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Using positive semidefinite processes of Ornstein-Uhlenbeck type a multivariate Orn-
stein-Uhlenbeck (OU) type stochastic volatility model is introduced. We derive many
important statistical and probabilistic properties, e.g. the complete second order struc-
ture and a state-space representation. Noteworthy, many of our results are shown to
be valid for the more general class of multivariate stochastic volatility models, which
are driven by a stationary and square-integrable covariance matrix process. For the
OU type stochastic volatility our results enable estimation and filtering of the volatility
which we finally demonstrate with a short empirical illustration of our model.
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1 Introduction

A wide range of different univariate continuous-time stochastic volatility models has been developed
in the financial econometrics and statistics literature aiming at capturing the most distinct features
of the price process of a single financial asset, see e.g. Barndorff-Nielsen and Shephard (2001) and
Chernov, Gallant, Ghysels, and Tauchen (2003).

In contrast to this, the existing literature on multivariate (continuous-time) stochastic volatility
models is rather small. One reason is that in a multivariate context modeling becomes even more
challenging. In particular, apart from capturing the individual dynamics the model also needs
to adequately reproduce the comovements and spill-over effects across different assets, as the
knowledge of the dependence structure is crucial for financial decision-making, such as portfolio
risk management, asset allocation or the pricing of multi-asset options, whose importance has
increased tremendously in recent years. In addition to those requirements, there also arise some
challenging mathematical issues in the multivariate setting. One is given by the necessity of
a positive semidefinite covariance matrix. For continuous-time stochastic volatility models this
implies that the instantaneous covariance should be specified as a positive semidefinite matrix
process. Moreover, if the dimension of the return vector increases the number of parameters in
∗Institute of Econometrics and Operations Research, Department of Economics, University of Bonn, Adenauerallee

24-42, D-53113 Bonn, Germany. Email: christian.pigorsch@uni-bonn.de, http://www.wiwi.uni-bonn.de/

cpigorsch/
†TUM Institute for Advanced Study & Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3,

D-85747 Garching, Germany. Email: rstelzer@ma.tum.de, http://www-m4.ma.tum.de

1

christian.pigorsch@uni-bonn.de
http://www.wiwi.uni-bonn.de/cpigorsch/
http://www.wiwi.uni-bonn.de/cpigorsch/
rstelzer@ma.tum.de
http://www-m4.ma.tum.de


Ch. Pigorsch & R. Stelzer

the model should not explode. Hence, a parsimonious but at the same time accurate and flexible
specification is needed.

Given these challenges the theoretical literature on multivariate stochastic volatility models has
just developed over the last few years, where the main focus was on discrete-time models as an
alternative to the multivariate GARCH models, see e.g. Asai, McAleer, and Yu (2006) and Harvey,
Ruiz, and Shephard (1994). A continuous-time specification, however, provides several advantages.
In contrast to the discrete-time models a continuous-time specification allows to infer the implied
dynamics and properties of the estimated model at various frequencies differing from the one used in
the estimation. This is important, inter alia, for forecasting the covariance matrix over short term
intervals, where the estimates can be based on less frequent data. Moreover, if irregularly spaced
data is observed, the continuous-time specification is very advantageous. Likewise, continuous-time
modeling is clearly preferable when it comes to derivative pricing.

Our general d-dimensional continuous-time stochastic volatility model is given by

dYt = (µ+ Σtβ)dt+ Σ1/2
t dWt, Y0 = 0, (1)

where (Yt)t∈R+ denotes the d-dimensional logarithmic stock price process, µ, β ∈ Rd are the instan-
taneous drift and risk premium parameters, respectively, (Wt)t∈R+ denotes a d-dimensional stan-
dard Brownian motion, and (Σt)t∈R+ is an adapted, stationary and square-integrable stochastic
volatility process with values in the positive semidefinite matrices being independent of (Wt)t∈R+ .
The usability and applicability of the stochastic volatility model mainly depends on the specifica-
tion of the stochastic volatility process (Σt)t∈R+ . On the one hand the process has to reproduce
the stylized facts of financial data, to fulfill the technical requirements mentioned above and should
be general enough to describe a large number of different datasets adequately. On the other hand
statistical inference of the model should be feasible, usually involving the derivation of specific
properties of the model.

In this paper we propose a model where the stochastic volatility process (Σt)t∈R+ is given by a
Lévy-driven positive semidefinite Ornstein-Uhlenbeck (OU hereafter) type process

dΣt = (AΣt− + Σt−AT )dt+ dLt, (2)

which was recently introduced by Barndorff-Nielsen and Stelzer (2007). Hence, our model is a
multivariate extension of the univariate non-Gaussian OU type stochastic volatility model proposed
by Barndorff-Nielsen and Shephard (2001, 2002) and used and studied heavily since then (see e.g.
Griffin and Steel, 2006, Rheinländer and Steiger, 2006, Roberts, Papaspiliopoulos, and Dellaportas,
2004 and references therein). We therefore call our model the “multivariate Ornstein-Uhlenbeck
stochastic volatility model”. We show that it is very flexible, while its estimation is nevertheless
feasible and that the important stylized facts of financial data (stochastic volatility, jumps in
volatility, heavy tails, dependence without correlation) are reproduced.

The model’s flexibility is obtained via the specification of the mean reversion coefficient A and
via the specification of the driving matrix subordinator (Lt)t∈R+ . We show that the finiteness of
the moments of the stationary distribution of the OU type process is completely characterized by
the matrix subordinator such that, for instance, we may have stationary distributions, which have
finite moments of all orders, as well as such having only some finite moments, maybe not even a
first finite moment. Moreover, it is also possible to consider matrix subordinators with elements
jumping only together, jumping never together or a combination thereof. This allows for a variety
of different types of correlation structures.

Importantly, despite its flexibility the model can also be estimated in several ways. In particular,
we derive the conditional characteristic function of the joint process (Yt,Σt)t∈R+ given its initial
values, the second order moments of the return process and the vectorized outer product of the
returns (the “squared returns” in a multivariate setting) and a state-space representation for the
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joint process of the returns and their squares. Hence, estimation via the generalized method of
moments, the quasi maximum likelihood method with the Kalman filter and via the characteristic
function becomes feasible. The Kalman filter is particularly important, since it allows to filter
the unobserved volatility process. Although this paper primarily focuses on the multivariate OU
type stochastic volatility model we also derive the second order properties of the return process
and its “square” for the d-dimensional continuous-time stochastic volatility model driven by a
general stationary and square integrable stochastic process. This general model has been stated in
several papers (e.g. Barndorff-Nielsen and Shephard, 2001, 2009, Barndorff-Nielsen, Nicolato, and
Shephard, 2002 and Lindberg, 2005), but a detailed analysis of it has not been undertaken yet.

A further interesting property of our multivariate model is its implied marginal volatility dy-
namics (the behavior of the individual components of the positive definite OU type process) which
is given by a linear combination (superposition) of (dependent) univariate OU type processes. This
is an interesting new result, as several studies have shown that the high persistence in volatility
can be reproduced using a superposition of short memory processes. As such the need to consider
superposition in our multivariate model is not as important as in the univariate context. Neverthe-
less, we provide properties of the multivariate superposition model, such as second order moments
and a state-space representation, which make statistical inference feasible.

The appearance of jumps in the volatility process, the amenability to estimation and the above
mentioned flexibility regarding the matrix subordinator constitute the major differences of our
model to the existing multivariate continuous-time stochastic volatility models. Among these, the
Wishart model proposed by Gouriéroux (2006) and Gouriéroux, Jasiak, and Sufana (2009), is at
least to our knowledge, the only model that also specifies the dynamics of the stochastic volatility
process directly in the space of positive semidefinite matrices. Being the multivariate extension
of the Cox-Ingersoll-Ross (CIR) process, their model shares the limitations and advantages of the
univariate CIR model which are due to the specification of the driving processes as Brownian mo-
tions. The probably empirically most relevant shortcomings are that the unconditional distribution
is restricted to Wishart distributions having exponential moments (and thus no heavy tails) and
that there are no jumps in the volatility process. The importance and empirical evidence of jumps
in volatility is discussed in e.g. Todorov and Tauchen (2008) and references therein. Further-
more, although at a first glance Brownian motion based models appear to be easier to understand
mathematically than Lévy-driven ones, this is not necessarily the case here. For the stochastic
differential equation defining our positive semidefinite OU type processes it is straightforward to
establish with global Lipschitz and pathwise arguments that there exists a unique solution for all
times t ∈ [0,∞) which is positive semi-definite at all times (and even strictly positive definite if
the initial value is so). For Wishart processes this is a very intricate issue (see Bru, 1991) and
unique strong solutions for all times are only known to exist if the parameter α (notation as in
Bru, 1991, in Gouriéroux, 2006 this parameter is called K) is greater than the dimension plus one.
Unfortunately this problem is not adequately mentioned in the above cited econometric literature
using Wishart processes, where it is argued that, since fixed quadratic forms of the Wishart process
cannot get negative almost surely, the Wishart process cannot leave the positive definite matrices
and therefore exists for all positive values of α. Yet, one has to consider all possible quadratic
forms. As these are uncountably many and uncountable unions of null sets do not have to be null
sets, this argument is not rigorous.

Alternative ways to define multivariate stochastic volatility models make use of a factor structure,
see e.g Hubalek and Nicolato (2009) and Lindberg (2005), who adopt an approach in which the
volatility factors are independent and follow univariate positive non-Gaussian OU type processes.
The flexibility of these models, however, is accompanied by the difficulty to achieve identification,
which complicates the empirical application of these models. As the identifiability is especially
important in the multivariate case, we provide natural conditions for our model, such that the
parameters are uniquely identified via the second order properties of the returns.
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Before outlining the structure of the paper we introduce our notation. Throughout this paper we
write R+ for the positive real numbers including zero, R++ when zero is excluded and we denote
the set of real m × n matrices by Mm,n(R). If m = n we simply write Mn(R) and denote the
group of invertible n × n matrices by GLn(R), the linear subspace of symmetric matrices by Sn,
the (closed) positive semidefinite cone by S+

n and the open (in Sn) positive definite cone by S++
n .

In stands for the n × n identity matrix, σ(A) for the spectrum (the set of all eigenvalues) of a
matrix A ∈Mn(R) and ρ(A) for its spectral radius. The natural ordering on the symmetric n× n
matrices is denoted by ≤, i.e. for A,B ∈ Sn we have that A ≤ B, if and only if B −A ∈ S+

n . The
tensor (Kronecker) product of two matrices A,B is written as A⊗B. vec denotes the well-known
vectorization operator that maps the n×n matrices to Rn2

by stacking the columns of the matrices
below one another. For more information regarding the tensor product and vec operator we refer
to Horn and Johnson (1991, Chapter 4). Likewise vech : Sn → Rn(n+1)/2 denotes the “vector-half”
operator that stacks the columns of the lower triangular part of a symmetric matrix below another.
Finally, AT is the transpose of a matrix A ∈Mn(R). For a matrix A we denote by Aij the element
in the i-th row and j-th column and this notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given appro-
priate filtered probability space (Ω,F , P, (Ft)t∈R+) satisfying the usual hypotheses. For random
functions and measures we usually do not state the dependence on ω ∈ Ω explicitly.

Norms of vectors or matrices are denoted by ‖·‖. If the norm is not specified, then it is irrelevant
which particular norm is used.

