-Plancherel transformation and, as
stated before, a function f is in L2(Mm(C)), if and only if all components fij are in
L2(R;C). In particular, Fm is an invertible continuous linear operator on L2(Mm(C))
with

F−1
m : L2(Mm(C)) → L2(Mm(C)), f̂(µ) 7→ f(t) =

1√
2π

∞∫

−∞
eiµtf̂(µ)dµ,

and Plancherel’s identity generalises to:
∫

R

f(t)g(t)∗dt =
∫

R

f̂(µ)ĝ(µ)∗dµ. (3.17)

Combining (3.16) with (3.17) gives

E[ΦL([a, b))ΦL([a′, b′))∗] =
1
2π

∞∫

−∞
φ̂a,b(µ)

(
φ̂a′,b′(µ)

)∗
dµ =

ΣL

2π

∞∫

−∞
Ia,b(t)Ia′,b′(t) dt.
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This implies immediately that E[ΦL([a, b))ΦL([a′, b′))∗] = 0, if [a, b) and [a′, b′) are dis-
joint, E[ΦL([a, b))ΦL([a, b))∗] = ΣLλ([a,b))

2π and that ΦL is a random orthogonal measure
on the semi-ring of intervals [a, b), which we extend to one on all Borel sets. Therefore,
(3.15) extends to

∞∫

−∞
I∆(t)ΦL(dt) =

1√
2π

∞∫

−∞
φ̂∆(µ) Φ̃L(dµ) (3.18)

for all Borel sets ∆, where φ̂∆ = Fm(I∆) is the Fourier transform of I∆.
For any function ϕ ∈ L2(Mm(C)) there is a sequence of elementary functions ϕk(t),

k ∈ N, (i.e., matrix-valued functions of the form
∑N

i=1 CiI∆i(t) with appropriate N ∈
N, Ci ∈ Mm(C) and Borel sets ∆i) which converges to ϕ in L2(Mm(C)). As the Fourier-
Plancherel transform is a topological isomorphism that maps L2(Mm(C)) onto itself, the
Fourier-Plancherel transforms ϕ̂k(t) converge to the Fourier-Plancherel transform ϕ̂(t) in
L2(Mm(C)), which allows us to extend (3.18), exchanging the roles of µ and t, to

∞∫

−∞
ϕ(µ)ΦL(dµ) =

1√
2π

∞∫

−∞
ϕ̂(t) Φ̃L(dt) (3.19)

for all functions ϕ in L2(Mm(C)) and their Fourier-Plancherel transforms ϕ̂. Now choose
ϕ(µ) = eiµb−eiµa

iµ , then ϕ̂(t) =
√

2πI[a,b](t). This shows that

∞∫

−∞

eiµb − eiµa

iµ
ΦL(dµ) = L(b)− L(a)

and thus (3.13) is shown.
The uniqueness of ΦL follows easily, as (3.13) implies (3.19) using arguments analo-

gous to the above ones.
Note that for one-dimensional random orthogonal measures such results can already be
found in [20, Section IX.4].

Remark 3.6. If we formally differentiate (3.13), we obtain

dL(t)
dt

=
∫ ∞

−∞
eiµtΦL(dµ),

as in the spectral representation differentiation is the transform given by
∫ ∞

−∞
eiµtΦ(dµ) 7→

∫ ∞

−∞
iµeiµtΦ(dµ).

Thus, a univariate CARMA processes should have the representation

Y (t) =
∫ ∞

−∞
eiµt q(iµ)

p(iµ)
ΦL(dµ), (3.20)

as this reflects the differential equation (3.3). Later, in Theorem 3.22, we will see that this
is indeed the case. The square integrability necessary for (3.20) to be defined, explains
why one can only consider CARMA processes with q < p (cf. Lemma 3.11).
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The next lemma deals with the spectral representation of integrals of processes.
Lemma 3.7. Let Φ be an m-dimensional random orthogonal measure with spectral

measure F (dt) = C dt for some positive definite C ∈ Mm(C) and g ∈ L2(Mm(C)). Define
the m-dimensional random process G = {G(t)}t∈R by

G(t) =

∞∫

−∞
eiµtg(iµ)Φ(dµ).

Then G is weakly stationary,

t∫

0

G(s) ds < ∞ a.s. for every t > 0 and

t∫

0

G(s) ds =

∞∫

−∞

eiµt − 1
iµ

g(iµ)Φ(dµ), t > 0.

Proof. Weak stationarity follows immediately from (3.11), which implies

E[G(t)G(s)∗] =

∞∫

−∞
eiµ(t−s)g(iµ)Cg(iµ)∗dµ.

The weak stationarity implies that ‖G(s)‖L2 := E[‖G(s)‖22]1/2 = E[G(s)∗G(s)]1/2 is
finite and constant, where ‖ · ‖2 denotes the Euclidean norm. Thus an elementary Fubini
argument and using ‖ · ‖L1 ≤ ‖ · ‖L2 gives:

E

∥∥∥∥∥∥

t∫

0

G(s)ds

∥∥∥∥∥∥
2

≤ E




t∫

0

‖G(s)‖2ds


 =

t∫

0

E [‖G(s)‖2] ds ≤
t∫

0

‖G(s)‖L2ds < ∞.

