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Abstract. We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-time linear
state space models and equidistantly observed multivariate Lévy-driven continuous-time autoregressive moving av-
erage (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality
of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process
of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of
equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to
derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural
identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling
frequency. We also demonstrate the practical applicability of our method through a simulation study and a data
example from econometrics.
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1. Introduction

Linear state space models have been used in time series@raatyg stochastic modelling for many decades because
of their wide applicability and analytical tractabilitygs, e. g., Brockwell and Davis, 1991; Hamilton, 1994, for a
detailed account). In discrete time they are defined by toatéans

Xn=FXn1+Zn1, Yn=HXn+Wn nez (1.1)

where X = (Xp)nez is a latent state procesB, H are codficient matrices andZ = (Zn)pezy W = (Wh)nez are
sequences of random variables, see Definition 2.1 for aggéaimulation of this model. In this paper we investigate
the problem of estimating the ciieient matriced~, H as well as the covariances @f andW from a sample of
observed values of the output proc&ss: (Yn).ez, Using a quasi maximum likelihood (QML) or generalized teas
squares approach. Given the importance of this problemaotige, it is surprising that a proper mathematical
analysis of the quasi maximum likelihood estimation for thedel (1.1) has only been performed in cases where
the model is in the so-called innovations form

Xn=FXn1+Kén1, Yn=HXn+en nez (1.2)

where the innovations form a martingale dference sequence (Hannan and Deistler, 1988, Chapter 43.irFhi
cludes state space models in which the noise sequeht®sare Gaussian, because then the innovations, which are
uncorrelated by definition, form an i.i. d. sequence. Retsbn to these special cases excludes, however, the state
space representations of aggregated linear processesllassvof equidistantly observed continuous-time linear
state space models.

In the first part of the present paper we shall prove consigtand asymptotic normality of the quasi maximum
likelihood estimator for the general linear state spaceeh{til) under the assumptions that the noise sequences
Z,W are ergodic, and that the output proc¥ssatisfies a strong-mixing condition in the sense of Rosén{dl856).
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This assumption is not very restrictive, and is, in paracukatisfied if the noise sequengeis i.i.d. with an
absolutely continuous component, aNds strongly mixing. Our results are a multivariate genegtlon of Francq
and Zakoian (1998), who considered the quasi maximum/ti&eli estimation for univariate strongly mixing ARMA
processes. The very recent paper Boubacar Mainassaraamjk2011), which deals with the structural estimation
of weak vector ARMA processes, instead makes a mixing assompbout the innovations sequencef the
process under consideration, which is verjidillt to verify for state space models; their results canefoee not be
used for the estimation of general discretely-observezhlirontinuous-time state space models. More importantly,
their proof appears to be incomplete, because a crucialrstépe proof of their Lemma 4 is claimed by the authors
to be analogous to the corresponding step in the proof ofdgrand Zakoian (1998, Lemma 3). It is, however,
not clear how the argument given there can be modified in dodlee compatible with the assumption of strongly
mixing innovations, which is weaker than the assumptionsifengly mixing output process as employed in Francq
and Zakoian (1998).

As alluded to above, one advantage of relaxing the assumpfia.i. d. innovations in a discrete-time state
space model is the inclusion of sampled continuous-tinte sfgace models. These were introduced in the form of
continuous-time ARMA (CARMA) models in Doob (1944) as stastic processes satisfying the formal analogue
of the familiar autoregressive moving average equatiomisuiete-time ARMA processes, namely

a(D)Y(t) = b(D)DW(), D = d/dt, (1.3)

wherea andb are suitable polynomials, atl denotes a Brownian motion. In the recent past, a consideladaly
of research has been devoted to these processes (see,recw@l, 2001a, and references therein). One partic-
ularly important extension of the model (1.3) was introdlige Brockwell (2001b), where the driving Brownian
motion was replaced by a Lévy process with finite logarithmaments. This allowed for a wide range of possibly
heavy-tailed marginal distribution of the proceésas well as the occurrence of jumps in the sample paths, both
characteristic features of many observed time series,®fpance (Cont, 2001). Recently, Marquardt and Stelzer
(2007) further generalized Eq. (1.3) to the multivariateisg, which gave researchers the possibility to model sev-
eral dependent time series jointly by one linear contintdus process. This extension is important, because many
time series, exhibit strong dependencies and can therafiirbe modelled adequately on an individual basis. In
that paper, the multivariate non-Gaussian equivalent o{ E§), namelyP(D)Y(t) = Q(D)DL(t), for matrix-valued
polynomialsP andQ and a Lévy procesk, was interpreted by spectral techniques as a continumessiate space
model of the form

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t); (1.4)

see Eq. (3.4) for an expression of the matrige®8 andC. The structural similarity between Eq. (1.1) and Eq. (1.4)
is apparent, and it is essential for many of our argumentkin@aa diferent route, multivariate CARMA pro-
cesses can be defined as the continuous-time analogue mdtdisione vector ARMA models, described in detall

in Hannan and Deistler (1988); Lutkepohl (2005). As cordiimttime processes, CARMA processes are suited
particularly well to model irregularly spaced and highefuency data, which makes them a flexible afittient tool

for building stochastic models of time series arising intlaéural sciences, engineering and finance (e. g. Benth and
Saltye Benth, 2009; Fan et al., 1998; Na and Rhee, 2002; Todoro¥aunchen, 2006).

In the univariate Gaussian setting, severéledent approaches to the estimation problem of CARMA praess
have been investigated (see, e. g., Larsson et al., 200BeNiet al., 2000, and references therein). Maximum like-
lihood estimation based on a continuous record was corgldarFeigin (1976); Pham (1977); Brown and Hewitt
(1975). Due to the fact that processes are typically notrobsglecontinuously and the limitations of digital computer
processing, inference based on discrete observationselgasie more important in recent years; these approaches
include variants of the Yule—Walker algorithm for time-tionous autoregressive processes (Hyndman, 1993), max-
imum likelihood methods (Brockwell et al., 2011; Duncan ket #999), and randomized sampling (Rivoira et al.,
2002) to overcome the aliasing problem. Alternative meshioetlude discretization of the fliérential operator
(Larsson and Sdderstrom, 2002; Soderstrom et al., 199d)spectral estimation (Gillberg and Ljung, 2009; La-
halle et al., 2004; Lii and Masry, 1995; Masry, 1978). Forspecial case of Ornstein—Uhlenbeck processes, least
squares and moment estimators have also been investigakedinthe assumptions of Gaussianity (Hu and Long,
2009; Spiliopoulos, 2009).

In the second part of this paper we consider the estimatiggenéral multivariate CARMA processes with fi-
nite second moments based on equally spaced discrete atisesvexploiting the results about the quasi maximum
likelihood estimation of general linear discrete-timetstspace models. Under natural identifiability assumptions
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we obtain strongly consistent and asymptotically norméhegors for the coficient matrices of a second-order
MCARMA process and the covariance matrix of the driving Lévgcess, which determine the second-order struc-
ture of the process. It is a natural restriction of the quasximum likelihood method that distributional properties
of the driving Lévy process which are not determined by itgatiance matrix cannot be estimated. However,
once the autoregressive and moving averagdicants of a CARMA process are (approximately) known, and if
high-frequency observations are available, a paramewietfor the driving Lévy process can be estimated by the
methods described in Brockwell and Schlemm (2011).

Outline of the paper The organization of the paper is as follows. In Section 2 weehig a quasi maximum
likelihood estimation theory for general non-Gaussiarmite-time linear stochastic state space models with finite
second moments. In Section 2.1 we precisely define the cldsgear stochastic state space models as well as the
quasi maximum likelihood estimator. The following two sent 2.3 and 2.4 contain the proofs that, under a set of
technical conditions, this estimator is strongly consisnd asymptotically normally distributed as the number of
observations tends to infinity, see Theorems 2.1 and 2.2.

In Section 3 we use the results from Section 2 to establisimpsytic properties of a quasi maximum likelihood
estimator for multivariate CARMA processes which are obséron a fixed equidistant time grid. As a first step,
we review in Section 3.1 their definition as well as their tielato the class of continuous-time state space models.
This is followed by an investigation of the probabilisticoperties of a sampled MCARMA process in Section 3.2
and an analysis of the important issue of identifiability Bcton 3.3. Finally, we are able to state and prove our
main result, Theorem 3.4, about the strong consistency sym@atotic normality of the quasi maximum likelihood
estimator for equidistantly sampled multivariate CARMAgesses in Section 3.4.

In the final Section 4, we present canonical parametrizatiand we demonstrate the applicability of the quasi
maximum likelihood estimation for continuous-time stgpace models with a simulation study and a data example
from economics.

Notation We use the following notation: The spacernfx n matrices with entries in the rin§ is denoted by
Mmn(K) or Mp(K) if m = n. The set of symmetric matrices is denotedShyK), and the symbolS§}(R) (S;F(R))
stand for the subsets of positive semidefinite (positiveniteli matrices, respectivelyAT denotes the transpose of
the matrix A, imA its image, keA its kernel,o(A) its spectrum, and,, € M(K) is the identity matrix. The vector
spaceR™ is identified withMp,1(R) so thatu = (ul,...,u™T € R™is a column vector|-|| represents the Euclidean
norm, (-, -) the Euclidean inner product, aidg, € R™ the zero vectorK[X] (K{X}) denotes the ring of polynomial
(rational) expressions in X ové{, 1g(-) the indicator function of the s, anddnm, the Kronecker symbol. The
symbolsE, Var, andCov stand for the expectation, variance and covariance tgrsraespectively. Finally, we
write 9, for the partial derivative operator with respect to thth coordinate an& = ( 91 --- o, ) for the
gradient operator. When there is no ambiguity, we &g&(o) and Vy f(Jo) as shorthands fabn, f ()=, and
Vo f(P)ls=g,, respectively. A generic constant, the value of which magngie from line to line, is denoted 163

2. Quasi maximum likelihood estimation for discrete-time s tate space models

In this section we investigate quasi maximum likelihood (QMstimation for general linear state space models in
discrete time, and prove consistency and asymptotic nigm&n the one hand, due to the wide applicability of
state space systems in stochastic modelling and contesletiesults are interesting and useful in their own right. In
the present paper they will be applied in Section 3 to proyenasotic properties of the QML estimator for discretely
observed multivariate continuous-time ARMA processes.

Our theory extends existing results from the literaturgdrticular concerning the QML estimation of Gaussian
state space models, of state space models whose innovatéiquences are martingaldfdrences (Hannan, 1969,
1975; Reinsel, 1997), and of weak univariate ARMA procesggash satisfy a strong mixing condition (Francq and
Zakoian, 1998). The techniques used in this section ardssitniBoubacar Mainassara and Francq (2011).

2.1. Preliminaries and definition of the QML estimator
The general linear stochastic state space model is definfeti@asgs.
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DerinrTion 2.1 (Sate space mopir). AnRY-valued discrete-time linear stochastic state space mgeléd, Z, W)

of dimension N is characterized by a strictly station&Y*d-valued sequenc@ AR ) with mean zero and
finite covariance matrix

)5 e ) ame

for some matrices @ S{(R), S € Sj(R), and Re Myg4(R); a state transition matrix Fe My(R); and an observation
matrix H € Mgn(R). It consists of a state equation

Xn=FXn1+Zn1, NEZ (2.2a)

and an observation equation
Yn = HXn + Wn, ne Z. (2.2b)

TheRN-valued autoregressive proce¥s= (Xy)nez is called the state vector process, avid= (Y)nez is called the
output process.

The assumption that the procesZesndW are centred is not essential for our results, but simpliiesibtation con-
siderably. Basic properties of the output procéswe described in Brockwell and Davis (1991812.1); in palsg
if the eigenvalues oF are less than unity in absolute value, théhas the moving average representation

Yo=Wn+H Y F7Z,,, nez (2.3)
y=1

Before we turn our attention to the estimation problem fas tass of state space models, we review the ne-
cessary aspects of the theory of Kalman filtering, see Kal¢h@60) for the original control-theoretic account and
Brockwell and Davis (1991812.2) for a treatment in the ceindétime series analysis. The linear innovations of the
output procesy¥ are of particular importance for the quasi maximum liketil@stimation of state space models.

DermviTioN 2.2 (LINEAR INNOVATIONS). LetY = (Y)nez be anR%-valued stationary stochastic process with finite
second moments. The linear innovatiens (en)nez Of Y are then defined by

&n=Yn—Pr1Yn, Py = orthogonal projection ont@pan(Y, : —co < v < n}, (2.4)

where the closure is taken in the Hilbert space of squaregirstble random variables with inner produgt, Y) +—
E(X, Y).

