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Abstract. We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-time linear
state space models and equidistantly observed multivariate Lévy-driven continuous-time autoregressive moving av-
erage (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality
of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process
of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of
equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to
derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural
identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling
frequency. We also demonstrate the practical applicability of our method through a simulation study and a data
example from econometrics.
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1. Introduction

Linear state space models have been used in time series analysis and stochastic modelling for many decades because
of their wide applicability and analytical tractability (see, e. g., Brockwell and Davis, 1991; Hamilton, 1994, for a
detailed account). In discrete time they are defined by the equations

Xn = FXn−1 + Zn−1, Yn = HXn +Wn, n ∈ Z, (1.1)

whereX = (Xn)n∈Z is a latent state process,F, H are coefficient matrices and,Z = (Zn)n∈Z, W = (Wn)n∈Z are
sequences of random variables, see Definition 2.1 for a precise formulation of this model. In this paper we investigate
the problem of estimating the coefficient matricesF,H as well as the covariances ofZ andW from a sample of
observed values of the output processY = (Yn)n∈Z, using a quasi maximum likelihood (QML) or generalized least
squares approach. Given the importance of this problem in practice, it is surprising that a proper mathematical
analysis of the quasi maximum likelihood estimation for themodel (1.1) has only been performed in cases where
the model is in the so-called innovations form

Xn = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (1.2)

where the innovationsε form a martingale difference sequence (Hannan and Deistler, 1988, Chapter 4). This in-
cludes state space models in which the noise sequencesZ,W are Gaussian, because then the innovations, which are
uncorrelated by definition, form an i. i. d. sequence. Restriction to these special cases excludes, however, the state
space representations of aggregated linear processes, as well as of equidistantly observed continuous-time linear
state space models.

In the first part of the present paper we shall prove consistency and asymptotic normality of the quasi maximum
likelihood estimator for the general linear state space model (1.1) under the assumptions that the noise sequences
Z,W are ergodic, and that the output processY satisfies a strong-mixing condition in the sense of Rosenblatt (1956).
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This assumption is not very restrictive, and is, in particular, satisfied if the noise sequenceZ is i. i. d. with an
absolutely continuous component, andW is strongly mixing. Our results are a multivariate generalization of Francq
and Zakoïan (1998), who considered the quasi maximum likelihood estimation for univariate strongly mixing ARMA
processes. The very recent paper Boubacar Mainassara and Francq (2011), which deals with the structural estimation
of weak vector ARMA processes, instead makes a mixing assumption about the innovations sequenceε of the
process under consideration, which is very difficult to verify for state space models; their results can therefore not be
used for the estimation of general discretely-observed linear continuous-time state space models. More importantly,
their proof appears to be incomplete, because a crucial stepin the proof of their Lemma 4 is claimed by the authors
to be analogous to the corresponding step in the proof of Francq and Zakoïan (1998, Lemma 3). It is, however,
not clear how the argument given there can be modified in orderto be compatible with the assumption of strongly
mixing innovations, which is weaker than the assumption of astrongly mixing output process as employed in Francq
and Zakoïan (1998).

As alluded to above, one advantage of relaxing the assumption of i. i. d. innovations in a discrete-time state
space model is the inclusion of sampled continuous-time state space models. These were introduced in the form of
continuous-time ARMA (CARMA) models in Doob (1944) as stochastic processes satisfying the formal analogue
of the familiar autoregressive moving average equations ofdiscrete-time ARMA processes, namely

a(D)Y(t) = b(D)DW(t), D = d/dt, (1.3)

wherea andb are suitable polynomials, andW denotes a Brownian motion. In the recent past, a considerable body
of research has been devoted to these processes (see, e. g., Brockwell, 2001a, and references therein). One partic-
ularly important extension of the model (1.3) was introduced in Brockwell (2001b), where the driving Brownian
motion was replaced by a Lévy process with finite logarithmicmoments. This allowed for a wide range of possibly
heavy-tailed marginal distribution of the processY as well as the occurrence of jumps in the sample paths, both
characteristic features of many observed time series, e. g.in finance (Cont, 2001). Recently, Marquardt and Stelzer
(2007) further generalized Eq. (1.3) to the multivariate setting, which gave researchers the possibility to model sev-
eral dependent time series jointly by one linear continuous-time process. This extension is important, because many
time series, exhibit strong dependencies and can thereforenot be modelled adequately on an individual basis. In
that paper, the multivariate non-Gaussian equivalent of Eq. (1.3), namelyP(D)Y(t) = Q(D)DL(t), for matrix-valued
polynomialsP andQ and a Lévy processL, was interpreted by spectral techniques as a continuous-time state space
model of the form

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t); (1.4)

see Eq. (3.4) for an expression of the matricesA, B andC. The structural similarity between Eq. (1.1) and Eq. (1.4)
is apparent, and it is essential for many of our arguments. Taking a different route, multivariate CARMA pro-
cesses can be defined as the continuous-time analogue of discrete-time vector ARMA models, described in detail
in Hannan and Deistler (1988); Lütkepohl (2005). As continuous-time processes, CARMA processes are suited
particularly well to model irregularly spaced and high-frequency data, which makes them a flexible and efficient tool
for building stochastic models of time series arising in thenatural sciences, engineering and finance (e. g. Benth and
Šaltyṫe Benth, 2009; Fan et al., 1998; Na and Rhee, 2002; Todorov andTauchen, 2006).

In the univariate Gaussian setting, several different approaches to the estimation problem of CARMA processes
have been investigated (see, e. g., Larsson et al., 2006; Nielsen et al., 2000, and references therein). Maximum like-
lihood estimation based on a continuous record was considered in Feigin (1976); Pham (1977); Brown and Hewitt
(1975). Due to the fact that processes are typically not observed continuously and the limitations of digital computer
processing, inference based on discrete observations has become more important in recent years; these approaches
include variants of the Yule–Walker algorithm for time-continuous autoregressive processes (Hyndman, 1993), max-
imum likelihood methods (Brockwell et al., 2011; Duncan et al., 1999), and randomized sampling (Rivoira et al.,
2002) to overcome the aliasing problem. Alternative methods include discretization of the differential operator
(Larsson and Söderström, 2002; Söderström et al., 1997), and spectral estimation (Gillberg and Ljung, 2009; La-
halle et al., 2004; Lii and Masry, 1995; Masry, 1978). For thespecial case of Ornstein–Uhlenbeck processes, least
squares and moment estimators have also been investigated without the assumptions of Gaussianity (Hu and Long,
2009; Spiliopoulos, 2009).

In the second part of this paper we consider the estimation ofgeneral multivariate CARMA processes with fi-
nite second moments based on equally spaced discrete observations exploiting the results about the quasi maximum
likelihood estimation of general linear discrete-time state space models. Under natural identifiability assumptions
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we obtain strongly consistent and asymptotically normal estimators for the coefficient matrices of a second-order
MCARMA process and the covariance matrix of the driving Lévyprocess, which determine the second-order struc-
ture of the process. It is a natural restriction of the quasi maximum likelihood method that distributional properties
of the driving Lévy process which are not determined by its covariance matrix cannot be estimated. However,
once the autoregressive and moving average coefficients of a CARMA process are (approximately) known, and if
high-frequency observations are available, a parametric model for the driving Lévy process can be estimated by the
methods described in Brockwell and Schlemm (2011).

Outline of the paper The organization of the paper is as follows. In Section 2 we develop a quasi maximum
likelihood estimation theory for general non-Gaussian discrete-time linear stochastic state space models with finite
second moments. In Section 2.1 we precisely define the class of linear stochastic state space models as well as the
quasi maximum likelihood estimator. The following two sections 2.3 and 2.4 contain the proofs that, under a set of
technical conditions, this estimator is strongly consistent and asymptotically normally distributed as the number of
observations tends to infinity, see Theorems 2.1 and 2.2.

In Section 3 we use the results from Section 2 to establish asymptotic properties of a quasi maximum likelihood
estimator for multivariate CARMA processes which are observed on a fixed equidistant time grid. As a first step,
we review in Section 3.1 their definition as well as their relation to the class of continuous-time state space models.
This is followed by an investigation of the probabilistic properties of a sampled MCARMA process in Section 3.2
and an analysis of the important issue of identifiability in Section 3.3. Finally, we are able to state and prove our
main result, Theorem 3.4, about the strong consistency and asymptotic normality of the quasi maximum likelihood
estimator for equidistantly sampled multivariate CARMA processes in Section 3.4.

In the final Section 4, we present canonical parametrizations, and we demonstrate the applicability of the quasi
maximum likelihood estimation for continuous-time state space models with a simulation study and a data example
from economics.

Notation We use the following notation: The space ofm× n matrices with entries in the ringK is denoted by
Mm,n(K) or Mm(K) if m = n. The set of symmetric matrices is denoted bySm(K), and the symbolsS+m(R) (S++m (R))
stand for the subsets of positive semidefinite (positive definite) matrices, respectively.AT denotes the transpose of
the matrix A, imA its image, kerA its kernel,σ(A) its spectrum, and1m ∈ Mm(K) is the identity matrix. The vector
spaceRm is identified withMm,1(R) so thatu = (u1, . . . ,um)T ∈ Rm is a column vector.‖·‖ represents the Euclidean
norm,〈·, ·〉 the Euclidean inner product, and0m ∈ Rm the zero vector.K[X] (K{X}) denotes the ring of polynomial
(rational) expressions in X overK, IB(·) the indicator function of the setB, andδn,m the Kronecker symbol. The
symbolsE, Var, andCov stand for the expectation, variance and covariance operators, respectively. Finally, we
write ∂m for the partial derivative operator with respect to themth coordinate and∇ =

(
∂1 · · · ∂r

)
for the

gradient operator. When there is no ambiguity, we use∂m f (ϑ0) and∇ϑ f (ϑ0) as shorthands for∂m f (ϑ)|ϑ=ϑ0 and
∇ϑ f (ϑ)|ϑ=ϑ0, respectively. A generic constant, the value of which may change from line to line, is denoted byC.

2. Quasi maximum likelihood estimation for discrete-time s tate space models

In this section we investigate quasi maximum likelihood (QML) estimation for general linear state space models in
discrete time, and prove consistency and asymptotic normality. On the one hand, due to the wide applicability of
state space systems in stochastic modelling and control, these results are interesting and useful in their own right. In
the present paper they will be applied in Section 3 to prove asymptotic properties of the QML estimator for discretely
observed multivariate continuous-time ARMA processes.

Our theory extends existing results from the literature, inparticular concerning the QML estimation of Gaussian
state space models, of state space models whose innovationssequences are martingale differences (Hannan, 1969,
1975; Reinsel, 1997), and of weak univariate ARMA processeswhich satisfy a strong mixing condition (Francq and
Zakoïan, 1998). The techniques used in this section are similar to Boubacar Mainassara and Francq (2011).

2.1. Preliminaries and definition of the QML estimator
The general linear stochastic state space model is defined asfollows.
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Definition 2.1 (State space model). AnRd-valued discrete-time linear stochastic state space model(F,H, Z,W)

of dimension N is characterized by a strictly stationaryRN+d-valued sequence
(

ZT WT
)T

with mean zero and
finite covariance matrix

E

[(
Zn

Wn

) (
ZT

m WT
m

)]
= δm,n

(
Q R
RT S

)
, n,m ∈ Z, (2.1)

for some matrices Q∈ S+N(R), S ∈ S+d (R), and R∈ MN,d(R); a state transition matrix F∈ MN(R); and an observation
matrix H ∈ Md,N(R). It consists of a state equation

Xn = FXn−1 + Zn−1, n ∈ Z, (2.2a)

and an observation equation
Yn = HXn +Wn, n ∈ Z. (2.2b)

TheRN-valued autoregressive processX = (Xn)n∈Z is called the state vector process, andY = (Yn)n∈Z is called the
output process.

The assumption that the processesZ andW are centred is not essential for our results, but simplifies the notation con-
siderably. Basic properties of the output processY are described in Brockwell and Davis (1991§12.1); in particular,
if the eigenvalues ofF are less than unity in absolute value, thenY has the moving average representation

Yn =Wn + H
∞∑

ν=1

Fν−1Zn−ν, n ∈ Z. (2.3)

Before we turn our attention to the estimation problem for this class of state space models, we review the ne-
cessary aspects of the theory of Kalman filtering, see Kalman(1960) for the original control-theoretic account and
Brockwell and Davis (1991§12.2) for a treatment in the context of time series analysis. The linear innovations of the
output processY are of particular importance for the quasi maximum likelihood estimation of state space models.

Definition 2.2 (Linear innovations). Let Y = (Yn)n∈Z be anRd-valued stationary stochastic process with finite
second moments. The linear innovationsε = (εn)n∈Z of Y are then defined by

εn = Yn − Pn−1Yn, Pn = orthogonal projection ontospan{Yν : −∞ < ν 6 n} , (2.4)

where the closure is taken in the Hilbert space of square-integrable random variables with inner product(X,Y) 7→
E〈X,Y〉.

This definition immediately implies that the innovationsε of a stationary stochastic processY are stationary and
uncorrelated. The following proposition is a combination of Brockwell and Davis (1991, Proposition 12.2.3) and
Hamilton (1994, Proposition 13.2).

Proposition 2.1. Assume thatY is the output process of the state space model (2.2), that at least one of the
matrices Q and S is positive definite, and that the absolute values of the eigenvalues of F are less than unity. Then
the following hold.

i) The discrete-time algebraic Riccati equation

Ω = FΩFT + Q−
[
FΩHT + R

] [
HΩHT + S

]−1 [
FΩHT + R

]T
(2.5)

has a unique positive semidefinite solutionΩ ∈ S+N(R).

ii) The absolute values of the eigenvalues of the matrix F− KH ∈ MN(R) are less than one, where

K =
[
FΩHT + R

] [
HΩHT + S

]−1 ∈ MN,d(R) (2.6)

is the steady-state Kalman gain matrix.
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iii) The linear innovationsε of Y are the unique stationary solution to

X̂n = (F − KH) X̂n−1 + KYn−1, εn = Yn − HX̂n, n ∈ Z. (2.7a)

Using the backshift operatorB, which is defined byB Yn = Yn−1, this can be written equivalently as

εn =
{
1d − H [1N − (F − KH) B]−1 K B

}
Yn = Yn − H

∞∑

ν=1

(F − KH)ν−1KYn−ν. (2.7b)

The covariance matrix V= Eεnε
T
n ∈ S+d (R) of the innovationsε is given by

V = Eεnε
T
n = HΩHT + S. (2.8)

iv) The processY has the innovations representation

X̂n = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (2.9a)

which, similar to Eqs. (2.7), allows for the moving average representation

Yn =
{
1d − H [1N − F B]−1 K B

}
Yn = εn + H

∞∑

ν=1

Fν−1Kεn−ν, n ∈ Z. (2.9b)

For some parameter spaceΘ ⊂ Rr , r ∈ N, the mappings

F(·) : Θ→ MN(R), H(·) : Θ→ Md,N, (2.10a)

together with a collection of strictly stationary stochastic processesZϑ, Wϑ, ϑ ∈ Θ, with finite second moments
determine a parametric family(Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ of linear state space models according to Definition 2.1. Forthe
variance and covariance matrices of the noise sequencesZ,W we use the notation (cf. Eq. (2.1))Qϑ = EZϑ,nZT

ϑ,n,
Sϑ = EWϑ,nWT

ϑ,n, andRϑ = EZϑ,nWT
ϑ,n, which defines the functions

Q(·) : Θ→ S+N(R), S(·) : Θ→ S+d , R(·) : Θ→ MN,d(R). (2.10b)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)) that for this model, minus twice the logarithm of the
Gaussian likelihood ofϑ based on a sampleyL = (Y1, . . . ,YL) of observations can be written as

L (ϑ, yL) =
L∑

n=1

lϑ,n =
L∑

n=1

[
d log 2π + log detVϑ + ε

T
ϑ,nV−1

ϑ εϑ,n
]
, (2.11)

whereεϑ,n andVϑ are given by analogues of Eqs. (2.7a) and (2.8), namely

εϑ,n =
{
1d − Hϑ [1N − (Fϑ − KϑHϑ) B]−1 Kϑ B

}
Yn, n ∈ Z, Vϑ = HϑΩϑH

T
ϑ + Sϑ, (2.12)

andKϑ,Ωϑ are defined in the same way asK,Ω in Eqs. (2.5) and (2.6). In the following we always assume that yL =

(Yϑ0,1, . . . ,Yϑ0,L) is a sample from the output process of the state space model
(
Fϑ0,Hϑ0, Zϑ0,Wϑ0

)
corresponding to

the parameter valueϑ0. We therefore callϑ0 the true parameter value. It is important to note thatεϑ0 are the true
innovations ofYϑ0, and that thereforeEεϑ0,nε

T
ϑ0,n
= Vϑ0, but that this relation fails to hold for other values ofϑ. This

is due to the fact thatεϑ is not the true innovations sequence of the state space modelcorresponding to the parameter
valueϑ. We therefore call the sequenceεϑ pseudo-innovations.