Furthermore, we employ an intuitive notation with respect to the (stochastic) integration with a
matrix-valued integrator referring to any of the standard texts (e.g. Protter, 2005 or Øksendal, 2003
regarding Brownian motion) for a comprehensive treatment of the theory of stochastic integration.
Let (Lt)t∈R+ in Mn,r(R) be a semimartingale and (At)t∈R+ in Mm,n(R), (Bt)t∈R+ in Mr,s(R)
be adapted integrable (w.r.t. L) processes. Then we denote by

∫ t
0 AsdLsBs the matrix Ct in

Mm,s(R) which has ij-th element Cij,t =
∑n

k=1

∑r
l=1

∫ t
0 Aik,sBlj,sdLkl,s. Equivalently such an

integral can be understood in the sense of Métivier and Pellaumail (1980), resp. Métivier (1982),
by identifying it with the integral

∫ t
0 AsdLs with At being for each fixed t the linear operator

Mn,r(R)→Mm,s(R), X 7→ AtXBt. Moreover, we always denote by
∫ b
a with a ∈ R ∪ {−∞}, b ∈ R

the integral over the half-open interval (a, b] for notational convenience. If b = ∞ the integral is
understood to be over (a, b). The function log+ is defined as max(log(x), 0) and ı =

√
−1 is the

imaginary unit.
The remainder of the paper is structured as follows. As our model builds on the positive

semidefinite matrix process of OU type, Section 2 presents a brief review of them and derives
further interesting properties. Section 3 introduces our multivariate OU type stochastic volatility
model, derives important properties and provides a detailed model analysis. Section 4 presents an
empirical illustration, and Section 5 finally concludes.

2 Positive Semidefinite Matrix Processes of Ornstein-Uhlenbeck
Type

In this section we first briefly review the positive semidefinite OU type processes introduced in
Barndorff-Nielsen and Stelzer (2007) where detailed proofs have been given. Analyzing this class
of processes in more detail, we study some further properties, which turn out to have important
implications for our multivariate OU type stochastic volatility model.

2.1 Definition and Probabilistic Properties

The construction of positive semidefinite OU type processes builds on a special type of matrix-
valued Lévy process studied in detail in Barndorff-Nielsen and Pérez-Abreu (2008). For the relevant
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background on Lévy processes we refer to any of the standard references, for instance, Sato (1999).

Definition 2.1. An Sd-valued Lévy process L = (Lt)t∈R+ is said to be a matrix subordinator, if
Lt − Ls ∈ S+

d for all s, t ∈ R+ with t > s.

The characteristic function of a matrix subordinator L in S+
d at time t ∈ R+ is given by

µLt(Z) = exp
(
t

(
itr(γLZ) +

∫
S+

d \{0}
(eitr(XZ) − 1)νL(dX)

))
, Z ∈ Sd,

where νL is a Lévy measure on S+
d \{0} satisfying

∫
‖x‖≤1 ‖x‖νL(dx) <∞, γL ∈ S+

d is referred to as
the drift and tr denotes the trace of a matrix.

Matrix subordinators are a generalization of the concept of univariate Lévy subordinators to
the matrix case, in particular, they are simply the same as Lévy subordinators for d = 1. As in
the univariate case there are a lot of very different concrete examples of matrix subordinators.
Barndorff-Nielsen and Pérez-Abreu (2008), for example, discuss matrix subordinators which are
generalizations of stable, tempered stable and Gamma subordinators. These are examples having
infinite activity. Of course, compound Poisson, i.e. finite activity, matrix subordinators can easily
be constructed using any probability distribution on S+

d (see e.g. Gupta and Nagar, 2000 for some
examples) for the jumps. In this context it should be noted that the outer product of any vector
random variable is positive semidefinite. Specifying the diagonal elements of the matrix process as
(possibly dependent) univariate subordinators forming together a d-dimensional Lévy process and
setting the off-diagonal elements to zero leads to another simple example of a matrix subordinator
(referred to as a diagonal matrix subordinator). For a more detailed discussion of some specific
matrix subordinators and their covariance structure we also refer to Pigorsch and Stelzer (2009,
Section 5).

The existence of OU type processes assuming values in the positive semidefinite matrices is
ensured by the following theorem, where the Lévy process (Lt)t∈R+ is extended to a Lévy process
(Lt)t∈R starting in the infinite past in the usual way.

Theorem 2.2 (Barndorff-Nielsen and Stelzer (2007, Theorem 4.5)). Let L be a matrix subordinator
with E(log+ ‖L1‖) < ∞ and A ∈ Md(R) such that σ(A) ⊂ (−∞, 0) + iR. Then the stochastic
differential equation of OU type

dΣt = (AΣt− + Σt−AT )dt+ dLt

has a unique stationary solution

Σt =
∫ t

−∞
eA(t−s)dLseA

T (t−s)

or, in vectorial representation,

vec(Σt) =
∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Σt ∈ S+
d for all t ∈ R.

The second order properties below as well as the characteristic function of this OU type process
have been derived in Barndorff-Nielsen and Stelzer (2007).

Proposition 2.3 (Barndorff-Nielsen and Stelzer (2007, Proposition 4.7)). Assume that the driving
Lévy process is square-integrable. Then the second order moment structure is given by

E(Σt) = −A−1E(L1), var(vec(Σt)) = −A−1var(vec(L1)) (3)
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cov(vec(Σt+h), vec(Σt)) = e(A⊗Id+Id⊗A)hvar(vec(Σt)), (4)

where t ∈ R, h ∈ R+, A is the linear operator A : Md(R) → Md(R), X 7→ AX + XAT which
can be represented as vec−1 ◦ ((Id ⊗ A) + (A ⊗ Id)) ◦ vec and A : Md2(R) → Md2(R), X 7→
(A⊗ Id + Id ⊗A)X +X(AT ⊗ Id + Id ⊗AT ). The linear operator A can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗A)) + ((A⊗ Id + Id ⊗A)⊗ Id2)) ◦ vec.

In general the finiteness of the moments of the stationary distribution of the OU type process
is completely characterized by the driving Lévy process.

Proposition 2.4. Let (Σt)t∈R be a strictly stationary OU type process in S+
d with driving matrix

subordinator L which has Lévy measure νL and be r ∈ R++. Then E(‖Σ0‖r) < ∞, if and only if
E(‖L1‖r) <∞ or equivalently

∫
S+

d ,‖x‖≥1 ‖x‖
rνL(dx) <∞.

Proof. Follows by a straightforward adaptation of the proof of Marquardt and Stelzer (2007, Propo-
sition 3.30) to the matrix case.

By choosing appropriate Lévy processes, one obtains thus very different possible tail behaviors
for the volatility process Σ.

Noteworthy, the finiteness of some moment of the Lévy process also ensures that the stationary
OU type process exhibits a very nice dependence structure. For the definition of the relevant
mixing properties see Davydov (1973) or Doukhan (1994), for instance.

Proposition 2.5. Let Σ be an OU type process in S+
d . Then Σ is a temporally homogeneous strong

Markov process.
If Σ is stationary and the driving Lévy process L with Lévy measure νL satisfies additionally∫

S+
d ,‖x‖≥1 ‖x‖

rνL(dx) <∞ for some r > 0, then the stationary OU type process Σ is β-mixing with

mixing coefficients βl = O(e−al) for some a > 0. In particular, Σ is strongly (or α-)mixing with
exponential rate and ergodic.

Proof. Follows from Protter (2005, Theorem V.32) and Masuda (2004, Theorem 4.3).

From a financial point of view the integrated process is of major importance, as it corresponds
to the integrated volatility, which is a main variable of interest in financial applications.

Proposition 2.6 (Barndorff-Nielsen and Stelzer (2007, Proposition 4.10)). Let Σ be a positive
semidefinite OU type process with initial value Σ0 ∈ S+

d and driven by the Lévy process L. Then
the integrated OU type process Σ+ is given by

Σ+
t :=

∫ t

0
Σtdt = A−1 (Σt − Σ0 − Lt)

for t ∈ R+, where A is the linear operator defined in Proposition 2.3.

2.2 Marginal Dynamics

Deriving the marginal dynamics, i.e. the behavior of the individual components Σij = (Σij,t)t∈R+

of a positive semidefinite OU type process Σ, deepens our understanding of these processes and
facilitates especially the comparison with the univariate OU type processes. To this end, we assume
that A is real diagonalizable and σ(A) = {λ1, . . . , λd}. Let U ∈ GLd(R) be such that
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UAU−1 =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd

 := D. (5)

Denoting (UT )−1 = (U−1)T by U−T , it follows that

Σt = U−1

(∫ t

−∞
eD(t−s)d(ULsUT )eD

T (t−s)
)
U−T . (6)

Defining L̃t = ULtU
T for t ∈ R we have that L̃ is again a Lévy process in Md(R), or more

specifically it is even a matrix subordinator. Moreover, one obtains that(∫ t

−∞
eD(t−s)dL̃seD

T (t−s)
)
ij

=
∫ t

−∞
e(λi+λj)(t−s)dL̃ij,s for i, j = 1, . . . , d,

which obviously shows that the individual components of UΣtU
T =: Σ̃t are stationary one-

dimensional Ornstein-Uhlenbeck type processes with associated stochastic differential equations

dΣ̃ij,t = (λi + λj)Σ̃ij,tdt+ dL̃ij,t. (7)

Note further that L̃ii for 1 ≤ i ≤ d is necessarily a subordinator and Σ̃ii has to be a positive OU
type process.

Together with (6) the above considerations show that the individual components Σij of Σ are
superpositions of (at most d2) univariate OU type processes. However, unlike in the univariate
superposition model, see Barndorff-Nielsen and Shephard (2001), the individual OU-processes
superimposed are in general not independent. Actually, they can only be independent when the
Lévy measure of L̃ is concentrated on the diagonal matrices.

With the obvious modifications the above results hold also true for general diagonalizable A ∈
Md(R). Then XT has to be replaced by the Hermitian of a matrix X ∈Md(C) and Σ̃ is an OU type
processes in the positive semidefinite complex matrices. Note that Σ̃ii still have to be real (even
positive) and L̃ii a real subordinator. Furthermore, (7) becomes dΣ̃ij,t = (λi + λj)Σ̃ij,tdt+ dL̃ij,t.

This result adds important insight regarding the behavior of the autocovariance functions of
the volatility of the individual assets. In particular, in order to obtain a more realistic decay
(compared to using a single univariate OU type process in a univariate model) of these functions
it is no longer necessary to consider superpositions of different OU type processes. So, although
it is possible to build superpositions of positive semidefinite OU type processes (see Section 3.5),
we expect them to be less important for financial applications as in the univariate case, where
it has been shown that sufficiently realistic patterns of the autocorrelation functions can only be
obtained by superpositions of OU type processes. As such, the multivariate specification obviously
introduces more flexibility.

3 The Multivariate Ornstein-Uhlenbeck type Stochastic Volatility
Model

Based on the above results for the positive semidefinite OU type process we can now introduce
our multivariate stochastic volatility model. The general d-dimensional stochastic volatility stock
price model is given by

dYt = (µ+ Σtβ)dt+ Σ1/2
t dWt, Y0 = 0, (8)
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where (Yt)t∈R+ denotes the d-dimensional logarithmic stock price process, µ, β ∈ Rd are the drift
and so-called risk premium parameters, respectively, (Wt)t∈R+ denotes a d-dimensional standard
Brownian motion and (Σt)t∈R+ is an adapted, stationary and square integrable stochastic process
with values in S+

d and independent of (Wt)t∈R+ . Moreover, (t, ω) 7→ Σt(ω) is assumed to be
B(R+) × F-measurable with B(R+) denoting the Borel-σ-algebra over R+. As common in the
finance literature, (Σt)t∈R+ represents the stochastic volatility or instantaneous covariance process.

In this paper we mainly focus on a specification in which the volatility process is given by a
Lévy-driven positive semidefinite OU type process where the driving Lévy process (Lt)t∈R+ and the
Brownian Motion of the price process are independent. We refer to this model as the “multivariate
Ornstein-Uhlenbeck stochastic volatility model”. However, whenever possible we state our results
for the general model given in (8).

Furthermore we presume Y0 = 0, which is no real constraint as it just corresponds to a normal-
ization of the prices at time zero. In the OU type stochastic volatility model we extend the driving
Lévy process to one defined on the whole real line and write

Σt =
∫ t

−∞
eA(t−s)dLseA

T (t−s). (9)

Note that this corresponds to starting the OU type process at time zero with Σ0 having the
stationary distribution and being independent of (Lt)t∈R+ .