This definition immediately implies that the innovation®f a stationary stochastic procegsare stationary and
uncorrelated. The following proposition is a combinatidrBoockwell and Davis (1991, Proposition 12.2.3) and
Hamilton (1994, Proposition 13.2).

ProrosiTion 2.1. Assume thal is the output process of the state space model (2.2), thadaet lone of the
matrices Q and S is positive definite, and that the absolutgegaof the eigenvalues of F are less than unity. Then
the following hold.

i) The discrete-time algebraic Riccati equation
Q= FOFT + Q- [FQHT + R|[HOHT + S| [FoHT +R]' (2.5)
has a unique positive semidefinite solutore Sy (R).
if) The absolute values of the eigenvalues of the matrixkcH € My(R) are less than one, where
K = [FQHT + R][HQHT + S| € Mya(®) (2.6)

is the steady-state Kalman gain matrix.



QML estimation for strongly mixing state space models and multivariate CARMA processes 5

iii) The linear innovations of Y are the unique stationary solution to
Xn=(F=KH)Xn1+KYn1, & =Yn—HXn nez. (2.7a)

Using the backshift operatds, which is defined b Y, = Y,_1, this can be written equivalently as

&n={1a—H[In = (F = KH)B] KB} Yy = Yo = H " (F = KH)"KY,,. (2.7b)
v=1

The covariance matrix = Eenég] € S§(R) of the innovationg is given by

V = Egng] = HQHT + S. (2.8)

iv) The proces¥ has the innovations representation
Xn=FXn1+Ken1, Yn=HX,+&, nez, (2.9a)

which, similar to Egs. (2.7), allows for the moving averagpresentation

Yo ={la-H[Iy- FB] KB} Y, =& +H Z FKen,, nez (2.9b)
v=1

For some parameter spa®ec R, r € N, the mappings
F(.) 10— MN(R), H(.) 10— Md,N, (2.10&)

together with a collection of strictly stationary stoch@agtrocesseg y, Wy, @ € 0, with finite second moments
determine a parametric fami(fFg, Hy, Zg, Wy)gco Of linear state space models according to Definition 2.1 ther
variance and covariance matrices of the noise sequehd&swe use the notation (cf. Eq. (2.1Qy = EZ,MZIT,”,

Sy = EWynWj, ., andRy = EZy,W;, ., which defines the functions
Q(.) G SN(R), S(.) 10— S, R(.) 10— MN’d(R). (2.10b)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)atHor this model, minus twice the logarithm of the
Gaussian likelihood off based on a sampl¢ = (Y4, ..., Y.) of observations can be written as

L L
L@,y = Z lgn = Z |dlog 2 + log detVy + &) V; &4, (2.11)

n=1 n=1

wheregy , andVy are given by analogues of Egs. (2.7a) and (2.8), namely
gon={la—Ha[ln — (Fs — KoHg) B " Ky B} Yo, NeZ,  Vy=HyQyHj + Sy, (2.12)

andKy, Qg are defined in the same waylésQ in Egs. (2.5) and (2.6). In the following we always assumé yha
(Yoo1,---» Yg,L) is @a sample from the output process of the state space rigeHs,, Zs,, Wy,) corresponding to
the parameter valu@,. We therefore callly the true parameter valuelt is important to note thaty, are the true
innovations ofYy,, and that thereforEs,,o,ns;D’n = Vy,, but that this relation fails to hold for other valuesibfThis
is due to the fact thaty is not the true innovations sequence of the state space madesponding to the parameter
valued. We therefore call the sequenggpseudo-innovations

The goal of this section is to investigate how the valgecan be estimated froi by maximizing Eq. (2.11).
The first dificulty one is confronted with is that the pseudo-innovatignare defined in terms of the full history of
the proces¥ = Yy,, which is not observed. It is therefore necessary to use progimation to these innovations
which can be computed from the finite sample One such approximation is obtained if, instead of using the
steady-state Kalman filter described in Proposition 2.&,initializes the filter ab = 1 with some prescribed values.
More precisely, we define the approximate pseudo-innowafig via the recursion

Xon = (Fo — KgHg) Xgn1 + KgYn 1, &9n=Yn—HgXgn, NEN, (2.13)
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and the prescriptiorf(,m = )A(,,,mmap The initial valuesf(,a,initim are usually either sampled from the stationary
distribution of Xy, if that is possible, or set to some deterministic value eAlatively, one can additionally define

a positive semidefinite matri®y iniiar and compute Kalman gain matricksg , recursively via Brockwell and Davis
(1991, Eq. (12.2.6)). While this procedure might be advastag for small sample sizes, the computational burden
is significantly smaller when the steady-state Kalman gairsed. The asymptotic properties which we are dealing
with in this paper are expected to be the same for both chbieesuse the Kalman gain matridé€g, converge to
their steady state values asends to infinity (Hamilton, 1994, Proposition 13.2).

The QML estimato{?L for the parameted based on the sampig is defined as
9" = argminy.o Z(9, Y1), (2.14)

Where‘,?(ﬂ, yb) is obtained fromZ(#, y-) by substitutinggy , from Eq. (2.13) forey,, i. €.

L L
2@,y = Z [0 =) [dlog2r +log detVy + &) \V; Ean] (2.15)
n=1 =1

n

2.2. Technical assumptions and main results
Our main results about the quasi maximum likelihood esiimmator discrete-time state space models are The-

orem 2.1, stating that the estimair given by Eg. (2.14) is strongly consistent, which means izhLad:onverges

. L Al .
to ¢ almost surely, and Theorem 2.2, which asserts the asyraptotimality ofd ~ with the usual./? scaling. In
order to prove these results, we need to impose the folloa@mglitions.

Assumption D1. The parameter spad® is a compact subset &f .
Assumption D2. The mappings F, H¢), Q). S, and R, in Egs. (2.10) are continuous.
The next condition guarantees that the models under caasiole describe stationary processes.
Assumption D3. For everyd € @, the following hold:
i) the eigenvalues of fFhave absolute values less than unity,
i) atleast one of the two matricesy@nd S is positive definite,
i) the matrix Vi is non-singular.
The next lemma shows that the assertions of Assumption D8ihdact uniformly ind.
Lemma 2.1. Suppose that Assumptions D1 to D3 are satisfied. Then tlosviaty hold.
i) There exists a positive numbex 1 such that, for all} € @, it holds that

max{|d| : 21 € o (Fg)} < p. (2.16a)

i) There exists a positive numbgr< 1 such that, for alk} € ©, it holds that
max{|d : 1 € o (Fy — KgHg)} < p, (2.16b)
where Ky is defined by Eqg2.5)and (2.6).
iii) There exists a positive number C such thst?|| < C for all .

Proor. Assertion i) is a direct consequence of Assumption D3h§,assumed smoothnesajof> Fy (Assump-
tion D2), the compactness @f (Assumption D1), and the fact (Bernstein, 2005, Fact 1@)lthat the eigenvalues
of a matrix are continuous functions of its entries. Claipfidllows with the same argument from Proposition 2.1, ii)
and the fact that the solution of a discrete-time algebr&cdi equation is a continuous function of the fimment
matrices (Lancaster and Rodman, 1995, Chapter 14),(S@8).18oreover, by Eq. (2.8), the functigh— Vy is
continuous, which shows that Assumption D3, iii) holds aniflly in ¢ as well, and so iii) is proved.
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For the following assumption about the noise sequezcaadW we use the usual notion of ergodicity (see, e.qg.,
Durrett, 2010, Chapter 6).

Assumption D4. The proces§ Wy, Zj. )T is ergodic.

The assumption that the proces&gs andW,, are ergodic implies via the moving average representafic®) and
Krengel (1985, Theorem 4.3) that the output procéssY, is ergodic. As a consequence, the pseudo-innovations
&y defined in Eq. (2.12) are ergodic for evalhe 6.

Our first identifiability assumption precludes redundasaiethe parametrization of the state space models under
consideration and is therefore necessary for the true pesimalual, to be estimated consistently. It will be used
in Lemma 2.7 to show that the quasi likelihood function gi®nEq. (2.15) asymptotically has a unique global
minimum atd.

AssumptioN D5. For all ¢¢ # 9 € 0, there exists a z C such that
Hﬂ [1N - (F,y - K,}Hﬂ) Z]71 K,9 * H,90 [1N - (F,}0 - KﬂoHﬂo) Z]_l K,yo, or V,9 * V,}O. (217)

Assumption D5 can be rephrased in terms of the spectraltiessj, of the output processes of the state space
models(Fyg, Hg, Zg, Wy). This characterization will be very useful when we apply ¢ésémation theory developed
in this section to state space models that arise from sagalgontinuous-time ARMA process.

Lemma 2.2. If, for all o # & € O, there exists aw € [-n,x] such that ¥,(w) # fy, (w), then Assumption D5
holds.

Proor. We recall from Hamilton (1994, Eq. (10.4.43)) that the $pdaensity fy, of the output proces¥
of the state space modéFy, Hy, Zy, Wy) is given by fy,(w) = (21)"245 (€2) Va7 (e““’)T, w € [, 7], where
H3(2) = Hg [In — (Fg — KgHy) 271 Ky + 2 If Assumption D5 does not hold, we have that batfi(2) = .73,(2) for
all ze C, andVy = V,,, and, consequently, théd, (w) = fyﬂo (w), for all w € [-n, 7], contradicting the assumption
of the lemma.

Under the assumptions described so far we obtain the fallgwbnsistency result.

THEOREM 2.1 (CONSISTENCY OF f?L). Assume thatFg, Hy, Zg, Wy)sco iS a parametric family of state space mod-
els according to Definition 2.1, and Igt = (Yg,1,...,Yg,.) be a sample of length L from the output process
of the model corresponding ty. If Assumptions D1 to D5 hold, then the quasi maximum likelthestimator

f?" = argmiry.e ,,27(0, y*) is strongly consistent, i. @L — 9 almost surely, as b .

We now describe the conditions which we need to impose irtiaddbd Assumptions D1 to D5 for the asymptotic
normality of the quasi maximum likelihood estimator to holdhe first one excludes the case that the true parameter
valued, lies on the boundary of the domain

Assumption D6. The true parameter valuy is an element of the interior @.

Next we need to impose a higher degree of smoothness thad staAssumption D2 and a stronger moment
condition than Assumption D4.

AssumpTioN D7. The mappings f, Hy, Qu, Sy, and R, in Egs. (2.10) are three times continuouslyfefienti-
able.

By the results of the sensitivity analysis of the discrateet algebraic Riccati equation in Sun (1998), the same
degree of smoothness, namél§, also carries over to the mappifig— V.

T ..
Assumpriox D8. The proces$ Wj  Zj ) has finite(4 + 6)th moments for some> 0.

Assumption D8 implies that the proce¥shas finite (4+ 6)th moments. In the definition of the general linear
stochastic state space model and in Assumption D4, it wasamsiumed that the sequen@eandW are stationary
and ergodic. This structure alone does not entail ficsent amount of asymptotic independence for results like
Theorem 2.2 to be established. We assume that the pr¥desstrongly mixing in the sense of Rosenblatt (1956),
and we impose a summability condition on the strong mixingffazients, which is known to be flicient for a
Central Limit Theorem folY to hold (Ibragimov, 1962; Bradley, 2007).
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Assumption D9. Denote byay the strong mixing cggcients of the proces¥ = Yg,. There exists a constant
6 > Osuch thaty,>_ [ay(m)] 5 < oo,

In the case of exponential strong mixing, Assumption D9\vgagk satisfied, and it is no restriction to assume that
the 6 appearing in Assumptions D8 and D9 are the same. It has besmsh Mokkadem (1988); Schlemm and
Stelzer (2011) that, because of the autoregressive steucfihe state equation (2.2a), exponential strong mixing
of the output proces¥,, can be assured by imposing the condition that the proZgsss an i.i.d. sequence
whose marginal distributions possess a non-trivial altelylicontinuous component in the sense of Lebesgue’s
decomposition theorem, see e. g., Halmos (1950831, TheG)amLebesgue (1904).
Finally, we require another identifiability assumptionattwill be used to ensure that the Fisher information

matrix of the QML estimator is non-singular. This is necegdsecause the asymptotic covariance matrix in the

asymptotic normality result fcf?L is directly related to the inverse of that matrix. Assumpti®lO is formulated in
terms of the first derivative of the parametrization of thedelpwhich makes it relatively easy to check in practice;
the Fisher information matrix, in contrast, is related te second derivative of the logarithmic Gaussian likelihood
For j € N and# € ©, the vectoryy ; € RU*2% is defined as

7y :[ [1J+1®K$®H"][ (vecly)" (vecFy)" - (VeCF},‘)T ]T ] (2.18)
’ vecVy

where® denotes the Kronecker product of two matrices, and vec iirtar operator that transforms a matrix into
a vector by stacking its columns on top of each other.