The goal of this section is to investigate how the valueϑ0 can be estimated fromyL by maximizing Eq. (2.11).
The first difficulty one is confronted with is that the pseudo-innovationsεϑ are defined in terms of the full history of
the processY = Yϑ0, which is not observed. It is therefore necessary to use an approximation to these innovations
which can be computed from the finite sampleyL. One such approximation is obtained if, instead of using the
steady-state Kalman filter described in Proposition 2.1, one initializes the filter atn = 1 with some prescribed values.
More precisely, we define the approximate pseudo-innovations ε̂ϑ via the recursion

X̂ϑ,n = (Fϑ − KϑHϑ) X̂ϑ,n−1 + KϑYn−1, ε̂ϑ,n = Yn − HϑX̂ϑ,n, n ∈ N, (2.13)
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and the prescription̂Xϑ,1 = X̂ϑ,initial . The initial valuesX̂ϑ,initial are usually either sampled from the stationary
distribution ofXϑ, if that is possible, or set to some deterministic value. Alternatively, one can additionally define
a positive semidefinite matrixΩϑ,initial and compute Kalman gain matricesKϑ,n recursively via Brockwell and Davis
(1991, Eq. (12.2.6)). While this procedure might be advantageous for small sample sizes, the computational burden
is significantly smaller when the steady-state Kalman gain is used. The asymptotic properties which we are dealing
with in this paper are expected to be the same for both choicesbecause the Kalman gain matricesKϑ,n converge to
their steady state values asn tends to infinity (Hamilton, 1994, Proposition 13.2).

The QML estimator̂ϑ
L

for the parameterϑ based on the sampleyL is defined as

ϑ̂
L
= argminϑ∈Θ L̂ (ϑ, yL), (2.14)

whereL̂ (ϑ, yL) is obtained fromL (ϑ, yL) by substitutinĝεϑ,n from Eq. (2.13) forεϑ,n, i. e.

L̂ (ϑ, yL) =
L∑

n=1

l̂ϑ,n =
L∑

n=1

[
d log 2π + log detVϑ + ε̂

T
ϑ,nV−1

ϑ ε̂ϑ,n
]
. (2.15)

2.2. Technical assumptions and main results
Our main results about the quasi maximum likelihood estimation for discrete-time state space models are The-

orem 2.1, stating that the estimatorϑ̂
L

given by Eq. (2.14) is strongly consistent, which means thatϑ̂
L

converges

to ϑ0 almost surely, and Theorem 2.2, which asserts the asymptotic normality ofϑ̂
L

with the usualL1/2 scaling. In
order to prove these results, we need to impose the followingconditions.

Assumption D1. The parameter spaceΘ is a compact subset ofRr .

Assumption D2. The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (2.10) are continuous.

The next condition guarantees that the models under consideration describe stationary processes.

Assumption D3. For everyϑ ∈ Θ, the following hold:

i) the eigenvalues of Fϑ have absolute values less than unity,

ii) at least one of the two matrices Qϑ and Sϑ is positive definite,

iii) the matrix Vϑ is non-singular.

The next lemma shows that the assertions of Assumption D3 hold in fact uniformly inϑ.

Lemma 2.1. Suppose that Assumptions D1 to D3 are satisfied. Then the following hold.

i) There exists a positive numberρ < 1 such that, for allϑ ∈ Θ, it holds that

max{|λ| : λ ∈ σ (Fϑ)} 6 ρ. (2.16a)

ii) There exists a positive numberρ < 1 such that, for allϑ ∈ Θ, it holds that

max{|λ| : λ ∈ σ (Fϑ − KϑHϑ)} 6 ρ, (2.16b)

where Kϑ is defined by Eqs.(2.5)and (2.6).

iii) There exists a positive number C such that
∥∥∥V−1
ϑ

∥∥∥ 6 C for all ϑ.

Proof. Assertion i) is a direct consequence of Assumption D3, i), the assumed smoothness ofϑ 7→ Fϑ (Assump-
tion D2), the compactness ofΘ (Assumption D1), and the fact (Bernstein, 2005, Fact 10.11.2) that the eigenvalues
of a matrix are continuous functions of its entries. Claim ii) follows with the same argument from Proposition 2.1, ii)
and the fact that the solution of a discrete-time algebraic Riccati equation is a continuous function of the coefficient
matrices (Lancaster and Rodman, 1995, Chapter 14),(Sun, 1998). Moreover, by Eq. (2.8), the functionϑ 7→ Vϑ is
continuous, which shows that Assumption D3, iii) holds uniformly in ϑ as well, and so iii) is proved.
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For the following assumption about the noise sequencesZ andW we use the usual notion of ergodicity (see, e. g.,
Durrett, 2010, Chapter 6).

Assumption D4. The process
(

WT
ϑ0

ZT
ϑ0

)T
is ergodic.

The assumption that the processesZϑ0 andWϑ0 are ergodic implies via the moving average representation (2.3) and
Krengel (1985, Theorem 4.3) that the output processY = Yϑ0 is ergodic. As a consequence, the pseudo-innovations
εϑ defined in Eq. (2.12) are ergodic for everyϑ ∈ Θ.

Our first identifiability assumption precludes redundancies in the parametrization of the state space models under
consideration and is therefore necessary for the true parameter valueϑ0 to be estimated consistently. It will be used
in Lemma 2.7 to show that the quasi likelihood function givenby Eq. (2.15) asymptotically has a unique global
minimum atϑ0.

Assumption D5. For all ϑ0 , ϑ ∈ Θ, there exists a z∈ C such that

Hϑ [1N − (Fϑ − KϑHϑ) z]−1 Kϑ , Hϑ0

[
1N −

(
Fϑ0 − Kϑ0Hϑ0

)
z
]−1 Kϑ0, or Vϑ , Vϑ0. (2.17)

Assumption D5 can be rephrased in terms of the spectral densities fYϑ of the output processesYϑ of the state space
models(Fϑ,Hϑ, Zϑ,Wϑ). This characterization will be very useful when we apply theestimation theory developed
in this section to state space models that arise from sampling a continuous-time ARMA process.

Lemma 2.2. If, for all ϑ0 , ϑ ∈ Θ, there exists anω ∈ [−π, π] such that fYϑ(ω) , fYϑ0
(ω), then Assumption D5

holds.

Proof. We recall from Hamilton (1994, Eq. (10.4.43)) that the spectral density fYϑ of the output processYϑ
of the state space model(Fϑ,Hϑ, Zϑ,Wϑ) is given by fYϑ(ω) = (2π)−1Hϑ

(
eiω

)
VϑHϑ

(
e−iω

)T
, ω ∈ [−π, π], where

Hϑ(z) ≔ Hϑ [1N − (Fϑ − KϑHϑ) z]−1 Kϑ+z. If Assumption D5 does not hold, we have that bothHϑ(z) =Hϑ0(z) for
all z ∈ C, andVϑ = Vϑ0, and, consequently, thatfYϑ (ω) = fYϑ0

(ω), for all ω ∈ [−π, π], contradicting the assumption
of the lemma.

Under the assumptions described so far we obtain the following consistency result.

Theorem 2.1 (Consistency of ϑ̂
L
). Assume that(Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ is a parametric family of state space mod-

els according to Definition 2.1, and letyL = (Yϑ0,1, . . . ,Yϑ0,L) be a sample of length L from the output process
of the model corresponding toϑ0. If Assumptions D1 to D5 hold, then the quasi maximum likelihood estimator

ϑ̂
L
= argminϑ∈Θ L̂ (ϑ, yL) is strongly consistent, i. e.̂ϑ

L → ϑ0 almost surely, as L→ ∞.

We now describe the conditions which we need to impose in addition to Assumptions D1 to D5 for the asymptotic
normality of the quasi maximum likelihood estimator to hold. The first one excludes the case that the true parameter
valueϑ0 lies on the boundary of the domainΘ.

Assumption D6. The true parameter valueϑ0 is an element of the interior ofΘ.

Next we need to impose a higher degree of smoothness than stated in Assumption D2 and a stronger moment
condition than Assumption D4.

Assumption D7. The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (2.10) are three times continuously differenti-
able.

By the results of the sensitivity analysis of the discrete-time algebraic Riccati equation in Sun (1998), the same
degree of smoothness, namelyC3, also carries over to the mappingϑ 7→ Vϑ.

Assumption D8. The process
(

WT
ϑ0

ZT
ϑ0

)T
has finite(4+ δ)th moments for someδ > 0.

Assumption D8 implies that the processY has finite (4+ δ)th moments. In the definition of the general linear
stochastic state space model and in Assumption D4, it was only assumed that the sequencesZ andW are stationary
and ergodic. This structure alone does not entail a sufficient amount of asymptotic independence for results like
Theorem 2.2 to be established. We assume that the processY is strongly mixing in the sense of Rosenblatt (1956),
and we impose a summability condition on the strong mixing coefficients, which is known to be sufficient for a
Central Limit Theorem forY to hold (Ibragimov, 1962; Bradley, 2007).



8 Schlemm, E. and Stelzer, R.

Assumption D9. Denote byαY the strong mixing coefficients of the processY = Yϑ0. There exists a constant
δ > 0 such that

∑∞
m=0 [αY(m)]

δ
2+δ < ∞.

In the case of exponential strong mixing, Assumption D9 is always satisfied, and it is no restriction to assume that
the δ appearing in Assumptions D8 and D9 are the same. It has been shown in Mokkadem (1988); Schlemm and
Stelzer (2011) that, because of the autoregressive structure of the state equation (2.2a), exponential strong mixing
of the output processYϑ0 can be assured by imposing the condition that the processZϑ0 is an i. i. d. sequence
whose marginal distributions possess a non-trivial absolutely continuous component in the sense of Lebesgue’s
decomposition theorem, see e. g., Halmos (1950§31, TheoremC) or Lebesgue (1904).

Finally, we require another identifiability assumption, that will be used to ensure that the Fisher information
matrix of the QML estimator is non-singular. This is necessary because the asymptotic covariance matrix in the

asymptotic normality result for̂ϑ
L

is directly related to the inverse of that matrix. Assumption D10 is formulated in
terms of the first derivative of the parametrization of the model, which makes it relatively easy to check in practice;
the Fisher information matrix, in contrast, is related to the second derivative of the logarithmic Gaussian likelihood.
For j ∈ N andϑ ∈ Θ, the vectorψϑ, j ∈ R( j+2)d2

is defined as

ψϑ, j =



[
1 j+1 ⊗ KT

ϑ
⊗ Hϑ

] [
(vec1N)T (vecFϑ)

T · · ·
(
vecF j

ϑ

)T
]T

vecVϑ

 , (2.18)

where⊗ denotes the Kronecker product of two matrices, and vec is thelinear operator that transforms a matrix into
a vector by stacking its columns on top of each other.

Assumption D10. There exists an integer j0 ∈ N such that the[( j0 + 2)d2] × r matrix∇ϑψϑ0, j0 has rank r.

Our main result about the asymptotic distribution of the quasi maximum likelihood estimator for discrete-time
state space models is the following theorem. Equation (2.20) shows in particular that this asymptotic distribution is
independent of the choice of the initial valuesX̂ϑ,initial .

Theorem 2.2 (Asymptotic normality of ϑ̂
L
). Assume that(Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ is a parametric family of state

space models according to Definition 2.1, and letyL = (Yϑ0,1, . . . ,Yϑ0,L) be a sample of length L from the output
process of the model corresponding toϑ0. If Assumptions D1 to D10 hold, then the maximum likelihood estimator

ϑ̂
L
= argminϑ∈Θ L̂ (ϑ, yL) is asymptotically normally distributed with covariance matrix Ξ = J−1IJ−1, i. e.

√
L
(
ϑ̂

L − ϑ0

)
d−−−−→

L→∞
N (0,Ξ), (2.19)

where
I = lim

L→∞
L−1
Var

(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0, yL

)
. (2.20)

2.3. Proof of Theorem 2.1 – Strong consistency

In this section we prove the strong consistency of the quasi maximum likelihood estimator̂ϑ
L
. As a first step

we show that the stationary pseudo-innovations processes defined by the steady-state Kalman filter are uniformly
approximated by their counterparts based on the finite sample yL.

Lemma 2.3. Under Assumptions D1 to D3, the pseudo-innovations sequencesεϑ and ε̂ϑ defined by the Kalman
filter equations(2.7a)and (2.13)have the following properties.

i) If the initial valuesX̂ϑ,initial are such thatsupϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥ is almost surely finite, then, with probability one,
there exist a positive number C and a positive numberρ < 1, such thatsupϑ∈Θ

∥∥∥εϑ,n − ε̂ϑ,n
∥∥∥ 6 Cρn, n ∈ N. In

particular, ε̂ϑ0,n converges to the true innovationsεn = εϑ0,n at an exponential rate.

ii) The sequencesεϑ are linear functions ofY, i. e. there exist matrix sequences
(
cϑ,ν

)
ν>1, such thatεϑ,n = Yn +∑∞

ν=1 cϑ,νYn−ν. The matrices cϑ,ν are uniformly exponentially bounded, i. e. there exist a positive constant C and
a positive constantρ < 1, such thatsupϑ∈Θ

∥∥∥cϑ,ν
∥∥∥ 6 Cρν, ν ∈ N.
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Proof. We first prove part i) about the uniform exponential approximation ofε by ε̂. Iterating the Kalman
equations (2.7a) and (2.13), we find that, forn ∈ N,

εϑ,n =Yn − Hϑ (Fϑ − KϑHϑ)
n−1 X̂ϑ,1 −

n−1∑

ν=1

Hϑ (Fϑ − KϑHϑ)
ν−1 KϑYn−ν, and

ε̂ϑ,n =Yn − Hϑ (Fϑ − KϑHϑ)
n−1 X̂ϑ,initial −

n−1∑

ν=1

Hϑ (Fϑ − KϑHϑ)
ν−1 KϑYn−ν.

Thus, using the fact that, by Lemma 2.1, the spectral radii ofFϑ − KϑHϑ are bounded byρ < 1, it follows that

sup
ϑ∈Θ

∥∥∥εϑ,n − ε̂ϑ,n
∥∥∥ = sup

ϑ∈Θ

∥∥∥Hϑ (Fϑ − KϑHϑ)
n−1 (Xϑ,0 − Xϑ,initial)

∥∥∥ 6 ‖H‖L∞(Θ) ρ
n−1 sup

ϑ∈Θ

∥∥∥Xϑ,0 − Xϑ,initial

∥∥∥ ,

where‖H‖L∞(Θ) ≔ supϑ∈Θ ‖Hϑ‖ denotes the supremum norm ofH(·), which is finite by the Extreme Value The-
orem. Since the last factor is almost surely finite by assumption, the claim follows. For part ii), we observe
that Eq. (2.7a) and Lemma 2.1, ii) imply thatεϑ has the infinite-order moving average representationεϑ,n =
Yn − Hϑ

∑∞
ν=1 (Fϑ − KϑHϑ)

ν−1 KϑYn−ν, whose coefficientscϑ,ν ≔ −Hϑ (Fϑ − KϑHϑ)
ν−1 Kϑ are uniformly exponen-

tially bounded. Explicitly,‖cϑ.ν‖ 6 ‖H‖L∞(Θ) ‖K‖L∞(Θ) ρ
n−1. This completes the proof.

Lemma 2.4. Let L andL̂ be given by Eqs.(2.11)and (2.15). If Assumptions D1 to D3 are satisfied, then the

sequence L−1 supϑ∈Θ
∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)

∣∣∣∣ converges to zero almost surely, as L→ ∞.

Proof. We first observe that

∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)
∣∣∣∣ =

L∑

n=1

[(
ε̂ϑ,n − εϑ,n

)T V−1
ϑ ε̂ϑ,n + ε

T
ϑ,nV−1

ϑ

(
ε̂ϑ,n − εϑ,n

)]
.

The fact that, by Lemma 2.1, iii), there exists a constantC such that
∥∥∥V−1
ϑ

∥∥∥ 6 C implies that

1
L

sup
ϑ∈Θ

∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)
∣∣∣∣ 6

C
L

L∑

n=1

ρn

[
sup
ϑ∈Θ

∥∥∥ε̂ϑ,n
∥∥∥ + sup

ϑ∈Θ

∥∥∥εϑ,n
∥∥∥
]
. (2.21)

Lemma 2.3, ii) and the assumption thatY has finite second moments imply that the expectationE supϑ∈Θ
∥∥∥εϑ,n

∥∥∥ is
finite. Applying Markov’s inequality, one sees that, for every positiveǫ,

∞∑

n=1

P

(
ρn sup
ϑ∈Θ

∥∥∥εϑ,n
∥∥∥ > ǫ

)
6 E sup

ϑ∈Θ

∥∥∥εϑ,1
∥∥∥
∞∑

n=1

ρn

ǫ
< ∞,

becauseρ < 1. The Borel–Cantelli Lemma shows thatρn supϑ∈Θ
∥∥∥εϑ,n

∥∥∥ converges to zero almost surely, asn→ ∞.
In an analogous way one can show thatρn supϑ∈Θ

∥∥∥ε̂ϑ,n
∥∥∥ converges to zero almost surely, and, consequently, so does

the Cesàro mean in Eq. (2.21). The claim thus follows.