In particular,
∫ t

0
G(s)ds is almost surely finite. Finally, we obtain

t∫

0

G(s)ds =

t∫

0

∞∫

−∞
eiµsg(iµ)Φ(dµ)ds =

∞∫

−∞

t∫

0

eiµsds g(iµ)Φ(dµ)

=

∞∫

−∞

eiµt − 1
iµ

g(iµ)Φ(dµ),

using a stochastic version of Fubini’s theorem (e.g. the obvious multidimensional exten-
sion of [21, Section IV.4, Lemma 4]).

Before turning to a theorem enabling us to define MCARMA processes we establish
three lemmata and one corollary which contain necessary technical results relating the
zeros of what is to become the autoregressive polynomial to the spectrum of a partic-
ular matrix A. The first lemma contains furthermore some additional insight into the
eigenvectors of A.

Lemma 3.8. Let A1, . . . , Ap ∈ Mm(C), p ∈ N, define P : C → Mm(C), z 7→
Imzp + A1z

p−1 + A2z
p−2 + . . . + Ap and set

N (P ) = {z ∈ C : det(P (z)) = 0}, (3.21)
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i.e., N (P ) is the set of all z ∈ C such that P (z) 6∈ Glm(C). Furthermore, set

A =




0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . . . . . 0
0 . . . . . . 0 Im

−Ap −Ap−1 . . . . . . −A1



∈ Mmp(C) (3.22)

and denote the spectrum of A by σ(A). Then N (P ) = σ(A) and x̄ ∈ Cmp \ {0} is
an eigenvector of A with corresponding eigenvalue λ, if and only if there is an x̃ ∈
KerP (λ)\{0}, such that x̄ = (x̃∗, (λx̃)∗, . . . , (λp−1x̃)∗)∗. Moreover, 0 ∈ σ(A), if and only
if 0 ∈ σ(Ap).

Proof. It is immediate from the structure of A, that A is of full rank, if and only if
Ap is of full rank.

Let λ be an eigenvalue of A and x̄ = (x∗1, . . . x∗p)
∗ ∈ Rmp, xi ∈ Rm, a corresponding

eigenvector, i.e., Ax̄ − λx̄ = 0 from which λx1 = x2, λx2 = x3, . . . , λxp−1 = xp, λxp +
A1xp + A2xp−1 + . . . + Apx1 = 0 follows. Hence, xi = λi−1x1, i = 1, 2, . . . , p and

λpx1 +A1λ
p−1x1 +A2λ

p−2x1 + . . .+Apx1 = (Imλp +A1λ
p−1 + . . .+Ap)x1 = 0. (3.23)

As x̄ 6= 0, we have x1 6= 0 and (3.23) gives x1 ∈ KerP (λ). Hence, we can set x̃ =
x1. Furthermore the non-triviality of the kernel of P (λ) implies det(P (λ)) = 0. Thus
N (P ) ⊇ σ(A) has been established.

Now we turn to the converse implication. Let λ ∈ N (P ), then P (λ) has a non-trivial
kernel. Take any x̃ ∈ KerP (λ) \ {0} and set x̄ = (x̃∗, (λx̃)∗, . . . , (λp−1x̃)∗)∗. Then (3.23)
shows that Ax̄ = λx̄ and thus λ ∈ σ(A). Therefore N (P ) ⊆ σ(A) and x̄ is an eigenvector
of A to the eigenvalue λ.

Corollary 3.9. σ(A) ⊆ (−∞, 0) + iR if and only if N (P ) ⊆ (−∞, 0) + iR.
Lemma 3.10. If N (P ) ⊆ R\{0}+ iR, then P (iz) ∈ Glm(C) for all z ∈ R.
Proof. As all zeros of det(P (z)) have non-vanishing real part, all zeros of det(P (iz))

must have non-vanishing imaginary part and thus P (iz) is invertible for all z ∈ R.

Lemma 3.11. Let C0, C1, . . . , Cp−1 ∈ Mm(C) and R(z) =
p−1∑
i=0

Ciz
i. Assume that

N (P ) ⊆ R\{0}+ iR, then
∞∫

−∞
‖P (iz)−1R(iz)‖2 dz < ∞,

where P (z) = Imzp + A1z
p−1 + ... + Ap.

Proof. As det(P (iz)), z ∈ R, has no zeros, ‖P (iz)−1R(iz)‖ is finite for all z ∈ R,
continuous and thus bounded on any compact set. Hence,

∫ K

−K
‖P (iz)−1R(iz)‖2 dz exists

for all K ∈ R. For any x ∈ Rm we have

‖P (z)x‖ =

∣∣∣∣∣

∣∣∣∣∣

(
Imzp +

p−1∑

k=0

Ap−kzk

)
x

∣∣∣∣∣

∣∣∣∣∣ ≥ ‖zpx‖ −
∣∣∣∣∣

∣∣∣∣∣
p−1∑

k=0

Ap−kzkx

∣∣∣∣∣

∣∣∣∣∣

≥
(
|z|p −

p−1∑

k=0

‖Ap−k‖|zk|
)
‖x‖.
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Thus, there is K > 0 such that ‖P (z)x‖ ≥ |z|p‖x‖/2 for all z such that |z| ≥ K, x ∈ Rm.
This implies ‖P (z)−1‖ ≤ 2|z|−p ∀ |z| ≥ K and thus for all z ∈ R, |z| ≥ K,

‖P (iz)−1R(iz)‖2 ≤ ‖P (iz)−1‖2‖R(iz)‖2 ≤ 4
|z|2p

(
p−1∑

i=0

‖Ci‖|z|i
)2

,

which gives the finiteness of
∫ −K

−∞ ‖P (iz)−1R(iz)‖2 dz and
∫∞

K
‖P (iz)−1R(iz)‖2 dz.