Assumprion D10. There exists an integep N such that thd( jo + 2)d?] x r matrix Vaa,.j, has rankr.

Our main result about the asymptotic distribution of thegjumaaximum likelihood estimator for discrete-time
state space models is the following theorem. Equation [&R6ws in particular that this asymptotic distribution is
independent of the choice of the initial valuggnita -

THEOREM 2.2 (ASYMPTOTIC NORMALITY OF 1A9L) Assume thafFy, Hy, Zg, Wy)sco iS @ parametric family of state
space models according to Definition 2.1, andylet= (Yg,1,..., Yg,.) be a sample of length L from the output
process of the model corresponding#g If Assumptions D1 to D10 hold, then the maximum likelihostdvetor

9 = = argminy., .Z(J, y*) is asymptotically normally distributed with covariancetmea= = J-11J2, i. e.
VL ({9L - 00) 5 4 (0.5), (2.19)

where
= lim Lt Var(Vy.Z (90.¥5)). J= lim L™'V5.2 (do. y-). (2.20)

2.3.  Proof of Theorem 2.1 — Strong consistency

. . . .. . . . AL X
In this section we prove the strong consistency of the quasiimmum likelihood estimatof# . As a first step
we show that the stationary pseudo-innovations processased by the steady-state Kalman filter are uniformly
approximated by their counterparts based on the finite sayhpl

Lemma 2.3. Under Assumptions D1 to D3, the pseudo-innovations segsep@and &y defined by the Kalman
filter equationq?2.7a)and (2.13)have the following properties.

i) If the initial values Xy niiar are such thasugyee || Xs.niial || is almost surely finite, then, with probability one,

there exist a positive number C and a positive number 1, such thasupy.e ||ean — &9 < Co™, n€ N. In
particular, &, , converges to the true innovatioas = £y, » at an exponential rate.

ii) The sequencesy are linear functions of, i. e. there exist matrix sequenc@s,),.,, such thatey, = Yy +
Y1 Gy Ynoy. The matrices g, are uniformly exponentially bounded, i. e. there exist atpasconstant C and
a positive constant < 1, such thasupy,g [|ca.|| < Cp”, v € N.
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Proor. We first prove part i) about the uniform exponential appmmadion of & by &. Iterating the Kalman
equations (2.7a) and (2.13), we find that, ffioz N,

n-1
&9 =Yn — Ha (Fy = KgHp)"™" Xy = >~ Hy (Fy - KgHa)" " KyYn,, and
v=1
n-1
890 =Yn — Ha (Fo — KgHg)" ™ Xy initial — Z Ha (Fg — KgHa) 1 Ko Ynoy.
y=1

Thus, using the fact that, by Lemma 2.1, the spectral radfiypof KyHy are bounded by < 1, it follows that

sup||ea.n — &a.n| =sup||Ha (Fs — KaHa)"™* (Xa.0 = Xginitar)|| < HllLo@) 0" sUp||Xs.0 = Xanitia]| -
DEC) DEC) PSS

where||H|l.~@©) = SURye Hsll denotes the supremum norm Kf,, which is finite by the Extreme Value The-
orem. Since the last factor is almost surely finite by assionpthe claim follows. For part ii), we observe
that Eqg. (2.7a) and Lemma 2.1, ii) imply thay has the infinite-order moving average representatipn =
Yn—Hg 22, (Fg — KgHg) "t KgYn_,, whose cofficientscy, = —Hy (Fg — KgHg)' ™ Ky are uniformly exponen-
tially bounded. Explicitly]icg.,|| < [[Hll«() IKllL=@) p"*. This completes the proof.

Lemma 2.4. Let £ and & be given by Egg2.11)and (2.15) If Assumptions D1 to D3 are satisfied, then the
sequence t supye [Z (@, y-) - Z£(4, y'-)’ converges to zero almost surely, as- .

Proor. We first observe that

L
[ Z2.y5) - 2@,y = D" [Gon = 800) Vg 8an + &5,V (Eon — E0n)].
n=1
The fact that, by Lemma 2.1, iii), there exists a cons@stich thaf|V; || < C implies that

} sup
L IO

— Cy .

Z00.y) - 2039 <T 20" |suplol + supl]| @21)
=1 DEC) S

Lemma 2.3, i) and the assumption théahas finite second moments imply that the expectaisnpy.q ||&g.n|| is

finite. Applying Markov’s inequality, one sees that, for gvpositivee,

oo

2, P(Pn .?LJ@pHs"’”” > 6) < E;g@p”sﬂ,ln nz:; — <%

becausg < 1. The Borel-Cantelli Lemma shows th#ltsuyg ||€a.n|| converges to zero almost surely,ras> co.

In an analogous way one can show thasupy.e ||é,9,n|| converges to zero almost surely, and, consequently, so does
the Cesaro mean in Eqg. (2.21). The claim thus follows.

Lemma 2.5. Assume that Assumptions D3 and D4 as well as the first altemaf Assumption D5 hold. If
&91 = &9,1 almost surely, theg = .

Proor. Assume, for the sake of contradiction, tifag . By Assumption D5, there exist matric€s € Mqy(R),
j € Np, such that, fotz < 1,

Ha [1n — (Fa — KaHg)Z ™ Ky — Hg, [In — (Fa, — Kg,Ha,2Z ™ Ky, = Z CiZ, (2.22)
i=Jo
whereC;;, # 0, for somejo > 0. Using Eq. (2.7b) and the assumed equalitypf and ey, 1, this implies that
0d = 272, CjYj,-j almost surely; in particular, the random variallgYy is equal to a linear combination of the
components ofy,, n < 0. It thus follows from the interpretation of the innovatiogequencey, as linear prediction
errors for the proces¥ thatCj,&,,0 is equal to zero, which implies thaCj 4,08, ,C = Cj,Vi,C], = Oa. Since

90,0
Vy, is assumed to be non-singular, this implies that the matgjxs the null matrix,oa contradiction to Eqg. (2.22).
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LEmma 2.6. If Assumptions D1 to D4 hold, then, with probability one, seguence of random functiofls—
L2, y-) converges, as L tends to infinity, uniformlydrio the limiting function2 : ® — R defined by

2(9) = dlog(2r) + log detVy + Es) V9.1 (2.23)

Proor. In view of the approximation results in Lemma 2.4, it is eglodo show that the sequence of random
functionsd? — L1.Z(,y") converges uniformly ta2. The proof of this assertion is based on the observation
following Assumption D4 that for eaclt € ® the sequencey is ergodic and its consequence that, by Birfkiso
Ergodic Theorem (Durrett, 2010, Theorem 6.2.1), the setpien*.Z(dJ, y-) converges ta2(J) point-wise. The
stronger statement of uniform convergence follows fromufsgstion D1 tha® is compact by an argument analogous
to the proof of Ferguson (1996, Theorem 16).

Lemma 2.7. Under Assumptions D1 to D3 and D5, the functigh: ® — R, as defined in Eq(2.23) has a
unique global minimum aty.

Proor. We first observe that the ferencesy 1 — &5,1 is an element of the Hilbert space spanned by the
random varlablesf,Yn, < 0}, and thatey, 1 is, by definition, orthogonal to this space. Thus, the exqient
E (891 — €91 )" V &9, IS equal to zero and, consequentB(#) can be written as

2(#) = dlog(2r) + Esﬂ lV_ 89,1+ E (891 — 8,90,1) Vl; (891 — 89,1) + log detVy.

In particular, sinc&e;_,V;lep,1 = tr [V ‘Eego18y, ] = d, it follows that2(9o) = log detVy, + d(1+log(2r)). The
elementary inequality Iogx > 1, for x > 0, |mpl|es that tM — log detM > d for all symmetric positive definite
dxd matricesM € S§*(R) with equality if and only ifM = 14. Using this inequality foM = V';01V, , we thus obtain
that, for alld € @,

2(9) - 2@o) =d +tr [V, Eeg, 185 | - log det(V;1Vy)
+E(eg1 - 8,90,1) V!t (e91 — &901) - Esz, V',0 £901
>E (891~ &0,1)" Vy" (891 — £9,1) > 0

It remains to argue that this chain of inequalities is in @strict inequality i} # Jo. If Vg # Vy,, the first inequality
is strict, and we are done. Yy = Vj,,, the first alternative of Assumption D5 is satisfied. The seldnequality is
an equality if and only iy 1 = £4,1 almost surely, which, by Lemma 2.5, implies th#at J,. Thus, the function
2 has a unique global minimum &.

Proor (or Tueorem 2.1). We shall first show that the sequerllcé‘,?\(ﬁL, yb), L € N, converges almost surely to
the deterministic numbeg(,) as the sample size tends to infinity. Assume that, for some positive numhet

holds that sup.e ‘L‘ljﬂ\(ﬂ, yh) - £2(0)| < e. It then follows that
L22(0", 1) < L2 Z(0, Y1) < 2(@0) + € and LLZ(@,yH) > 2@") - e > 2(0) — e,

where it was used th@cL is defined to minimize?\(-, yb) and that, by Lemma 2.7 minimizes.2(-). In particular,
it follows that'L‘l,,?\({?L, yh) — Q(ﬂo)' < e. This observation and Lemma 2.6 immediately imply that

P(%Q\({QL, vH) — Q(ﬂo)) > P(sup

D0

%.57(0, yh) - ,@(0)' — o) =1 (2.24)

To complete the proof of the theorem, itfBoes to show that, for every neighbourhdddof ¢, with probability

one,ﬁlL will eventually lie in U. For every such neighbourhodd of 9y, we define the real numbe(U) :=
infygeoru 2(3) — 2(J0), which is strictly positive by Lemma 2.7. Then the follogisequence of inequalities holds:

P({?L o 00) _ P(VU Ae:d eU vL> Lo)
>P (vu Ao : 2@ - 2(3) < 6U) VL > Lo)

>P (vu A, : |L-1§(3L, ¥) - 2(90)| < 6(U)/2 and |L-1§(3L, W) - 2@ <s)/2 vL> Lo)



QML estimation for strongly mixing state space models and multivariate CARMA processes 11

The last probability is equal to one by Eq. (2.24) and Lemnga 2.

2.4. Proof of Theorem 2.2 — Asymptotic normality
. . . . . AL
In this section we prove the assertion of Theorem 2.2, theadtstribution ofL/2 (0 - 00) converges to a normal

random variable with mean zero and covariance ma&rixJ-11J71, an expression for which is given in Eq. (2.20).
First, we collect basic properties &fegn andoméys n, Wheredy, = 4/39™ denotes the partial derivative with respect
to themth component off; the following lemma mirrors Lemma 2.3.

Lemma 2.8. If Assumptions D1 to D3 and D7 hold, the pseudo-innovatieagisncesy and £y defined by the
Kalman filter equation$2.7a)and (2.13)have the following properties.

i) If, for k € {1,...,r}, the initial valuesXy nijal are such that botisugye || X.iniial | @nd SURyee || Xg.initiat || are
almost surely finite, then, with probability one, there egipositive number C and a positive numbek 1,
such thasupy.e ||0kss.n — dan|| < Co", neN.

i) For each ke {1,...,r}, the random sequencéﬁsﬂ are linear functions of, i. e. there exist matrix sequences
(c?) . such thakegn = 324 ) Yo ,. The matrices § are uniformly exponentially bounded, i. . there
91’ k&dn = y=1 ﬂv n-v- Yy p y y 1. G

exist a positive constant C and a positive consfagt1, such thasupe ’C.(;)y” <Cp'yveN.

iii) If, fork,1 € {1,...,r}, the initial valuesXy nijal are such thasupyee || Xa,nidal||, @s well assugyee [|0i Xa,nital
i € {k 1}, andsup.e ||ai,5<,,,mma.|| are almost surely finite, then, with probability one, therisea positive
number C and a positive number< 1, such thasugye |02 0.0 — 0 &0 < Cp", n€N.

iv) Foreachkl € {1,...,r}, therandom sequencé@,eﬂ are linear functions oY, i. e. there exist matrix sequences
( f,‘fv'))v such that’)kls,,n =y=.c (k')Yn ,. The matrlcesgf') are uniformly exponentially bounded, i. e. there

exist a positive constant C and a positive constant1, such thasup..e |c("')” <Cp",veN.