Lemma 2.5. Assume that Assumptions D3 and D4 as well as the first alternative of Assumption D5 hold. If
εϑ,1 = εϑ0,1 almost surely, thenϑ = ϑ0.

Proof. Assume, for the sake of contradiction, thatϑ , ϑ0. By Assumption D5, there exist matricesC j ∈ Md(R),
j ∈ N0, such that, for|z| 6 1,

Hϑ [1N − (Fϑ − KϑHϑ)z]
−1 Kϑ − Hϑ0

[
1N − (Fϑ0 − Kϑ0Hϑ0z

]−1 Kϑ0 =

∞∑

j= j0

C jz
j , (2.22)

whereC j0 , 0, for some j0 > 0. Using Eq. (2.7b) and the assumed equality ofεϑ,1 andεϑ0,1, this implies that
0d =

∑∞
j= j0 C jY j0− j almost surely; in particular, the random variableC j0Y0 is equal to a linear combination of the

components ofYn, n < 0. It thus follows from the interpretation of the innovations sequenceεϑ0 as linear prediction
errors for the processY thatC j0εϑ0,0 is equal to zero, which implies thatEC j0εϑ0,0ε

T
ϑ0,0

CT
j0
= C j0Vϑ0C

T
j0
= 0d. Since

Vϑ0 is assumed to be non-singular, this implies that the matrixC j0 is the null matrix, a contradiction to Eq. (2.22).
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Lemma 2.6. If Assumptions D1 to D4 hold, then, with probability one, thesequence of random functionsϑ 7→
L−1L̂ (ϑ, yL) converges, as L tends to infinity, uniformly inϑ to the limiting functionQ : Θ→ R defined by

Q(ϑ) = d log(2π) + log detVϑ + Eε
T
ϑ,1V−1

ϑ εϑ,1. (2.23)

Proof. In view of the approximation results in Lemma 2.4, it is enough to show that the sequence of random
functionsϑ 7→ L−1L (ϑ, yL) converges uniformly toQ. The proof of this assertion is based on the observation
following Assumption D4 that for eachϑ ∈ Θ the sequenceεϑ is ergodic and its consequence that, by Birkhoff’s
Ergodic Theorem (Durrett, 2010, Theorem 6.2.1), the sequence L−1L (ϑ, yL) converges toQ(ϑ) point-wise. The
stronger statement of uniform convergence follows from Assumption D1 thatΘ is compact by an argument analogous
to the proof of Ferguson (1996, Theorem 16).

Lemma 2.7. Under Assumptions D1 to D3 and D5, the functionQ : Θ → R, as defined in Eq.(2.23), has a
unique global minimum atϑ0.

Proof. We first observe that the differenceεϑ,1 − εϑ0,1 is an element of the Hilbert space spanned by the
random variables{Yn,n 6 0}, and thatεϑ0,1 is, by definition, orthogonal to this space. Thus, the expectation
E

(
εϑ,1 − εϑ0,1

)T V−1
ϑ
εϑ0,1 is equal to zero and, consequently,Q(ϑ) can be written as

Q(ϑ) = d log(2π) + EεT
ϑ0,1

V−1
ϑ εϑ0,1 + E

(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

)
+ log detVϑ.

In particular, sinceEεT
ϑ0,1

V−1
ϑ0
εϑ0,1 = tr

[
V−1
ϑ0
Eεϑ0,1ε

T
ϑ0,1

]
= d, it follows thatQ(ϑ0) = log detVϑ0 +d(1+ log(2π)). The

elementary inequalityx− log x > 1, for x > 0, implies that trM − log detM > d for all symmetric positive definite
d×d matricesM ∈ S++d (R) with equality if and only ifM = 1d. Using this inequality forM = V−1

ϑ0
Vϑ, we thus obtain

that, for allϑ ∈ Θ,

Q(ϑ) −Q(ϑ0) =d + tr
[
V−1
ϑ Eεϑ0,1ε

T
ϑ0,1

]
− log det

(
V−1
ϑ0

Vϑ
)

+ E
(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

) − EεT
ϑ0,1

V−1
ϑ0
εϑ0,1

>E
(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

)
> 0.

It remains to argue that this chain of inequalities is in facta strict inequality ifϑ , ϑ0. If Vϑ , Vϑ0, the first inequality
is strict, and we are done. IfVϑ = Vϑ0, the first alternative of Assumption D5 is satisfied. The second inequality is
an equality if and only ifεϑ,1 = εϑ0,1 almost surely, which, by Lemma 2.5, implies thatϑ = ϑ0. Thus, the function
Q has a unique global minimum atϑ0.

Proof (of Theorem 2.1). We shall first show that the sequenceL−1L̂ (ϑ̂
L
, yL), L ∈ N, converges almost surely to

the deterministic numberQ(ϑ0) as the sample sizeL tends to infinity. Assume that, for some positive numberǫ, it

holds that supϑ∈Θ
∣∣∣∣L−1L̂ (ϑ, yL) −Q(ϑ)

∣∣∣∣ 6 ǫ. It then follows that

L−1
L̂ (ϑ̂

L
, yL) 6 L−1

L̂ (ϑ0, yL) 6 Q(ϑ0) + ǫ and L−1
L̂ (ϑ̂

L
, yL) > Q(ϑ̂

L
) − ǫ > Q(ϑ0) − ǫ,

where it was used thatϑ̂
L

is defined to minimizeL̂ (·, yL) and that, by Lemma 2.7,ϑ0 minimizesQ(·). In particular,

it follows that
∣∣∣∣L−1L̂ (ϑ̂

L
, yL) −Q(ϑ0)

∣∣∣∣ 6 ǫ. This observation and Lemma 2.6 immediately imply that

P

(
1
L

L̂ (ϑ̂
L
, yL) −−−−→

L→∞
Q(ϑ0)

)
> P

(
sup
ϑ∈Θ

∣∣∣∣∣
1
L

L̂ (ϑ, yL) −Q(ϑ)
∣∣∣∣∣ −−−−→L→∞

0

)
= 1. (2.24)

To complete the proof of the theorem, it suffices to show that, for every neighbourhoodU of ϑ0, with probability

one, ϑ̂
L

will eventually lie in U. For every such neighbourhoodU of ϑ0, we define the real numberδ(U) ≔
infϑ∈Θ\U Q(ϑ)−Q(ϑ0), which is strictly positive by Lemma 2.7. Then the following sequence of inequalities holds:

P

(
ϑ̂

L −−−−→
L→∞

ϑ0

)
= P

(
∀U ∃L0 : ϑ̂

L ∈ U ∀L > L0

)

>P

(
∀U ∃L0 : Q(ϑ̂

L
) −Q(ϑ0) < δ(U) ∀L > L0

)

>P

(
∀U ∃L0 :

∣∣∣∣L−1
L̂ (ϑ̂

L
, yL) −Q(ϑ0)

∣∣∣∣ < δ(U)/2 and
∣∣∣∣L−1

L̂ (ϑ̂
L
, yL) −Q(ϑ̂

L
)
∣∣∣∣ < δ(U)/2 ∀L > L0

)
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The last probability is equal to one by Eq. (2.24) and Lemma 2.6.

2.4. Proof of Theorem 2.2 – Asymptotic normality

In this section we prove the assertion of Theorem 2.2, that the distribution ofL1/2
(
ϑ̂

L − ϑ0

)
converges to a normal

random variable with mean zero and covariance matrixΞ = J−1IJ−1, an expression for which is given in Eq. (2.20).
First, we collect basic properties of∂mεϑ,n and∂mε̂ϑ,n, where∂m = ∂/∂ϑ

m denotes the partial derivative with respect
to themth component ofϑ; the following lemma mirrors Lemma 2.3.

Lemma 2.8. If Assumptions D1 to D3 and D7 hold, the pseudo-innovations sequencesεϑ and ε̂ϑ defined by the
Kalman filter equations(2.7a)and (2.13)have the following properties.

i) If, for k ∈ {1, . . . , r}, the initial valuesX̂ϑ,initial are such that bothsupϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥ andsupϑ∈Θ
∥∥∥∂kX̂ϑ,initial

∥∥∥ are
almost surely finite, then, with probability one, there exist a positive number C and a positive numberρ < 1,
such thatsupϑ∈Θ

∥∥∥∂kεϑ,n − ∂kε̂ϑ,n
∥∥∥ 6 Cρn, n ∈ N.

ii) For each k∈ {1, . . . , r}, the random sequences∂kεϑ are linear functions ofY, i. e. there exist matrix sequences(
c(k)
ϑ,ν

)
ν>1

, such that∂kεϑ,n =
∑∞
ν=1 c(k)

ϑ,ν
Yn−ν. The matrices c(k)

ϑ,ν
are uniformly exponentially bounded, i. e. there

exist a positive constant C and a positive constantρ < 1, such thatsupϑ∈Θ
∥∥∥∥c(k)
ϑ,ν

∥∥∥∥ 6 Cρν,ν ∈ N.

iii) If, for k , l ∈ {1, . . . , r}, the initial valuesX̂ϑ,initial are such thatsupϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥, as well assupϑ∈Θ
∥∥∥∂i X̂ϑ,initial

∥∥∥,
i ∈ {k, l}, and supϑ∈Θ

∥∥∥∂2
k,l X̂ϑ,initial

∥∥∥ are almost surely finite, then, with probability one, there exist a positive

number C and a positive numberρ < 1, such thatsupϑ∈Θ
∥∥∥∂2

k,lεϑ,n − ∂2
k,l ε̂ϑ,n

∥∥∥ 6 Cρn, n ∈ N.

iv) For each k, l ∈ {1, . . . , r}, the random sequences∂2
k,lεϑ are linear functions ofY, i. e. there exist matrix sequences(

c(k,l)
ϑ,ν

)
ν>1

, such that∂2
k,lεϑ,n =

∑∞
ν=1 c(k,l)

ϑ,ν
Yn−ν. The matrices c(k,l)

ϑ,ν
are uniformly exponentially bounded, i. e. there

exist a positive constant C and a positive constantρ < 1, such thatsupϑ∈Θ
∥∥∥∥c(k,l)
ϑ,ν

∥∥∥∥ 6 Cρν, ν ∈ N.

Proof. Analogous to the proof of Lemma 2.3, repeatedly interchanging differentiation and summation, and
using the fact that, as a consequence of Assumptions D1 to D3 and D7, both∂k

[
Hϑ (Fϑ − KϑHϑ)

ν−1 Kϑ
]

and

∂2
k,l

[
Hϑ (Fϑ − KϑHϑ)

ν−1 Kϑ
]

are uniformly exponentially bounded.

Lemma 2.9. For eachϑ ∈ Θ and every m= 1, . . . , r, the random variable∂mL (ϑ, yL) has finite variance.

Proof. The claim follows from Assumption D8, the exponential decay of the coefficient matricescϑ,ν andc(m)
ϑ,ν

proved in Lemma 2.3, ii) and Lemma 2.8, and the Cauchy–Schwarz inequality.

We need the following covariance inequality which is a consequence of Davydov’s inequality and the multidi-
mensional generalization of an inequality used in the proofof Francq and Zakoïan (1998, Lemma 3). For a positive
real numberα, we denote by⌊α⌋ the greatest integer smaller than or equal toα.

Lemma 2.10. Let X be a strictly stationary, strongly mixing d-dimensional stochastic process with finite(4+ δ)th
moments for someδ > 0. Then there exists a constant C, such that for all d× d matrices A, B, every n∈ Z, ∆ ∈ N,
and time indicesν, ν′ ∈ N0, µ, µ′ = 0,1 . . . , ⌊∆/2⌋, it holds that

Cov
(
XT

n−νAXn−ν′ ; XT
n+∆−µBXn+∆−µ′

)
6 C ‖A‖ ‖B‖

[
αX

(⌊
∆

2

⌋)]δ/(δ+2)

, (2.25)

whereαX denotes the strong mixing coefficients of the processX.

Proof. We first note that the bilinearity ofCov(·; ·) and the elementary inequalityMi j 6 ‖M‖, M ∈ Md(R), imply
that

Cov
(
XT

n−νAXn−ν′ ; XT
n+∆−µBXn+∆−µ′

)
6d4 ‖A‖ ‖B‖ max

i, j,s,t=1,...,d
Cov

(
Xi

n−νX
j
n−ν′ ; Xs

n+∆−µX
t
n+∆−µ′

)
.
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Since the projection which maps a vector to one of its components is measurable, it follows that the random vari-
ableXi

n−νX
j
n−ν′ is measurable with respect toF n−min{ν,ν′}

−∞ , theσ-algebra generated by{Xk : −∞ < k 6 n−min{ν, ν′}}.
Similarly, the random variableXs

n+∆−µX
t
n+∆−µ′ is measurable with respect toF∞

n+∆−max{µ,µ′}. Davydov’s inequality
(Davydov, 1968, Lemma 2.1) implies that there exists a universal constantK such that

Cov
(
Xi

n−νX
j
n−ν′ ; Xs

n+∆−µX
t
n+∆−µ′

)
6K

(
E

∣∣∣∣Xi
n−νX

j
n−ν′

∣∣∣∣
2+δ)1/(2+δ) (

E

∣∣∣∣Xs
n+∆−µX

t
n+∆−µ′

∣∣∣∣
2+δ)1/(2+δ)

× [
αX

(
∆ −max

{
µ, µ′

}
+min

{
ν, ν′

})]δ/(2+δ)

6C

[
αX

(⌊
∆

2

⌋)]δ/(2+δ)
,

where it was used that∆ −max{µ, µ′} +min {ν, ν′} > ⌊∆/2⌋, and that strong mixing coefficients are non-increasing.
By the Cauchy–Schwarz inequality the constantC satisfies

C = K
(
E

∣∣∣∣Xi
n−νX

j
n−ν′

∣∣∣∣
2+δ)1/(2+δ) (

E

∣∣∣∣Xs
n+∆−µX

t
n+∆−µ′

∣∣∣∣
2+δ)1/(2+δ)

6 K
(
E ‖X1‖4+2δ

) 2
2+δ
,

and thus does not depend onn, ν, ν′, µ, µ′,∆, nor oni, j, s, t.

The next lemma is a multivariate generalization of Francq and Zakoïan (1998, Lemma 3). In the proof of
Boubacar Mainassara and Francq (2011, Lemma 4) this generalization is used without providing details and, more
importantly without imposing Assumption D9 about the strong mixing of Y. In view of the derivative terms∂mεϑ,n
in Eq. (2.27) it is not clear how the result of the lemma can be proved under the mere assumption of strong mixing
of the innovations sequenceεϑ0. We therefore think that a detailed account, properly generalizing the arguments in
the original paper (Francq and Zakoïan, 1998) to the multidimensional setting, is justified.

Lemma 2.11. Suppose that Assumptions D1 to D3, D8 and D9 hold. Then, for every ϑ ∈ Θ, the sequence
L−1
Var∇ϑL (ϑ, yL) of deterministic matrices converges to a limit I(ϑ) as L→ ∞.

Proof. It is enough to show that, for eachϑ ∈ Θ, and allk, l = 1, . . . , r, the sequence of real-valued random
variablesI (k,l)

ϑ,L , defined by

I (k,l)
ϑ,L =

1
L

L∑

n=1

L∑

t=1

Cov
(
ℓ

(k)
ϑ,n, ℓ

(l)
ϑ,t

)
, (2.26)

converges to a limit asL tends to infinity, whereℓ(m)
ϑ,n = ∂mlϑ,n is the partial derivative of thenth term in expression

(2.11) for L (ϑ, yL). It follows from well-known differentiation rules for matrix functions (see, e. g. Horn and
Johnson, 1994, Sections 6.5 and 6.6) that

ℓ
(m)
ϑ,n = tr

[
V−1
ϑ

(
1d − εϑ,nεT

ϑ,nV−1
ϑ

)
(∂mVϑ)

]
+ 2

(
∂mε

T
ϑ,n

)
V−1
ϑ εϑ,n. (2.27)

By the assumed stationarity of the processesεϑ, the covariances in the sum (2.26) depend only on the difference
n− t. For the proof of the lemma it suffices to show that the sequencec(k,l)

ϑ,∆
= Cov

(
ℓ

(k)
ϑ,n, ℓ

(l)
n+∆,ϑ

)
, ∆ ∈ Z, is absolutely

summable for allk, l = 1, . . . , r, because then

I (k,l)
ϑ,L =

1
L

L∑

∆=−L

(L − |∆|) c(k,l)
ϑ,∆
−−−−→
L→∞

∑

∆∈Z
c
(k,l)
ϑ,∆

< ∞. (2.28)

In view of the of the symmetryc(k,l)
ϑ,∆
= c

(k,l)
ϑ,−∆, it is no restriction to assume that∆ ∈ N. In order to show that

∑
∆

∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣
is finite, we first use the bilinearity ofCov(·; ·) to estimate

∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣ 64
∣∣∣∣Cov

((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n;

(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣

+

∣∣∣∣Cov
(
tr

[
V−1
ϑ εϑ,nε

T
ϑ,nV−1

ϑ ∂kVϑ
]
; tr

[
V−1
ϑ εϑ,n+∆ε

T
ϑ,n+∆V

−1
ϑ ∂lVϑ

])∣∣∣∣+

+ 2
∣∣∣∣Cov

(
tr

[
V−1
ϑ εϑ,nε

T
ϑ,nV−1

ϑ ∂kVϑ
]
;
(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣+

+ 2
∣∣∣∣Cov

((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n; tr

[
V−1
ϑ εϑ,n+∆ε

T
ϑ,n+∆V

−1
ϑ ∂lVϑ

])∣∣∣∣ .
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Each of these four terms can be analysed separately. We give details only for the first one, the arguments for the
other three terms being similar. Using the moving average representations forεϑ, ∂kεϑ and∂lεϑ, it follows that

∣∣∣∣Cov
((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n;

(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣ =
∞∑

ν,ν′,µ,µ′=0

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc
(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ .

This sum can be split into one partI+ in which at least one of the summation indicesν, ν′, µ andµ′ exceeds∆/2, and
one partI− in which all summation indices are less than or equal to∆/2. Using the fact that, by the Cauchy–Schwarz
inequality,

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ; YT

n+∆−µc
(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ 6
∥∥∥V−1
ϑ

∥∥∥2
∥∥∥∥c(k)
ϑ,ν

∥∥∥∥
∥∥∥cϑ,ν′

∥∥∥
∥∥∥∥c(l)
ϑ,µ′

∥∥∥∥
∥∥∥cϑ,µ′

∥∥∥E ‖Yn‖4 ,

it follows from Assumption D8 and the uniform exponential decay of
∥∥∥cϑ,ν

∥∥∥ and
∥∥∥∥c(m)
ϑ,ν

∥∥∥∥ proved in Lemma 2.3, ii) and
Lemma 2.8, ii) that there exist constantsC andρ < 1 such that

I+ =
∞∑

ν,ν′,µ,µ′=0
max{ν,ν′,µ,µ′}>∆/2

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc
(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ 6 Cρ∆/2. (2.29)

For the contribution from all indices smaller than or equal to ∆/2, Lemma 2.10 implies that

I− =
⌊∆/2⌋∑

ν,ν′,µ,µ′=0

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc
(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ 6 C

[
αY

(⌊
∆

2

⌋)]δ/(2+δ)
. (2.30)

It thus follows from Assumption D9 that the sequences
∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣, ∆ ∈ N, are summable, and Eq. (2.28) completes the
proof of the lemma.

Lemma 2.12. LetL andL̂ be given by Eqs.(2.11)and (2.15). Assume that Assumptions D1 to D3 and D7 are
satisfied. Then the following hold.

i) For each m= 1, . . . , r, the sequence L−1/2 supϑ∈Θ
∣∣∣∣∂mL̂ (ϑ, yL) − ∂mL (ϑ, yL)

∣∣∣∣ converges to zero in probability,
as L→ ∞.

ii) For all k , l = 1, . . . , r, the sequence L−1 supϑ∈Θ
∣∣∣∣∂2

k,lL̂ (ϑ, yL) − ∂2
k,lL (ϑ, yL)

∣∣∣∣ converges to zero almost surely, as
L→ ∞.

Proof. Similar to the proof of Lemma 2.4.

Lemma 2.13. Under Assumptions D1, D3 and D7 to D9, the random variable L−1/2∇ϑL̂ (ϑ0, yL) is asymptotic-
ally normally distributed with mean zero and covariance matrix I (ϑ0).

Proof. Because of Lemma 2.12, i) it is enough to show thatL−1/2∇ϑL
(
ϑ0, yL

)
is asymptotically normally

distributed with mean zero and covariance matrixI (ϑ0). First, we note that

∂iL (ϑ, yL) =
L∑

n=1

{
tr

[
V−1
ϑ

(
1d − εϑ,nεT

ϑ,nV−1
ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V−1
ϑ εϑ,n

}
, (2.31)

which holds for every componenti = 1, . . . , r. The facts thatEεϑ0,nε
T
ϑ0,n

equalsVϑ0, and thatεϑ0,n is orthogonal

to the Hilbert space generated by{Yt, t < n}, of which ∂iε
T
ϑ,n is an element, show thatE∂iL

(
ϑ0, yL

)
= 0. Using

Lemma 2.3, ii), expression (2.31) can be rewritten as

∂iL
(
ϑ0, yL

)
=

L∑

n=1

[
Y(i)

m,n − EY(i)
m,n

]
+

L∑

n=1

[
Z(i)

m,n − EZ(i)
m,n

]
,
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where, for everym ∈ N, the processesY(i)
m andZ(i)

m are defined by

Y(i)
m,n = tr

[
V−1
ϑ0

(∂iVϑ0)
]
+

m∑

ν,ν′=0

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]
+ 2YT

n−νc
(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
, (2.32a)

Z(i)
m,n =U(i)

m,n + V(i)
m,n, (2.32b)

and

U(i)
m,n =

∞∑

ν=0

∞∑

ν′=m+1

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]
+ 2YT

n−νc
(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
,

V(i)
m,n =

∞∑

ν=m+1

m∑

ν′=0

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]
+ 2YT

n−νc
(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
.

It is convenient to also introduce the notations

Ym,n =
(

Y(1)
m,n · · · Y(r)

m,n

)T
and Zm,n =

(
Z(1)

m,n · · · Z(r)
m,n

)T
. (2.33)

The rest of the proof proceeds in three steps: in the first we show that, for each natural numberm, the sequence
L−1/2 ∑

n
[Ym,n − EYm,n

]
is asymptotically normally distributed with asymptotic covariance matrixIm, and thatIm

converges toI (ϑ0) asm tends to infinity. In the second step we prove thatL−1/2 ∑
n
[Zm,n − EZm,n

]
goes to zero

uniformly in L, asm → ∞, and the last step is devoted to combining the first two steps to prove the asymptotic
normality ofL−1/2∇ϑL

(
ϑ0, yL

)
.

Step 1 SinceY is stationary, it is clear thatYm is a stationary process. Moreover, the strong mixing coefficients
αYm(k) ofYm satisfyαYm(k) 6 αY(max{0, k−m}) becauseYm,n depends only on the finitely many valuesYn−m, . . . ,Yn

of Y (see Bradley, 2007, Remark 1.8 b)). In particular, by Assumption D9, the strong mixing coefficients of the pro-
cessesYm satisfy the summability condition

∑
k[αYm(k)]δ/(2+δ) < ∞. Since, by the Cramér–Wold device, weak con-

vergence of the sequenceL−1/2 ∑L
n=1

[Ym,n − EYm,n
]
to a multivariate normal distribution with mean zero and covari-

ance matrixΣ is equivalent to the condition that, for every vectoru ∈ Rr , the sequenceL−1/2uT ∑L
n=1

[Ym,n − EYm,n
]

converges to a one-dimensional normal distribution with mean zero and varianceuTΣu, we can apply the Central
Limit Theorem for univariate strongly mixing processes (Herrndorf, 1984),(Ibragimov, 1962, Theorem 1.7) to obtain
that

1
√

L

L∑

n=1

[Ym,n − EYm,n
] d−−−−→

L→∞
N (0r , Im), where Im =

∑

∆∈Z
Cov

(Ym,n;Ym,n+∆
)
. (2.34)

The claim thatIm converges toI (ϑ0) will follow if we can show that

Cov
(
Y(k)

m,n; Y(l)
m,n+∆

)
−−−−→
m→∞

Cov
(
ℓ

(k)
ϑ0,n

; ℓ(l)
ϑ0,n+∆

)
, ∀∆ ∈ Z, (2.35)

and that
∣∣∣∣Cov

(
Y(k)

m,n; Y(l)
m,n+∆

)∣∣∣∣ is dominated by an absolutely summable sequence. For the first condition, we note that
the bilinearity ofCov(·; ·) implies that

Cov
(
Y(k)

m,n; Y(l)
m,n+∆

)
− Cov

(
ℓ

(k)
ϑ0,n

; ℓ(l)
ϑ0,n+∆

)
=Cov

(
Y(k)

m,n; Y(l)
m,n+∆ − ℓ

(l)
ϑ0,n+∆

)
+ Cov

(
Y(k)

m,n − ℓ
(k)
ϑ0,n

; ℓ(l)
ϑ0,n+∆

)
.

These two terms can be treated in a similar manner so we restrict our attention to the second one. The definitions of
Y(i)

m,n (Eq. (2.32a)) andℓ(i)
ϑ,n (Eq. (2.26)) allow us to compute

Y(k)
m,n − ℓ

(k)
ϑ0,n
=

∑

ν,ν′

max{ν,ν′}>m

[
tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0
∂iVϑ0

]
− 2YT

n−νc
(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
]
.

As a consequence of the Cauchy–Schwarz inequality, Assumption D8 and the exponential bounds in Lemma 2.3, i),
we therefore obtain thatVar

(
Y(k)

m,n − ℓ(k)
ϑ0,n

)
6 Cρm independent ofn. TheL2-continuity ofCov(·; ·) thus implies that

the sequenceCov
(
Y(k)

m,n − ℓ(k)
ϑ0,n

; ℓ(l)
ϑ0,n+∆

)
converges to zero asm tends to infinity at an exponential rate uniformly in

∆. The existence of a summable sequence dominating
∣∣∣∣Cov

(
Y(k)

m,n; Y(l)
m,n+∆

)∣∣∣∣ is ensured by the arguments given in the
proof of Lemma 2.11, reasoning as in the derivation of Eqs. (2.29) and (2.30).
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Step 2 We shall show that there exist positive constantsC andρ < 1, independent ofL, such that

trVar


1
√

L

L∑

n=1

Zm,n

 6 Cρm, Zm,n given in Eq. (2.33). (2.36)

Since

trVar


1
√

L

L∑

n=1

Zm,n

 6 2

trVar


1
√

L

L∑

n=1

Um,n

 + trVar


1
√

L

L∑

n=1

Vm,n


 , (2.37)

it suffices to consider the latter two terms. We first observe that

trVar


1
√

L

L∑

n=1

Um,n

 =
1
L

tr
L∑

n,n′=1

Cov
(Um,n;Um,n′

)
=

1
L

r∑

k,l=1

L−1∑

∆=−L+1

(L − |∆|) u(k,l)
m,∆ 6

r∑

k,l=1

∑

∆∈Z

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ , (2.38)

where

u
(k,l)
m,∆ =Cov

(
U(k)

m,n; U(l)
m,n+∆

)

=

m∑

ν,µ=0
ν′,µ′=m+1

Cov
(
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0
∂kVϑ0

]
+ YT

n−νc
(k),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′ ;

− tr
[
V−1
ϑ0

cϑ0,µYn+∆−µYT
n+∆−µ′c

T
ϑ,µ′V

−1
ϑ0
∂lVϑ0

]
+ YT

n+∆−µc
(l),T
ϑ0,µ

V−1
ϑ0

cϑ0,µ′Yn+∆−µ′
)
.

As before, under Assumption D8, the Cauchy–Schwarz inequality and the exponential bounds for
∥∥∥cϑ0,ν

∥∥∥ and
∥∥∥∥c(k)
ϑ0,ν

∥∥∥∥
imply that

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ < Cρm. By arguments similar to the ones used in the proof of Lemma 2.10 it can be shown that
Davydov’s inequality implies that form< ⌊∆/2⌋ it holds that

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ 6C
∞∑

ν=0

∞∑

ν′=m+1

⌊∆/2⌋∑

µ,µ′=0

ρν+ν
′+µ+µ′

[
αY

(⌊
∆

2

⌋)]δ/(2+δ)
+C

∞∑

ν,ν′=0

∑

µ,µ′

max{µ,µ′}>⌊∆/2⌋

ρν+ν
′+µ+µ′

6Cρm



[
αY

(⌊
∆

2

⌋)]δ/(2+δ)
+ ρ∆/2

 .

It thus follows that, independent of the value ofk andl,

∞∑

∆=0

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ =
2m∑

∆=0

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ +
∞∑

∆=2m+1

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ 6 Cρm

m+
∞∑

∆=0

[αY (∆)]δ/(2+δ)
 ,

and therefore, by Eq. (2.38), that trVar
(
L−1/2 ∑L

n=1Um,n

)
6 Cρm. In an analogous way one also can show that

trVar
(
L−1/2 ∑L

n=1Vm,n

)
6 Cρm, and thus the claim (2.36) follows with Eq. (2.37).

Step 3 In step 1 it has been shown thatL−1/2 ∑
n
[Ym,n − EYm,n

] d−−−−→
L→∞

N (0r , Im), and thatIm converges toI (ϑ0),

asm→ ∞. In particular, the limiting normal random variables with covariancesIm converge weakly to a normal
random variable with covariance matrixI (ϑ0). Step 2 together with the multivariate Chebyshev inequality implies
that, for everyǫ > 0,

lim
m→∞

lim sup
L→∞

P



∥∥∥∥∥∥∥
1
√

L
∇ϑL

(
ϑ0, yL

)
− 1
√

L

L∑

n=1

[Ym,n − EYm,n
]
∥∥∥∥∥∥∥
> ǫ



6 lim
m→∞

lim sup
L→∞

r
ǫ2

trVar


1
√

L

L∑

n=1

Zm,n

 6 lim
m→∞

Cr
ǫ2
ρm = 0.

Proposition 6.3.9 of Brockwell and Davis (1991) thus completes the proof.
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A very important step in the proof of asymptotic normality ofquasi maximum likelihood estimators is to establish
that the Fisher information matrixJ, evaluated at the true parameter value, is non-singular. Weshall now show that
Assumption D10 is sufficient to ensure thatJ−1 exists for linear state space models. For vector ARMA processes,
formulae similar to Eqs. (2.39) below have been derived in the literature (see, e. g., Klein et al., 2008; Klein and
Neudecker, 2000), but have not been used to derive criteria for J being non-singular.

Lemma 2.14. Assume that Assumptions D1 to D4, D7 and D10 hold. With probability one, the matrix J=
limL→∞ L−1∇2

ϑ
L̂ (ϑ0, yL) exists and is non-singular.

Proof. It can be shown as in the proof of Boubacar Mainassara and Francq (2011, Lemma 4) thatJ exists and is
equal toJ = J1 + J2, where

J1 = 2E
[(∇ϑεϑ0,1

)T V−1
ϑ0

(∇ϑεϑ0,1
)]

and J2 =
(
tr

[
V−1/2
ϑ0

(
∂iVϑ0

)
V−1
ϑ0

(
∂ jVϑ0

)
V−1/2
ϑ0

])
i j
. (2.39)

J2 is positive semidefinite because it can be written asJ2 =
(

b1 . . . br

)T (
b1 . . . br

)
, where bm =(

V−1/2
ϑ0
⊗ V−1/2

ϑ0

)
vec

(
∂mVϑ0

)
. SinceJ1 is positive semidefinite as well, proving thatJ is non-singular is equival-

ent to proving that for any non-zero vectorc ∈ Rr , the numberscT Ji c, i = 1,2, are not both zero. Assume, for
the sake of contradiction, that there exists such a vectorc = (c1, . . . , cr )T . The conditioncT J1c implies that, al-
most surely,

∑r
k=1 ck∂kεϑ0,n = 0d, for all n ∈ Z. It thus follows that

∑∞
ν=1

∑r
k=1 ck

(
∂kMϑ0,ν

)
εϑ0,−ν = 0d, where

the Markov parametersMϑ,ν are given byMϑ,ν = −HϑFν−1
ϑ

Kϑ, ν > 1. Since the sequenceεϑ0 is uncorrelated
with positive definite covariance matrix, it follows that

∑r
k=1 ck

(
∂kMϑ0,ν

)
= 0d, for everyν ∈ N. Using the rela-

tion vec(ABC) =
(
CT ⊗ A

)
vecB (Bernstein, 2005, Proposition 7.1.9), we see that the last display is equivalent to

∇ϑ
([

KT
ϑ0
⊗ Hϑ0

]
vecFν−1

ϑ0

)
c = 0d2 for everyν ∈ N. The conditioncT J2c = 0 implies that

(∇ϑ vecVϑ0

)
c = 0d2. By the

definition ofψϑ, j in Eq. (2.18) it thus follows that∇ϑψϑ0, j c = 0( j+2)d2, for every j ∈ N, which, by Assumption D10,
is equivalent to the contradiction thatc = 0r .