The subsequent returns over time intervals of length ∆ ∈ R++ are denoted by Y = (Yn)n∈N.
In many financial applications this time interval, i.e. [(n − 1)∆, n∆] with n ∈ N, will represent a
trading day, for example. So, the logarithmic price increments are defined by

Yn := Yn∆ − Y(n−1)∆ =
∫ n∆

(n−1)∆
(µ+ Σtβ)dt+

∫ n∆

(n−1)∆
Σ1/2
t dWt, n ∈ N.

As already stated in Barndorff-Nielsen and Shephard (2001) it is easy to see that

Yn |Σn ∼ Nd (µ∆ + Σnβ,Σn) , where Σn :=
∫ n∆

(n−1)∆
Σtdt = Σ+

n∆ − Σ+
(n−1)∆ (10)

is the integrated volatility over the unit time interval and Nd(m, s) denotes the d-dimensional
normal distribution with mean m and covariance matrix s.

Note that – like in the univariate model – the multivariate OU type stochastic volatility model
can easily be extended to account for the leverage effect by specifying

dYt = (µ+ Σtβ)dt+ Σ1/2
t dWt + ψdLt,

with ψ being a linear operator from Sd to Rd. This is a straightforward generalization of the
univariate OU type models with leverage effect. However, as the derivation of the properties of
the OU type models is markedly complicated by the inclusion of a leverage effect – even in the
univariate case, where only very little is known (see Barndorff-Nielsen and Shephard, 2001) –, we
solely focus here on the model without leverage effect. Nevertheless, just as for the univariate
(OU type) stochastic volatility models with leverage a simulation based Bayesian analysis may be
a promising estimation strategy here, see e.g Griffin and Steel (2006) and Omori, Chib, Shephard,
and Nakajima (2007). As the present paper introduces the model and its properties, we leave such
a Bayesian analysis for future research and rather prefer to focus on more straightforward and easy
to implement estimators. Moreover, stochastic volatility models are also heavily used for other
assets, e.g. exchange rates like in Section 4, where the leverage is not an issue.
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3.1 Characteristic Function of the Markov Transition Kernels

Using general results on SDEs (see e.g. Protter, 2005, Ch. V), the process (Yt,Σt)t∈R+ in the
positive semidefinite OU type SV model is easily seen to be a strong Markov process on R × S+

d

having the weak Feller property. The explicit representation of the integrated volatility allows us
to explicitly compute the characteristic function of the Markov transition kernels. To this end we
use the scalar product < ·, · > on Rd ×Md(R) given by (Rd ×Md(R))2 → R, (x1, y1), (x2, y2) 7→
xT2 x1 + tr(yT2 y1) (which can be extended to a complex setting by replacing the transpositions with
taking the Hermitians). Note moreover that the positive semidefinite OU type volatility process
alone is also Markovian and characterizations of its Markov transition kernels can be obtained by
straightforward adaptations of the results of Sato and Yamazato (1984).

Due to technical reasons we sometimes need to resort to complex matrices in the following
proposition. For a complex matrix X we will denote its Hermitian by X∗ and for a linear operator
Z we will likewise denote its adjoint operator by Z∗.

Proposition 3.1. Consider the positive semidefinite OU type SV model and assume the driving
matrix subordinator L has characteristic exponent ψL, i.e. E(eitr(Ltz)) = etψL(z) for all z ∈Md(R)+
iS+
d . Let (Y0,Σ0) ∈ Rd×S+

d . Then the conditional characteristic function of (Yt,Σt) given (Y0,Σ0)
is for every t ∈ R+ and (y, z) ∈ Rd ×Md(R)

E
(
ei〈(y,z),(Yt,Σt)〉

∣∣∣Σ0, Y0

)
= exp

{
i(Y0 + µt)T y + itr

(
Σ0e

AT tzeAt
)

(11)

+ itr
(

Σ0e
AT t

[
A−∗

(
yβT +

i

2
yyT

)]
eAt − Σ0

[
A−∗

(
yβT +

i

2
yyT

)])
+
∫ t

0
ψL

(
eA

T szeAs + eA
T s

[
A−∗

(
yβT +

i

2
yyT

)]
eAs −A−∗

(
yβT +

i

2
yyT

))
ds

}
with A−∗ denoting the inverse of the adjoint of A, i.e. A−∗ is the inverse of the linear operator
A∗ given by X 7→ ATX +XA.

Proof. The proof of Proposition 3.1 is given in Appendix A.1.

E(eitr(Ltz)) is well-defined for all z ∈Md(R)+ iS+
d , since Lt is concentrated on S+

d and tr(xz) ≥ 0
for all x, z ∈ S+

d . This function extends the usual characteristic function and is often referred to as
the Fourier-Laplace transform. Note that Md(R) + iS+

d needs not be the maximal set on which it
can be defined, but it suffices for our purposes and it does not depend on the matrix subordinator
used.

The importance of the above result is, of course, that it completely characterizes the conditional
distribution of the log-returns and their stochastic volatility given the initial values. Moreover,
the above conditional characteristic function is obviously exponentially affine in (Y0,Σ0). The
exponential affinity of conditional characteristic functions is one of the equivalent definitions for
affine processes in Rm × (R+)n in Duffie, Filipović, and Schachermayer (2003, Def. 2.1). So
intuitively (Y,Σ) is an affine process, but, strictly speaking, not in the sense of Duffie et al. (2003,
Def. 2.1) due to a different state-space. Whether the results of Duffie et al. (2003, Def. 2.1) can be
extended to cover our setting, appears to be an intricate question beyond the scope of the present
paper.

Under sufficient technical conditions the above result should be extendible to the existence of
the Fourier-Laplace transform in a neighborhood of zero, which allows for derivative pricing via
Fourier-Laplace inversion techniques. This is currently under investigation and will be reported
elsewhere.

9
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3.2 Second Order Structure

In this section we study the second order moments of the multivariate stochastic volatility model.
The results to be established turn out to be very useful for the estimation of our model as well
as for forecasting. Additionally, they show that the model reflects the stylized fact of dependent
returns with vanishing autocorrelations

Henceforth we make the following assumption:

Assumption 3.1. The stationary stochastic volatility process (Σt)t∈R+ has a finite second moment.

Before moving on to the second order properties of our model, we first introduce some notation
regarding the autocovariance function. If (Xt)t∈T (with T being either N0 or R+) is a second order
stationary process with values in Rd, the autocovariance function acovX : T∪ (−T) 7→Md(R) of X
is given by acovX(h) = cov(Xh, X0) = E(XhX

T
0 ) − E(X0)E(X0)T for h ≥ 0 and by acovX(h) =

acovX(−h)T for h < 0. If (Xt)t∈T is a second order stationary process with values in Md(R) (or
Sd), then we set acovX := acovvec(X). As the twice integrated autocovariance function of the
stationary volatility process Σ will be of particular importance, we define

r+(t) :=
∫ t

0
acovΣ(u)du and r++(t) :=

∫ t

0
r+(u)du. (12)

Theorem 3.2. For the general stochastic volatility model with (Σt)t∈R+ being stationary and
square-integrable it holds that the increments of the integrated volatility (Σn)n∈N are stationary
and square-integrable. We have:

E(Σ1) = ∆E(Σ0), var(vec(Σ1)) = r++(∆) + r++(∆)T , (13)
acovΣ(h) = r++(h∆ + ∆)− 2r++(h∆) + r++(h∆−∆), h ∈ N. (14)

Likewise the discretely observed log-price increments (Yn)n∈N are stationary and square-integrable
with

E(Y1) = (µ+ E(Σ0)β)∆, var(Y1) = E(Σ0)∆ + (βT ⊗ Id)var(vec(Σ1))(β ⊗ Id) (15)

acovY(h) = (βT ⊗ Id)acovΣ(h)(β ⊗ Id), h ∈ N. (16)

If Σ is a positive semidefinite OU type process with driving matrix subordinator L, then

E(Σ0) = −A−1E(L1) (17)

r++(t) = −
(
A −2

(
eA t − Id2

)
−A −1t

)
)A−1var(vec(L1)) (18)

acovΣ(h) = −eA ∆(h−1)A −2
(
Id2 − eA ∆

)2
A−1var(vec(L1)), h ∈ N, (19)

where A and A are defined in Proposition 2.3 and A := A⊗ Id + Id ⊗A. Observe that A and A
commute (as linear operators over Md2(R)).

Proof. The proof of Theorem 3.2 is given in Appendix A.2.

The above formulae imply that for β = 0 the log-price increments (Yn)n∈N form an uncorrelated
sequence and are thus white noise (in the second order sense).

Note that for a second order stationary causal m-dimensional ARMA(1,1) process (Xt)t∈Z given
by Xt − ΦXt−1 = Zt + ΘZt−1 with Φ,Θ ∈ Mm(R) and (Zt)t∈Z being m-dimensional white noise
with covariance matrix ΣZ the following autocovariance function can be obtained using the general
formulae of Brockwell and Davis (1991, p. 420):

acovX(0) = ΣZ + (Im −B)−1(Φ + Θ)ΣZ(Φ + Θ)T

10
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acovX(1) = (Φ + Θ)ΣZ + Φ(Im −B)−1(Φ + Θ)ΣZ(Φ + Θ)T

acovX(h) = Φh−1acovX(1), h ≥ 1,

where B : Mm(R)→Mm(R), X 7→ ΦXΦT . Since we consider a stationary causal ARMA process,
ρ(Φ) < 1. Hence, as vec(BX) = (Φ ⊗ Φ)vec(X), it is obvious that ρ(B) < 1 and thus Im − B is
invertible.

Therefore, comparing equation (19) with the general autocovariance function of an ARMA(1,1)
process, immediately reveals that in the positive semidefinite OU type stochastic volatility model
the process (vec(Σn))n∈N is an ARMA(1,1) process with autoregressive parameter eA ∆.

Moreover, since we assume σ(A) ⊂ (−∞, 0) + iR, we have from Horn and Johnson (1991,
Theorem 4.4.5) that σ(A ) ⊂ (−∞, 0) + iR and thus all elements of σ(eA ∆) are less than one in
modulus, which implies that this ARMA(1,1) process is causal.

The ARMA(1,1) structure of Σ might seem to provide a natural starting point for making
inference on the OU type stochastic volatility model. However, usually Σ is unobservable and
so inference can only be based on the observed returns Y. But the second order structure of
the returns obviously does not allow for an in-depth analysis of the latent stochastic volatility
model. Yet, the squared log-price increments YYT := (YnYT

n )n∈N are not only observable, but
also exhibit a useful second order structure.

Theorem 3.3. In the general stochastic volatility model with µ = β = 0 the second order
structure of the squared log returns (YnYT

n )n∈N is given by

E(Y1YT
1 ) = var(Y1) + E(Y1)E(YT

1 ) = E(Σ0)∆ (20)

var(vec(Y1YT
1 )) = (Id2 + Q + PQ)

(
r++(∆) + r++(∆)T

)
+ (Id2 + P) (E(Σ0)⊗ E(Σ0)) ∆2 (21)

acovYYT (h) = acovΣ(h) for h ∈ N (22)

where

P : Md2(R)→Md2(R), (PX)i,(p−1)d+q = Xi,(q−1)d+p for all i = {1, 2, . . . , d2}, p, q = {1, 2, . . . d}
Q : Md2(R)→Md2(R), (QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l, p, q = {1, 2, . . . d}

are linear operators. Obviously P−1 = P, Q−1 = Q and P is representable as X 7→ XP with
P ∈Md2(R) being a permutation matrix. Moreover, Q(vec(X)vec(Z)T ) = X⊗Z for all X,Z ∈ Sd.

Component-wise we have for the variance

cov (Yi,1Yj,1,Yk,1Yl,1) = var(vec(Y1YT
1 ))(j−1)d+i,(l−1)d+k (23)

=
∫ ∆

0

∫ z

0
(cov(Σij,z,Σkl,u) + cov(Σij,u,Σkl,z)) dudz

+
∫ ∆

0

∫ z

0
(E(Σjl,zΣik,u) + E(Σjl,uΣik,z) + E(Σjk,zΣil,u) + E(Σjk,uΣil,z)) dudz

In the OU type stochastic volatility model (vec(YnYT
n ))n∈N is thus a causal ARMA(1,1) process

with autoregressive parameter eA ∆.