Proor. Analogous to the proof of Lemma 2.3, repeatedly interchanglifferentiation and summation, and
using the fact that, as a consequence of Assumptions D1 tond3Dq, bothak[H,‘;(F.y — KgHg)" ™t Kﬂ] and

a2, [Ha (Fs — KaHg)"™* Ky | are uniformly exponentially bounded.
Lemma 2.9. For eachd € ® and every m= 1,...,r, the random variabl®,,.Z(d, y-) has finite variance.

Proor. The claim follows from Assumption D8, the exponential deohthe codficient matricesy, and cf;?
proved in Lemma 2.3, ii) and Lemma 2.8, and the Cauchy—Schiwaguality. ’

We need the following covariance inequality which is a cousmce of Davydov’s inequality and the multidi-
mensional generalization of an inequality used in the podéfrancq and Zakoian (1998, Lemma 3). For a positive
real number, we denote bya] the greatest integer smaller than or equal.to

Lemma 2.10. Let X be a strictly stationary, strongly mixing d-dimensionadtastic process with finit@ + §)th
moments for som&> 0. Then there exists a constant C, such that for al d matrices A, B, everyaZ, A € N,
and time indices, v’ € No, u, i/ = 0,1...,[A/2], it holds that

§/(6+2)
CoV(Xp, AXn v XT,x_,BXnia ) < CIIAIIBY [a/x (bm , (2.25)

whereax denotes the strong mixing gfieients of the procesx.

Proor. We first note that the bilinearity @ov(;; -) and the elementary inequalilyij < [[M||, M € Mgy(R), imply
that

cOv(x;,vAxn,v,;xmA_,JBxM#)<d4||A||||B|| max LCOV (XX X Kheac) -

.....
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Since the prOJectlon which maps a vector to one of its comptanie measurable, it follows that the random vari-
ableX is measurable with respect #8".""""! | thes-algebra generated By : —co < k < n— min{y,v'}}.

n—-v n v
Similarly, the random variablé? X}HA w is measurable with respect 18,7, -t Davydov's inequality

n+A—,
(Davydov, 1968, Lemma 2.1) |mpI|es that there exists a uaaleconstanKk such that

Xl XJ E Xn+A—;1X:1+A -

n—-v’*n—y’

2+5)1/(2+6) ( 2+5)1/(2+6)

COV(X:] V)(rj1 o n+A_#xn+A ,u) <K(

X [ax (A — max{u, @'} + min{y,v })]5/(2+5)

<o)

where it was used that — max{u, ¢’} + min{v,v’} > |A/2], and that strong mixing cfiécients are non-increasing.
By the Cauchy—Schwarz inequality the const@rgatisfies

J t
XI X xr?+A — Xn+A -

n—v**n—v'

2+5)1/(2+§) ( 2+5)1/(2+5)

c-k(z < K (BIXal2)

and thus does not depend v, v/, u, i, A, nor oni, j, s, t.

The next lemma is a multivariate generalization of Francd Zakoian (1998, Lemma 3). In the proof of
Boubacar Mainassara and Francq (2011, Lemma 4) this gersiah is used without providing details and, more
importantly without imposing Assumption D9 about the sganixing of Y. In view of the derivative term8nyg4.
in Eq. (2.27) it is not clear how the result of the lemma can towgd under the mere assumption of strong mixing
of the innovations sequeneg,. We therefore think that a detailed account, properly gaizing the arguments in
the original paper (Francq and Zakoian, 1998) to the mafigdtisional setting, is justified.

Lemma 2.11. Suppose that Assumptions D1 to D3, D8 and D9 hold. Then, fnydl € @, the sequence
L-1 varvy.Z(d, y-) of deterministic matrices converges to a lin@) as L — co.

Proor. It is enough to show that, for eaghe @, and allk,| = 1,...,r, the sequence of real-valued random

variables! <, defined by

|~

L L
(< _ (9, ¢0)
190 =7 > 2, Cov (6. ). (2.26)

n=1 t=1
converges to a limit ak tends to infinity, whereff,r? = dmlgn is the partial derivative of thath term in expression

(2.11) for Z(d,y"). It follows from well-known diferentiation rules for matrix functions (see, e.g. Horn and
Johnson, 1994, Sections 6.5 and 6.6) that

60 = tr[Vy" (1a - 8008 V") (OmVa)| + 2(0mey ) Vy Ean. (2.27)

By the assumed stationarity of the processgsthe covariances in the sum (2.26) depend only on tferdnce
n - t. For the proof of the lemma it fiices to show that the sequeng® = Cov (¢}, £0), ), A € Z, is absolutely
summable for alk,| = 1,...,r, because then ’

(O (k) K)
140 = LZ(L Al ) LWZ < . (2.28)

AeZ

In view of the of the symmetryly") = {V, ,itis no restriction to assume thate N. In order to show thak, |c ’ (k)

is finite, we first use the blllnearlty aov(-; ) to estimate
'cl(;i) <4 ‘COV 5k8,9 n) V,, 9. ((9|80 n+A) V_ls,z,n n+A)|

d.n

+ [Cov(ir [V gansh Vi aVa | 1 [Vy ganiash n sV OV )| +
+2|Cov(tr|Vy enns] Ny Vo (818) o, ) Vi e en) | +

+2|Cov((0ke) o) Vi oo [V 80 0, a Vi 01V )|
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Each of these four terms can be analysed separately. We gigésdonly for the first one, the arguments for the
other three terms being similar. Using the moving averageesentations fogy, dkeg ando, ey, it follows that

[Cov((0ke} ) Vo i (018h 0ya) Vitoanea)| = D SOV (YR Vi e, Yo, Vs o Vi G Yiuaye)|
v ' =0

This sum can be split into one pdrtin which at least one of the summation indiees’, u andu’ exceedd\/2, and
one part ~ in which all summation indices are less than or equalt®. Using the fact that, by the Cauchy—Schwarz
inequality,

EIYall*,

n-v ,9 n+A—p ,9;1

|Cov (Ya, V5 e Yo Y a €O Vo o Yy )| < Iy

it follows from Assumption D8 and the uniform exponentiatelg of| s, and“cf,mV)H proved in Lemma 2.3, ii) and
Lemma 2.8, ii) that there exist consta@@&ndp < 1 such that

00

K - | _
1" = Z ‘COV Y-rE v f‘))T 0lcl7,v’Yn—v"Y-rl1—+A—,u .(7)T ﬂlcﬂ,ﬂ’Yn+A—ﬂ’)‘ < CpA/Z' (229)
—O
ma){vvv M }>A 2

For the contribution from all indices smaller than or equaA{2, Lemma 2.10 implies that

A/2] A §/(2+6)
)} . (2.30)

7= 3 [Cov (YT Vs e Yo, YEa o Vs c,,l,},,\(m,,)'<c:[ayqE

vV ' =0

It thus follows from Assumption D9 that the sequen#é‘ﬂ, A € N, are summable, and Eq. (2.28) completes the
proof of the lemma.

Lemma 2.12. Let.# and_Z be given by Eqg2.11)and (2.15) Assume that Assumptions D1 to D3 and D7 are
satisfied. Then the following hold.

i) Foreachm=1,...,r, the sequence /2 sup.¢
as L— oo.

LD, V) - OmZ (D, yL)| converges to zero in probability,

i) Forallk,I =1,...,r, the sequence suge

L — oo.

ﬁﬁ,l.,?(ﬂ, D RUAEACA yL)‘ converges to zero almost surely, as

Proor. Similar to the proof of Lemma 2.4.

Lemma 2.13. Under Assumptions D1, D3 and D7 to D9, the random variab2v .2 (o, y*) is asymptotic-
ally normally distributed with mean zero and covariance mxalt(d).

Proor. Because of Lemma 2.12, i) it is enough to show that/?vy.# (00, yL) is asymptotically normally
distributed with mean zero and covariance mal(iky). First, we note that

L
52@y) = Y {tr[Vy' (1o - saney, Vst) Vo] + 2(di8] ) Vi ean) (2.31)
n=1
which holds for every component= 1,...,r. The facts thaES,goynb‘;On equalsVy,, and thatsy,  is orthogonal

to the Hilbert space generated py;,t < n}, of which 6is'T,n is an element, show thﬁaiﬁ(ﬂo, yL) = 0. Using
Lemma 2.3, ii), expression (2.31) can be rewritten as

L

Z (B0 y") = [YO, - BYE,] Z[Z(l) ~ 520,

n=1
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where, for everym € N, the processe‘gg‘) andZ,(Ti]) are defined by

m

Y8 =t V2@V | + - {=tr[ValCaos Yooy Yoo, G, Val(@iVa,)| + 2Y ) TV oo Yo}, (2.322)

N—=v=do,v 0
v,v'=0

Zr(1i13n :Ur(’r?n + Vr(]iq?n’ (2.32b)

and

U= >0 - tr[Vateaos Yoy Vi, G, Val(@iVao)] + 2Y,c TV oo Yov )

0
y=0v'=m+1

00 m
VORS Z Z {-tr [vl;jcﬂo,yvn_vvg_v,c;v,v];j(aivﬂo)] + 2Y§_ch,'3jv1;olc,,o,v,Yn_v,}.

v=m+1v'=0

It is convenient to also introduce the notations
T T
Yon = ( Yr(nl% Yr(r:,)n ) and Zmnn = ( Zr(#}1 Zéfl)n ) ) (2.33)

The rest of the proof proceeds in three steps: in the first wevghat, for each natural number, the sequence
L™Y2 3 [Ymn — EYmn] is asymptotically normally distributed with asymptoticvesiance matrix,, and thatl,
converges td (o) asm tends to infinity. In the second step we prove that’? ¥, [Zmn — EZmn] goes to zero
uniformly in L, asm — oo, and the last step is devoted to combining the first two stegsdve the asymptotic
normality of =2V, (o, y*).

Step 1 SinceY is stationary, it is clear tha¥, is a stationary process. Moreover, the strong mixingfoments
ay,, (K) of Y satisfyay, (k) < ay(max0, k—m}) because/m, depends only on the finitely many valués m, ..., Yn

of Y (see Bradley, 2007, Remark 1.8 b)). In particular, by AssionfD9, the strong mixing cdgcients of the pro-
cesse/, satisfy the summability conditiofi, [y, (K)]*/?*) < co. Since, by the Cramér—Wold device, weak con-
vergence of the sequente’? Y- [Ymn — EYmn] to @ multivariate normal distribution with mean zero andarov
ance matrix is equivalent to the condition that, for every veatoe R', the sequence™2u” 3= [Ymn — EYmn]
converges to a one-dimensional normal distribution witameero and variance' Zu, we can apply the Central
Limit Theorem for univariate strongly mixing processes (tddorf, 1984),(lbragimov, 1962, Theorem 1.7) to obtain
that

L
1 d
=" [Yimn =~ EY ] —— A (0 Im). where I = > COV(Ymni Ymnia) (2.34)
\/E n=1 AeZ
The claim that, converges td (i) will follow if we can show that
K) .y (k) . o)
Cov (Y8 Yinea) = CoV (6 i 6y a) s YAEZ, (2.35)

and that|Cov(Yr(T'{)n; Yr(r'L)n+A)| is dominated by an absolutely summable sequence. For thedirdition, we note that

the bilinearity ofCov(:; -) implies that
Cov (Y9, YO ) - Cov (e )

mn: “mn+A do,n’ “do,n+A

) =Cov (Y& YO, — &

K K . ()
mn’ "mn+A :90,n+A) +Cov (Yr(n)n -t 4

Jo,n’ ﬂo,n+A) :

These two terms can be treated in a similar manner so weatastii attention to the second one. The definitions of
Y{n (Eq. (2.32a)) and) (Eq. (2.26)) allow us to compute
K - - 0).T\/—
Yr(Tl'?n - 51(90),n = Z [tr [V,)OlCﬂO,yYn—VY;I‘I——V’ C;’V,V"Olaiv,go] - ZYI_VCE‘;Z,VV.?OlcﬂosV’ Yn—v'] .
max{vx;x/]>m

As a consequence of the Cauchy—Schwarz inequality, Assomp8 and the exponential bounds in Lemma 2.3, i),
we therefore obtain that’ar(Yr(T'{)n - é’f,';) n) < Cp™ independent oh. The L?-continuity of Cov(-; -) thus implies that

the sequenceov(YRh - €50 : €5) ) converges to zero am tends to infinity at an exponential rate uniformly in

A. The existence of a summable sequence domin#ﬂog(YS{L; Y$n+A)' is ensured by the arguments given in the

proof of Lemma 2.11, reasoning as in the derivation of Eq29Rand (2.30).
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Step 2  We shall show that there exist positive constahindp < 1, independent of,, such that