The following result provides the key to be able to define multivariate CARMA
processes.

Theorem 3.12. Let L = {L(t)}t∈R be an m-dimensional square-integrable Lévy
process with zero mean and corresponding m-dimensional random orthogonal measure Φ
as in Theorem 3.5 and p, q ∈ N0, q < p (i.e., p ≥ 1). Let further A1, A2, . . . , Ap, B0, B1, . . . ,

Bq ∈ Mm(R), where B0 6= 0 and define β1 = β2 = . . . = βp−q−1 = 0 (if p > q + 1)

and βp−j = −
p−j−1∑

i=1

Aiβp−j−i + Bq−j for j = 0, 1, 2, . . . , q. (Alternatively, βp−j =

−
p−j−1∑

i=1

Aiβp−j−i + Bq−j for j = 0, 1, . . . , p − 1, setting Bi = 0 for i < 0.) Assume

that A as defined in (3.22) satisfies σ(A) ⊆ (−∞, 0) + iR, which implies Ap ∈ Glm(R).
Denote by G = (G∗1(t), . . . , G

∗
p(t))∗ an mp-dimensional process and set β∗ =(

β∗1 , . . . , β∗p
)
. Then the stochastic differential equation

dG(t) = AG(t)dt + βdLt (3.24)

is uniquely solved by the process G given by

Gj(t) =

∞∫

−∞
eiλtwj(iλ)Φ(dλ), j = 1, 2, . . . , p, t ∈ R, where (3.25)

wj(z) =
1
z
(wj+1(z) + βj), j = 1, 2, . . . , p− 1 and

wp(z) =
1
z

(
−

p−1∑

k=0

Ap−kwk+1(z) + βp

)
.

The strictly stationary process G can also be represented as

G(t) =

t∫

−∞
eA(t−s)β L(ds), t ∈ R. (3.26)

Moreover, G(0) and {L(t)}t≥0 are independent, in particular,

E[Gj(0)L(t)∗] = 0 for all t ≥ 0, j = 1, 2, . . . , p.

Finally, it holds that

wp(z) = P (z)


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


 , (3.27)

w1(z) = (P (z))−1Q(z), (3.28)
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where

P (z) = Imzp + A1z
p−1 + . . . + Ap (“autoregressive polynomial”) ,

Q(z) = B0z
q + B1z

q−1 + . . . + Bq (“moving-average polynomial”)

and
∞∫
−∞

‖wj(iλ)‖2 dλ < ∞ for all j ∈ {1, 2, . . . , p}.
Proof. Ap ∈ Glm(R) follows from Lemma 3.8. That (3.26) is the strictly stationary

solution of (3.24) is a standard result, since all elements of σ(A) have strictly negative
real part, and a simple application of Gronwall’s Lemma shows that the solution of (3.24)
is a.s. unique for all t ∈ R (see e.g. [26], Theorem 3.1). Since G(0) =

∫ 0

−∞ e−Asβ L(ds)
and the processes {L(t)}t<0 and {L(t)}t≥0 are independent according to our definition
(2.3) of L, G(0) and {L(t)}t≥0 are independent.

To prove (3.27) and (3.28) we first show

wj(z) =
1

zp−j

(
wp(z) +

p−j∑

i=1

βp−iz
i−1

)
for j = 1, . . . , p− 1. (3.29)

In fact, for p− j = 1 (3.29) becomes wp−1 = 1
z (wp(z) + βp−1) which proves the identity

for j = p− 1 immediately. Assume the identity holds for j + 1 ∈ {2, 3, . . . , p− 1}, then

wj(z) =
1
z
(wj+1(z) + βj) =

1
z

[
1

zp−j−1

(
wp(z) +

p−j−1∑

i=1

βp−iz
i−1

)
+ βj

]

=
1

zp−j

(
wp(z) +

p−j∑

i=1

βp−iz
i−1

)
,

which proves (3.29). Now we turn to (3.27):

wp(z) =
1
z

(
−

p−1∑

k=0

Ap−kwk+1(z) + βp

)

(3.29)
=

1
z

[
−

p−1∑

k=0

Ap−k

(
1

zp−k−1

(
wp(z) +

p−k−1∑

i=1

βp−iz
i−1

))]
+

βp

z
.

It follows,
(

Imzp +
p−1∑

k=0

Ap−kzk

)
wp(z) = βpz

p−1 −
p−1∑

k=0

p−k−1∑

i=1

Ap−kβp−iz
k+i−1.