Proof. The proof of Theorem 3.3 is given in Appendix A.3.

Note that the ARMA(1,1) structure of vec(YYT ), of course, means that YYT itself is an
ARMA(1,1) process. Its autoregressive coefficient is given by the linear operator Sd → Sd, X 7→
eA∆XeA∆.

In order to obtain consistency results and central limit theorems for the estimation of the mul-
tivariate OU type model based on the moments of Y and YYT , we need to show that the dis-
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cretely observed stationary log-returns Y form a strongly mixing and, thus, ergodic sequence. For
µ = β = 0 strong mixing in the univariate OU type stochastic volatility model has been obtained in
Genon-Catalot, Jeantheau, and Larédo (2000) and Sørensen (2000). For details on mixing we refer
again to Doukhan (1994) and regarding ergodicity to Ash and Gardner (1975) or Krengel (1985).
In our setup the most important implication of ergodicity is that the usual empirical moments
converge almost surely (and in L1) to the true moments (provided they are finite) as the number
of observations goes to infinity.

Proposition 3.4. (i) Assume that in the general stochastic volatility model the stationary
and square integrable process Σ is strongly mixing with mixing coefficients (αk(Σ))k∈N. Then the
process Y is strongly mixing with mixing coefficients αk(Y) ≤ αk(Σ) for all k ∈ N. Thus Y is
ergodic.

(ii) In the positive semidefinite OU type stochastic volatility model the process Y is
always strongly mixing with mixing coefficients (αk)k∈N decaying at least at an exponential rate.
Thus Y is ergodic.

Proof. Part (i) follows from an immediate adaptation of the proof of Sørensen (2000, Lemma 6.3)
to the multivariate case and the case µ, β 6= 0. (ii) results from combining (i) with Proposition
2.5.

Based on these results and the closed form expressions for the second moments a moment
matching estimator along the lines of the generalized method of moment (GMM) estimation can
be implemented. The resulting estimator is consistent and asymptotically normal, see Hansen
(1982) or Hall (2005) for an overview of the GMM method. Yet, this estimation procedure does
not allow to filter the current volatility states. To overcome these problems we derive a state-space
representation for the joint series of the returns and squared returns, which allows us to use the
Kalman recursions for estimation and filtering.

3.3 State-Space Representation

The aim of this section is to establish a state-space representation for the joint process of the
returns and squared returns (Yn,YnYT

n )n∈N. Throughout we assume β = 0. As before, we first
analyze the general stochastic volatility model and then focus on the OU type specification.

Recall that Yn = ∆µ+
∫ n∆

(n−1)∆ Σ1/2
s dWs, which immediately implies

YnYT
n =∆2µµT +

∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

+ ∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T + ∆µ
∫ n∆

(n−1)∆
dW T

s Σ1/2
s .

Setting

un =
(
u1,n

u2,n

)
, u1,n =

∫ n∆

(n−1)∆
Σ1/2
s dWs and

u2,n =
∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s + ∆

∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T + ∆µ
∫ n∆

(n−1)∆
dW T

s Σ1/2
s −Σn,

it follows that

Yn = ∆µ+ u1,n, YnYT
n = ∆2µµT + Σn + u2,n. (24)

12
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The martingale property in the following theorem is, of course, understood w.r.t. the filtration
(Ft) which we assume to be given. Recall that all processes (in particular, Lt,Σt,Wt, Yt,Yn,Σn)
are adapted with respect to this filtration. Moreover, (Ws −Wt)s≥t is independent of (Σs)s∈R+ as
well as of Ft for all t ∈ R+. For technical reasons this is, however, not fully sufficient. Thus, we
henceforth assume:

Assumption 3.2. (Ws −Wt)s≥t is independent of σ(Ft, (Σs)s∈R+) for all t ∈ R+ (σ(·) denoting
the generated σ-algebra).

In the OU type stochastic volatility model this assumption is satisfied if the σ-algebras Ft,
σ((Ls − Lt)s≥t) and σ((Ws − Wt)s≥t) are independent for all t ∈ R+ and not only pairwise
independent. Clearly the last condition will usually be satisfied. In particular it is satisfied when
the pair (L,W ) of the driving Lévy process and Wiener process forms a Lévy process in S+

d ×Rd.

Proposition 3.5. The sequence (un)n∈N is a (second order) stationary zero-mean martingale
difference sequence w.r.t. the filtration (Gn)n∈N := (Fn∆)n∈N and thus in particular white noise.
It holds that

var(u1,n) =E(Σn) = E(Σ0)∆ (25)

var(vec(u2,n)) =∆3
(
E(Σ0)⊗ (µµT ) + (µµT )⊗ E(Σ0) + µT ⊗ E(Σ0)⊗ µ (26)

+ µ⊗ E(Σ0)⊗ µT
)

+ ∆2(Id2 + P) (E(Σ0)⊗ E(Σ0))

+ (Q + PQ)
(
r++(∆) + (r++(∆))T

)
cov(u1,n, vec(u2,n)) =∆2

(
E(Σ0)⊗ µT + µT ⊗ E(Σ0)

)
(27)

Proof. The proof of Proposition 3.5 is given in Appendix A.4.

Remark 3.6. For the commutation matrix Kd as defined in Magnus and Neudecker (1979), for
instance, it can be shown that Kd(X⊗Z) = P(X⊗Z) for all X,Z ∈ Sd. Thus, the operator P can
be replaced by the commutation matrix Kd in Theorem 3.3 and Proposition 3.5. Note, however,
that for X ∈Md2(R) multiplication by Kd is in general not the same as applying P.

Although the noise un is independent of Σn, we are still confronted with the problem that infer-
ence is infeasible, as the latent process (Σn)n∈N still appears in the equations for our observables
(24). Clearly, it would be desirable for the process (Σn)n∈N to be also representable as a linear
process, preferably with a noise sequence that is uncorrelated with (un)n∈N, because then the equa-
tions (24) could be extended to a state-space model (for a detailed treatment see e.g. Brockwell
and Davis, 1991, Chapter 12) and all the tools developed for these models would be available.

In the following we show that at least for the OU type stochastic volatility model such a state-
space representation is indeed available.

To this end, define

η1,n :=
∫ n∆

(n−1)∆
eA(n∆−s)dLseA

T (n∆−s), η2,n :=
∫ n∆

(n−1)∆
dLs = Ln∆ − L(n−1)∆

and ηn := (η1,n, η2,n). Then for all n ∈ N it is obvious that

Σn∆ = eA∆Σ(n−1)∆e
AT ∆ + η1,n and Ln∆ = L(n−1)∆ + η2,n.

Before showing that this leads to a helpful state-space representation, we first study the properties
of the noise sequence (ηn)n∈N.

13
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Proposition 3.7. The sequence of random variables (ηn)n∈N is i.i.d. and uncorrelated with
(un)n∈N. Moreover, it has finite second moments and

E(η1,n) = −A−1
(
E(L1)− eA∆E(L1)eA

T ∆
)
, E(η2,n) = ∆E(L1) (28)

var(vec(η1,n)) = −A−1
(

var(vec(L1))− eA ∆var(vec(L1))eA
T ∆
)

(29)

var(vec(η2,n)) = ∆var(vec(L1)) (30)

cov (vec(η1,n), vec(η2,n)) = −A −1
(

var(vec(L1))− eA ∆var(vec(L1))
)
. (31)

Proof. The proof of Proposition 3.7 is given in Appendix A.5.

Proposition 2.6 implies Σn = Σ+
n∆ − Σ+

(n−1)∆ = A−1
(
Σn∆ − Σ(n−1)∆ − Ln∆ + L(n−1)∆

)
for all

n ∈ N. Recalling the definition of ηn one thus obtains

AΣn = eA∆Σ(n−1)∆e
AT ∆ − Σ(n−1)∆ + η1,n − η2,n.

Combining this with the representation (24) of the observable log price (Yn)n∈N and its “square”
(YnYT

n )n∈N and setting α1,n = AΣn and α2,n = Σn∆ yields the desired state-space representation:

Yn = ∆µ+ u1,n, YnYT
n = ∆2µµT + A−1α1,n + u2,n, (32)

where

α1,n = eA∆α2,n−1e
AT ∆ − α2,n−1 + η1,n − η2,n, α2,n = eA∆α2,n−1e

AT ∆ + η1,n (33)

or in pure vector notation with αn :=
(

vec(α1,n)
vec(α2,n)

)
(

Yn

vec(YnYT
n )

)
=
(

∆µ
∆2(µ⊗ µ)

)
+

(
0Md,d2 (R) 0Md,d2 (R)

A −1 0Md2,d2 (R)

)
αn +

(
u1,n

vec(u2,n)

)
(34)

where

αn =
(

0Md2 (R) eA∆ ⊗ eA∆ − Id2
0Md2 (R) eA∆ ⊗ eA∆

)
αn−1 +

(
vec(η1,n − η2,n)

vec(η1,n)

)
. (35)

Observe that 0Md,d2 (R) denotes the zero matrix in Md,d2(R).
As regards the noise terms, we have that (un)n∈N and (ηn)n∈N are uncorrelated. Furthermore,

(ηn)n∈N is an i.i.d. sequence and (un)n∈N a martingale difference sequence. This state-space
representation can be used to conduct model inference. Moreover, the volatility states can be
inferred straightforwardly using the Kalman filter, which gives the best estimate in an L2 sense.

3.4 Identifiability

In this section we discuss conditions ensuring that the second order structure of YYT uniquely
identifies A,E(L1), var(vec(L1)) in the OU type stochastic volatility model with µ = β = 0.
Note that the identification can already be obtained by using only E(Y1YT

1 ), acovYYT (1) and
acovYYT (2).

In the following we consider vech(Σ) and vech(YYT ) rather than vec(Σ) and vec(YYT ), which
was so far preferable owing to notational advantages, because otherwise we would necessarily be
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dealing with singular covariance matrices, as the symmetric d× d matrices are a proper subspace
of Md(R).

Defining Avech := vech ◦A ◦ vech−1 with A : Sd → Sd, X 7→ AX +XAT it is easy to see that

dvech(Σt) = Avechvech(Σt)dt+ dvechLt, (36)

with the stationary solution being given by vech(Σt) =
∫ t
−∞ e

Avech(t−s)dvechLs. Observe, moreover,
that, if D denotes the d2 × d(d + 1)/2 duplication matrix and E the d(d + 1)/2 × d2 elimination
matrix by E (see Magnus, 1988, for instance), then Avech = E (A⊗ Id + Id ⊗A) D and eAvecht =
E
(
eAt ⊗ eAt

)
D. Furthermore, Pigorsch and Stelzer (2009, Proposition 3.1) have shown that the

linear operator A on Sd uniquely identifies A. Thus, there is a one-to-one correspondence between
A and Avech.

Note that basically all formulae obtained so far in this paper can be rewritten using vech instead
of vec in a straightforward manner. For example, the second order structure of Σ can also be
expressed using vech:

var(vech(Σ0)) =−A−1
vechvar(vech(L1))

where Avech : Md(d+1)/2(R)→Md(d+1)/2(R), X 7→ AvechX +XAT
vech

acovvech(Σ)(h) =acovvech(YYT )(h) = eAvech∆(h−1)A−2
vech

(
Id(d+1)/2 − eAvech∆

)2
var(vech(Σ0)), h ∈ N.

Proposition 3.8. Assume that the OU type stochastic volatility model with µ = β = 0 and
∆ ∈ R++ is given and that the possible A ∈Md(R) and matrix subordinators L are restricted such
that:

(a) σ(A) ⊂ (−∞, 0) + iR.

(b) eAvech∆ uniquely identifies Avech.

(c) var(vech(Σ0)) = −A−1
vechvar(vech(L1)) ∈ GLd(d+1)/2(R).

Then E(Y1YT
1 ), acovYYT (1) and acovYYT (2) uniquely identify A,E(L1) and var(vech(L1)).