Proof (of Theorem 2.2). Since the estimatêϑ
L

converges almost surely toϑ0 by the consistency result proved in

Theorem 2.1, andϑ0 is an element of the interior ofΘ by Assumption D6, the estimateϑ̂
L

is an element of the interior
of Θ eventually almost surely. The assumed smoothness of the parametrization (Assumption D7) implies that the

extremal property of̂ϑ
L

can be expressed as the first order condition∇ϑL̂ (ϑ̂
L
, yL) = 0r . A Taylor expansion ofϑ 7→

∇ϑL̂ (ϑ, yL) around the pointϑ0 shows that there exist parameter vectorsϑi ∈ Θ of the formϑi = ϑ0 + ci(ϑ̂
L − ϑ0),

0 6 ci 6 1, such that

0r = L−1/2∇ϑL̂ (ϑ0, yL) +
1
L
∇2
ϑL̂ (ϑL

, yL)L1/2
(
ϑ̂

L − ϑ0

)
, (2.40)

where∇2
ϑ
L̂ (ϑL

, yL) denotes the matrix whoseith row, i = 1, . . . , r, is equal to theith row of ∇2
ϑ
L̂ (ϑi , yL). By

Lemma 2.13 the first term on the right hand side converges weakly to a multivariate normal random variable with
mean zero and covariance matrixI = I (ϑ0). As in Lemma 2.6 one can show that the sequenceϑ 7→ L−1∇3

ϑ
L̂ (ϑ, yL),

L ∈ N, of random functions converges almost surely uniformly to the continuous functionϑ 7→ ∇3
ϑ
Q(ϑ) taking

values in the spaceRr×r×r . Since on the compact spaceΘ this function is bounded in the operator norm obtained
from identifyingRr×r×r with the space of linear functions fromRr to Mr (R), that sequence is almost surely uniformly
bounded, and we obtain that

∥∥∥∥∥
1
L
∇2
ϑL̂ (ϑL

, yL) − 1
L
∇2
ϑL̂ (ϑ0, yL)

∥∥∥∥∥ 6 sup
ϑ∈Θ

∥∥∥∥∥
1
L
∇3
ϑ
L̂ (ϑ, yL)

∥∥∥∥∥
∥∥∥ϑL − ϑ0

∥∥∥ a. s.−−−−→
L→∞

0,

because, by Theorem 2.1, the second factor almost surely converges to zero asL tends to infinity. It follows
from Lemma 2.14 thatL−1∇2

ϑ
L̂ (ϑL

, yL) converges to the matrixJ almost surely, and thus from Eq. (2.40) that

L1/2
(
ϑ̂

L − ϑ0

)
d−→ N

(
0r , J−1IJ−1

)
, asL→ ∞. This shows Eq. (2.19) and completes the proof.

In practice, one is interested in also estimating the asymptotic covariance matrixΞ, which is useful in con-
structing confidence regions for the estimated parameters or in performing statistical tests. This problem has been
considered in the framework of estimating weak VARMA processes in Boubacar Mainassara and Francq (2011)



QML estimation for strongly mixing state space models and multivariate CARMA processes 17

where the following procedure has been suggested, which is also applicable in our set-up. First,J(ϑ0) is estimated

consistently byĴL = L−1∇2L̂ϑ

(
ϑ̂

L
, yL

)
. For the computation of̂JL we rely on the fact that the Kalman filter can

not only be used to evaluate the Gaussian log-likelihood of astate space model but also its gradient and Hessian.
The most straightforward, but computationally burdensomeway of achieving this is by direct differentiation of the
Kalman filter equations, which results in increasing the number of passes through the filter tor +1 andr(r +3)/2 for
the gradient and the Hessian, respectively. More sophisticated algorithms, including the Kalman smoother and/or the
backward filter have been devised and can be found in Kulikovaand Semoushin (2006); Segal and Weinstein (1989).
The construction of a consistent estimator ofI = I (ϑ0) is based on the observation thatI =

∑
∆∈Z Cov(ℓϑ0,n, ℓϑ0,n+∆),

whereℓϑ0,n = ∇ϑ
[
log detVϑ0 + ε

T
ϑ0,n

V−1
ϑ0
εϑ0,n

]
. Assuming that (ℓϑ0,n)n∈N+ admits an infinite-order AR representation

Φ(B)ℓϑ0,n = Un, whereΦ(z) = 1r+
∑∞

i=1Φizi and (Un)n∈N+ is a weak white noise with covariance matrixΣU, it follows
from the interpretation ofI/(2π) as the value of the spectral density of (ℓϑ0,n)n∈N+ at frequency zero thatI can also be
written asI = Φ−1(1)ΣUΦ(1)−1. The idea is to fit a long autoregression to (ℓ

ϑ̂
L
,n

)n=1,...L, the empirical counterparts of

(ℓϑ0,n)n∈N+ which are defined by replacingϑ0 with the estimatêϑ
L

in the definition ofℓϑ0,n. This is done by choosing
an integers > 0, and performing a least-squares regression ofℓ

ϑ̂
L
,n

on ℓ
ϑ̂

L
,n−1

, . . . , ℓ
ϑ̂

L
,n−s

, s+ 1 6 n 6 L. Denoting

by Φ̂L
s(z) = 1r +

∑s
i=1 Φ̂

L
i,sz

i the obtained empirical autoregressive polynomial and byΣ̂L
s the empirical covariance

matrix of the residuals of the regression, it was claimed in Boubacar Mainassara and Francq (2011, Theorem 4) that

under the additional assumptionE
[
‖εn‖8+δ

]
< ∞ the spectral estimator̂I L

s =
(
Φ̂L

s(1)
)−1
Σ̂L

s

(
Φ̂L

s(1)
)T,−1

converges toI

in probability asL, s→ ∞ if s3/L→ 0. The covariance matrix of̂ϑ
L

is then estimated consistently as

Ξ̂L
s =

1
L

(
ĴL

)−1
Î L
s

(
ĴL

)−1
. (2.41)

In the simulation study performed in Section 4.2, this estimator forΞ performs convincingly.

3. Quasi maximum likelihood estimation for multivariate co ntinuous-time ARMA processes

In this section we pursue the second main topic of the presentpaper, a detailed investigation of the asymptotic prop-
erties of the quasi maximum likelihood estimator of discretely observed multivariate continuous-time autoregressive
moving average processes. We will make use of the equivalence between MCARMA and continuous-time linear
state space models, as well as of the important observation that the state space structure of a continuous-time process
is preserved under equidistant sampling, which allows for the results of the previous section to be applied. The
conditions we need to impose on the parametrization of the models under consideration are therefore closely related
to the assumptions made in the discrete-time case, except that the mixing and ergodicity assumptions D4 and D9 are
automatically satisfied (Marquardt and Stelzer, 2007, Proposition 3.34).

We start the section with a short recapitulation of the definition and basic properties of Lévy-driven continu-
ous-time ARMA processes; this is followed by a discussion ofthe second-order properties of discretely observed
CARMA process, leading to a set of accessible identifiability conditions. Section 3.4 contains our main result about
the consistency and asymptotic normality of the quasi maximum likelihood estimator for equidistantly sampled
MCARMA processes.

3.1. Lévy-driven multivariate CARMA processes and continuous-time state space models
A natural source of randomness in the specification of continuous-time stochastic processes are Lévy processes. For
a thorough discussion of these processes we refer the readerto the monographs Applebaum (2004); Bertoin (1996);
Sato (1999).

Definition 3.1 (Lévy process). A two-sidedRm-valuedLévy process(L(t))t>0 is a stochastic process, defined on
a probability space(Ω,F ,P), with stationary, independent increments, continuous in probability, and satisfying
L(0) = 0m almost surely.

The class of Lévy processes includes many important processes such as Brownian motions, stable processes,
and compound Poisson processes as special cases, which makes them very useful in stochastic modelling. Another
advantage is that the property of having stationary independent increments implies that Lévy process have a rather
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particular structure which makes many problems analytically tractable. More precisely, the Lévy–Itô decomposition
theorem asserts that every Lévy process can be additively decomposed into a Brownian motion, a compound Poisson
process, and a square-integrable pure-jump martingale, where the three terms are independent. This is equivalent
to the statement that the characteristic function of a Lévy processL has the special formEei〈u,L(t)〉 = exp{tψL(u)},
u ∈ Rm, t ∈ R+, where the characteristic exponentψL is given by

ψL(u) = i〈γL,u〉 − 1
2
〈u,ΣGu〉 +

∫

Rm

[
ei〈u,x〉 − 1− i〈u, x〉I{‖x‖61}

]
νL(dx). (3.1)

γL ∈ Rm is called thedrift vector, ΣG is a non-negative definite, symmetricm × m matrix called theGaussian
covariance matrix, and theLévy measureνL satisfies the two conditionsνL({0m}) = 0 and

∫
Rm min(‖x‖2 ,1)νL(dx) <

∞. For the present purpose it is enough to know that a Lévy processL has finitekth absolute moments,k > 0, that
is E ‖L(t)‖k < ∞, if and only if

∫
‖x‖>1
‖x‖k νL(dx) < ∞ (Sato, 1999, Corollary 25.8), and that the covariance matrix

ΣL of L(1), if it exists, is given byΣG +
∫
‖x‖>1

xxTνL(dx) Sato (1999, Example 25.11).

Assumption L. The Lévy processL has mean zero and finite second moments, i. e.γL +
∫
‖x‖>1

xνL(dx) is zero,

and the integral
∫
‖x‖>1
‖x‖2 νL(dx) is finite.

Just like i. i. d. sequences are used in time series analysis to define ARMA processes, Lévy processes can be
used to construct (multivariate) continuous-time autoregressive moving average processes, called (M)CARMA pro-
cesses. IfL is a two-sided Lévy process with values inRm and p > q are integers, thed-dimensionalL-driven
MCARMA( p,q) process with autoregressive polynomial

z 7→ P(z) ≔ 1dzp + A1zp−1 + . . . + Ap ∈ Md(R[z]) (3.2a)

and moving average polynomial

z 7→ Q(z) ≔ B0zq + B1zq−1 + . . . + Bq ∈ Md,m(R[z]) (3.2b)

is defined as the solution to the formal differential equationP(D)Y(t) = Q(D)DL(t), D ≡ (d/dt). It is often useful to
allow for the dimensions of the driving Lévy processL and theL-driven MCARMA process to be different, which
is a slight extension of the original definition of Marquardtand Stelzer (2007). The results obtained in that paper
remain true if our definition is used. In general, the paths ofa Lévy process are not differentiable, so we interpret the
defining differential equation as being equivalent to thestate space representation

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t), t ∈ R, (3.3)

whereA ,B, andC are given by

A =



0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1d

−Ap −Ap−1 . . . . . . −A1



∈ Mpd(R), (3.4a)

B =
(
βT

1 · · · βT
p

)T ∈ Mpd,m(R), βp− j = −I{0,...,q}( j)


p− j−1∑

i=1

Aiβp− j−i − Bq− j

 , (3.4b)

C = (1d,0, . . . ,0) ∈ Md,pd(R). (3.4c)

It follows from representation (3.3) that MCARMA processesare special cases of linear multivariate continuous-
time state space models, and in fact, the class of linear state space models is equivalent to the class of MCARMA
models (Schlemm and Stelzer, 2011, Corollary 3.4). By considering the class of linear state space models, one can
define representations of MCARMA processes which are different from Eq. (3.3) and better suited for the purpose
of estimation.



QML estimation for strongly mixing state space models and multivariate CARMA processes 19

Definition 3.2 (State space model). A continuous-time linear state space model(A, B,C, L) of dimension N with
values inRd is characterized by anRm-valued driving Lévy processL, a state transition matrix A∈ MN(R), an input
matrix B∈ MN,m(R), and an observation matrix C∈ Md,N(R). It consists of a state equation of Ornstein–Uhlenbeck
type

dX(t) = AX(t)dt + BdL(t), t ∈ R, (3.5a)

and an observation equation
Y(t) = CX(t), t ∈ R. (3.5b)

TheRN-valued processX = (X(t))t∈R is the state vector process, andY = (Y(t))t∈R the output process.

A solutionY to Eq. (3.5) is calledcausalif, for all t, Y(t) is independent of theσ-algebra generated by{L(s) : s> t}.
Every solution to Eq. (3.5a) satisfies

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)BdL(u), ∀s, t ∈ R, s< t, (3.6)

where the stochastic integral with respect toL is well-defined by Protter (1990, Theorem 3.9). The independent-in-
crement property of Lévy processes implies thatX is a Markov process. The following can be seen as the multivari-
ate extension of Brockwell et al. (2011, Proposition 1) and recalls conditions for the existence of a stationary causal
solution of the state equation (3.5a) for easy reference. Wealways work under the following assumption.

Assumption E. The eigenvalues of the matrix A have strictly negative real parts.

Proposition 3.1 (Sato and Yamazato (1983, Theorem 5.1)). If Assumptions E and L hold, then Eq.(3.5a)has a
unique strictly stationary, causal solutionX given byX(t) =

∫ t

−∞ eA(t−u)BdL(u). Moreover,X(t) has mean zero and
second-order structure

Var(X(t)) ≕Γ0 =

∫ ∞

0
eAuBΣLBTeATudu, (3.7a)

Cov (X(t + h), X(t)) ≕γY(h) = eAhΓ0, h > 0, (3.7b)

where the varianceΓ0 satisfies AΓ0 + Γ0AT = −BΣLBT .

It is an immediate consequence that the output processY has mean zero and autocovariance functionR ∋ h 7→ γY(h)
given byγY(h) = CeAhΓ0CT , h > 0, and thatY itself can be written succinctly as a moving average of the driving
Lévy process asY(t) =

∫ ∞
−∞ g(t − u)dL(u), whereg(t) = CeAtBI[0,∞)(t). This representation shows that the behaviour

of the processY depends on the values of the individual matricesA, B, andC only through the productsCeAtB,
t ∈ R. The following lemma relates this analytical statement to an algebraic one about rational matrices, allowing us
to draw a connection to the identifiability theory of discrete-time state space models.

Lemma 3.1. Two matrix triplets(A, B,C), (Ã, B̃, C̃) of appropriate dimensions satisfy CeAtB = C̃eÃtB̃ for all t ∈ R
if and only if C(z1 − A)−1B = C̃(z1 − Ã)−1B̃ for all z ∈ C.

Proof. If we start at the first equality and replace the matrix exponentials by their spectral representations (see
Lax, 2002, Theorem 17.5), we obtain

∫
γ

eztC(z1 − A)−1Bdz =
∫
γ̃

eztC̃(z1 − Ã)−1B̃dz, whereγ is a closed contour
in C winding around each eigenvalue ofA exactly once, and likewise for ˜γ. Since we can always assume that
γ = γ̃ by takingγ to be R times the unit circle,R > max{|λ| : λ ∈ σA ∪ σÃ},it follows that, for eacht ∈ R,∫
γ

ezt
[
C(z1 − A)−1B− C̃(z1 − Ã)−1B̃

]
dz= 0. Since the rational matrix function∆(z) = C(z1−A)−1B− C̃(z1− Ã)−1B̃

has only poles with modulus less thanR, it has an expansion around infinity,∆(z) =
∑∞

n=0 Anz−n, An ∈ Md(C), which
converges in a region{z ∈ C : |z| > r} containingγ. Using the fact that this series converges uniformly on the
compact setγ and applying the Residue Theorem from complex analysis (Dieudonné, 1968, 9.16.1), which implies∫
γ

eztz−ndz = tn/n!, one sees that
∑∞

n=0
tn

n! An+1 ≡ 0N. Consequently, by the Identity Theorem (Dieudonné, 1968,
Theorem 9.4.3),An is the zero matrix for alln > 1, and since∆(z)→ 0 asz→ ∞, it follows that∆(z) ≡ 0d,m.

The rational matrix functionH : z 7→ C(z1N − A)−1B is called thetransfer functionof the state space model (3.5)
and is closely related to the spectral densityfY of the output processY, which is defined asfY(ω) =

∫
R

e−iωhγY(h)dh
– the Fourier transform ofγY . Before we make this relation explicit, we prove the following lemma.
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Lemma 3.2. For any real number v, and matrices A, B,ΣL,Γ0 as in Eq.(3.7a), it holds that

∫ ∞

−v
eAuBΣLBTeATudu = e−AvΓ0e−ATv. (3.8)

Proof. We define functionsl, r : R → MN(R) by l(v) =
∫ ∞
−v

eAuBΣLBTeATudu and r(v) = e−AvΓ0e−ATv. Both
l : v 7→ l(v) andr : v 7→ r(v) are differentiable functions ofv, satisfying

d
dv

l(v) =e−AvBΣLBTe−ATv and
d
dv

r(v) = −Ae−AvΓ0e−ATv − e−AvΓ0ATe−ATv.

Using Proposition 3.1 one sees immediately that (d/dv)l(v) = (d/dv)r(v), for all v ∈ R. Hence,l andr differ only by
an additive constant. Sincel(0) equalsr(0) by the definition ofΓ0, the constant is zero, andl(v) = r(v) for all real
numbersv.

Proposition 3.2. LetY be the output process of the state space model(3.5), and denote by H: z 7→ C(z1N−A)−1B
its transfer function. Then the relation fY(ω) = (2π)−1H(iω)ΣLH(−iω)T holds for all realω; in particular, ω 7→
fY(ω) is a rational matrix function.