Set j = k + i− 1, then

wp(z) = (P (z))−1


βpz

p−1 −
p−2∑

k=0

p−2∑

j=k

Ap−kβp+k−j−1z
j




= (P (z))−1


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


 ,

which proves (3.27).
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Let now l ∈ {1, 2, . . . , p− 1}. Then setting A0 = Im,

wl(z) =
1

zp−l

(
wp(z) +

p−l∑

i=1

βp−iz
i−1

)

(3.27)
=

1
zp−l


(P (z))−1


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j


 +

p−l∑

i=1

βp−iz
i−1




=
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j + P (z)

(
p−l∑

i=1

βp−iz
i−1

)


=
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p∑

k=0

p−l−1∑

i=0

Ap−kβp−i−1z
i+k


 .

Setting j = k + l we obtain,

wl(z) =
(P (z))−1

zp−l


βpz

p−1 −
p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p∑

k=0

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j




=
(P (z))−1

zp−l


−

p−2∑

j=0

j∑

k=0

Ap−kβp+k−j−1z
j +

p−l−1∑

k=0

p−l−1∑

j=k

Ap−kβp+k−j−1z
j

+βpz
p−1 +

p∑

k=p−l

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j +

p−l−1∑

k=1

k+p−l−1∑

j=p−l

Ap−kβp+k−j−1z
j




It follows,

wl(z) = (P (z))−1


βpz

l−1 −
p−2∑

j=p−l

j∑

k=0

Ap−kβp+k−j−1z
j−p+l

+
p∑

k=p−l

k+p−l−1∑

j=k

Ap−kβp+k−j−1z
j−p+l +

p−l−1∑

k=1

k+p−l−1∑

j=p−l

Ap−kβp+k−j−1z
j−p+l


 .

The last term in the bracket appears only if p − l − 1 ≥ 1. Therefore, the whole
term in the bracket is a polynomial of at most order p − 1. Fixing l = 1 and setting
i = j − p + 1 we obtain,

w1(z) = P (z)−1


βp +

p∑

k=p−1

k−1∑

i=k−p+1

Ap−kβk−iz
i +

p−2∑

k=1

k−1∑

i=0

Ap−kβk−iz
i

]

= P (z)−1

[
βp +

p−1∑

k=1

k−1∑

i=0

Ap−kβk−iz
i +A0

p−1∑

i=1

βp−iz
i

]

= P (z)−1

[
p−1∑

i=0

βp−iz
i +

p−2∑

i=0

p−1∑

k=i+1

Ap−kβk−iz
i

]
.
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Using the fact that β1 = Bq−p+1 and setting j = p− k, we finally get

w1(z) = (P (z))−1


Bq−p+1z

p−1 +
p−2∑

i=0


βp−i +

p−i−1∑

j=1

Ajβp−j−i


 zi




= P (z)−1

[
Bq−p+1z

p−1 +
p−2∑

i=0

Bq−iz
i

]
= P (z)−1

p−1∑

i=0

Bq−iz
i

= P (z)−1

q∑

i=0

Bq−iz
i = P (z)−1Q(z).

The finiteness of
∫∞
−∞ ‖wj(iλ)‖2 dλ for all j = 1, 2, . . . , p is now a direct consequence

of Lemmata 3.10, 3.11 and Corollary 3.9.
It remains to show that the process defined in (3.25) solves (3.24): For j = 1, . . . , p

we have as a consequence of (3.25),

Gj(t)−Gj(0) =

∞∫

−∞
(eiλt − 1)wj(iλ)Φ(dλ). (3.30)

For j = 1, . . . , p− 1 the recursion for wj together with Lemma 3.7 gives

Gj(t)−Gj(0) =

∞∫

−∞

eiλt − 1
iλ

wj+1(iλ) Φ(dλ) + βj

∞∫

−∞

eiλt − 1
iλ

Φ(dλ)

=

t∫

0

∞∫

−∞
wj+1(iλ)eiλs Φ(dλ) ds + βjL(t)

=

t∫

0

Gj+1(s) ds + βjL(t).

Hence,

dGj(t) = Gj+1(t)dt + βjdL(t). (3.31)

Analogously we obtain for Gp,

Gp(t)−Gp(0) =

∞∫

−∞
(eiλt − 1)wp(iλ)Φ(dλ)

= −
p−1∑

k=0

t∫

0

∞∫

−∞
eiλsAp−kwk+1(iλ)Φ(dλ) ds + βpL(t)

= −



t∫

0

ApG1(s) + · · ·+ A1Gp(s) ds


 + βpL(t).

Therefore,

dGp(t) = −(ApG1(t) + . . . + A1Gp(t))dt + βpL(t).
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Together with (3.31) this gives that the process G defined by (3.25) solves (3.24).
Obviously, E[G(t)] = 0 for the process G = {G(t)}t∈R which solves (3.24). Noting

that G is a multivariate Ornstein-Uhlenbeck process, the second-order structure follows
immediately.

Proposition 3.13. Let G = {G(t)}t∈R be the process that solves (3.24). Then its
autocovariance matrix function has the form

Γ(h) = E[G(t + h)G(t)∗] = eA|h|Γ(0), h ∈ R, (3.32)

with Γ(0) =
∞∫
0

eAuβΣLβ∗eA∗u du satisfying AΓ(0) + Γ(0)A∗ = −βΣLβ∗.