Proof. By construction σ(Avech) ⊆ σ(A) = σ(A) + σ(A) and thus Assumption (a) ensures that
A−2

vech

(
Id(d+1)/2 − eAvech∆

)2 is invertible. Using also (c) this gives that acovvech(YYT )(1) is invertible
and that eAvech∆ = acovvech(YY)(2)(acovvech(YY)(1))−1. Using (b) Avech is therefore identified from
acovvech(YY)(1) and acovvech(YY)(2). Hence, Avech and A can be treated as known and so

var(vech(L1)) = −Avech

(
Id(d+1)/2 − eAvech∆

)−2
A2

vechacovvech(YYT )(1)

and E(L1) = −A∆−1E(Y1YT
1 ) conclude.

The assumption (b) from above is crucial for the identifiability of the OU type stochastic volatility
model. It requests that exp(Avech∆) has a unique real logarithm. The following results deal with
criteria ensuring the existence of a unique real logarithm of exp(Avech∆).

Lemma 3.9. Assume that A is required to satisfy σ(Avech∆) ⊆ (−∞, 0) + i(−π, π). Then eAvech∆

uniquely identifies Avech.

Proof. This follows immediately from Horn and Johnson (1991, Section 6.4).

Lemma 3.10. Assume that A is required to satisfy σ(Avech) ⊆ (−∞, 0) and that all Jordan blocks
belonging to the same eigenvalue of Avech have to be of a different size. Then eAvech∆ uniquely
identifies Avech for all ∆ ∈ R++.
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Proof. Combine Culver (1966, Theorem 2), σ(eAvech∆) = eσ(Avech)∆ and the fact that the matrix
exponential preserves the Jordan block structure (Horn and Johnson, 1991, Theorem 6.2.25).

The last lemma is comparable to the identifiability restrictions of Kessler and Rahbek (2004)
and Bladt and Sørensen (2005). However, it appears to be preferable to have a condition involving
only restrictions on A, such that Avech does not have to be computed first. To this end we give the
following purely linear algebraic lemma stated for real diagonalizable matrices. Its generalization
to diagonalizable matrices is straightforward. Below we denote by SKd the d× d skew-symmetric
matrices (i.e. the matrices X ∈Md(R) with XT = −X).

Lemma 3.11. Let A ∈ Md(R) be real diagonalizable with (not necessarily distinct) eigenvalues
λ1, λ2, . . . , λd.

Then the linear operator A : Md(R) → Md(R), X 7→ AX + XAT satisfies A(Sd) ⊆ Sd and
A(SKd) ⊆ SKd. Moreover, A has d(d+1)/2 linearly independent eigenvectors in Sd with associated
eigenvalues {λi + λj : i = 1, . . . , d; j = 1, . . . , i} and d(d− 1)/2 linearly independent eigenvectors
in SKd with associated eigenvalues {λi+λj : i = 1, . . . , d; j = 1, . . . , i−1}, which are also linearly
independent of the eigenvectors in Sd. Hence, every eigenvalue has an eigenvector in Sd ∪ SKd.

Proof. That A preserves (skew-)symmetry is trivial. Assume that U ∈ GLd(R) is such that
U−1AU =: D is diagonal. Then AX+XAT = U

(
DU−1XU−T + U−1XU−TDT

)
UT andMd(R)→

Md(R), X 7→ U−1XU−T is an invertible linear map on Md(R) preserving both Sd and SKd and
having inverse Md(R)→Md(R), X 7→ UXUT . This implies that we can without loss of generality
take A to be diagonal, i.e.

A =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd

 .

Let {Eij}i,j=1,...,d be the standard basis of Md(R), i.e. Eij is a matrix having only zero entries
except for one entry of one in the i-th row and j-th column. We then have AEii = 2λi for
i = 1, . . . , d and A(Eij +Eji) = (λi+λj)(Eij +Eji) for i = 1, . . . , d and j = 1, . . . , i−1. These are
d(d + 1)/2 linearly independent eigenvectors in Sd. Likewise A(Eij − Eji) = (λi + λj)(Eij − Eji)
for i = 1, . . . , d and j = 1, . . . , i− 1 gives d(d− 1)/2 linearly independent eigenvectors in SKd.

Since A has d2 eigenvalues, the fact that Sd∩SKd = {0} and both are linear subspaces of Md(R)
implies that every eigenvalue has an eigenvector in Sd ∪ SKd.

Lemma 3.12. Assume that A is required to be real diagonalizable with eigenvalues λ1, . . . , λd and
that the set {λi + λj : i = 1, . . . , d, j = 1, . . . , i} has to consist of d(d + 1)/2 pairwise distinct
elements. Then eAvech∆ uniquely identifies Avech for all ∆ ∈ R++.

Proof. Avech corresponds to the restriction of A : Md(R) → Md(R), X 7→ AX + XAT to Sd.
Hence, Lemma 3.11 implies that the d(d + 1)/2 real eigenvalues of Avech are pairwise distinct.
Thus Culver (1966, Theorem 2) gives that eAvech∆ uniquely identifies Avech for all ∆ ∈ R++.

Thus, if Lemma 3.12 holds, the assumption (b) for the identifiability of our model is fulfilled.

3.5 Superpositions of Ornstein-Uhlenbeck Type Processes

In this section we indicate a possible extension of our multivariate OU type stochastic volatility
model by using a superposition of independent positive semidefinite OU type processes for the
volatility process. As in the univariate case this makes the model more flexible without loosing
much of its tractability. Yet, in our multivariate setting, this extension is apparently less important,
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since a superposition of univariate OU type processes is automatically present in the individual
components (see Section 2.2).

Let K be a natural number, and (L(1))t∈R, (L(2))t∈R, . . . , (L(K))t∈R be independent matrix sub-
ordinators which are jointly independent of the Brownian motion (Wt)t∈R+ of our general stoch-
astic volatility model and let A(1), A(2), . . . , A(K) ∈ Md(R) be matrices with all eigenvalues in
(−∞, 0) + iR. Then we define K independent stationary positive semidefinite OU type processes
by Σ(i)

t =
∫ t
−∞ e

A(i)(t−s)dL(i)
s eA

(i)T
(t−s) with i = 1, 2, . . . ,K and the stationary stochastic volatility

process Σt =
∑K

i=1 Σ(i)
t . Due to the independence it is clear that the expected value, variance,

autocovariance function and integrated volatility of Σt are simply the sum over the respective
quantities of the individual processes Σ(i)

t . Thus closed form formulae for these quantities follow
immediately from the results of Section 2.

Moreover, also the results on the second order structure of the increments of the integrated
volatility generalize.

Proposition 3.13. Define r(i)+(t) =
∫ t

0 acovΣ(i)(u)du, r(i)++(t) =
∫ t

0 r
(i)+(u)du, A(i) : Md(R)→

Md(R), X 7→ A(i)X +XA(i)T , A (i) = (A(i)⊗ Id) + (Id⊗A(i)) and A(i) : Md2(R)→Md2(R), X 7→
A (i)X + XA (i)T for i = 1, 2, . . . ,K. Then we have for the stochastic volatility model with a
superposition of positive semidefinite OU type processes as volatility process:

E(Σ0) = −
K∑
i=1

(A(i))−1E(L(i)
1 ), var(vec(Σ0)) = −

K∑
i=1

(A(i))−1var(vec(L(i)
1 ))

r++(t) = −
K∑
i=1

(
(A (i))−2

(
eA

(i)t − Id2
)
− (A (i))−1t

)
(A(i))−1var(vec(L(i)

1 ))

acovΣ(h) = −
K∑
i=1

eA
(i)∆(h−1)(A (i))−2

(
Id2 − eA

(i)∆
)2

(A(i))−1var(vec(L(i)
1 )), h ∈ N.

Thus we obtain very explicit formulae whenever they are also available in the simple multivariate
OU type stochastic volatility model. However, the volatility increments Σ and the squared log-
arithmic prices YYT are no longer multivariate ARMA(1,1) processes. However, the state-space
representation presented in Section 3.3 can be extended to the case of superposition. We have

Yn = ∆µ+ u1,n, YYT
n = ∆2µµT + Σn + u2,n = ∆2µµT +

K∑
i=1

Σ(i)
n + u2,n.

This immediately gives rise to a state-space representation of(
Yn,YYT

n

)
,
(
A(1)Σ(1)

n ,Σ(1)
n∆

)
,
(
A(2)Σ(2)

n ,Σ(2)
n∆

)
, . . . ,

(
A(K)Σ(K)

n ,Σ(K)
n∆

)
using equations (33) to obtain independent recursions for (A(i)Σ(i)

n ,Σ
(i)
n∆).

As in the univariate case (cf. Barndorff-Nielsen, 2001 and Barndorff-Nielsen and Shephard,
2001), one can also model long-range dependence by superimposing infinitely (but countably)
many appropriate positive semidefinite OU type processes. This follows from a straightforward
generalization of the arguments in Barndorff-Nielsen (1998, Section 4).

4 Empirical Illustration

In this section we provide a small empirical application of the multivariate OU type stochastic
volatility model using a quadrivariate exchange rate data set and a bivariate stock price data set
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Figure 1: Daily returns. Time series plots of the daily percentage logarithmic returns. The four
upper panels show the evolvement of the returns of the exchange rates (January 4nd,
1999 until September 30th, 2008) and the bottom two panels show the returns for the
stock price data (January 2nd, 1985 until December 29th, 2006).

in order to illustrate the features of the model and to show that it provides an accurate description
of the data.

4.1 Data

The first data set consists of 2495 daily observations (ranging from January 1st, 1999 to September
30th, 2008) for the spot exchange rates of the United States dollar (USD), the Japanese yen (JPY),
the pound sterling (GBP) and the Swiss franc (CHF) all quoted in terms of the Euro. The second
data set is given by two US stocks, viz. Applied Materials Inc. (AMAT) and Amgen Inc. (AMGN).
The sample of the second data set covers the period from January 2nd, 1985 to December 29th,
2006, resulting in 5550 observations. Note that splits and dividends are incorporated into the stock
prices. Moreover, the continuously compounded returns are mean-adjusted. Figure 1 presents the
time evolvement of the corresponding time series exhibiting the usual empirical characteristics,
such as volatility clustering.
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4.2 Estimation Methods

The estimation of continuous-time stochastic volatility models is complicated by the unavailability
of the likelihood function. However, based on the theoretical results derived in Section 3, the
multivariate OU type stochastic volatility model can be estimated in several ways, either by using
the characteristic function, the second order dependence structure of the squared returns or by
exploiting its state-space representation. Among these methods the approach based on the char-
acteristic function is rather inconvenient. In particular, as discussed in Knight and Yu (2002) or
Singleton (2001) the characteristic function method requires a fully specified parametric matrix
subordinator and is computationally demanding as the unobserved stochastic volatility process
needs to be integrated out. As the estimation via the second order moments, i.e. using GMM, or
via a state-space representation are not subject to such requirements, we focus on these methods
in the following.

4.2.1 Estimation via the Second Order Dependence Structure

Based on the ergodicity of the discretely sampled returns in our model a simple estimator can be
obtained by matching a set of empirical moments to their model implied counterparts given in Theo-
rem 3.3. Using the results from Section 3.4 natural candidates are vech(E

(
YYT

)
, acovvech(YYT )(1)

and acovvech(YYT )(2), which ensure in connection with Lemma 3.9 the identification of the model.
However, to gain efficiency we consider additional lags of the autocovariance function which yields
the objective function

SSR(L) =
∥∥m− E (vech(YYT )

)∥∥
F

+
∑
l∈L

∥∥∥al − acovvech(YYT )(l)
∥∥∥
F
, (37)

with L denoting the set of selected lags of the autocovariance function and m and al for l ∈ L the
empirical mean and autocovariance function of vech(YYT ), respectively. Although several matrix
norms can be considered we use here the Frobenius norm, i.e.