Proof. First, we recall (Bernstein, 2005, Proposition 11.2.2) that the Laplace transform of any matrixA is given
by its resolvent, that is, (zI − A)−1 =

∫ ∞
0

e−zueAudu, for any complex numberz. We are now ready to compute

1
2π

H(iω)ΣLH(−iω)T =
1
2π

C

[∫ ∞

0
e−iωueAuduBΣLBT

∫ ∞

0
eiωveATvdv

]
dhCT .

Introducing the new variableh = u− v, and using Lemma 3.2, this becomes

1
2π

C

[∫ ∞

0

∫ ∞

0
e−iωheAheAvBΣLBTeATvdhdv+

∫ ∞

0

∫ 0

−v
e−iωheAheAvBΣLBTeATvdhdv

]
CT

=
1
2π

C

[∫ ∞

0
e−iωheAhΓ0dh+

∫ 0

−∞
e−iωhΓ0e−AThdh

]
CT .

By Eq. (3.7b) and the fact that the spectral density and the autocovariance function of a stochastic process are Fourier
duals of each other, the last expression is equal to (2π)−1

∫ ∞
−∞ e−iωhγY(h)dh = fY(ω), which completes the proof.

A converse of Proposition 3.2, which will be useful in our later discussion of identifiability, is the Spectral Fac-
torization Theorem. Its proof can be found in Rozanov (1967,Theorem 1.10.1) and also in Caines (1988, Theorem
4.1.4).

Theorem 3.1. Every positive definite rational matrix function f∈ S+d (C{ω}) of full rank can be factorized as
f (ω) = (2π)−1W(iω)W(−iω)T , where the rational matrix function z7→ W(z) ∈ Md,N (R{z}) has full rank and is, for
fixed N, uniquely determined up to an orthogonal transformation W(z) 7→W(z)O, for some orthogonal N×N matrix
O.

3.2. Equidistant observations
We now turn to properties of the sampled processY(h) = (Y(h)

n )n∈Z which is defined byY(h)
n = Y(nh) and represents

observations of the processY at equally spaced points in time. A very fundamental observation is that the linear state
space structure of the continuous-time process is preserved under sampling, as detailed in the following proposition.
Of particular importance is the explicit formula (3.10) forthe spectral density of the sampled processY(h).

Proposition 3.3. Assume thatY is the output process of the state space model(3.5). Then the sampled process
Y(h) has the state space representation

Xn = eAhXn−1 + N(h)
n , N(h)

n =

∫ nh

(n−1)h
eA(nh−u)BdL(u), Y(h)

n = CX(h)
n . (3.9)
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The sequence
(
N(h)

n

)
n∈Z

is i. i. d. with mean zero and covariance matrix�Σ(h) =
∫ h

0
eAuBΣLBTeATudu. Moreover, the

spectral density ofY(h), denoted by f(h)
Y , is given by

f (h)
Y (ω) = C

(
eiω1N − eAh

)−1
�Σ

(h)
(
e−iω1N − eATh

)−1
CT ; (3.10)

in particular, f(h)
Y : [−π, π] → S+d

(
R

{
eiω

})
is a rational matrix function.

Proof. Equations (3.9) follow from settingt = nh, s = (n − 1)h in Eq. (3.6). That the sequence(Zn)n∈Z is
i. i. d. as well as the expression for�Σ(h) are consequences of the Lévy processL having independent, homogeneous
increments. Expression (3.10) is Hamilton (1994, Eq. (10.4.43)).

In the following we derive conditions for the sampled state space model (3.9) to be minimal in the sense that the
processY(h) is not the output process of any state space model of dimension less thanN, and for the noise covariance
matrix �Σ

(h) to be non-singular. We begin by recalling some well-known notions from discrete-time realization and
control theory. For a detailed account we refer to Caines (1988); Åström (1970); Sontag (1998), which also explain
the origin of the terminology.

Definition 3.3 (Algebraic realization). Let H ∈ Md,m(R{z}) be a rational matrix function. A matrix triple
(A, B,C) is called an algebraic realization of H of dimension N if H(z) = C(z1N − A)−1B, where A∈ MN(R),
B ∈ MN,m(R), and C∈ Md,N(R).

Every rational matrix function has many algebraic realizations of various dimensions. A particularly convenient
class are the ones of minimal dimension, which have a number of useful properties.

Definition 3.4 (Minimality). Let H ∈ Md,m(R{z}) be a rational matrix function. A minimal realization of H is an
algebraic realization of H of dimension smaller than or equal to the dimension of every other algebraic realization
of H. The dimension of a minimal realization of H is the McMillan degree of H.

Two other important properties of algebraic realizations,which are related to the notion of minimality and play a
key role in the study of identifiability, are introduced in the following definitions.

Definition 3.5 (Controllability). An algebraic realization(A, B,C) of dimension N is controllable if the con-
trollability matrix C =

[
B AB · · · An−1B

]
∈ Mm,mN(R) has full rank.

Definition 3.6 (Observability). An algebraic realization(A, B,C) of dimension N is observable if the observab-

ility matrix O =
[

CT (CA)T · · · (CAn−1)T
]T ∈ MdN,N(R) has full rank.

Remark 3.1. We will often say that a state space system(3.5) is minimal, controllable or observable if the
corresponding transfer function has this property.

The next theorem characterizes minimality in terms of controllability and observability.

Theorem 3.2 (Hannan and Deistler (1988, Theorem 2.3.3)). A realization(A, B,C) is minimal if and only if it is
both controllable and observable.

Lemma 3.3. For all matrices A∈ MN(R), B ∈ MN,m(R), Σ ∈ S++m (R), and every real number t> 0, the linear
subspacesim

[
B,AB, . . . ,AN−1B

]
and im

∫ t

0
eAuBΣBTeATudu are equal.

Proof. The assertion is a straightforward generalization of Bernstein (2005, Lemma 12.6.2).

Corollary 3.1. If the triple (A, B,C) is minimal of dimension N, andΣ is positive definite, then the N×N matrix

�Σ =
∫ h

0
eAuBΣBTeATudu has full rank N.

Proof. By Theorem 3.2, minimality of (A, B,C) implies controllability, and by Lemma 3.3, this is equivalent to
�Σ having full rank.
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Proposition 3.4. Assume thatY is the d-dimensional output process of the state space model(3.5)with (A, B,C)
being a minimal realization of McMillan degree N. Then a sufficient condition for the sampled processY(h) to have
the same McMillan degree, is the Kalman–Bertram criterion

λ − λ′ , 2h−1πik, ∀(λ, λ′) ∈ σ(A) × σ(A), ∀k ∈ Z\{0}. (3.11)

Proof. We will prove the assertion by showing that theN-dimensional state space representation (3.9) is both
controllable and observable, and thus, by Theorem 3.2, minimal. Observability has been shown in Sontag (1998,
Proposition 5.2.11) using the Hautus criterion (Hautus, 1969). The key ingredient in the proof of controllability is
Corollary 3.1, where we showed that the autocovariance matrix �Σ

(h) of N(h)
n , given in Proposition 3.3, has full rank;

this shows that the representation (3.9) is indeed minimal and completes the proof.

Remark 3.2. Since, by Hannan and Deistler (1988, Theorem 2.3.4), minimal realizations are unique up to a
change of basis(A, B,C) 7→ (T AT−1,T B,CT−1), for some non-singular N× N matrix T, and such a transformation
does not change the eigenvalues of A, the criterion(3.11)does not depend on what particular triple(A, B,C) one
chooses.

Uniqueness of the principal logarithm (Higham, 2008, Theorem 1.31) implies the following.

Lemma 3.4. Assume that the matrices A, B ∈ MN(R) satisfyehA = ehB for some h> 0. If the spectraσA, σB of
A, B satisfy| Im λ| < π/h for all λ ∈ σA ∪ σB, then A= B.

Lemma 3.5. Assume that A∈ MN(R) satisfies Assumption E. For every h> 0, the linear mapM : MN(R) →
MN(R), M 7→

∫ h

0
eAuMeATudu is injective.

Proof. If we apply the vectorization operator vec :MN(R) → RN2
and use the well-known identity (Bernstein,

2005, Proposition 7.1.9) vec(UVW) = (WT ⊗ U) vec(V) for matricesU,V andW of appropriate dimensions, we
obtain the induced linear operator

vec◦M ◦ vec−1 : RN2 → RN2
, vecM 7→

∫ h

0
eAu ⊗ eAuduvecM.

To prove the claim that the operatorM is injective, it is thus sufficient to show that the matrixA ≔
∫ h

0
eAu ⊗ eAudu ∈

MN2(R) is non-singular. We writeA⊕ A≔ A⊗ 1N + 1N ⊗ A. By Bernstein (2005, Fact 11.14.37),A =
∫ h

0
e(A⊕A)udu

and sinceσ(A ⊕ A) = {λ + µ : λ, µ ∈ σ(A)} (Bernstein, 2005, Proposition 7.2.3), Assumption E implies that all
eigenvalues of the matrixA⊕ A have strictly negative real parts; in particular,A⊕ A is invertible. Consequently, it
follows from Bernstein (2005, Fact 11.13.14) thatA = (A⊕ A)−1

[
e(A⊕A)h − 1N2

]
. Since, for any matrixM, it holds

thatσ(eM) = {eλ, λ ∈ σ(M)} (Bernstein, 2005, Proposition 11.2.3), the spectrum of e(A⊕A)h is a subset of the open
unit disk, and it follows thatA is invertible.

3.3. Overcoming the aliasing effect
One goal in this paper is the estimation of multivariate CARMA processes or, equivalently, continuous-time state
space models, based on discrete observations. In this briefsection we concentrate on the issue of identifiability, and
we derive sufficient conditions that prevent redundancies from being introduced into an otherwise properly specified
model by the process of sampling, an effect known as aliasing (Hansen and Sargent, 1983; McCrorie, 2003).

For ease of notation we choose to parametrize the state matrix, the input matrix, and the observation matrix of the
state space model (3.5), as well as the driving Lévy processL; from these one can always obtain an autoregressive
and a moving average polynomial which describe the same process by applying a left matrix fraction decomposition
to the corresponding transfer function, see Patel (1981) and the upcoming Theorems 4.2 and 4.3. We hence assume
that there is some compact parameter setΘ ⊂ Rr , and that, for eachϑ ∈ Θ, one is given matricesAϑ, Bϑ andCϑ of
matching dimensions, as well as a Lévy processLϑ. A basic assumption is that we always work with second order
processes (cf. Assumption L).

Assumption C1. For eachϑ ∈ Θ, it holds thatELϑ = 0m, thatE ‖Lϑ(1)‖2 is finite, and that the covariance matrix
ΣL
ϑ
= ELϑ(1)Lϑ(1)T is non-singular.
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To ensure that the model corresponding toϑ describes a stationary output process we impose the analogue of As-
sumption E.

Assumption C2. For eachϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

Next, we restrict the model class to minimal algebraic realizations of a fixed McMillan degree.

Assumption C3. For all ϑ ∈ Θ, the triple(Aϑ, Bϑ,Cϑ) is minimal with McMillan degree N.

Since we shall base the inference on a quasi maximum likelihood approach and thus on second-order properties of
the observed process, we require the model class to be identifiable from these available information according to the
following definitions.

Definition 3.7. Two stochastic processes, irrespective of whether their index sets are continuous or discrete, are
L2-observationally equivalent if their spectral densities are the same.

Definition 3.8. A family
(
Yϑ,ϑ ∈ Θ

)
of continuous-time stochastic processes is identifiable from the spectral

density if, for everyϑ1 , ϑ2, the two processesYϑ1 and Yϑ2 are not L2-observationally equivalent. It is h-iden-
tifiable from the spectral density, h> 0, if, for everyϑ1 , ϑ2, the two sampled processesY(h)

ϑ1
and Y(h)

ϑ2
are not

L2-observationally equivalent.

Assumption C4. The collection of output processes K(Θ) ≔
(
Yϑ,ϑ ∈ Θ

)
corresponding to the state space models

(Aϑ, Bϑ,Cϑ, Lϑ) is identifiable from the spectral density.

Since we shall use only discrete,h-spaced observations ofY, it would seem more natural to impose the stronger
requirement thatK(Θ) beh-identifiable. We will see, however, that this is implied by the previous assumptions if we
additionally assume that the following holds.

Assumption C5. For all ϑ ∈ Θ, the spectrum of Aϑ is a subset of{z ∈ C : −π/h < Im z< π/h}.
Theorem 3.3 (Identifiability). Assume thatΘ ⊃ ϑ 7→

(
Aϑ, Bϑ,Cϑ,ΣL

ϑ

)
is a parametrization of continuous-time

state space models satisfying Assumptions C1 to C5. Then thecorresponding collection of output processes K(Θ) is
h-identifiable from the spectral density.

Proof. We will show that for everyϑ1,ϑ2 ∈ Θ, ϑ1 , ϑ2, the sampled output processesY(h)
ϑ1

andY(h)
ϑ2

(h) are

not L2-observationally equivalent. Suppose, for the sake of contradiction, that the spectral densities of the sampled
output processes were the same. Then the Spectral Factorization Theorem (Theorem 3.1) would imply that there
exists an orthogonalN × N matrixO such that

Cϑ1(e
iω1N − eAϑ1h)�Σ

(h),1/2
ϑ1

O = Cϑ2(e
iω1N − eAϑ2h)�Σ

(h),1/2
ϑ2

, −π 6 ω 6 π,

where�Σ
(h),1/2
ϑi

, i = 1,2, are the unique positive definite matrix square roots of thematrices
∫ h

0
eAϑi uBϑiΣ

L
ϑi

BT
ϑi

eAT
ϑi

udu,
defined by spectral calculus. This means that the two triples

(
eAϑ1h, �Σ

(h),1/2
ϑ1

O,Cϑ1

)
and

(
eAϑ2h, �Σ

(h),1/2
ϑ2

,Cϑ2

)

are algebraic realizations of the same rational matrix function. Since Assumption C5 clearly implies the Kalman–
Bertram criterion (3.11), it follows from Proposition 3.4 in conjunction with Assumption C3 that these realizations
are minimal, and hence from Hannan and Deistler (1988, Theorem 2.3.4) that there exists an invertible matrix
T ∈ MN(R) satisfying

eAϑ1h = T−1eAϑ2hT, �Σ
(h),1/2
ϑ1

O = T−1
�Σ

(h),1/2
ϑ2

, Cϑ1 = Cϑ2T. (3.12)

It follows from the power series representation of the matrix exponential thatT−1eAϑ2hT equals eT
−1Aϑ2Th. Under

Assumption C5, the first equation in conjunction with Lemma 3.4 therefore implies thatAϑ1 = T−1Aϑ2T. Using this,
the second of the three equations (3.12) gives

�Σ
(h)
ϑ1
=

∫ h

0
eAϑ1u

(
T−1Bϑ2

)
ΣL
ϑ2

(
T−1Bϑ2

)T
eAT
ϑ1

udu,

which, by Lemma 3.5, implies that (T−1Bϑ2)Σ
L
ϑ2

(T−1Bϑ2)
T = Bϑ1Σ

L
ϑ1

BT
ϑ1

. Together with the last of the equations
(3.12) and Proposition 3.3 it follows thatfϑ1 = fϑ2, which contradicts Assumption C4 thatYϑ1 and Yϑ2 are not
L2-observationally equivalent.
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3.4. Asymptotic properties of the QML estimator
In this section we apply the theory that we developed in Section 2 for the quasi maximum likelihood estimation of
general discrete-time linear state space models to the estimation of continuous-time linear state space models or,
equivalently, multivariate CARMA processes. We have already seen that a discretely observed MCARMA process
can be represented by a discrete-time state space model and that, thus, a parametric family of MCARMA processes
induces a parametric family of discrete-time state space models. Equations (3.9) show that sampling with spacingh
maps the continuous-time state space models(Aϑ, Bϑ,Cϑ, Lϑ)ϑ∈Θ to the discrete-time state space models

(
eAϑh,Cϑ,N

(h)
ϑ
, 0

)
ϑ∈Θ

, N(h)
ϑ,n =

∫ nh

(n−1)h
eAϑuBϑdLϑ(u). (3.13)

which are not in the innovations form (1.2). The quasi maximum likelihood estimator̂ϑ
L,(h)

is defined by Eq. (2.15),
applied to the state space model (3.13), that is

ϑ̂
L,(h)
= argminϑ∈Θ L̂

(h)(ϑ, yL,(h)), (3.14a)

L̂
(h)(ϑ, yL,(h)) =

L∑

n=1

[
d log 2π + log detV(h)

ϑ
+ ε̂

(h),T
ϑ,n V(h),−1

ϑ
ε̂

(h)
ϑ,n

]
, (3.14b)

whereε̂(h)
ϑ

are the pseudo-innovations of the observed processY(h) = Y(h)
ϑ0

, which are computed from the sample

yL,(h) = (Y(h)
1 , . . . ,Y(h)

L ) via the recursion

X̂ϑ,n =
(
eAϑh − K(h)

ϑ
Cϑ

)
X̂ϑ,n−1 + K(h)

ϑ
Y(h)

n−1, ε̂
(h)
ϑ,n = Y(h)

n −CϑX̂ϑ,n, n ∈ N.