Proof. (3.32) follows from (3.11) and the last identity is a standard result from matrix
theory (see e.g. [27, Theorem VII.2.3]).

From [28, 17, 18, 19] we know that (3.26) is the unique stationary solution to (3.24)
whenever the Lévy measure ν of the driving process L(t) satisfies

∫
‖x‖≥1

log ‖x‖ν(dx) <

∞. This condition is sufficient (and necessary, provided β is injective) for the stochastic
integral in (3.26) to exist, as can be seen from substituting f(t, s) = eA(t−s)βI[0,∞)(t− s)
in (2.12) and (2.13). As we shall use this fact later on to define CARMA processes driven
by Lévy processes with infinite second moment, we state the following two results on the
process G in a general manner.

Proposition 3.14. For any driving Lévy process L(t), the process G = {G(t)}t∈R
solving (3.24) in Theorem 3.12 is a temporally homogeneous strong Markov process with
an infinitely divisible transition probability Pt(x, dy) having characteristic function

∫

Rmp

ei〈u,y〉 Pt(x, dy) = exp



i〈x, eA∗tu〉+

t∫

0

ψL((eAvβ)∗u) dv



 , u ∈ Rmp. (3.33)

Proof. See [18, Th. 3.1] and additionally [10, Theorem V.32] for the strong Markov
property.

Proposition 3.15. Consider the unique solution G = {G(t)}t≥0 of (3.24) with
initial value G(0) independent of L = {L(t)}t≥0, where L is a Lévy process on Rm

satisfying
∫
‖x‖≥1

log ‖x‖ν(dx) < ∞. Let L(G(t)) denote the marginal distribution of the
process G = {G(t)}t≥0 at time t. Then there exists a limit distribution F such that
L(G(t)) → F as t →∞. This F is infinitely divisible with characteristic function

E
[
ei〈u,F 〉

]
= exp





∞∫

0

ψL((eAsβ)∗u) ds



 , u ∈ Rmp. (3.34)

Proof. see [18, Theorem 4.1]
Remark 3.16. Obviously F is also the marginal distribution of the stationary

solution considered in Theorem 3.12.
The sample path behaviour of the process G = {G(t)}t∈R is described below.
Proposition 3.17. If the driving Lévy process L = {L(t)}t∈R of the process G =

{G(t)}t∈R in Theorem 3.12 is Brownian motion, the sample paths of G are continuous.
Otherwise the process G has a jump, whenever L has one. In particular, ∆G(t) =
β∆L(t).
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3.3. Multivariate CARMA Processes.
We are now in a position to define an m-dimensional CARMA (MCARMA) process by
using the spectral representation for square-integrable driving Lévy processes and extend
this definition making use of the insight obtained in Theorem 3.12.

Definition 3.18 (MCARMA Process). Let L = {L(t)}t∈R be a two-sided square
integrable m-dimensional Lévy-process with E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL. An m-
dimensional Lévy-driven continuous time autoregressive moving average process {Y (t)}t∈R
of order (p, q), p > q (MCARMA(p, q) process) is defined as

Y (t) =

∞∫

−∞
eiλtP (iλ)−1Q(iλ)Φ(dλ), t ∈ R, where (3.35)

P (z) : = Imzp + A1z
p−1 + ... + Ap,

Q(z) : = B0z
q + B1z

q−1 + .... + Bq and

Φ is the Lévy orthogonal random measure of Theorem 3.5 satisfying E[Φ(dλ)] = 0 and
E[Φ(dλ)Φ(dλ)∗] = dλ

2π ΣL. Here Aj ∈ Mm(R), j = 1, ..., p and Bj ∈ Mm(R) are matrices
satisfying Bq 6= 0 and N (P ) := {z ∈ C : det(P (z)) = 0} ⊂ R\{0}+ iR.

The process G defined as in Theorem 3.12 is called the state space representation of
the MCARMA process Y .

Remark 3.19.

(a) There are several reasons why the name “multivariate continuous time ARMA
process” is indeed appropriate. The same arguments as in Remark 3.6 show
that an MCARMA process Y can be interpreted as a solution to the p-th order
m-dimensional differential equation

P (D)X(t) = Q(D)DL(t),

where D denotes the differentiation operator. Moreover, the upcoming Theorem
3.22 shows that for m = 1 the well-known univariate CARMA processes are
obtained and finally, the spectral representation (3.35) is the obvious continuous
time analogue of the spectral representation of multivariate discrete time ARMA
processes (see, for instance, [1, Section 11.8]).

(b) The well-definedness is ensured by Lemma 3.11. Observe also that, if det(P (z))
has zeros with positive real part, all assertions of Theorem 3.12 except the alter-
native representation (3.26) and the independence of G(0) and {L(t)}t≥0 remain
still valid interpreting the stochastic differential equation as an integral equation
as in the proof of the theorem. However, in this case the process is no longer
causal, i.e. adapted to the natural filtration of the driving Lévy process.