1 < o
trVar[ﬁ nZ:; Zmn] <Cp™, Zmngivenin Eqg. (2.33) (2.36)

Since

1 « 1 < 1 < H
trVar| — Z < 2|trVar| — U, +trVar] — WV, s 2.37
) ] [ﬁz ] [ﬁz . 237)

it suffices to consider the latter two terms. We first observe that

L-1

1 L 1 L 1 r r
tr Var %;fumn :[tr Z CoV(Umpn; Ump) = L IZ:: Z |A|)u(kl) < Z Z| kD] (2.38)

nn=1 A=-L+1 kl=1AeZ

where
(k) _ ® .0
ule) =Cov(URUY L)

mn? ~mn+A
m
-1 T T y-1 T KT
= > Cov(=tr[Vykes, Yo Yo, Ch, ValdVa, | + Yoo, ci TV oo Yy ;
v,u=0
v =m+l

T ), T
—tl’[ o Cl’o w1 Ynea—uYnea - 0;1 00 6|V'70] + Yn+A ,uCI(Q) ”V Cl’o AL )

As before, under Assumption D8, the Cauchy—Schwarz inégwaid the exponential bounds an:ﬂo,V” andHc(k)

?ov

imply that 'uﬂi’g‘ < Cp™. By arguments similar to the ones used in the proof of Lemrif R.can be shown that
Davydov's inequality implies that fan < [A/2] it holds that

w o« A2] AP w
' ((9)) <CZ Z Z pV+V'+H+H’ [QY QEJ)] +C Z Z pv+v’+,u+,u’

v=0 v'=m+1 p,1’ =0 v,v'=0 N
maxXiu.p’'>A/2]

e

It thus follows that, independent of the valuekadndl,

00

Z um ' K| ‘ (kD] < Co™ {m+ Z[“Y (A)]d/(2+5)}’
A=0

A=0

and therefore, by Eq. (2.38), thattha\r(L‘l/2 thl ﬂmn) < Cp™. In an analogous way one also can show that
tr Var(L‘l/2 pa (an) < Cp™, and thus the claim (2.36) follows with Eq. (2.37).

Step 3 In step 1 it has been shown tHat'/? 3 [Ymn — EYmn] LL) N (0, ), and thatl, converges td (),

asm — oo, In particular, the limiting normal random variables withvarianced,, converge weakly to a normal
random variable with covariance mattit,). Step 2 together with the multivariate Chebyshev inedyaiiplies
that, for everye > 0,

1 1 <
lim limsupP|||—=V¢.Z (90, V") - — > [Ymn - EY,
p[\/tﬂ (OY) Z[ mn mn]

X Lo

< lim Ilmsup—trVar[ szn) < lim = m_ .

m—>00 Lo 62

Proposition 6.3.9 of Brockwell and Davis (1991) thus cortggehe proof.
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A very important step in the proof of asymptotic normalityqofasi maximum likelihood estimators is to establish
that the Fisher information matri¥ evaluated at the true parameter value, is non-singulaish&® now show that
Assumption D10 is dficient to ensure that ! exists for linear state space models. For vector ARMA preegs
formulae similar to Egs. (2.39) below have been derived aliferature (see, e. g., Klein et al., 2008; Klein and
Neudecker, 2000), but have not been used to derive critrialbeing non-singular.

Lemma 2.14. Assume that Assumptions D1 to D4, D7 and D10 hold. With pitibabne, the matrix J=
im0 L~1V2.2(0, y*) exists and is non-singular.

Proor. It can be shown as in the proof of Boubacar Mainassara amt&1@011, Lemma 4) thatexists and is
equal toJ = J; + J,, where

i = 2B((Vo£s,1)' Vy! (Vos,1)| and Jp=(tr [V‘W(av,,o)v (ajv,,o)vigolfz])ii. (2.39)

J, is positive semidefinite because it can be writtenJas= ( b, ... b )T( b, ... b ) whereb, =
(V52 @V, ?) vec(amVy,). Sincelds is positive semidefinite as well, proving thatis non-singular is equival-
ent to proving that for any non-zero vectore R', the numbers' Jic, i = 1,2, are not both zero. Assume, for
the sake of contradiction, that there exists such a vecter(cy,...,c)". The conditionc’ J;c implies that, al-
most surely,>_; Ckdk&s,n = Og, for all n € Z. It thus follows that}.2, >\ _; Ck (k-Ag,v)€9,-» = 04, Where
the Markov parameters#y, are given by.Zy, = —H,9FI;‘1K.9, v > 1. Since the sequeneag, is uncorrelated
with positive definite covariance matrix, it follows tha}_; cx (6k.#s,,) = Oq, for everyy € N. Using the rela-
tion vec(ABC) = (CT ®A) vecB (Bernstein, 2005, Proposition 7.1.9), we see that the liaplay is equivalent to
Vo ([K3, ® Ha, vecF;1) ¢ = Og for everyy € N. The conditiorc” J,¢ = 0 implies tha(Vy vecVy,) ¢ = Ogz. By the
definition ofyy j in Eq (2.18) it thus follows tha¥ iy, jC = O(j,2)e, fOr everyj € N, which, by Assumption D10,
is equivalent to the contradiction that= O;.

ProoF (oF THEOREM 2.2). Since the estimaﬁaL converges almost surely &t by the consistency result proved in
Theorem 2.1, andy is an element of the interior @ by Assumption D6, the es'[imaf)eL is an element of the interior
of ® eventually almost surely. The assumed smoothness of tlangdrization (Assumption D7) implies that the
extremal property of?L can be expressed as the first order condM@rﬁﬁL, yb) = 0. A Taylor expansion o# —
V,,.i’”\(ﬂ, y) around the poin#, shows that there exist parameter vecibrs @ of the formd; = 9 + ¢; (3L — ),
0< ¢ <1, suchthat

0 = LM29, 2000, y1) + V3 200" y )LV (8- ). (2.40)

Wherevsg@L, y') denotes the matrix whoséh row,i = 1,...,r, is equal to thdth row of Vf,.,?(ﬂi,yL). By
Lemma 2.13 the first term on the right hand side converges lwéalka multivariate normal random variable with
mean zero and covariance mattix 1(dp). As in Lemma 2.6 one can show that the sequéhee L‘lvgj’”\(z?, yh),

L € N, of random functions converges almost surely uniformlyhte tontinuous functioi — Vgg(ﬂ) taking
values in the spacR™™". Since on the compact spa@ethis function is bounded in the operator norm obtained
from identifyingR™"™" with the space of linear functions froRi to M, (R), that sequence is almost surely uniformly
bounded, and we obtain that

1 — 1 —
H[VIZ?‘z@L,yL) - [Vs«g(ﬂo, Yol < ol

-9 =50

because, by Theorem 2.1, the second factor almost surebem®ms to zero ak tends to infinity. It follows
from Lemma 2.14 thaL‘lvlz,f@",yL) converges to the matrid almost surely, and thus from Eq. (2.40) that

L2 (3L - 00) S (0,, 371”71), asL — co. This shows Eq. (2.19) and completes the proof.
In practice, one is interested in also estimating the asgtigptovariance matrixg, which is useful in con-

structing confidence regions for the estimated parametdrsgerforming statistical tests. This problem has been
considered in the framework of estimating weak VARMA praessin Boubacar Mainassara and Francqg (2011)
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where the following procedure has been suggested, whidsdsapplicable in our set-up. Firsi(iy) is estimated
consistently byJ- = L-1v2.%, 3L, y-). For the computation of* we rely on the fact that the Kalman filter can

not only be used to evaluate the Gaussian log-likelihood sthte space model but also its gradient and Hessian.
The most straightforward, but computationally burdensevag of achieving this is by direct flerentiation of the
Kalman filter equations, which results in increasing the benof passes through the filterrte- 1 andr (r + 3)/2 for

the gradient and the Hessian, respectively. More sophtsticalgorithms, including the Kalman smoother/anthe
backward filter have been devised and can be found in KulikomeéhSemoushin (2006); Segal and Weinstein (1989).
The construction of a consistent estimatot &f | (J) is based on the observation that Y sz Cov(£y,n, Coonra):
wherely,n = Vg [Iog detVy, + s;mnvlgolsﬂo,n]. Assuming thatfy, n)ney+ admits an infinite-order AR representation
D(B)ly,n = Un, Wwhered(2) = 1, +3,2,; ®;Z and Up)nen IS @ Weak white noise with covariance matti, it follows

from the interpretation off/ (2r) as the value of the spectral density €f,(.)nen+ at frequency zero thatcan also be
written asl = ®~1(1)Zy®(1)~1. The idea is to fit a long autoregression £Q.( )n-1..L, the empirical counterparts of

£9,.n)nen+ Which are defined by replacinty wit the estimaté  in the definition ofty,.n- This is done by choosing
o, hich defined b laci ith th i <#L he defi fC9on- Th d by ch

an integers > 0, and performing a least-squares regressiod’yonlc onty sty os+lsn<L. Denoting

by é)'s-(z) =1 +Y, (i)iESz‘ the obtained empirical autoregressive polynomial an(f:!oyhe empirical covariance

matrix of the residuals of the regression, it was claimedaunlacar Mainassara and Francq (2011, Theorem 4) that
. . . R ~ -1aA ~ T,-1

under the additional assumptlm{||sn||8+5] < oo the spectral estimatdt = (d)k(l)) st (d)é(l)) converges to

in probability asL, s — o if s*/L — 0. The covariance matrix (ﬁL is then estimated consistently as

= 1, 4\-14~ /83\-1

EL = T (34 5 (35 (2.41)
In the simulation study performed in Section 4.2, this eatonforE performs convincingly.

3. Quasi maximum likelihood estimation for multivariate co ntinuous-time ARMA processes

In this section we pursue the second main topic of the prexsxoer, a detailed investigation of the asymptotic prop-
erties of the quasi maximum likelihood estimator of diselgbbserved multivariate continuous-time autoregressiv
moving average processes. We will make use of the equivalbettveen MCARMA and continuous-time linear
state space models, as well as of the important observatibhte state space structure of a continuous-time process
is preserved under equidistant sampling, which allows liierresults of the previous section to be applied. The
conditions we need to impose on the parametrization of théetsauinder consideration are therefore closely related
to the assumptions made in the discrete-time case, exaghthmixing and ergodicity assumptions D4 and D9 are
automatically satisfied (Marquardt and Stelzer, 2007, &sitipn 3.34).

We start the section with a short recapitulation of the diéfiniand basic properties of Lévy-driven continu-
ous-time ARMA processes; this is followed by a discussiothef second-order properties of discretely observed
CARMA process, leading to a set of accessible identifigbddnditions. Section 3.4 contains our main result about
the consistency and asymptotic normality of the quasi mawintikelihood estimator for equidistantly sampled
MCARMA processes.

3.1. Lévy-driven multivariate CARMA processes and continuous-time state space models

A natural source of randomness in the specification of cantis-time stochastic processes are Lévy processes. For
a thorough discussion of these processes we refer the resattier monographs Applebaum (2004); Bertoin (1996);
Sato (1999).

Derntrion 3.1 (LEvy process). A two-sidedR™-valuedLévy procesgL (b)) is a stochastic process, defined on
a probability spacegQ, .#,P), with stationary, independent increments, continuousrobability, and satisfying
L(0) = Oy, almost surely.

The class of Lévy processes includes many important presessch as Brownian motions, stable processes,
and compound Poisson processes as special cases, which timakevery useful in stochastic modelling. Another
advantage is that the property of having stationary indégenincrements implies that Lévy process have a rather
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particular structure which makes many problems analyji¢cedctable. More precisely, the Lévy—Itd decomposition
theorem asserts that every Lévy process can be additivebnugosed into a Brownian motion, a compound Poisson
process, and a square-integrable pure-jump martingalereathe three terms are independent. This is equivalent
to the statement that the characteristic function of a Léwg@ssL has the special foré“t® = expity(u)},

u e R™ t e R*, where the characteristic exponetis given by

0 =i 0 - 3w+ [ [~ 1| (0 @Y

y- € RMis called thedrift vector, X9 is a non-negative definite, symmetricx m matrix called theGaussian
covariance matrixand theLévy measure" satisfies the two conditions ({O,}) = 0 and me min(|x||?, 1y~ (dx) <

co. For the present purpose it is enough to know that a Lévy geicéas finitekth absolute momentg, > 0, that
isE|IL®)IX < oo, if and only if Lx\l>1 x|/ v-(dx) < oo (Sato, 1999, Corollary 25.8), and that the covariance matri

Tt of L(1), if it exists, is given byEY + f||x|\>1 xxTyt(dx) Sato (1999, Example 25.11).