‖C‖F =
d∑
i=1

d∑
j=1

c2
ij = tr(CCT ),

such that the objective function (37) poses a non-linear least squares problem. As noted in
Barndorff-Nielsen and Shephard (2001, Section 5.3), who apply this procedure for the estimation
of a univariate OU type stochastic volatility model, the estimator is independent of the assumption
of a particular OU type process. More precisely, based on the results discussed in Section 3.4, we
know, that this estimator generally identifies the mean and the variance of the Lévy process L
driving the OU type process (referred to as the background-driving Lévy process or BDLP, for
short, in the following), as well as the matrix A. So rather than assuming a specific parametric
model for the BDLP, we optimize over the first and second moments of L1. Often the parameters
of a specific BDLP can be identified solely by the mean and the variance of the BDLP. In this case
the autocovariance fit also identifies these parameters.

This estimator is computationally very fast but it lacks from the perspective of optimal weighting,
especially the autocovariance terms usually have a higher variance as the empirical mean of the
time series, which is not incorporated in the estimation by minimizing the objective function (37).
We account for these effects by applying the GMM estimation method proposed by Hansen (1982)
using the previous estimates based on (37) as starting values. For our weighting matrix we use
a HAC estimator of the long run covariance matrix with Parzen kernel and a lag of 25, which is
continuously updated. For a detailed discussion of these concepts see Hall (2005).

Although a large number of moment conditions would improve the asymptotic efficiency of the
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estimator it lacks from the fact that the weighting matrix is estimated with less precision. Given
this trade-off in a finite sample setup our moment conditions are given by the mean and the
autocovariances of the time series vech(YYT ) at lags (1, 3, 5, 7, 9, 11, 20, 30, 60, 100).

4.2.2 Estimation via the State-Space Representation

Based on the state-space representation for the squared returns (see Section 3.3) the Kalman
recursions can be used to obtain the quasi-likelihood function of the model, cf. Harvey (1991).
This estimation approach has also been considered in Barndorff-Nielsen and Shephard (2001) for
the univariate OU type stochastic volatility model. In that paper they also show that the Kalman
filter is suboptimal but provides consistent and asymptotically normal estimators. The state-
space representation also illustrates once more that the multivariate model can again be estimated
without the need of a prespecified parametric BDLP. Thus, estimates of the mean and variance
of the BDLP as well as of the matrix A can straightforwardly be obtained by the Kalman filter
combined with quasi-maximum likelihood estimation. As in the univariate case the consistency
and asymptotic normality of these estimators follows from Dunsmuir (1979). Moreover, in contrast
to the above GMM approach, the states of the (co)volatilities can be deduced.

4.3 Estimation Results

In the following we estimate the multivariate OU type stochastic volatility model as given in
equations (8) and (9), where we follow Barndorff-Nielsen and Shephard (2001) by assuming that
µ = β = 0, i.e. in accordance to our use of mean-adjusted returns, the means of the returns are
set to zero. Moreover, we assume that the off-diagonal elements of the matrix subordinator are
zero. The vector of the diagonal components (L1, L2, . . . , Ld)T of L to be denoted by diag(L) is
a Lévy process in Rd with all components being univariate subordinators. Hence, the d elements
of diag(L) only correlate positively (see Pigorsch and Stelzer, 2009, Prop. 5.2) and the correlation
between the variances of the different assets in this model is determined by both, the correlation
structure of diag(L) as well as by A. Although this specification seems rather restrictive, it turns
out that even this model can quite adequately describe the joint dynamics.

Table 1 presents the estimation results for the two data sets based on the GMM estimation
procedure. Although the estimates of A are difficult to interpret, the corresponding eigenvalues
show the expected behavior, especially in the exchange rate data set. The matrix A has some
very large and very small eigenvalues in absolute magnitude, indicating short term and long term
components, respectively. Using this in connection with results from Section 2.2 we have the
marginal dynamics as a superposition of very different univariate OU type processes. This can
also be observed for univariate OU type processes, where realistic modeling seems to require a
superposition of OU type processes, see e.g. Barndorff-Nielsen and Shephard (2001). The presence
of very different eigenvalues of A in the exchange rate data set shows that superpositions in the
multivariate model are not as essential as in the univariate case.

Figure 2 depicts the autocorrelation functions for the bivariate data set. In particular, the upper
two panels show the estimated model-implied autocorrelations of the squared daily returns along
with the empirical one (given by dots) for AMAT and AMGN, respectively. The solid line refers
to the daily autocovariance function implied by a univariate model and the dotted lines depict
the autocovariance function implied by a superposition model with two processes superimposed.1

Obviously, the superposition model provides a better fit than the simple model. More precisely,
in contrast to the simple model its autocovariance function decreases faster for short lags (up to
the 10th or 20th lag, depending on the asset) and slower for longer lags as it is the weighted sum
of two exponentials decreasing at different rates. These results are in line with the findings of

1Estimation results for the univariate and univariate superposition model are not reported here but are available
upon request.
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Figure 2: Autocorrelations for the stock return data set. Estimated and empirical (black
dots) daily autocorrelation functions of the squared returns (upper panels) and of the
cross products of the returns (bottom panels). The autocorrelation functions based on the
different models are characterized by different line styles: the continuous line refers to the
fit of a univariate model, the dotted line corresponds to a univariate superposition model
with two OU type processes, and the dashed line corresponds to the autocorrelation
based on the bivariate system.
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Figure 3: Autocorrelations of squared returns for the exchange rate data set. Estimated
and empirical (black dots) daily autocorrelation functions of the squared returns. The
autocorrelation functions based on the different models are characterized by different
line styles: the continuous line refers to the fit of a univariate model, the dotted line
corresponds to a univariate superposition model with two OU type processes, and the
dashed line corresponds to the autocorrelation based on the quadrivariate system.

Barndorff-Nielsen and Shephard (2001, 2002), who encourage the use of superposition models in
the univariate case.

The autocorrelation functions of the bivariate data set in Figure 2 highlight an advantageous
property of our model, which is induced by the eigenvalues of A with non-vanishing complex part.
These eigenvalues lead to an exponentially damped sinusoidal behavior of the matrix exponential
and allows for a non monotonically decreasing autocorrelation function as depicted. Although
such a behavior is empirically rather infrequently observed, it emphasizes the flexibility of the
multivariate OU stochastic volatility model, even for the marginal dynamics. Note that even
for the univariate superposition models the autocorrelation function is necessarily monotonically
decreasing. To obtain such a flexible behavior in the univariate case extensions such as the class
of CARMA models, proposed by Brockwell (2001) with appropriate positivity restrictions can be
applied, see e.g. Todorov and Tauchen (2006).

Figures 3 and 4 show the empirical and estimated autocorrelation function for the squared
returns and cross products of the returns from the exchange rate data set, respectively. Also in
this medium sized quadrivariate system the model fits the autocorrelation very well.

Note that these properties of our model already emerge empirically within a rather simple spec-
ification of the matrix subordinator, viz. a diagonal subordinator. But we conjecture that the
flexibility of our model can even be further improved by considering more sophisticated specifica-
tions of the background-driving Lévy process or by allowing for superpositions.

The distribution of past and current volatility given all available information is helpful for
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Figure 4: Autocorrelations of cross products for the exchange rate data set. Estimated
(dashed line) and empirical (black dots) daily autocorrelation functions for the cross
products of the returns from the quadrivariate system.
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Figure 5: Filtered daily integrated variances of the exchange rate series. The filtered
values are based on the parameter estimates from the Kalman recursions of the state-
space representation of our model.

empirical analysis and crucial for forecasting. Using the state-space representation from Section 3.3
it is straightforward to use the Kalman recursions to estimate the model and filter 2 and forecast the
daily integrated volatility Σ.3 Figures 5 and 6 depict the filtered variances and correlations (based
on the parameter estimates from the Kalman recursions) of the exchange rate series, respectively.

As one expects due to the financial crisis the volatility is heavily increasing at the end of the
sample for all four exchange rates. Figure 7 presents the corresponding results for the bivariate
stock price data set. Obviously, in both systems the volatilities tend to move together. Moreover,
the correlations, especially the one between AMAT and AMGN, show a relatively constant mean.
Note that the volatilities and correlation of AMAT and AMGN are themselves quite volatile.

5 Conclusion

Given the relevance of jointly modeling the dynamics of multiple assets for portfolio and risk
management decisions, we have generalized the non-Gaussian OU type stochastic volatility model
proposed by Barndorff-Nielsen and Shephard (2001) to the multivariate case. It turns out, that

2As the Kalman filter is an L2 projection on a linear space, it does not necessarily give positive semi-definite
matrices. However, in almost all cases in our data sets the filtered covariance matrix was positive definite. In the
very few exceptional cases, which only occurred in the foreign exchange data, it returned to the positive semi-
definite matrices extremely fast. In Figure 5 we set the correlation to 1 or -1 whenever the filtered covariance
matrix was not positive semi-definite. Note, however, that we have not adjusted the values used within the
Kalman filter.

3Note that we report in Table 1 only the estimates obtained via the GMM method. The corresponding quasi-
maximum likelihood estimates based on the Kalman filter are nearly the same and we therefore do not report
them here.
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Figure 6: Filtered daily integrated correlations for the exchange rate data set. Note
that Σ̂∗n(A,B) denotes the filtered correlation instead of the filtered covariance between
asset A and B and is calculated as the filtered daily integrated covariance divided by the
square root of the product of the filtered daily integrated variances. The filtered values
are based on the parameter estimates from the Kalman recursions of the state-space
representation of our model.
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Figure 7: Filtered daily integrated variances and correlation for the stock return data
set. Note that Σ̂∗n(A,B) denotes the filtered correlation instead of the filtered covariance
between asset A and B and is calculated as the filtered daily integrated covariance divided
by the square root of the product of the filtered daily integrated variances. The filtered
values are based on the parameter estimates from the Kalman recursions of the state-
space representation of our model.

our model possesses many attractive features which are mainly a result of our stochastic volatility
specification.

Specifying the stochastic volatility by Lévy-driven positive semidefinite OU type processes pro-
vides a flexible dependence structure for the volatility. In particular, we show that the increments
of the integrated covariance and the outer product of the returns (“squared returns”) of a stoch-
astic volatility model based on a single positive semidefinite OU type process follow an ARMA(1,1)
processes. Furthermore, closed form expressions are given for the first and second moments of these
variables. These results facilitate the implementation of financial decisions, such as the choice of
e.g. a minimum-variance portfolio or other types of risk assessment, and the estimation of our
model. Moreover, we derived a state-space representation for the joint process of the returns and
the outer product of the returns, which provides an additional approach for the estimation of
the model as well as for the estimation and forecasting of the volatility states using the Kalman
recursions.

Since our model is defined in terms of a matrix subordinator its particular specification may
depend on the application at hand. In the empirical part of this paper we focused on models with
a simple diagonal matrix subordinator, which already exhibit some nice properties, see Section
4.3. However, studying the empirical relevance of alternative matrix subordinators deserves more
attention in future research.

Further improvements in the estimation of the model may be obtained by incorporating the
high-frequency based and, thus, more informative realized covariation measure. Similarly to the
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univariate case (see Barndorff-Nielsen and Shephard, 2002) the derivation of the second order
properties and a state-space representation for the realized covariance matrix and the assessment
of its usefulness in the estimation of our model is desirable. We are currently working on this
extension.