(c) Assuming E(L(1)) = 0 is actually no restriction. If E(L(1)) = µL 6= 0, one sim-
ply observes that L̃(t) = L(t)−µLt has zero expectation and P (D)−1Q(D)DL(t)
= P (D)−1Q(D)DL̃(t)+P (D)−1Q(D)µ. The first term simply is the MCARMA
process driven by L̃t and the second an ordinary differential equation having the
unique “stationary” solution −A−1

p BqµL, as simple calculations show. Thus, the
definition can be immediately extended to E(L(1)) 6= 0. Moreover, it is easy to
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see that the SDE representation given in Theorem 3.12 still holds and one can
also extend the spectral representation by adding an atom with mass µL to ΦL̃

at 0.
(d) Furthermore, observe that the representation of MCARMA processes by the sto-

chastic differential equation (3.24) is a continuous time version of state space rep-
resentations for (multivariate) ARMA processes as given in [1, Example 12.1.5]
or [29, p. 387]. In the univariate Gaussian case it can already be found in [23,
Lemma 3, Chapter 2.2].

As already noted before, we extend the definition of MCARMA processes to driving
Lévy processes L with finite logarithmic moment using Theorem 3.12. As they agree
with the above defined MCARMA processes, when L is square-integrable, and are always
causal, we call them causal MCARMA processes.

Definition 3.20 (Causal MCARMA Process). Let L = {L(t)}t∈R be an m-dimen-
sional Lévy process satisfying

∫

‖x‖≥1

log ‖x‖ ν(dx) < ∞, (3.36)

p, q ∈ N0 with q < p, and further A1, A2, . . . , Ap, B0, B1, . . . , Bq ∈ Mm(R), where B0 6= 0.
Define the matrices A, β and the polynomial P as in Theorem 3.12 and assume σ(A) =
N (P ) ⊆ (−∞, 0) + iR. Then the m-dimensional process

Y (t) =
(
Im, 0Mm(C), . . . , 0Mm(C)

)
G(t) (3.37)

where G is the unique stationary solution to dG(t) = AG(t)dt + βdL(t) is called causal
MCARMA(p, q) process. Again G is referred to as the state space representation.

Remark 3.21. In the following we will write “MCARMA” when referring to defini-
tion 3.18, “causal MCARMA” when referring to definition 3.20 and “(causal) MCARMA”
when referring to both definitions 3.18 and 3.20.

Let us now state a result extending the short memory moving average representa-
tion of univariate CARMA processes to our MCARMA processes and showing that our
definition is in line with univariate CARMA processes.

Theorem 3.22. Analogously to a one-dimensional CARMA process (see (3.7)), the
MCARMA process (3.35) can be represented as a moving average process

Y (t) =

∞∫

−∞
g(t− s)L(ds), t ∈ R, (3.38)

where the kernel matrix function g : R→ Mm(R) is given by

g(t) =
1
2π

∞∫

−∞
eiµtP (iµ)−1Q(iµ) dµ. (3.39)

Proof. Using the notation of the proof of Theorem 3.5 we obtain this immediately
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from (3.19):

Y (t) =

∞∫

−∞
eiµtP (iµ)−1Q(iµ) Φ(dµ)

=
1
2π

∞∫

−∞

∞∫

−∞
eiµ(t−s)P (iµ)−1Q(iµ) dµ Φ̃L(ds)

=
1
2π

∞∫

−∞

∞∫

−∞
eiµ(t−s)P (iµ)−1Q(iµ) dµL(ds) =

∞∫

−∞
g(t− s) L(ds).

Remark 3.23. For causal MCARMA processes an analogous result holds with the
kernel function g replaced by

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))eAsβI[0,∞)(s).

Moreover, the function g simplifies in the square-integrable causal case as the following
extension of a well-known result for univariate CARMA processes shows.

Lemma 3.24. Assume that σ(A) = N (P ) ⊆ (−∞, 0) + iR. Then the function g

given in (3.39) vanishes on the negative real line.
Proof. We need the following consequence of the residue theorem from complex

analysis (cf., for instance, [30, Section VI.2, Theorem 2.2]):
Let q and p : C 7→ C be polynomials where p is of higher degree than q. Assume that

p has no zeros on the real line. Then
∞∫

−∞

q(t)
p(t)

exp(iαt)dt = 2πi
∑

z∈C:=(z)>0,p(iz)=0

Res (f, z) for all α > 0 and (3.40)

∞∫

−∞

q(t)
p(t)

exp(iαt)dt = −2πi
∑

z∈C:=(z)<0,p(iz)=0

Res (f, z) for all α < 0 (3.41)

with f : C 7→ C, z 7→ q(z)
p(z) exp(iαz) and Res(f, a) denoting the residual of the function f

at point a.
Turning to our function g, we have from elementary matrix theory that

P (iz)−1Q(iz) =
S(z)

det(P (iz))

where S : C 7→ Mm(C) is some matrix-valued polynomial in z. Observe that det(P (iz))
is a complex-valued polynomial in z and that Lemma 3.11 applied to R = Q implies that
det(P (iz)) is of higher degree than S(z). Thus, we can apply the above stated results
from complex function theory component-wise to (3.39). But as all zeros of det(P (z))
are in the left half plane (−∞, 0)+ iR, all zeros of det(P (iz)) are in the upper half plane
R+ i(0,∞) and therefore (3.41) shows that

g(t) =
1
2π

∞∫

−∞
eiµtP (iµ)−1Q(iµ) dµ = 0 for all t < 0.
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Remark 3.25. The above result again reflects the causality, i.e., that the MCARMA
process Y (t) only depends on the past of the driving Lévy process, i.e., on {L(s)}s≤t.
Similarly g vanishes on the positive half line, if N (P ) ⊂ (0,∞) + iR. In this case the
MCARMA process Y (t) depends only on the future of the driving Lévy process, i.e., on
{L(s)}s≥t. In all other non-causal cases the MCARMA process depends on the driving
Lévy process at all times.