Assumption L. The Lévy procesk has mean zero and finite second momentsi-ex ﬁ xvt(dx) is zero,

and the integraw 1112 v-(dx) is finite.

X||>1
X||>1

Just like i.i.d. sequences are used in time series analysisfine ARMA processes, Lévy processes can be
used to construct (multivariate) continuous-time autarsgive moving average processes, called (M)CARMA pro-
cesses. I is a two-sided Lévy process with values®f' and p > q are integers, thd-dimensionalL-driven
MCARMA( p, g) process with autoregressive polynomial

Z P2 = 192° + AP+ L+ Ap € Mg(R[2]) (3.2a)
and moving average polynomial
z Q(2) = Bo + Bi ™ + ... + By € Mgm(R[2]) (3.2b)

is defined as the solution to the formaftdrential equatiofP(D)Y(t) = Q(D)DL(t), D = (d/dt). It is often useful to
allow for the dimensions of the driving Lévy procdssand thelL-driven MCARMA process to be fferent, which

is a slight extension of the original definition of Marquasditd Stelzer (2007). The results obtained in that paper
remain true if our definition is used. In general, the paths bévy process are notftérentiable, so we interpret the
defining diferential equation as being equivalent to sf@te space representation

dG(t) = AGMdt + BAL(), Y(t) = CG(t), teR, (3.3)

whereA ,8, andC are given by

0 14 o ... O

0 0o 1y -
‘?{ = . *. ‘. 0 € Mpd(R)’ (34a)

0 ... 0 1y

_Ap _Ap_]_ e e _A]_
T ' p-j-1
B=(B - By ) €Mpum(®), Bpj=-l.. qJ(J)[ Z ABp-j-i — BQ—J]’ (3.4b)
i=1

C= (ld, o,..., 0) € Md,pd(R). (3.4C)

It follows from representation (3.3) that MCARMA processee special cases of linear multivariate continuous-
time state space models, and in fact, the class of linea sgatce models is equivalent to the class of MCARMA
models (Schlemm and Stelzer, 2011, Corollary 3.4). By amgig the class of linear state space models, one can
define representations of MCARMA processes which afferdint from Eq. (3.3) and better suited for the purpose
of estimation.
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DeriniTion 3.2 (State spacE MODEL). A continuous-time linear state space mo@glB, C, L) of dimension N with
values inRY is characterized by aR™-valued driving Lévy proceds, a state transition matrix & My(R), an input
matrix Be Mym(R), and an observation matrix € Mqn(R). It consists of a state equation of Ornstein—-Uhlenbeck
type

dX(t) = AX(t)dt + BdL(t), teR, (3.58)
and an observation equation
Y(t) = CX(t), teR. (3.5b)

TheRN-valued procesX = (X(t)).r is the state vector process, aid= (Y(t)),z the output process.

A solutionY to Eq. (3.5) is called¢ausalif, for all t, Y(t) is independent of the-algebra generated Bi.(s) : s> t}.
Every solution to Eq. (3.5a) satisfies

t

X(t) = eXIX(9) + f fUBdL(U), VYsteR, s<t, (3.6)
S

where the stochastic integral with respect.ts well-defined by Protter (1990, Theorem 3.9). The indepath-

crement property of Lévy processes implies thas a Markov process. The following can be seen as the mukivar

ate extension of Brockwell et al. (2011, Proposition 1) awhtls conditions for the existence of a stationary causal

solution of the state equation (3.5a) for easy referenceaMays work under the following assumption.

AssumptioN E. The eigenvalues of the matrix A have strictly negative reais

ProposiTion 3.1 (Sxto aNDp Yamazaro (1983, Theorem 5.1)). If Assumptions E and L hold, then E8.5a)has a

unigue strictly stationary, causal solutiok given byX(t) = f_too A=Y BdL (u). Moreover,X(t) has mean zero and
second-order structure

Var(X(t)) =l = f Bz BT M Udu, (3.7a)
0
Cov (X(t + h), X(t) =yv(h) = €T, h>0, (3.7b)
where the variancE, satisfies &g + [(AT = —B='BT.

Itis an immediate consequence that the output pro¢dsss mean zero and autocovariance funciianh — yy(h)
given byyy(h) = CeA'T,CT, h > 0, and thaty itself can be written succinctly as a moving average of thrdy
Lévy process a¥(t) = f_ : g(t — u)dL(u), whereg(t) = CE"'Bljp.)(t). This representation shows that the behaviour
of the process’ depends on the values of the individual matriéesB, andC only through the product€e*B,

t € R. The following lemma relates this analytical statementt@lgebraic one about rational matrices, allowing us
to draw a connection to the identifiability theory of diser¢ime state space models.

Lemma 3.1. Two matrix tripletA, B, C), (A, B, C) of appropriate dimensions satisfyetB = CABforallt e R
if and only if Oz1 - A) 1B = C(z1 - A)"*Bforall ze C.

Proor. If we start at the first equality and replace the matrix exgials by their spectral representations (see
Lax, 2002, Theorem 17.5), we obtaneZ‘C(zl— A)1Bdz = f?eZ‘CN:(zl— A)~1Bdz, wherey is a closed contour
in C winding around each eigenvalue Afexactly once, and likewise foy.” Since we can always assume that
v = ¥ by takingy to beR times the unit circleR > max|1| : 1 € oa U o3},it follows that, for each € R,
fy et [C(zl -AB-C(z1- A)‘lé] dz = 0. Since the rational matrix functioh(z) = C(z1 - A)'B-C(z1 - A)'B
has only poles with modulus less thRnit has an expansion around infinit(z) = 3.7 o Anz", Ay € My(C), which
converges in a regiofz € C : |Z > r} containingy. Using the fact that this series converges uniformly on the
compact sey and applying the Residue Theorem from complex analysisud@ené, 1968, 9.16.1), which implies
fyeth”dz = t"/nl, one sees thak’ , %Aml = Oy. Consequently, by the Identity Theorem (Dieudonné, 1968,
Theorem 9.4.3)A, is the zero matrix for alh > 1, and since\(z) — 0 asz — o, it follows thatA(z) = Ogm.

The rational matrix functiod : z — C(zly — A)~'B is called thetransfer functiorof the state space model (3.5)
and is closely related to the spectral densityf the output proces¥, which is defined ady(w) = fR e “Nyy (hydh
— the Fourier transform afy. Before we make this relation explicit, we prove the follogilemma.
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Lemma 3.2. For any real number v, and matrices B X, I'y as in Eq.(3.7a) it holds that
f MBI BTN Udu = e AT Y. (3.8)
-V

Proor. We define functions,r : R — My(R) by I(v) = [ e*BEBTe" Udu andr(v) = eToe™A"Y. Both
I : v I(v) andr : v r(v) are diferentiable functions of, satisfying

gI(v) =e~Bz'B'e”V and Er(v) = —AeAToe AV — e AT ATe A,
dv dv

Using Proposition 3.1 one sees immediately thath@l (v) = (d/dv)r(v), for all v € R. Hence] andr differ only by
an additive constant. Sind¢@) equalsr(0) by the definition ofl, the constant is zero, an¢l) = r(v) for all real
numbersy.

ProposiTion 3.2. LetY be the output process of the state space m(&iB), and denote by Hz — C(zly—-A)"1B
its transfer function. Then the relatior (bv) = (27)*H(iw)X-H(=iw)" holds for all realw; in particular, w —
fy(w) is a rational matrix function.

Proor. First, we recall (Bernstein, 2005, Proposition 11.2.2} the Laplace transform of any matixis given
by its resolvent, that isz{ — A)™* = fom e 2% du, for any complex numbet. We are now ready to compute

iH(iw)zLH(—iw)T “1c f e “UehiduBzt BT f d“veAVdv|dnCT.
2n 2n 0 0
Introducing the new variable = u — v, and using Lemma 3.2, this becomes
00 00 i T 00 0 X T
2—1ﬂc [ f f e “"eAeAVBEL BT e Vdhav + f f e “"eAeAVBEt BT thdv] (ol
o Jo 0 Jv

0 . 0 . T
=%c [ f e “NeArodh + f g e hdh] c'.
0 —00

By Eg. (3.7b) and the fact that the spectral density and ttecauariance function of a stochastic process are Fourier
duals of each other, the last expression is equal;tgtrfzf_fo e “hyy(h)dh = fy(w), which completes the proof.

A converse of Proposition 3.2, which will be useful in ourlatliscussion of identifiability, is the Spectral Fac-
torization Theorem. Its proof can be found in Rozanov (196i€orem 1.10.1) and also in Caines (1988, Theorem
4.1.4).

Tueorem 3.1. Every positive definite rational matrix function & S} (C{w}) of full rank can be factorized as
f(w) = (21)"W(iw)W(-iw)", where the rational matrix functionz> W(2) € Mg (R{z}) has full rank and is, for
fixed N, uniquely determined up to an orthogonal transforome¥\(z) — W(2)O, for some orthogonal & N matrix
O.

3.2. Equidistant observations

We now turn to properties of the sampled proce$s = (Y),... which is defined byr® = Y(nh) and represents
observations of the proce¥sat equally spaced points in time. A very fundamental obginvas that the linear state
space structure of the continuous-time process is presenger sampling, as detailed in the following proposition.
Of particular importance is the explicit formula (3.10) fhe spectral density of the sampled procé$k

ProposiTion 3.3. Assume thaY is the output process of the state space m@8él). Then the sampled process
Y® has the state space representation

nh
Xn=€""Xp 1+ NP NO = ( )he'“(“””)BdL(u), YO = cx®, (3.9)
n-1
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The sequencél\lﬁh))nEZ is i.i. d. with mean zero and covariance matf¥) = foh MBI BTeA Udu. Moreover, the
spectral density of ™, denoted by {, is given by

fP(w) =C (ei‘”lN 3 eAh)*l () (e‘i‘”lN _ eATh)‘l cT. (3.10)
in particular, f\((h) C[emoa] - S (]R {éw}) is a rational matrix function.

Proor. Equations (3.9) follow from setting = nh, s = (n— 1)h in Eq. (3.6). That the sequen¢g,).cz is
i.i.d. as well as the expression fpf" are consequences of the Lévy prockdsaving independent, homogeneous
increments. Expression (3.10) is Hamilton (1994, Eq. (X3)).

In the following we derive conditions for the sampled stgtace model (3.9) to be minimal in the sense that the
processY ™ is not the output process of any state space model of dimetesis tharN, and for the noise covariance
matrix ¥ to be non-singular. We begin by recalling some well-knowtians from discrete-time realization and
control theory. For a detailed account we refer to Caine8g);Astrém (1970); Sontag (1998), which also explain
the origin of the terminology.

DermviTioN 3.3 (ALGEBRAIC REALIZATION). Let H € Mgm(R{z}) be a rational matrix function. A matrix triple
(A, B,C) is called an algebraic realization of H of dimension N i{# = C(zIy — A)"'B, where Ae My(R),
B € Mym(R), and Ce My n(R).

Every rational matrix function has many algebraic realma of various dimensions. A particularly convenient
class are the ones of minimal dimension, which have a nuntheseful properties.

DermviTioN 3.4 (MinmvaLiTY). Let H € Mgm(R{Z}) be a rational matrix function. A minimal realization of H in a
algebraic realization of H of dimension smaller than or ebitethe dimension of every other algebraic realization
of H. The dimension of a minimal realization of H is the Mchtilldegree of H.

Two other important properties of algebraic realizatiomkich are related to the notion of minimality and play a
key role in the study of identifiability, are introduced iretfollowing definitions.

Dermvition 3.5 (ConTrROLLABILITY). An algebraic realizatior(A, B, C) of dimension N is controllable if the con-
trollability matrix € = [ B AB --- A™B ] € Mmmn(R) has full rank.

DerintTion 3.6 (OsservaBILITY). An algebraic realizatiorfA, B, C) of dimension N is observable if the observab-
T
ility matrix & = [ CT (CAT -+ (CA™HT | € Mayn(R) has full rank.

Remark 3.1. We will often say that a state space syst&h) is minimal, controllable or observable if the
corresponding transfer function has this property.

The next theorem characterizes minimality in terms of aafability and observability.

TreoREM 3.2 (HaNNAN AND DEerstLER (1988, THEOREM 2.3.3)). A realization(A, B, C) is minimal if and only if it is
both controllable and observable.

Lemma 3.3. For all matrices Ae Mn(R), B € Mym(R), £ € SiiH(R), and every real number$ 0, the linear
subspacesn [B,AB, s ANle] andim fot eMBEBT e Udu are equal.