The focus of this paper is on the statistical analysis of our model and the estimation based
on historical observations. Another very important question – beyond the scope of the present
paper – is its use for derivative pricing (structure preserving changes of measure to equivalent
martingale measures, derivative pricing via Fourier-Laplace transform methods, . . . ). Currently
we are looking at these issues and it is planned to report the results elsewhere.
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A Proofs

A.1 Proof of Theorem 3.1

Proof. Using Σt = eAtΣ0e
AT t +

∫ t
0 e

A(t−s)dLseA
T (t−s), (8), (10), Proposition 2.6, the invariance of

tr under cyclic permutations and the independence of W and L, we obtain

E
(
ei〈(y,z),(Yt,Σt)〉

∣∣∣Σ0, Y0

)
= E

(
ei(tr(Σtz)+(Y0+µt)T y+βT Σ+

t y)− 1
2
yT Σ+

t y
∣∣∣Σ0, Y0

)
= e

i
“

(Y0+µt)T y+tr
“

Σ0eAT tzeAt
”

+tr([A−1(B(t)Σ0)](yβT + i
2
yyT ))

”
E
(
eitr((

R t
0 Cy,z(t−s)dLs)∗Id)

)
with linear operators

B(t) : X 7→ eAtXeA
T t −X

Cy,z(t) : X 7→ (βyT − i

2
yyT )

[
A−1

(
eAtXeA

T t −X
)]

+ zT eAtXeA
T t

on Md(C). Note also that the existence of the expectations is ensured by e−yT Σ+
t y ∈ (0, 1] and

observe that A−1(Sd) ⊆ Sd.
From the usual formula for the Fourier transform of an integral with a deterministic integrand

with respect to a Lévy process (see Marquardt and Stelzer, 2007, Section 2.2, for a brief review)
we have that

E
(
eitr((

R t
0 Cy,z(t−s)dLs)∗Id)

)
= e

R t
0 ψL(C ∗y,z(t−s)Id)ds = e

R t
0 ψL(C ∗y,z(s)Id)ds.

From the definition of the adjoint of a linear operator it follows easily that the adjoints of A and
Cy,z(t) are the following linear operators on Md(C)

A∗ : X 7→ATX +XA

C ∗y,z(t) : X 7→eAT szXeAs + eA
T s

[
A−∗

((
yβT +

i

2
yyT

)
X

)]
eAs −A−∗

((
yβT +

i

2
yyT

)
X

)
.

Moreover, (A∗)−1 = (A−1)∗ is true for any linear operator.
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Combining the above results gives the formula stated in the theorem. Finally, note that eA
T szeAs

+eA
T s
[
A−∗

(
yβT + i

2yy
T
)]
eAs −A−∗

(
yβT + i

2yy
T
)
∈Md(R) + iS+

d for all s ∈ R+, because

eA
T sA−∗(yyT )eAs −A−∗(yyT ) =

∫ s

0
eA

TuyyT eAudu ∈ S+
d .

A.2 Proof of Theorem 3.2

Proof. It is immediate from the definitions that the stationarity of (Σt)t∈R+ implies the stationarity
of (Σn)n∈N and (Yn)n∈N. So it remains to verify the above stated formulae.

The first equation of (13) follow immediately from the integral representation Σ+
t =

∫ t
0 Σtdt and

the second one can be obtained by using a Fubini argument:

var(vec(Σ1)) = E

(∫ ∆

0
vec(Σs)ds

∫ ∆

0
vec(Σu)Tdu

)
− E

(∫ ∆

0
vec(Σs)ds

)
E

(∫ ∆

0
vec(Σu)Tdu

)
=
∫ ∆

0

∫ ∆

0
acovΣ(s− u)duds = r++(∆) + r++(∆)T .

Y1 =
∫ ∆

0 (µ + Σsβ)ds +
∫ ∆

0 Σ1/2
s dWs and E

(∫ ∆
0 Σ1/2

s dWs

)
= 0 give the first equation in (15).

Regarding the second one elementary arguments imply

var(Y1) =var
(∫ ∆

0
Σsβds

)
+ var

(∫ ∆

0
Σ1/2
s dWs

)
+ cov

(∫ ∆

0
Σsβds,

∫ ∆

0
Σ1/2
s dWs

)
+ cov

(∫ ∆

0
Σsβds,

∫ ∆

0
Σ1/2
s dWs

)T
.

The standard Itô isometry implies var
(∫ ∆

0 Σ1/2
s dWs

)
= E(Σ1) = ∆E(Σ0).

For all matrices A ∈ Mm,n(R), B ∈ Mn,p(R) and C ∈ Mp,q(R) with arbitrary m,n, p, q ∈ N it
holds that vec(ABC) = (CT ⊗A)vec(B) (see Horn and Johnson, 1991, Lemma 4.3.1). Thus

var
(∫ ∆

0
Σsβds

)
= var

(∫ ∆

0
vec(Σsβ)ds

)
= (βT ⊗ Id)var(vec(Σ1))(β ⊗ Id).

Moreover, the independence of (Σt)t∈R+ and (Wt)t∈R+ gives

cov
(∫ ∆

0
Σsβds,

∫ ∆

0
Σ1/2
s dWs

)
= E

(∫ ∆

0
ΣsβdsE

(∫ ∆

0
dW T

s Σ1/2
s

∣∣∣∣ (Σs)s∈[0,∆]

))
= 0.

Formula (14): For h ∈ N we have applying Fubini

acovΣ(h) =
∫ (h+1)∆

h∆

∫ ∆

0

(
E
(
vec(Σs)vec(Σu)T

)
− E (vec(Σs))E

(
vec(Σu)T

))
duds

=
∫ (h+1)∆

h∆

∫ ∆

0
acovΣ(s− u)duds = r++(h∆ + ∆)− 2r++(h∆) + r++(h∆−∆).

Formula (16): Arguments analogous to the ones given for (15) imply

acovY(h) = cov

(∫ (h+1)∆

h∆
Σtβdt,

∫ ∆

0
Σtβdt

)
= (βT ⊗ Id)acovΣ(h)(β ⊗ Id).
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Turning to the positive semidefinite OU type stochastic volatility model (17) has already been
given in (3). For the twice integrated covariance r++(t) formula (4) and elementary integration
give:

r+(t) =
∫ t

0
eA svar(vec(Σ0))ds = A −1

(
eA t − Id2

)
var(vec(Σ0))

r++(t) = A −1

∫ t

0

(
eA s − Id2

)
var(vec(Σ0))ds =

(
A −2

(
eA t − Id2

)
−A −1t

)
var(vec(Σ0)).

Together with (3) this shows (18).
Regarding equation (19) a combination of (14) and (18) implies

acovΣ(h) = A −2eA ∆(h−1)
(
e2A ∆ − 2eA ∆ + Id2

)
var(vec(Σ0))

= eA ∆(h−1)A −2
(
Id2 − eA ∆

)2
var(vec(Σ0)).

This shows (19) using (3).
Finally observe that

AAX = ((A⊗ Id) + (Id ⊗A))2X + ((A⊗ Id) + (Id ⊗A))X
(
(AT ⊗ Id) + (Id ⊗AT )

)
= AAX

for all X ∈Md2(R) and thus A and A commute.

A.3 Proof of Theorem 3.3

Proof. The first equation in (20) is standard and the second then follows immediately from (15).
Turning to the proof of (21) we have from Barndorff-Nielsen and Stelzer (2007, Lemma 5.11)

that

Y1YT
1 =

∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s +

∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)
+
[∫ ∆

0
Σ1/2
s dWs,

∫ ∆

0
dW T

s Σ1/2
s

]M
t

=
∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s +

∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)
+ Σ1 (38)

referring to Barndorff-Nielsen and Stelzer (2007) for the definition of the matrix covariation [·, ·]M
and observing that we do not have to take left limits as integrals with respect to Brownian motion
are necessarily continuous.

This stochastic integral representation implies that

var(vec(Y1YT
1 )) = var(vec(Σ1)) + Dcov

(
vec(Σ1), vec

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))
+ Dcov

(
vec(Σ1), vec

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
(39)

+ Dcov
(

vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
+ var

(
vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))
+ var

(
vec
(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
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setting D : Md2(R)→Md2(R), X 7→ X +XT

In the following we will now calculate the individual summands above in order to obtain an
explicit expression for the variance of Y1YT

1 . To this end we first of all note that

E

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
= E

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

))
= 0.

Moreover, we already know from (13) that var(vec(Σ1)) = r++(∆) + r++(∆)T .

Next we use the independence of (Σt)t∈R+ and (Wt)t∈R+ to obtain

E

(
vec(Σ1)

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)T)

= E

(
vec(Σ1)E

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

∣∣∣∣ (Σs)s∈[0,∆]

)T)
= 0. (40)

Thus

cov
(

vec(Σ1), vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))
= 0

and likewise

cov
(

vec(Σ1), vec
(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
= 0.

In order to calculate the remaining covariances we have to study the individual entries. In the
following let k, l,m, n ∈ {1, 2, · · · d}, g := (k − 1)d + l, g := (m − 1)d + n and we write moreover
Σ1/2
ij,s for (Σ1/2

s )ij .

E

(
vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)T)
g,h

= E

∫ ∆

0

∫ s

0

d∑
p=1

d∑
q=1

Σ1/2
pk,sΣ

1/2
lq,udWq,udWp,s

∫ ∆

0

∫ s

0

d∑
a=1

d∑
b=1

Σ1/2
am,sΣ

1/2
nb,udWb,udWa,s


(∗)
=
∫ ∆

0

d∑
a=1

E

∫ s

0

d∑
q=1

Σ1/2
ak,sΣ

1/2
lq,udWq,u

∫ s

0

d∑
b=1

Σ1/2
am,sΣ

1/2
nb,udWb,u

 ds

(∗)
=
∫ ∆

0

∫ s

0

d∑
a=1

d∑
b=1

E
(

Σ1/2
ak,sΣ

1/2
lb,uΣ1/2

am,sΣ
1/2
nb,u

)
duds

=
∫ ∆

0

∫ s

0

d∑
a=1

d∑
b=1

E
(

Σ1/2
ka,sΣ

1/2
lb,uΣ1/2

am,sΣ
1/2
bn,u

)
duds

=
∫ ∆

0

∫ s

0
E
(

(Σ1/2
s ⊗ Σ1/2

u )(Σ1/2
s ⊗ Σ1/2

u )
)

(k−1)d+l,(m−1)d+n
duds

=
∫ ∆

0

∫ s

0
E (Σs ⊗ Σu)(k−1)d+l,(m−1)d+n duds.

The (∗) above indicates that we have used the Itô isometry and the fact that stochastic integrals
with respect to two independent Brownian motions are uncorrelated.
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Thus we have established that

var
(

vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))
=
∫ ∆

0

∫ s

0
E (Σs ⊗ Σu) duds

and calculations analogous to the above ones give

var
(

vec
(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
=
∫ ∆

0

∫ s

0
E (Σu ⊗ Σs) duds.

Using again the Itô isometry twice and the uncorrelatedness of integrals with respect to inde-
pendent Brownian motions we have with g := (k − 1)d+ l, h := (m− 1)d+ n:

E

(
vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
vec
(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

))T)
g,h

=
∫ ∆

0

∫ s

0

d∑
a=1

d∑
b=1

E
(

Σ1/2
ak,sΣ

1/2
lb,uΣ1/2

na,sΣ
1/2
bm,u

)
duds

=
∫ ∆

0

∫ s

0

d∑
a=1

d∑
b=1

E
(

Σ1/2
ka,sΣ

1/2
lb,uΣ1/2

an,sΣ
1/2
bm,u

)
duds

=
∫ ∆

0

∫ s

0
(PE (Σs ⊗ Σu))(k−1)d+l,(m−1)d+n duds.

Thus

cov
(

vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
= P

∫ ∆

0

∫ s

0
E (Σs ⊗ Σu) duds.

Observing that (P(A ⊗ B))T(k−1)d+l,(m−1)d+n = amlbnk = almbkn = (P(B ⊗ A))(k−1)d+l,(m−1)d+n,

i.e. (P(A⊗B))T = P(B ⊗A), for all A = (aij), B = (bij) ∈ Sd, we finally obtain(
cov

(
vec
(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

))))T
=
(

P
∫ ∆

0

∫ s

0
E (Σs ⊗ Σu) duds

)T
= P

∫ ∆

0

∫ s

0
E (Σu ⊗ Σs) duds.

Inserting all the obtained results into (39) leads to

var
(
vec
(
Y1YT

1

))
= r++(∆) + r++(∆)T (41)

+ (Id2 + P)
(∫ ∆

0

∫ s

0
E (Σs ⊗ Σu) duds+

∫ ∆

0

∫ s

0
E (Σu ⊗ Σs) duds

)
.