Using the kernel representations, strict stationarity of MCARMA processes is ob-
tained by applying [9, Theorem 4.3.16].

Proposition 3.26. The (causal) MCARMA process is strictly stationary.
Furthermore, we can characterize the stationary distribution by applying represen-

tation (3.38) and the results of [15] mentioned at the end of Section 2.2.
Proposition 3.27. If the driving Lévy process L has characteristic triplet (γ, σ, ν),

then the distribution of the MCARMA process Y (t) is infinitely divisible for t ∈ R and
the characteristic triplet of the stationary distribution is (γ∞Y , σ∞Y , ν∞Y ), where

γ∞Y =
∫

R

g(s)γ ds +
∫

R

∫

Rm

g(s)x[I{‖g(s)x‖≤1} − I{‖x‖≤1}] ν(dx) ds,

σ∞Y =
∫

R

g(s)σg∗(s)ds

ν∞Y (B) =
∫

R

∫

Rm

IB(g(s)x) ν(dx) ds. (3.42)

For a causal MCARMA process the same result holds with g replaced by g̃.

3.4. Further Properties of MCARMA Processes.
Having defined multivariate CARMA processes above, we analyse their probabilistic be-
haviour further in this section. First we turn to the second order properties.

Proposition 3.28. Let Y = {Y (t)}t∈R be the MCARMA process defined by (3.35).
Then its autocovariance matrix function is given by

ΓY (h) =
1
2π

∞∫

−∞
eiλ|h|P (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗ dλ, h ∈ R.

Proof. It follows directly from the spectral representation (3.35) that the
MCARMA process Y = {Y (t)}t∈R has the spectral density

fY (λ) =
1
2π

P (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗, λ ∈ R. (3.43)

The autocovariance function is the Fourier transform of (3.43).
Remark 3.29. Note that in Proposition 3.13 we already obtained an expression for

the autocovariance matrix function of the process {G(t)}t∈R of Theorem 3.12. The upper
left m×m block of (3.32) is also equal to ΓY .

Regarding the general existence of moments, it is mainly the driving Lévy process
that matters.
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Proposition 3.30. Let Y be a causal MCARMA process and assume that the driving
Lévy process L is in Lr(Ω, P ) for some r > 0. Then Y and its state space representation
G are in Lr(Ω, P ). Provided β is injective, the converse is true as well for G.

Proof. We use the general fact that an infinitely divisible distribution with charac-
teristic triplet (γ, σ, ν) has finite r-th moment, if and only if

∫
‖x‖≥C

‖x‖rµ(dx) < ∞ for
one and hence all C > 0 (see [11, Corollary 25.8]). Using the Kernel representation (3.38)
with

g̃(s) = (Im, 0Mm(C), . . . , 0Mm(C))eAsβI[0,∞)(s),

(3.42) and the fact that there are C, c > 0 such that ‖(Im, 0Mm(C), . . . , 0Mm(C))eAsβ‖ ≤
Ce−cs we obtain for the stationary distribution of Y

∫

‖x‖≥1

‖x‖rν∞Y (dx) =

∞∫

0

∫

Rm

I[1,∞)

(∥∥(Im, 0Mm(C), . . . , 0Mm(C))eAsβx
∥∥)

× ∥∥(Im, 0Mm(C), . . . , 0Mm(C))eAsβx
∥∥r

ν(dx)ds

≤
∞∫

0

∫

Rm

I[1,∞)

(
Ce−cs ‖x‖)Cre−rcs ‖x‖r

ν(dx)ds

=
∫

‖x‖≥1/C

log(1/(C‖x‖))
−c∫

0

Cre−rcs ‖x‖r
dsν(dx)

=
Cr

rc

∫

‖x‖≥1/C

(‖x‖r − 1/Cr) ν(dx),

which is finite, if and only if L has a finite r-th moment.
Basically the same arguments apply to G(t) =

∫ t

−∞ eA(t−s)βL(ds). Provided β is
injective, there are D, d > 0 such that ‖eAsβ‖ ≥ De−ds and calculations analogous to
the above one lead to a lower bound which establishes the necessity of L ∈ Lr for G ∈ Lr.

Since the characteristic function of Y (t) for each t is explicitly given, we can investigate
the existence of a C∞b density, where C∞b denotes the space of bounded continuous,
infinitely often differentiable functions whose derivatives are bounded.