Proor. The assertion is a straightforward generalization of Biin (2005, Lemma 12.6.2).

Cororrary 3.1. If the triple (A, B, C) is minimal of dimension N, arilis positive definite, then the AN matrix
L= foh BB €A Udu has full rank N.

Proor. By Theorem 3.2, minimality of4, B, C) implies controllability, and by Lemma 3.3, this is equizal to
¥ having full rank.
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ProposiTion 3.4. Assume thaY is the d-dimensional output process of the state space n@@@@with (A, B,C)
being a minimal realization of McMillan degree N. Then gfsient condition for the sampled proce¥¥ to have
the same McMillan degree, is the Kalman—Bertram criterion

A=A # 2h 7k, V(1,) € o(A) x o(A), vk € Z\{0}. (3.11)

Proor. We will prove the assertion by showing that tNedimensional state space representation (3.9) is both
controllable and observable, and thus, by Theorem 3.2,mailhi Observability has been shown in Sontag (1998,
Proposition 5.2.11) using the Hautus criterion (Hautu$9)9 The key ingredient in the proof of controllability is
Corollary 3.1, where we showed that the autocovarianceixngf? of N, given in Proposition 3.3, has full rank;
this shows that the representation (3.9) is indeed minimalc@mpletes the proof.

Remark 3.2. Since, by Hannan and Deistler (1988, Theorem 2.3.4), miniegizations are unique up to a
change of basigA, B,C) - (TATL, TB,CT™1), for some non-singular X N matrix T, and such a transformation
does not change the eigenvalues of A, the crite(ffil) does not depend on what particular trip(é, B, C) one
chooses.

Uniqueness of the principal logarithm (Higham, 2008, Tkeeod..31) implies the following.

Lemma 3.4. Assume that the matrices B.e My(R) satisfye™ = €' for some h> 0. If the spectrara, og of
A, B satisfyjIm 1| < n/h for all 1 € op U 0g, then A= B.

Lemma 3.5. Assume that A& My(R) satisfies Assumption E. For every>hQ, the linear map# : My(R) —
Mn(R), M - foh eMUMer Udu is injective.

Proor. If we apply the vectorization operator vedvity(R) — RN and use the well-known identity (Bernstein,
2005, Proposition 7.1.9) vedVW) = (W™ ® U) vec(V) for matricesU, V andW of appropriate dimensions, we
obtain the induced linear operator

h
veco.# ovect : RN 5 RV, vecM — f M@ e*duvecM.
0

To prove the claim that the operatef is injective, it is thus sflicient to show that the matriy’ := foh eMeetdu e

My:(R) is non-singular. We writd @ A := A® 1y + 1y ® A. By Bernstein (2005, Fact 11.14.3%, = foh elAeAugy
and sincer(A® A) = {1+ u : A, u € o(A)} (Bernstein, 2005, Proposition 7.2.3), Assumption E imgplieat all
eigenvalues of the matri& @ A have strictly negative real parts; in particulArg A is invertible. Consequently, it
follows from Bernstein (2005, Fact 11.13.14) thdt= (A® A)~* [e(A@A)h - 1N2]. Since, for any matrisM, it holds
thato(eM) = {e!, 1 € oo(M)} (Bernstein, 2005, Proposition 11.2.3), the spectrum®f¥ is a subset of the open
unit disk, and it follows thats is invertible.

3.3.  Overcoming the aliasing effect
One goal in this paper is the estimation of multivariate CARRYocesses or, equivalently, continuous-time state
space models, based on discrete observations. In thisseggbn we concentrate on the issue of identifiability, and
we derive sfficient conditions that prevent redundancies from beingthtced into an otherwise properly specified
model by the process of sampling, dfeet known as aliasing (Hansen and Sargent, 1983; McCrds)2

For ease of notation we choose to parametrize the stateqthiinput matrix, and the observation matrix of the
state space model (3.5), as well as the driving Lévy protesom these one can always obtain an autoregressive
and a moving average polynomial which describe the samepsday applying a left matrix fraction decomposition
to the corresponding transfer function, see Patel (198d }la@upcoming Theorems 4.2 and 4.3. We hence assume
that there is some compact parameter&et R, and that, for eaci# € ©, one is given matrice8y, By andCy of
matching dimensions, as well as a Lévy procegsA basic assumption is that we always work with second order
processes (cf. Assumption L).

AssumptioN C1. For eachd € @, it holds thatELy = Oy, thatE ||Ly(1)||? is finite, and that the covariance matrix
25 = ELy(1)Lg(1)" is non-singular.
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To ensure that the model correspondingltdescribes a stationary output process we impose the aratdghs-
sumption E.

Assumption C2. For eachd € O, the eigenvalues ofpthave strictly negative real parts.
Next, we restrict the model class to minimal algebraic mzdions of a fixed McMillan degree.
Assumption C3. For all ¢ € 0, the triple (Ay, By, Cy) is minimal with McMillan degree N.

Since we shall base the inference on a quasi maximum likaditapproach and thus on second-order properties of
the observed process, we require the model class to befidblgifrom these available information according to the
following definitions.

Derinition 3.7. Two stochastic processes, irrespective of whether thdarsets are continuous or discrete, are
L?-observationally equivalent if their spectral densitigs the same.

Derntrion 3.8. A family (Yy,d € ®) of continuous-time stochastic processes is identifialden fthe spectral
density if, for every#; # d,, the two processe¥y, and Yy, are not [?-observationally equivalent. It is h-iden-
tifiable from the spectral density, & 0, if, for everyd; # @,, the two sampled process&fg“l) and Yf,hz) are not
L2-observationally equivalent.

Assumption C4. The collection of output processe$d = (Yy, ¥ € ®) corresponding to the state space models
(Ag, By, Cy, L) is identifiable from the spectral density.

Since we shall use only discretespaced observations &f, it would seem more natural to impose the stronger
requirement thak (®) beh-identifiable. We will see, however, that this is implied b fprevious assumptions if we
additionally assume that the following holds.

Assumption C5. For all ¢ € @, the spectrum of Ais a subset ofze C : —x/h < Imz < n/h}.

Tueorem 3.3 (IbENTIFIABILITY). Assume tha® > ¢ — (A,,, B,,,C,,,El';) is a parametrization of continuous-time
state space models satisfying Assumptions C1 to C5. Theotiesponding collection of output processg@®IKis
h-identifiable from the spectral density.

Proor. We will show that for eveni,9, € 0O, ¢, # >, the sampled output process\é%) and Y(ﬂhz)(h) are

not L2-observationally equivalent. Suppose, for the sake ofredittion, that the spectral densities of the sampled
output processes were the same. Then the Spectral FatitmriZdaeorem (Theorem 3.1) would imply that there
exists an orthogonall x N matrix O such that

Cy, €1y — MMEP20 = Cy (€1n - VMEP? —r<w <,

wherezg” /2 i = 1,2, are the unique positive definite matrix square roots oftagrices f eA’IUBﬂ,Zs B; &) “du,
defined by spectral calculus. This means that the two triples

(™" Z)1%0,Cy,) and (&M, ZP)2,Cy,)

are algebraic realizations of the same rational matrixtionc Since Assumption C5 clearly implies the Kalman—
Bertram criterion (3.11), it follows from Proposition 34 ¢onjunction with Assumption C3 that these realizations
are minimal, and hence from Hannan and Deistler (1988, Emed2.3.4) that there exists an invertible matrix
T € Mn(R) satisfying

el =TeMa"T, 20 =T1g2 Cy = Cy,T. (3.12)

2

It follows from the power series representation of the magsiponential thaf ~1e®:"T equals & A=T". Under
Assumption C5, the first equation in conjunction with LemmétBerefore implies thaky, = T-1Ay, T. Using this,
the second of the three equations (3.12) gives

(h)_f eA’l lBﬂz)ZL( 150) eAlludu,

which, by Lemma 3.5, implies thaT (*By,)Z; (T™'By,)" = By, X, B} . Together with the last of the equations
(3.12) and Proposition 3.3 it follows thdy, = fs,, which contraéhcts Assumption C4 th¥p, andY,, are not
L2-observationally equivalent.
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3.4. Asymptotic properties of the QML estimator

In this section we apply the theory that we developed in 8a@ifor the quasi maximum likelihood estimation of
general discrete-time linear state space models to thea&stin of continuous-time linear state space models or,
equivalently, multivariate CARMA processes. We have a@yeseen that a discretely observed MCARMA process
can be represented by a discrete-time state space moddlanthts, a parametric family of MCARMA processes
induces a parametric family of discrete-time state spacgetso Equations (3.9) show that sampling with spating
maps the continuous-time state space mo@gJsBy, Cy, Ly)sco t0 the discrete-time state space models

nh

(e¥.coND0), . NEY = ( 1)he‘WB,,ol|_,,(u). (3.13)
n_

which are not in the innovations form (1.2). The quasi maximiikelihood estlmatof} |s defined by Eq. (2.15),
applied to the state space model (3.13), that is

:’L,(h) — argminy.e Dé?(h)(ﬂ’ yL,(h))’ (3.14a)

L
209, y-0) = Z [dlog 2r + log detv!) + &M TVO-150) |

&) (3.14b)
n=1

where&{ are the pseudo-innovations of the observed pro¥é8s= Y, which are computed from the sample
y=® = (v YD) via the recursion

Xon = (V"= KP'Cy) gy + KPYD &0 = YO —CyXypn, nel.

The initial value)A(,y’l may be chosen in the same ways as in the discrete-time casestdddy-state Kalman gain
matricesKg‘) and pseudo—covariancvg) are computed as functions of the unique positive definitetsol Qf;‘) to
the discrete-time algebraic Riccati equation

M) _ Ash® Q) haM T OT] L [T
o) = eMalev" + 2 - [eMalc | [coaf’cy| T [evhalicy]
namely
(M) _ [eAvho® T M1 () _ T
K = [ev"allci][caal’cy] . Vi) = chaidcy.
In order to obtain the asymptotic normality of the quasi maxin likelihood estimator for multivariate CARMA
processes, it is therefore only necessary to make sure gzatrptions D1 to D10 hold for the model (3.13). The
discussion of identifiability in the previous section alkus to specify accessible conditions on the parametrizatio

of the continuous-time model under which the quasi maximketihood estimator is strongly consistent. In addition
to the identifiability assumptions C3 to C5, we impose théofeing conditions.

AssumptioN C6. The parameter spade is a compact subset & .

AssumptioN C7. The functiong} — Ay, & — By, & — Cy, andd — 21',;. are continuous. Moreover, for each
¥ € 0, the matrix G has full rank.

Lemma 3.6. Assumptions C1 to C3, C6 and C7 imply that the farféfy", Cy, N, O)ae@ of discrete-time state
space models satisfies Assumptions D1 to D4.

Proor. Assumption D1 is clear. Assumption D2 follows from the alation that the function& — €& and

(A,B,X) foh eMBEBT e Udu are continuous. By Assumptions C2, C6 and C7, and the fattibaeigenvalues
of a matrix are continuous functions of its entries, it falbothat there exists a positive real numbesuch that, for
eachd € O, the eigenvalues ofy have real parts less than or equakHa The observation that the eigenvalues of
e are given by the exponentials of the eigenvalue& tifus shows that Assumption D3, i) holds wjth= ™" < 1.
Assumption C1 that the matric§.§ are non-singular and the minimality assumption C3 imply loydllary 3.1 that

the noise covariance matricg§’ = ENJ’ N{-" are non-singular, and thus Assumption D3, ii) holds. Furthg
Proposition 2.1, the matric&¥y are non- smgular and so are, because the matigese assumed to be of full rank,
the matriced/y; this means that Assumption D3, iii) is satisfied. Assumpfiel is a consequence of Proposition 3.3,
which states that the noise sequenidgsre i.i.d. and in particular ergodic; their second momeresiaite because
of Assumption C1.
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. . S AL . . .
In order to be able to show that the quasi maximum I|keI|hOWmator0L( ) is asymptotically normally dis-
tributed, we impose the following conditions in additionthe@ ones described so far.

Assumption C8. The true parameter valug, is an element of the interior @.

Assumprion C9. The functiong) — Ay, 9 — By, & — Cy, andd — Z.'; are three times continuouslyfférenti-
able.