The initial valueX̂ϑ,1 may be chosen in the same ways as in the discrete-time case. The steady-state Kalman gain
matricesK(h)

ϑ
and pseudo-covariancesV(h)

ϑ
are computed as functions of the unique positive definite solutionΩ(h)

ϑ
to

the discrete-time algebraic Riccati equation

Ω
(h)
ϑ
= eAϑhΩ

(h)
ϑ

eAT
ϑ
h + �Σ

(h)
ϑ
−

[
eAϑhΩ

(h)
ϑ

CT
ϑ

] [
CϑΩ

(h)
ϑ

CT
ϑ

]−1 [
eAϑhΩ

(h)
ϑ

CT
ϑ

]T
,

namely

K(h)
ϑ
=

[
eAϑhΩ

(h)
ϑ

CT
ϑ

] [
CϑΩ

(h)
ϑ

CT
ϑ

]−1
, V(h)

ϑ
= CϑΩ

(h)
ϑ

CT
ϑ .

In order to obtain the asymptotic normality of the quasi maximum likelihood estimator for multivariate CARMA
processes, it is therefore only necessary to make sure that Assumptions D1 to D10 hold for the model (3.13). The
discussion of identifiability in the previous section allows us to specify accessible conditions on the parametrization
of the continuous-time model under which the quasi maximum likelihood estimator is strongly consistent. In addition
to the identifiability assumptions C3 to C5, we impose the following conditions.

Assumption C6. The parameter spaceΘ is a compact subset ofRr .

Assumption C7. The functionsϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, andϑ 7→ ΣL
ϑ

are continuous. Moreover, for each
ϑ ∈ Θ, the matrix Cϑ has full rank.

Lemma 3.6. Assumptions C1 to C3, C6 and C7 imply that the family
(
eAϑh,Cϑ,N

(h)
ϑ
, 0

)
ϑ∈Θ

of discrete-time state
space models satisfies Assumptions D1 to D4.

Proof. Assumption D1 is clear. Assumption D2 follows from the observation that the functionsA 7→ eA and

(A, B,Σ) 7→
∫ h

0
eAuBΣBTeATudu are continuous. By Assumptions C2, C6 and C7, and the fact that the eigenvalues

of a matrix are continuous functions of its entries, it follows that there exists a positive real numberǫ such that, for
eachϑ ∈ Θ, the eigenvalues ofAϑ have real parts less than or equal to−ǫ. The observation that the eigenvalues of
eA are given by the exponentials of the eigenvalues ofA thus shows that Assumption D3, i) holds withρ ≔ e−ǫh < 1.
Assumption C1 that the matricesΣL

ϑ
are non-singular and the minimality assumption C3 imply by Corollary 3.1 that

the noise covariance matrices�Σ
(h)
ϑ
= EN(h)

ϑ,nN(h),T
ϑ,n are non-singular, and thus Assumption D3, ii) holds. Further, by

Proposition 2.1, the matricesΩϑ are non-singular, and so are, because the matricesCϑ are assumed to be of full rank,
the matricesVϑ; this means that Assumption D3, iii) is satisfied. Assumption D4 is a consequence of Proposition 3.3,
which states that the noise sequencesNϑ are i. i. d. and in particular ergodic; their second moments are finite because
of Assumption C1.
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In order to be able to show that the quasi maximum likelihood estimatorϑ̂
L,(h)

is asymptotically normally dis-
tributed, we impose the following conditions in addition tothe ones described so far.

Assumption C8. The true parameter valueϑ0 is an element of the interior ofΘ.

Assumption C9. The functionsϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, andϑ 7→ ΣL
ϑ

are three times continuously differenti-
able.

Assumption C10. There exists a positive numberδ such thatE
∥∥∥Lϑ0(1)

∥∥∥4+δ
< ∞.

Lemma 3.7. Assumptions C8 to C10 imply that Assumptions D6 to D8 hold forthe model(3.13).

Proof. Assumption D6 is clear. Assumption D7 follows from the factthat the functionsA 7→ eA and (A, B,Σ) 7→∫ h

0
eAuBΣBTeATudu are not only continuous, but infinitely often differentiable. For Assumption D8 we need to show

that the random variablesN ≔ Nϑ0,1 have bounded (4+ δ)th absolute moments. It follows from Rajput and Rosiński
(1989, Theorem 2.7) thatN is infinitely divisible with characteristic triplet (γ,Σ, ν), and that

∫

‖x‖>1
‖x‖4+δ ν(dx) 6

∫ 1

0

∥∥∥eAϑ0 (h−s)Bϑ
∥∥∥4+δ

ds
∫

‖x‖>1
‖x‖4+δ νLϑ0ϑ(dx).

The first factor on the right side is finite by Assumptions C6 and C9, the second by Assumption C10 and the well
known equivalence of finiteness of theαth absolute moment of an infinitely divisible distribution and finiteness of
theαth absolute moments of the corresponding Lévy measure restricted to the exterior of the unit ball (Sato, 1999,
Corollary 25.8). The same corollary shows thatE ‖N‖4+δ < ∞ and thus Assumption D8.

Our final assumption is the analogue of Assumption D10. It will ensure that the Fisher information matrix of the quasi

maximum likelihood estimator̂ϑ
L,(h)

is non-singular by imposing a non-degeneracy condition on the parametrization
of the model.

Assumption C11. There exists a positive index j0 such that the
[
( j0 + 2)d2

]
× r matrix

∇ϑ



[
1 j0+1 ⊗ K(h),T

ϑ
⊗Cϑ

] [ (
vec e1Nh

)T (
vec eAϑh

)T · · ·
(
vec eA

j0
ϑ

h
)T ]T

vecVϑ


ϑ=ϑ0

has rank r.

Theorem 3.4 (Consistency and asymptotic normality of ϑ̂
L,(h)

). Assume that(Aϑ, Bϑ,Cϑ, Lϑ)ϑ∈Θ is a paramet-
ric family of continuous-time state space models, and denote byyL,(h) = (Y(h)

ϑ0.1
, . . . ,Y(h)

ϑ0.L
) a sample of length L from

the discretely observed output process corresponding to the parameter valueϑ0 ∈ Θ. Under Assumptions C1 to C7

the quasi maximum likelihood estimatorϑ̂
L,(h)
= argminϑ∈Θ L̂ (ϑ, yL,(h)) is strongly consistent, i. e.

ϑ̂
L,(h) a. s.−−−−→

L→∞
ϑ0. (3.15)

If, moreover, Assumptions C8 to C11 hold, thenϑ̂
L,(h)

is asymptotically normally distributed, i. e.

√
L
(
ϑ̂

L,(h) − ϑ0

)
d−−−−→

L→∞
N (0,Ξ), (3.16)

where the asymptotic covariance matrixΞ = J−1IJ−1 is given by

I = lim
L→∞

L−1
Var

(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0, yL

)
. (3.17)
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Proof. Strong consistency of̂ϑ
L,(h)

is a consequence of Theorem 2.1 if we can show that the parametric family(
eAϑh,Cϑ,Nϑ, 0

)
ϑ∈Θ

of discrete-time state space models satisfies Assumptions D1 to D5. The first four of these are
shown to hold in Lemma 3.6. For the last one, we observe that, by Lemma 2.2, Assumption D5 is equivalent to the
family of state space models (3.13) being identifiable from the spectral density. Under Assumptions C3 to C5 this is
guaranteed by Theorem 3.3.

In order to prove Eq. (3.16), we shall apply Theorem 2.2 and therefore need to verify Assumptions D6 to D10
for the state space models

(
eAϑh,Cϑ,Nϑ, 0

)
ϑ∈Θ

. The first three hold by Lemma 3.7, the last one as a reformulation of
Assumption C11. Assumption D9, that the strong mixing coefficientsα of a sampled multivariate CARMA process
satisfy

∑
m[α(m)]δ/(2+δ) < ∞, follows from Assumption C1 and Marquardt and Stelzer (2007, Proposition 3.34),

where it was shown that MCARMA processes with a finite logarithmic moment are exponentially strongly mixing.

4. Practical applicability

In this section we complement the theoretical results from Sections 2 and 3 by commenting on their applicability
in practical situations. Canonical parametrizations are aclassical subject of research about discrete-time dynamical
systems, and most of the results apply also to the continuous-time case; without going into detail we present the
basic notions and results about these parametrizations. The assertions of Theorem 3.4 are confirmed by a simulation
study for a bivariate non-Gaussian CARMA process. Finally,we estimate the parameters of a CARMA model for a
bivariate time series from economics using our quasi maximum likelihood approach.

4.1. Canonical parametrizations
We present parametrizations of multivariate CARMA processes that satisfy the identifiability conditions C3 and C4,
as well as the smoothness conditions C7 and C9; if, in addition, the parameter spaceΘ is restricted so that Assump-
tions C2, C5, C6 and C8 hold, and the driving Lévy process satisfies Assumption C1, the canonically parametrized
MCARMA model can be estimated consistently. In order for this estimate to be asymptotically normally distrib-
uted, one must additionally impose Assumption C10 on the Lévy process and check that Assumption C11 holds – a
condition which we are unable to verify analytically for thegeneral model; for explicit parametrizations, however,
it can be checked numerically with moderate computational effort. The parametrizations are well-known from the
discrete-time setting; detailed descriptions with proofscan be found in Hannan and Deistler (1988); Reinsel (1997);
Lütkepohl and Poskitt (1996); Deistler (1983) or, from a slightly different perspective, in the control theory literature
Gevers and Wertz (1984); Gevers (1986); Guidorzi (1975). Webegin with a canonical decomposition for rational
matrix functions.

Theorem 4.1 (Bernstein (2005, Theorem 4.7.5)). Let H ∈ Md,m(R{z}) be a rational matrix function of rank r.
There exist matrices S1 ∈ Md(R[z]) and S2 ∈ Mm(R[z]) with constant determinant, such that H= S1MS2, where

M =

[
diag{ǫi/ψi}ri=1 0r,m−r

0d−r,r 0d−r,m−r

]
∈ Md,m(R{z}), (4.1)

andǫ1, . . . ǫr , ψ1, . . . , ψr ∈ R[z] are monic polynomials uniquely determined by H satisfying the following conditions:
for each i= 1, . . . , r, the polynomialsǫi andψi have no common roots, and for each i= 1, . . . , r − 1, the polynomial
ǫi (ψi+1) divides the polynomialǫi+1 (ψi). The triple(S1,M,S2) is called the Smith–McMillan decomposition of H.

The degreesνi of the denominator polynomialsψi in the Smith–McMillan decomposition of a rational matrix func-
tion H are called the Kronecker indices ofH, and they define the vectorν = (ν1, . . . , νd) ∈ Nd, where we setνk = 0
for k = r +1, . . . ,d. They satisfy the important relation

∑d
i=1 νi = δM(H), whereδM(H) denotes the McMillan degree

of H, i. e. the smallest possible dimension of an algebraic realization ofH, see Definition 3.4. For 16 i, j 6 d, we
also define the integersνi j = min{νi+ I{i> j}, ν j}, and if the Kronecker indices of the transfer function of an MCARMA
processY areν, we callY an MCARMAν process.

Theorem 4.2 (Echelon state space realization, Guidorzi (1975, Section 3)). For natural numbers d and m, let
H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indicesν = (ν1, . . . , νd). Then a unique minimal
algebraic realization(A, B,C) of H of dimension N= δM(H) is given by the following structure.
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(i) The matrix A= (Ai j )i, j=1,...,d ∈ MN(R) is a block matrix with blocks Ai j ∈ Mνi ,ν j (R) given by

Ai j =



0 · · · · · · · · · · · · 0
...

...

0 · · · · · · · · · · · · 0
αi j,1 · · · αi j,νi j 0 · · · 0


+ δi, j



0
1νi−1...

0
0 · · · 0


, (4.2a)

(ii) B = (bi j ) ∈ MN,m(R) unrestricted,

(iii) if νi > 0, i = 1, . . . ,d, then

C =



1 0 . . . 0
... 0 0 . . . 0

...
...

0(d−1),νd

0(d−1),ν1

... 1 0 . . . 0
...

...
... 0(d−2),ν2

...
... 1 0 . . . 0


. (4.2b)

If νi = 0, the elements of theith row ofC are also freely varying, but we concentrate here on the case where all Kro-
necker indicesνi are positive. To computeν as well as the coefficientsαi j,k andbi j for a given rational matrix function
H, several numerically stable and efficient algorithms are available in the literature (see, e. g., Rózsa and Sinha, 1975,
and the references therein). The orthogonal invariance inherent in spectral factorization (see Theorem 3.1) implies
that this parametrization alone does not ensure identifiability. One remedy is to restrict the parametrization to trans-
fer functionsH satisfyingH(0) = H0, for a non-singular matrixH0. To see how one must constrain the parameters
αi j,k,bi j in order to ensure this normalization, we work in terms of left matrix fraction descriptions.

Theorem 4.3 (Echelon MCARMA realization, Guidorzi (1975, Section 3)). For positive integers d and m, let
H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indicesν = (ν1, . . . , νd). Assume that(A, B,C) is a
realization of H, parametrized as in Eqs. (4.2). Then a unique left matrix fraction description P−1Q of H is given by
P(z) =

[
pi j (z)

]
, Q(z) =

[
qi j (z)

]
, where

pi j (z) = δi, jz
νi −

νi j∑

k=1

αi j,kz
k−1, qi j (z) =

νi∑

k=1

κν1+...+νi−1+k, jz
k−1, (4.3)

and the coefficient κi, j is the(i, j)th entry of the matrix K= T B, where the matrix T= (Ti j )i, j=1,...,d ∈ MN(R) is a
block matrix with blocks Ti j ∈ Mνi ,ν j (R) given by

Ti j =



−αi j,2 . . . −αi j,νi j 0 . . . 0
... . .

. ...

−αi j,νi j

...

0
...

...
...

0 . . . . . . . . . . . . 0



+ δi, j



0 0 . . . . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . . . . 0 0



. (4.4)

The ordersp,q of the polynomialsP,Q satisfy p = max{ν1, . . . , νd} andq 6 p − 1. Using this parametrization,
there are different ways to impose the normalizationH(0) = H0 ∈ Md,m(R). One first observes that the special
structure of the polynomialsP andQ implies thatH(0) = P(0)−1Q(0) = −(αi j,1)−1

i j (κν1+...+νi−1+1, j)i j . The canonical
state space parametrization (A, B,C) given by Eqs. (4.2) therefore satisfiesH(0) = −CA−1B = H0 if one makes
the coefficientsαi j,1 functionally dependent on the free parametersαi j,m, m = 1, . . . νi j andbi j by settingαi j,1 =

−[(κν1+...+νk−1+1,l)klH∼1
0 ] i j , whereκi j are the entries of the matrixK appearing in Theorem 4.3 andH∼1

0 is a right
inverse ofH0. Another possibility, which has the advantage of preserving the multi-companion structure of the
matrix A, is to keep theαi j,1 as free parameters, and to restrict some of the entries of thematrix B instead. Since
|detK| = 1 and the matrixT is thus invertible, the coefficientsbi j can be written asB = T−1K. Replacing the
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ν n(ν) A B C

(1,1) 7

(
ϑ1 ϑ2

ϑ3 ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

) (
1 0
0 1

)

(1,2) 10


ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5




ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7



(
1 0 0
0 1 0

)

(2,1) 11


0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6




ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8

ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8



(
1 0 0
0 0 1

)

(2,2) 15



0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8





ϑ9 ϑ10

ϑ1 + ϑ4ϑ11 + ϑ2ϑ9 ϑ3 + ϑ2ϑ10 + ϑ4ϑ12

ϑ11 ϑ12

ϑ5 + ϑ8ϑ11 + ϑ6ϑ9 ϑ7 + ϑ6ϑ10 + ϑ8ϑ12



(
1 0 0 0
0 0 1 0

)

Table 1. Canonical state space realizations (A, B,C) of normalized (H(0) = −12) rational transfer functions
in M2(R{z}) with different Kronecker indices ν; the number of parameters, n(ν), includes three parameters for
a covariance matrix ΣL.

ν n(ν) P(z) Q(z) (p,q)

(1,1) 7

(
z− ϑ1 −ϑ2

−ϑ3 z− ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

)
(1,0)

(1,2) 10

(
z− ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z− ϑ5

) (
ϑ1 ϑ2

ϑ6z+ ϑ3 ϑ7z+ ϑ5

)
(2,1)

(2,1) 11

(
z2 − ϑ1z− ϑ2 −ϑ3

−ϑ4z− ϑ5 z− ϑ6

) (
ϑ7z+ ϑ2 ϑ8z+ ϑ3

ϑ5 ϑ6

)
(2,1)

(2,2) 15

(
z2 − ϑ1z− ϑ2 −ϑ3z− ϑ4

−ϑ5z− ϑ6 z2 − ϑ7z− ϑ8

) (
ϑ9z+ ϑ2 ϑ10z+ ϑ4

ϑ11z+ ϑ6 ϑ12z+ ϑ8

)
(2,1)

Table 2. Canonical MCARMA realizations (P,Q) with order (p,q) of normalized (H(0) =
−12) rational transfer functions in M2(R{z}) with different Kronecker indices ν; the number
of parameters, n(ν), includes three parameters for a covariance matrix ΣL.