Proposition 3.31. Suppose that there exists an α ∈ (0, 2) and a constant C > 0
such that ∫

R

∫

Rm

|〈u, g(t− s)x〉|2 1{|〈u,g(t−s)x〉|≤1} ν(dx) ds ≥ C‖u‖2−α (3.44)

for any vector u such that ‖u‖ ≥ 1. Then the MCARMA process Y (t) has a C∞b density.
The same holds for a causal MCARMA Y (t) process with g replaced by g̃.
Proof. It is sufficient to show that

∫ ‖u‖k‖Φ(u)‖ du < ∞ for any non-negative integer
k, where Φ denotes the characteristic function of Y (t). (see e.g. [31, Proposition 0.2])

The characteristic function of the (causal) MCARMA process Y (t) is given by

Φ(u) = exp





∫

R

∫

Rm

[
ei〈u,g(t−s)x〉 − 1− i〈u, g(t− s)x〉I{|〈u,g(t−s)x〉|≤1}

]
ν(dx) ds



 ,
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where g stands for either g or g̃. Thus,

‖Φ(u)‖ =


exp





∫

R

∫

Rm

[
ei〈u,g(t−s)x〉 + e−i〈u,g(t−s)x〉 − 2

]
ν(dx) ds








1/2

= exp





∫

R

∫

Rm

(cos〈u, g(t− s)x〉 − 1) ν(dx) ds





≤ exp





∫

R

∫

Rm

(cos〈u, g(t− s)x〉 − 1) I{|〈u,g(t−s)x〉|≤1} ν(dx) ds



 ,

as cos〈u, g(t− s)x〉 − 1 ≤ 0. Then, using the inequality 1− cos(z) ≥ 2(z/π)2 for |z| ≤ π

and assumption (3.44) we have

‖Φ(u)‖ ≤ exp



−C̃

∫

R

∫

Rm

|〈u, g(t− s)x〉|2I{|〈u,g(t−s)x〉|≤1} ν(dx) ds





≤ exp{−C‖u‖2−α},

where C, C̃ > 0 are generic constants and the proof is complete. The inequality 1 −
cos(z) ≥ 2(z/π)2 for |z| ≤ π can be easily shown: Define f(z) = 1 − cos(z) − 2(z/π)2.
Then f(0) = f(π) = 0 and there is y ∈ (0, π) such that f ′(z) > 0, x ∈ [0, y) and f ′(z) < 0,
z ∈ (y, π]. Hence, f(z) > 0 for all z ∈ (0, π).

We summarize the sample path behaviour of the MCARMA(p, q) process Y =
{Y (t)}t∈R, which is immediate from the state space representation (3.24) and the proof
of Theorem 3.12.

Proposition 3.32. If p > q + 1, then the (causal) MCARMA(p, q) process Y =
{Y (t)}t∈R is (p − q − 1)-times differentiable. Using the state space representation G =
{G(t)}t∈R we have di

dti Y (t) = Gi+1(t) for i = 1, 2, . . . , p− q − 1.
If p = q + 1, then ∆Y (t) = β1∆L(t), i.e., Y has a jump, whenever L has one.
If the driving Lévy process L = {L(t)}t∈R of the MCARMA(p, q) process is Brownian
motion, the sample paths of Y are continuous and (p− q − 1)-times continuously differ-
entiable, provided p > q + 1.

Ergodicity and mixing properties (see, for instance, [32] for a comprehensive treat-
ment) have far reaching implications. We thus conclude the analysis of MCARMA
processes with a result on their mixing behaviour. Recall the following notions:

Definition 3.33 (cf. [33]). A continuous time stationary stochastic process X =
{Xt}t∈R is called strongly (or α-) mixing, if

αl := sup
{|P (A ∩B)− P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞l
} → 0

as l →∞, where F0
−∞ := σ ({Xt}t≤0) and F∞l = σ ({Xt}t≥l).

It is said to be β- mixing (or completely regular), if

βl := E
(
sup

{∣∣P (B|F0
−∞)− P (B)

∣∣ : B ∈ F∞l
}) → 0

as l →∞.
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Note that αl ≤ βl and thus any β-mixing process is strongly mixing.
Proposition 3.34. Let Y be a causal MCARMA process and G be its state space

representation. If the driving Lévy process L satisfies
∫

‖x‖≥1

‖x‖rν(dx) < ∞ (3.45)

for some r > 0, then G is β-mixing with mixing coefficients βl = O(e−al) for some a > 0
and Y is strongly mixing. In particular, both G and Y are ergodic.

Proof. As G(t) =
∫ t

−∞ eA(t−s)βL(ds) is a multidimensional Ornstein-Uhlenbeck
process driven by the Lévy process βL, we may apply [34, Theorem 4.3] noting that
(3.45) together with Proposition 3.30 ensure that all conditions are satisfied. Hence, the
β-mixing of G with exponentially decaying coefficients is shown. But this implies that
G = (G∗1, G

∗
2, . . . , G

∗
p)
∗ is also strongly mixing, which in turn shows the strong mixing

property for Y , since Y is equal to G1 and it is obvious from the definition of strong
mixing that strong mixing of a multidimensional process implies strong mixing of its
components. Note that we also obtain αl ≤ βl for the mixing coefficients αl of Y . Using
the well-known result that mixing implies ergodicity concludes the proof.
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