Component-wise this gives (23).
As we have that for any X = (xij), Z = (zij) ∈ Sd(

Q(vec(X)vec(Z)T )
)

(k−1)d+l,(m−1)d+n
= (vec(X)vec(Z)T )(k−1)d+m,(l−1)d+n

= xmkynl = xkmyln = (X ⊗ Y )(k−1)d+l,(m−1)d+n,
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it is immediate that Q(vec(X)vec(Y )T ) = X ⊗ Y for all X,Y ∈ Sd. Using this we get from (41):

var
(
vec
(
Y1YT

1

))
= r++(∆) + r++(∆)T + (Id2 + P) (E(Σ0)⊗ E(Σ0)) ∆2

+ (Q + PQ)
(∫ ∆

0

∫ s

0

(
E
(
vec(Σs)(vec(Σu))T

)
− E(vec(Σ0))E(vec(Σ0))T

)
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+
∫ ∆

0

∫ s

0

(
E
(
vec(Σu)(vec(Σs))T

)
− E(vec(Σ0))E(vec(Σ0))T

)
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)
= r++(∆) + r++(∆)T + (Q + PQ)

(∫ ∆

0

∫ s

0
(acovΣ(s− u) + acovΣ(u− s)) duds

)
+ (Id2 + P) (E(Σ0)⊗ E(Σ0)) ∆2

Together with (12) this finally shows (21).
It remains to show (22). Applying (38) we have for h ∈ N:

acovYYT (h) = cov
(
vec
(
Yh+1YT

h+1

)
, vec

(
Y1YT

1

))
= cov

(
vec

(∫ (h+1)∆

h∆
Σ1/2
s dWs
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h∆
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u

))
, vec

(∫ ∆

0
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0
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u
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(
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h∆
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s dWs
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h∆
dW T

u Σ1/2
u

))
, vec

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))

+ cov

(
vec

(∫ (h+1)∆

h∆
Σ1/2
s dWs

(∫ s

h∆
dW T

u Σ1/2
u

))
, vec (Σ1)

)

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))

+ cov

(
vec

(∫ (h+1)∆

h∆

(∫ s

h∆
Σ1/2
u dWu

)
dW T

s Σ1/2
s

)
, vec (Σ1)

)

+ cov
(

vec (Σh+1) , vec
(∫ ∆

0
Σ1/2
s dWs

(∫ s

0
dW T

u Σ1/2
u

)))
+ cov

(
vec (Σh+1) , vec

(∫ ∆

0

(∫ s

0
Σ1/2
u dWu

)
dW T

s Σ1/2
s

))
+ cov (vec (Σh+1) , vec (Σ1)) .

The independence of the increments of Brownian motion over distinct time intervals imply that the
first, second, fourth and fifth covariance terms above vanish. Likewise conditioning on (Σt)t∈R+

and using the independence of (Σt)t∈R+ and (Wt)t∈R+ (i.e. arguing basically as in (40)) show that
the third, sixth, seventh and eighth covariance term are actually zero. Thus only the last term
remains which gives acovYYT (h) = cov (vec (Σh+1) , vec (Σ1)) = acovΣ(h).

Combining this with the ARMA(1,1) property of the process (vec(Σn))n∈N we see that in the OU
type stochastic volatility model the process (vec(YnYT

n ))n∈N has a causal ARMA(1,1) structure
with autoregressive coefficient eA ∆.

A.4 Proof of Theorem 3.5

Proof. The stationarity follows immediately from the stationarity of the processes involved in the
definition. For the martingale difference sequence property observe
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E(u1,n|Gn−1) = E

(
E

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∣∣∣∣∣σ (Gn−1, (Σs)s∈[(n−1)∆,n∆]

))∣∣∣∣∣Gn−1

)
= 0,

since obviously σ
(
Gn−1, (Σs)s∈[(n−1)∆,n∆]

)
⊆ σ (Gn−1, (Σs)s∈R+) and thus the Brownian incre-

ments (Ws −W(n−1)∆)s∈[(n−1)∆,n∆] are independent of the σ-algebra we are conditioning upon,
and likewise

E(u2,n|Gn−1) = E

(∫ n∆

(n−1)∆
Σsds+ 0 + 0−Σn

∣∣∣∣∣Gn−1

)
= 0. (42)

Taking unconditional expectations above gives that un has mean zero. The Itô isometry immedi-
ately implies (25).

Turning to (27) we observe that

cov(u1,n, vec(u2,n)) = E

∫ n∆

(n−1)∆
Σ1/2
s dWsvec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T (43)

+ E

∫ n∆

(n−1)∆
Σ1/2
s dWsvec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)T
+ E

∫ n∆

(n−1)∆
Σ1/2
s dWsvec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T− E(∫ n∆

(n−1)∆
Σ1/2
s dWsvec (Σn)T

)
.

Conditioning upon (Σs)s∈[(n−1)∆,n∆], it is once again easy to see that the last expectation in

(43) vanishes. Set now for a moment X = (xi)1≤i≤d :=
∫ n∆

(n−1)∆ Σ1/2
s dWs. Then X is condi-

tionally upon (Σs)s∈[(n−1)∆,n∆] a d-dimensional normal random variable and assume for a mo-
ment that the components of X|(Σs)s∈[(n−1)∆,n∆] are moreover independent. For any i, k, l,∈
{1, 2, . . . , d} we have that

(
Xvec(XXT )T

)
i,(k−1)d+l

= xixkxl thus clearly has zero expectation
conditional upon (Σs)s∈[(n−1)∆,n∆] due to the conditional independence and Gaussianity. Hence
E(Xvec(XXT )T |(Σs)s∈[(n−1)∆,n∆]) = 0. If the components of X|(Σs)s∈[(n−1)∆,n∆] are depen-
dent, then due the conditional Gaussianity there is a (Σs)s∈[(n−1)∆,n∆]-measurable random matrix
C ∈Md(R) such that CX|(Σs)s∈[(n−1)∆,n∆] has independent components. Therefore

E(Xvec(XXT )T |(Σs)s∈[(n−1)∆,n∆])

= C−1E(CXvec(CX(CX)T )T |(Σs)s∈[(n−1)∆,n∆])(C
−T ⊗ C−T ) = C−10(C−T ⊗ C−T ) = 0.

Thus also the first term in (43) above vanishes.
Let us now calculate the remaining expectations:

E

∫ n∆

(n−1)∆
Σ1/2
s dWsvec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)T
= ∆E

∫ n∆

(n−1)∆
Σ1/2
s dWs

(∫ n∆

(n−1)∆
Σ1/2
s dWs

)T (µT ⊗ Id)

= ∆E (Σn) (µT ⊗ Id) = ∆ (1⊗ E (Σn)) (µT ⊗ Id) = ∆
(
µT ⊗ E (Σn)

)
and similar

E

∫ n∆

(n−1)∆
Σ1/2
s dWsvec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)T = ∆
(
E (Σn)⊗ µT

)
.
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Combining these formulae with (43) and (13) establishes (27).
It remains to show (26). Let D be defined as in the proof of Proposition 3.3

var(vec(u2,n)) = var

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
+ var (vec (Σn))

+ var

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

))
+ var

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

+ Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

))

+ Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

−Dcov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)

+ Dcov

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

−Dcov

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)
, vec (Σn)

)

−Dcov

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)
. (44)

The only term we already know above is var(vec(Σn)) = r++(∆) + r++(∆)T . Therefore we will
now calculate the remaining covariances. As we assumed µ = 0 in Theorem 3.3, we can use (21)
and obtain

var

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
=(Id2 + Q + PQ)var(vec(Σn))

+ (Id2 + P) (E(Σn)⊗ E(Σn)) .

Using the Itô isometry once again gives:

var

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

))
= ∆2var

(
(µ⊗ Id)vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

))
= ∆2(µµT )⊗ E(Σn)

and

var

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
= ∆2E(Σn)⊗ (µµT ).

Defining X as in the discussion of the first summand in (43) and applying the result obtained
there we get

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

))

35



Ch. Pigorsch & R. Stelzer

= ∆E(vec(XXT )((µ⊗ Id)X)T ) = ∆E(vec(XXT )XT )(µT ⊗ Id) = 0

and likewise

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))
= 0.

Furthermore, the standard conditioning argument and the independence of (Σt)t∈R+ and (Wt)t∈R+

imply

cov

(
vec

(∫ n∆

(n−1)∆
Σ1/2
s dWs

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)
= E(vec(Σn)(vec(Σn))T )− E(vec(Σn))E(vec(Σn))T = var(vec(Σn)).

Next we observe that

cov

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)
, vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

))

= ∆2(µ⊗ Id)var

(∫ n∆

(n−1)∆
Σ1/2
s dWs

)
(Id ⊗ µT ) = ∆2µ⊗ E(Σn)⊗ µT ,

since
(
(µ⊗ Id)E(Σn)(Id ⊗ µT )

)
(i−1)d+j,(k−1)d+l

=
(
µ⊗ E(Σn)⊗ µT

)
(i−1)d+j,(k−1)d+l

= µiE(Σjk,n)µl for all i, j, k, l ∈ {1, 2, . . . , d}.
Finally using again the conditioning and independence it is immediate that

cov

(
vec

(
∆
∫ n∆

(n−1)∆
Σ1/2
s dWsµ

T

)
, vec (Σn)

)
= 0 and

cov

(
vec

(
∆µ

∫ n∆

(n−1)∆
dW T

s Σ1/2
s

)
, vec (Σn)

)
= 0.

Inserting all these results into (44) gives

var(vec(u2,n)) =(Q + PQ)var(vec(Σn)) + (Id2 + P)E(Σn)⊗ E(Σn)

+ ∆2
(
E(Σn)⊗ (µµT ) + (µµT )⊗ E(Σn) + µ⊗ E(Σn)⊗ µT + µT ⊗ E(Σn)⊗ µ

)
.

A.5 Proof of Proposition 3.7

Proof. The i.i.d. property immediately follows from the i.i.d. property of the increments of a Lévy
process over disjoint intervals of common length. To see that (ηn)n∈N and (un)n∈N are uncorrelated,
it suffices to note that

E(un|(Ls)s∈R+) = 0 for all n ∈ N

and (ηn)n∈N is measurable with respect to the σ-algebra generated by (Ls)s∈R+ .
Regarding the first formula in (28) we have

E(η1,n) =
∫ n∆

(n−1)∆
eA(n∆−s)E(L1)eA

T (n∆−s)ds = −A−1
(
E(L1)− eA∆E(L1)eA

T ∆
)
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and the second one follows analogously. Turning to (29) we obtain

var(vec(η1)) = var

(∫ n∆

(n−1)∆
eA (n∆−s)dvec(Ls)

)
=
∫ n∆

(n−1)∆
eA (n∆−s)var(vec(L1))eA

T (n∆−s)

= −A−1
(

var(vec(L1))− eA ∆var(vec(L1))eA
T ∆
)

and (30) is again shown along the same lines. Finally, (31) follows from

cov(vec(η1,n), vec(η2,n)) = cov

(∫ n∆

(n−1)∆
eA (n∆−s)dvec(Ls),

∫ n∆

(n−1)∆
dvec(Ls)

)

=
∫ n∆

(n−1)∆
eA (n∆−s)var(vec(L1))ds.
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volatility models. Journal of Business & Economic Statistics 24, 455–469. [23]

Todorov, V. and G. Tauchen (2008). Volatility jumps. Working Paper. [3]

40


	Introduction
	Positive Semidefinite Matrix Processes of Ornstein-Uhlenbeck Type
	Definition and Probabilistic Properties
	Marginal Dynamics

	The Multivariate Ornstein-Uhlenbeck type Stochastic Volatility Model
	Characteristic Function of the Markov Transition Kernels
	Second Order Structure
	State-Space Representation
	Identifiability
	Superpositions of Ornstein-Uhlenbeck Type Processes

	Empirical Illustration
	Data
	Estimation Methods
	Estimation via the Second Order Dependence Structure
	Estimation via the State-Space Representation

	Estimation Results

	Conclusion
	Proofs
	 Proof of Theorem 3.1
	 Proof of Theorem 3.2
	 Proof of Theorem 3.3
	 Proof of Theorem 3.5
	 Proof of Proposition 3.7