(ν1 + . . . + νi−1 + 1, j)th entry ofK by the (i, j)th entry of the matrix−(αkl,1)klH0 makes some of thebi j functionally
dependent on the entries of the matrixA, and results in a state space representation with prescribed Kronecker indices
and satisfyingH(0) = H0. This latter method has also the advantage that it does not require the matrixH0 to possess
a right inverse. In the special case thatd = m andH0 = −1d, it suffices to setκν1+...+νi−1+1, j = αi j,1, for i, j = 1, . . . ,d.
Examples of normalized low-order canonical parametrizations are given in Tables 1 and 2.

4.2. A simulation study
We present a simulation study for a bivariate CARMA process with Kronecker indices (1,2), i. e. CARMA indices
(p,q) = (2,1). As the driving Lévy process we chose a zero-mean normal-inverse Gaussian (NIG) process (L(t))t∈R.
Such processes have been found to be useful in the modelling of stock returns and stochastic volatility, as well
as turbulence data (see, e. g., Barndorff-Nielsen, 1997, 1998; Barndorff-Nielsen et al., 2004; Rydberg, 1997). The
distribution of the incrementsL(t) − L(t − 1) of a bivariate normal-inverse Gaussian Lévy process is characterized
by the density

fNIG(x;µ, α,β, δ,∆) =
δexp(δκ)

2π
exp(〈βx〉)
exp(αg(x))

1+ αg(x)
g(x)3

, x ∈ R2,

where

g(x) =
√
δ2 + 〈x − µ,∆(x − µ〉, κ2 = α2 − 〈β,∆β〉 > 0,

andµ ∈ R2 is a location parameter,α > 0 is a shape parameter,β ∈ R2 is a symmetry parameter,δ > 0 is a scale
parameter and∆ ∈ M+2 (R), det∆ = 1, determines the dependence between the two components of (L(t))t∈R. For our
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parameter sample mean bias sample std. dev. mean est. std. dev.
ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378

Table 3. Quasi maximum likelihood estimates for the parameters of a bivariate
NIG-driven CARMA1,2 process observed at integer times over the time horizon
[0,2000]. The second column reports the empirical mean of the estimators as
obtained from 350 independent paths; the third and fourth columns contain the
resulting bias and the sample standard deviation of the estimators, respectively,
while the last column reports the average of the expected standard deviations
of the estimators as obtained from the asymptotic normality result Theorem 3.4.

simulation study we chose parameters

δ = 1, α = 3, β = (1,1)T , ∆ =

(
5/4 −1/2
−1/2 1

)
, µ = − 1

2
√

31
(3,2)T , (4.5)

resulting in a skewed distribution with semi-heavy tails, mean zero and covarianceΣL ≈
(

0.4751 −0.1622
−0.1622 0.3708

)
.

A sample of 350 independent replicates of the bivariate CARMA1,2 process (Y(t))t∈R driven by a normal-inverse
Gaussian Lévy process (L(t))t∈R with parameters given in Eq. (4.5) were simulated on the equidistant time grid
0,0.01, . . . ,2000 by applying an Euler scheme to the stochastic differential equation (3.5) making use of the ca-
nonical parametrization given in Table 1. For the simulation, the initial valueX(0) = 03 and parametersϑ1:7 =

(−1,−2,1,−2,−3,1,2) was used. Each realization was sampled at integer times (h = 1), and quasi maximum like-
lihood estimates ofϑ1, . . . , ϑ7 as well as (ϑ8, ϑ9, ϑ10) ≔ vechΣL were computed by numerical maximization of the
quasi log-likelihood function using a differential evolution optimization routine (Price et al., 2005) in conjunction
with a subspace trust-region method (Branch et al., 1999; Byrd et al., 1988). In Table 3 the sample means and
sampled standard deviations of the estimates are reported.Moreover, the standard deviations were estimated using
the square roots of the diagonal entries of the asymptotic covariance matrix (2.41) withs(L) = ⌊L/ logL⌋1/3, and
the estimates are also displayed in Table 3. One sees that thebias, the difference between the sample mean and
the true parameter value, is very small in accordance with the asymptotic consistency of the estimator. Moreover,
the estimated standard deviation is always slightly largerthan the sample standard deviation, yet close enough to
provide a useful approximation for, e. g., the constructionof confidence regions. In order not to underestimate the
uncertainty in the estimate, such a conservative approximation to the true standard deviations is desirable in practice.
Overall, the estimation procedure performs very well in thesimulation study.

4.3. Application to weekly bond yields
In this section we provide an illustrative data example and apply the techniques established in the preceding sections
to the bivariate weekly series of Moody’s seasoned Aaa and Baa corporate bond yields from October 1966 through
April 2009; these data are available from the Federal Reserve Bank of St. Louis. We first took the logarithm of
the data and the resulting series was seen to have a unit root in each component, so the next step in the data pre-
paration was differencing at lag 1. Using a moving window of length 52 — corresponding to a period of one year
— we removed the stochastic volatility effects displayed by the differenced time series to obtain data with no obvi-
ous departure from stationarity. Figure 1 shows the weekly bond log-yields after differencing and devolatilization.
We have fitted bivariate CARMA processes of McMillan degreesn = 2,3,4 using the quasi maximum likelihood
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Figure 1. Weekly series of Moody’s seasoned Aaa and Baa corporate bond yields after differencing and devolatilization

method described in Section 3.4 and employing the canonicalparametrizations of Section 4.1. The numerical val-
ues ofϑ̂ as well as their standard errors estimated by the square rootof the diagonal entries in the approximate
asymptotic covariance matrix̂ΞL

s, defined in Eq. (2.41), can be found in Table 4. The last row displays the value
of twice the negative logarithm of the Gaussian likelihood of the observations under the model corresponding to
the estimated parameter valueϑ̂. The quality of the fit can be assessed from Table 4 where we compare the auto-
correlation functions of the fitted models with the empirical autocorrelation function of the data. One sees how the
fit becomes better as one increases the model order in accordance with an increasing value of the Gaussian likeli-
hood; in particular, the autocorrelations of the second component at higher lags are better captured by the higher
order models. This phenomenon is well known from the estimation of discrete-time parametric processes where
penalty terms in the likelihood together with order selection criteria like the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC) are used to formalize the trade-off between goodness of fit and model
complexity. Understanding their applicability in a continuous-time set-up remains a problem for future research.
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Figure 2. Empirical auto- and crosscorrelations of the weekly bond data from Fig. 1 compared to the theoretical auto- and
crosscorrelations of estimated MCARMAα,β models, for different Kronecker indices (α, β)
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Benth, F. E. and J. Šaltytė Benth (2009). Dynamic pricing of wind futures.Energy Economics 31(1), 16–24.

Bernstein, D. S. (2005).Matrix mathematics. Princeton: Princeton University Press. Theory, facts, and formulas with application
to linear systems theory.

Bertoin, J. (1996).Lévy processes, Volume 121 ofCambridge Tracts in Mathematics. Cambridge: Cambridge University Press.

Boubacar Mainassara, B. and C. Francq (2011). Estimating structural VARMA models with uncorrelated but non-independent
error terms.J. Multivar. Anal. 102(3), 496–505.

Bradley, R. C. (2007).Introduction to strong mixing conditions. Vol. 1. Kendrick Press, Heber City.

Branch, M. A., T. F. Coleman, and Y. Li (1999). A subspace, interior, and conjugate gradient method for large-scale bound-
constrained minimization problems.SIAM J. Sci. Comput. 21(1), 1–23 (electronic).

Brockwell, P. J. (2001a). Continuous-time ARMA processes. InStochastic processes: theory and methods, Volume 19 of
Handbook of Statistics, pp. 249–276. Amsterdam: North-Holland.

Brockwell, P. J. (2001b). Lévy-driven CARMA processes.Ann. Inst. Stat. Math. 53(1), 113–124.

Brockwell, P. J. and R. A. Davis (1991).Time series: theory and methods(Second ed.). Springer Series in Statistics. New York:
Springer-Verlag.

Brockwell, P. J., R. A. Davis, and Y. Yang (2011). Estimation for nonnegative Lévy-driven CARMA processes.J. Bus. Econ.
Stat. 29(2), 250–259.

Brockwell, P. J. and E. Schlemm (2011). Parametric estimation of the driving Lévy process of multivariate CARMA processes
from discrete observations. Preprint: Available at http://www-m4.ma.tum.de.

Brown, B. M. and J. I. Hewitt (1975). Asymptotic likelihood theory for diffusion processes.J. Appl. Probab. 12(2), 228–238.

Byrd, R. H., R. B. Schnabel, and G. A. Shultz (1988). Approximate solution of the trust region problem by minimization over
two-dimensional subspaces.Math. Program. 40(1), 247–263.

Caines, P. E. (1988).Linear stochastic systems. Wiley Series in Probability and Mathematical Statistics: Probability and Math-
ematical Statistics. New York: John Wiley & Sons Inc.

Cont, R. (2001). Empirical properties of asset returns: stylized factsand statistical issues.Quant. Financ. 1(2), 223–236.

Davydov, Y. A. (1968). Convergence of distributions generated by stationary stochastic processes.Theory Probab. Appl. 13(4),
691–696.

Deistler, M. (1983). The properties of the parameterization of ARMAX systems and their relevance for structural estimation and
dynamic specification.Econometrica 51(4), 1187–1207.

Dieudonné, J. (1968).Éléments d’analyse. Tome II: Chapitres XII à XV. Cahiers Scientifiques, Fasc. XXXI. Éditeur, Paris:
Gauthier-Villars.

Doob, J. L. (1944). The elementary Gaussian processes.Ann. Math. Statistics 15(3), 229–282.

Duncan, T. E., P. Mandl, and B. Pasik-Duncan (1999). A note on sampling and parameter estimation in linear stochastic systems.
IEEE Trans. Autom. Control 44(11), 2120–2125.

Durrett, R. (2010).Probability: theory and examples(Fourth ed.). Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge: Cambridge University Press.

Fan, H., T. Söderström, M. Mossberg, B. Carlsson, and Y. Zon (1998). Continuous-time AR process parameter estimation from
discrete-time data. InProceedings of the 1998 IEEE International Conference on Acoustics,Speech and Signal Processing,
Volume 4, pp. 1232–1244.

Feigin, P. D. (1976). Maximum likelihood estimation for continuous-time stochastic processes.Adv. Appl. Probab. 8(4), 712–736.



QML estimation for strongly mixing state space models and multivariate CARMA processes 33

Ferguson, T. S. (1996).A course in large sample theory. Texts in Statistical Science Series. London: Chapman & Hall.

Francq, C. and J.-M. Zakoïan (1998). Estimating linear representations of nonlinear processes.J. Stat. Plan. Infer. 68(1), 145–165.

Gevers, M. (1986). ARMA models, their Kronecker indices and their McMillan degree.Int. J. Control 43(6), 1745–1761.

Gevers, M. and V. Wertz (1984). Uniquely identifiable state-space and ARMA parametrizations for multivariable linear systems.
Automatica J. IFAC 20(3), 333–347.

Gillberg, J. and L. Ljung (2009). Frequency-domain identification of continuous-time ARMA models from sampled data.Auto-
matica 45(6), 1371–1378.

Guidorzi, R. P. (1975). Canonical structures in the identification of multivariable systems.Automatica—J. IFAC 11(4), 361–374.

Halmos, P. R. (1950).Measure Theory. New York: D. Van Nostrand Company, Inc.

Hamilton, J. D. (1994).Time series analysis. Princeton: Princeton University Press.

Hannan, E. J. (1969). The estimation of mixed moving average autoregressive systems.Biometrika 56(3), 579–593.

Hannan, E. J. (1975). The estimation of ARMA models.Ann. Statist. 3(4), 975–981.

Hannan, E. J. and M. Deistler (1988).The statistical theory of linear systems. Wiley Series in Probability and Mathematical
Statistics: Probability and Mathematical Statistics. New York: John Wiley & SonsInc.

Hansen, L. P. and T. J. Sargent (1983). The dimensionality of the aliasing problem in models with rational spectral densities.
Econometrica 51(2), 377–387.

Hautus, M. L. J. (1969). Controllability and observability conditions of linear autonomous systems.Indag. Math. 31, 443–448.

Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables.Ann.
Probab. 12(1), 141–153.

Higham, N. J. (2008).Functions of matrices. Philadelphia: Society for Industrial and Applied Mathematics. Theory and
computation.

Horn, R. A. and C. R. Johnson (1994).Topics in matrix analysis. Cambridge: Cambridge University Press. Corrected reprint of
the 1991 original.

Hu, Y. and H. Long (2009). Least squares estimator for Ornstein–Uhlenbeck processes driven byα-stable motions.Stoch.
Process. Their Appl. 119(8), 2465–2480.

Hyndman, R. J. (1993). Yule–Walker estimates for continuous-time autoregressive models.J. Time Ser. Anal. 14(3), 281–296.

Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Probab. Appl. 7, 349–382.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.Journal of Basic Engineering 82(1), 35–45.

Klein, A., G. Mélard, and A. Saidi (2008). The asymptotic and exact Fisher information matrices of a vector ARMA process.
Stat. Probab. Lett. 78(12), 1430–1433.

Klein, A. and H. Neudecker (2000). A direct derivation of the exact Fisher information matrix of Gaussian vector state space
models.Linear Alg. Appl. 321(1-3), 233–238.

Klenke, A. (2008).Probability theory. Universitext. London: Springer-Verlag London Ltd.

Krengel, U. (1985).Ergodic theorems, Volume 6 ofde Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co. With a
supplement by Antoine Brunel.

Kulikova, M. V. and I. V. Semoushin (2006). Score evaluation within the extended square-root information filter.Lecture Notes
in Computer Science 3991, 473–481.

Lahalle, E., G. Fleury, and A. Rivoira (2004). Continuous ARMA spectral estimation from irregularly sampled observations. In
Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, Volume 2, pp. 923– 927.

Lancaster, P. and L. Rodman (1995).Algebraic Riccati equations. New York – Oxford: The Clarendon Press/Oxford University
Press.



34 Schlemm, E. and Stelzer, R.

Larsson, E. K., M. Mossberg, and T. Söderström (2006). An overview of important practical aspects of continuous-time ARMA
system identification.Circuits Systems Signal Process. 25(1), 17–46.

Larsson, E. K. and T. Söderström (2002). Identification of continuous-time AR processes from unevenly sampled data.Automat-
ica J. IFAC 38(4), 709–718.

Lax, P. D. (2002).Functional analysis. Pure and Applied Mathematics. New York: Wiley-Interscience.

Lebesgue, H. (1904). Une propriété caractéristique des fonctions declasse 1.Bull. Soc. Math. France 32, 229–242.

Lii, K. S. and E. Masry (1995). On the selection of random sampling schemes for the spectral estimation of continuous time
processes.J. Time Ser. Anal. 16(3), 291–311.

Lütkepohl, H. (2005).New introduction to multiple time series analysis. Berlin: Springer-Verlag.

Lütkepohl, H. and D. S. Poskitt (1996). Specification of echelon-formVARMA models. J. Bus. Econ. Stat. 14(1), 69–79.

Marquardt, T. and R. Stelzer (2007). Multivariate CARMA processes.Stoch. Process. Their Appl. 117(1), 96–120.

Masry, E. (1978). Poisson sampling and spectral estimation of continuous-time processes.IEEE Trans. Inf. Theory 24(2),
173–183.

McCrorie, J. R. (2003). The problem of aliasing in identifying finite parameter continuous time stochastic models. InProceedings
of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II (2002), Volume 79, pp. 9–16.

Mokkadem, A. (1988). Mixing properties of ARMA processes.Stoch. Process. Their Appl. 29(2), 309–315.

Na, S. S. and H. K. Rhee (2002). An experimental study for propertycontrol in a continuous styrene polymerization reactor using
a polynomial ARMA model.Chem. Eng. Sci. 57(7), 1165–1173.

Nielsen, J. N., H. Madsen, and P. C. Young (2000). Parameter estimation in stochastic differential equations: an overview.Annu.
Rev. Control 24, 83–94.

Patel, R. V. (1981). Computation of matrix fraction descriptions of linear time-invariant systems.IEEE Trans. Automat. Con-
trol 26(1), 148–161.

Pham, T. D. (1977). Estimation of parameters of a continuous time Gaussian stationary process with rational spectral density.
Biometrika 64(2), 385–399.

Price, K. V., R. M. Storn, and J. A. Lampinen (2005).Differential evolution. Natural Computing Series. Berlin: Springer-Verlag.
A practical approach to global optimization.

Protter, P. (1990).Stochastic integration and differential equations, Volume 21 ofApplications of Mathematics. Berlin: Springer-
Verlag. A new approach.
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