Assumption C10. There exists a positive numb&such thatt ||L,90(1)||4+5 <

Lemma 3.7. Assumptions C8 to C10 imply that Assumptions D6 to D8 holthiomode(3.13)

Proor. Assumption D6 is clear. Assumption D7 follows from the fewt the functions — €* and @, B,X) —

foh e*UBEBTe*' Udu are not only continuous, but infinitely oftentiirentiable. For Assumption D8 we need to show
that the random variablds := Ny, 1 have bounded (4 §)th absolute moments. It follows from Rajput and Rsi
(1989, Theorem 2.7) tha is infinitely divisible with characteristic triplet/, X, v), and that

1
f [IXI1** v(dx) < f [l -9, " ds f X[+ v d(dx).
[IX|I>1 0 [Ix|I>1

The first factor on the right side is finite by Assumptions C@ &9, the second by Assumption C10 and the well
known equivalence of finiteness of th¢h absolute moment of an infinitely divisible distributiondafiniteness of
theath absolute moments of the corresponding Lévy measuréatestito the exterior of the unit ball (Sato, 1999,
Corollary 25.8). The same corollary shows tB4N||**® < co and thus Assumption D8.

Our final assumption is the analogue of Assumption D10. ltemisure that the Fisher information matrix of the quasi

. . . ~L () . . . . . o
maximum likelihood estimata? ® is non-singular by imposing a non-degeneracy conditiorherpairametrization
of the model.

Assumption C11. There exists a positive index guch that the{(jo + 2)d2] X I matrix

V.a{ [110” ® K.gh)’T ®Cﬂ] [ (vec éNh)T (vec é\ﬁ'h)T ... (Vec eA,j,Oh)T ]T ]

vecVy 9=,

has rankr.

THEOREM 3.4 (CONSISTENCY AND ASYMPTOTIC NORMALITY OF 19L’(h)). Assume thafAy, By, Cy, Lg)geco iS a paramet-
ric family of continuous-time state space models, and aebpy-" = (Yf,?l, ce Y.(;O).L) a sample of length L from
the discretely observed output process correspondingg@énameter valug, € ®. Under Assumptions C1 to C7
the quasi maximum likelihood estimair” = argminy. -2 (9, y-M) is strongly consistent, i. e.
~L(h) a.s.

—

X Jo. (3.15)

L—oo

. NEOP . - .
If, moreover, Assumptions C8 to C11 hold, thﬂeLrg ) is asymptotically normally distributed, i. e.

VL (&L’“" _ 00) 2, ¥(0,3), (3.16)

L—oo

where the asymptotic covariance matfx= J-*1J1 is given by

| = lim L' Var(VeZ (90.¥)). J= lim L™1V3.2 (90, Y"). (3.17)
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Proor. Strong consistency QATL’(h) is a consequence of Theorem 2.1 if we can show that the paiarfahily
evh Cy, Ng, O)ﬂ of discrete-time state space models satisfies Assumptidrte D5. The first four of these are
shown to hold me?_emma 3.6. For the last one, we observe tidtelnma 2.2, Assumption D5 is equivalent to the
family of state space models (3.13) being identifiable frobmgpectral density. Under Assumptions C3 to C5 this is

guaranteed by Theorem 3.3.

In order to prove Eq. (3.16), we shall apply Theorem 2.2 aerdettore need to verify Assumptions D6 to D10
for the state space mode{lﬁh, Cg. Ny, O)ﬂ . The first three hold by Lemma 3.7, the last one as a reformulaf
Assumption C11. Assumption D9, that the strong mixingfiioentsa of a sampled multivariate CARMA process
satisfy ¥ [a(m)]?/?) < oo, follows from Assumption C1 and Marquardt and Stelzer (20®Dposition 3.34),
where it was shown that MCARMA processes with a finite lodpmic moment are exponentially strongly mixing.

4. Practical applicability

In this section we complement the theoretical results frautiBns 2 and 3 by commenting on their applicability
in practical situations. Canonical parametrizations ackassical subject of research about discrete-time dyramic
systems, and most of the results apply also to the contintimescase; without going into detail we present the
basic notions and results about these parametrizatiorsa3gertions of Theorem 3.4 are confirmed by a simulation
study for a bivariate non-Gaussian CARMA process. Finallyestimate the parameters of a CARMA model for a
bivariate time series from economics using our quasi mamirtikelihood approach.

4.1. Canonical parametrizations

We present parametrizations of multivariate CARMA proesdbat satisfy the identifiability conditions C3 and C4,
as well as the smoothness conditions C7 and C9; if, in adulitice parameter spaéeis restricted so that Assump-
tions C2, C5, C6 and C8 hold, and the driving Lévy processfsagi Assumption C1, the canonically parametrized
MCARMA model can be estimated consistently. In order fos thstimate to be asymptotically normally distrib-
uted, one must additionally impose Assumption C10 on theylpgacess and check that Assumption C11 holds — a
condition which we are unable to verify analytically for theneral model; for explicit parametrizations, however,
it can be checked numerically with moderate computatioffalte The parametrizations are well-known from the
discrete-time setting; detailed descriptions with prazzas be found in Hannan and Deistler (1988); Reinsel (1997);
Litkepohl and Poskitt (1996); Deistler (1983) or, from glstly different perspective, in the control theory literature
Gevers and Wertz (1984); Gevers (1986); Guidorzi (1975).bé@n with a canonical decomposition for rational
matrix functions.

THeEOREM 4.1 (BernsTEIN (2005, THEOREM 4.7.5)). Let H € Mym(R{2z}) be a rational matrix function of rank r.
There exist matrices;Sc My(R[Z]) and S € My(R[Z]) with constant determinant, such that-HS; MS,, where

M = dlag{ﬁ/wl}[zl Or,m—r

Mam(E{2). 4.1
0d—r,r Od—r,m—r € d,m( { }) ( )

andey, ... &, Y1, ..., ¥ € R[Z] are monic polynomials uniquely determined by H satisfyiregfollowing conditions:
foreachi=1,...,r, the polynomials; andy; have no common roots, and for each 1, ...,r — 1, the polynomial
& (¥i;1) divides the polynomiad.; (). The triple(S1, M, S,) is called the Smith—McMillan decomposition of H.

The degrees; of the denominator polynomialg in the Smith—McMillan decomposition of a rational matrixft+
tion H are called the Kronecker indices df and they define the vecter= (v4, .. .,vq) € N9, where we sety = 0
fork=r+1,...,d. They satisfy the important relatiozid:l vi = dm(H), wheredy(H) denotes the McMillan degree
of H, i. e. the smallest possible dimension of an algebraiczatiin ofH, see Definition 3.4. For X i, | < d, we
also define the integerg = min{v; + ;;.j;, v;}, and if the Kronecker indices of the transfer function of aGARMA
processy arev, we callY an MCARMA, process.

THEOREM 4.2 (ECHELON STATE SPACE REALIZATION, Guiporzi (1975, Sction 3)). For natural numbers d and m, let
H € Mym(R{z}) be a rational matrix function with Kronecker indices= (vi,...,vg). Then a uniqgue minimal
algebraic realization(A, B, C) of H of dimension N= 6y (H) is given by the following structure.
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0O -+ e e .0 0
: : . 1V|—1 ( )
Aj=| NETN : 4.2a
! 0O -+ v e .0 " 0
@ij1 o @jy; O 0 0 0
(i) B = (bjj) € Mym(R) unrestricted,
(i) if vy >0,i=1,...,d, then
10..0:00..0 :
) o Og-ne
C= 1 0 ... 0 : : . (4.2b)
Od-1)01 o
O(d_z),\,2 . 1 0 ... 0

If vi = 0, the elements of thigh row of C are also freely varying, but we concentrate here on the chseenall Kro-
necker indices; are positive. To computeas well as the cdicientse;j x andb;j for a given rational matrix function

H, several numerically stable anffieient algorithms are available in the literature (see,,d&2gzsa and Sinha, 1975,
and the references therein). The orthogonal invariancer@rtt in spectral factorization (see Theorem 3.1) implies
that this parametrization alone does not ensure identifialDne remedy is to restrict the parametrization to trans
fer functionsH satisfyingH(0) = Hp, for a non-singular matrixly. To see how one must constrain the parameters
a@ij k. bij in order to ensure this normalization, we work in terms dof feétrix fraction descriptions.

Tueorem 4.3 (EcieELon MCARMA reaLizatioN, Guiporzr (1975, Scrion 3)). For positive integers d and m, let
H € Mym(R{Z}) be a rational matrix function with Kronecker indices= (v1,...,vq). Assume thatA B,C) is a
realization of H, parametrized as in Egs. (4.2). Then a uaibgit matrix fraction description PQ of H is given by

P@) =[P (2] A2 = [4ij(2], where

pij(2) = 612" - Z @27t 4@ = ZKV1+<..+Vi_1+k,jzk_1s (4.3)
=]

k=1

,,,,,

block matrix with blocks i € M,, ,,(R) given by

—ajj2 AN —a'ij!,,ij 0 ... 0O 00 0 1
0 0 10
Tij=| + 6] : . : . . (4.4)
O : . . .
01 0 0
: : 10 0 0
0 oo ... 0

The ordersp, q of the polynomialsP, Q satisfyp = maxXvi,...,vq} andq < p — 1. Using this parametrization,
there are dferent ways to impose the normalizatiet{0) = Hy € Mgqm(R). One first observes that the special
structure of the polynomialB® and Q implies thatH(0) = P(0)1Q(0) = —(aij,l)ﬂl(Kvﬁ,“wiﬁl,j)ij. The canonical
state space parametrizatiof, B, C) given by Egs. (4.2) therefore satisfie§0) = —CA1B = Hy if one makes
the codficientsa;j1 functionally dependent on the free parametatg, m = 1,...v; andb;; by settingeij1 =
—[(KV1+_.,+Vk,1+1,|)k|Hgl]ij, where;; are the entries of the matriK appearing in Theorem 4.3 arlflig1 is a right
inverse ofHgp. Another possibility, which has the advantage of presgrtire multi-companion structure of the
matrix A, is to keep they;; 1 as free parameters, and to restrict some of the entries oh#tex B instead. Since
|detK| = 1 and the matrixT is thus invertible, the cdBcientsbi; can be written a8 = T-K. Replacing the
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v n(v) A B C
LA U P 10
anl 7| (5 ) L5 o) o 7]
%1 9 O 91 2
12) | 10 0 0 1 96 9 ( é (1) 8)
93 s Us U3+ 0506 T4 + Is07
0 1 O s Jg 1.0 0
(2, 1) 11 P U U3 T+ 0207 O3+ 908 ( 00 1 )
Iy 195 196 U4 + 195197 196 + 195193
0 1 0 O o o
(2 2) 15 hh % 93 s P+ I + Doy T3 + Fodig + Fathio 1 0 0 O
’ 0O 0 0 1 d11 D) 0 0 1 0
195 196 197 198 175 + 1981911 + 196179 177 + 1961910 + 7981912

Table 1. Canonical state space realizations (A, B, C) of normalized (H(0) = —1,) rational transfer functions
in M,(R{z}) with different Kronecker indices v; the number of parameters, n(v), includes three parameters for
a covariance matrix =*.

v | n®) P@ Q2 (p.q)
@y | 7 (o ) A (L)
(1.2) | 10 ( Z—_ﬁzl 22—1_9:1922— s ( ﬁezﬂﬁi 9 1972195- s ) (2.1)
21| 11 ( 22_:9:921329?2 Z‘_ﬂge ) ( ﬂﬂﬁz v ﬁszﬁz ) | @y
e | 15 | (P50 Tl ) | e veeesy ) | @D

Table 2. Canonical MCARMA realizations (P, Q) with order (p, g) of normalized (H(0) =
—1,) rational transfer functions in M»(R{z}) with different Kronecker indices v; the number
of parameters, n(v), includes three parameters for a covariance matrix X-.

(vi+...+vi_1 + 1, j)th entry ofK by the {, j)th entry of the matrix-(aw,1)x Ho makes some of thie; functionally
dependent on the entries of the ma#iand results in a state space representation with preddfitomecker indices
and satisfyindH(0) = Ho. This latter method has also the advantage that it does qoiresthe matrixHy to possess
a right inverse. In the special case tdat mandHg = —1g, it suffices to sek,,+ .+, ,+1,j = aij1, fori, j =1,...,d.
Examples of normalized low-order canonical parametriratiare given in Tables 1 and 2.

4.2. A simulation study
We present a simulation study for a bivariate CARMA procegh Wronecker indices (12), i. e. CARMA indices
(p,9) = (2,1). As the driving Lévy process we chose a zero-mean nommvakse Gaussian (NIG) procedst))icr.
Such processes have been found to be useful in the modeflispek returns and stochastic volatility, as well
as turbulence data (see, e. g., Bartfidblielsen, 1997, 1998; Barnd®iNielsen et al., 2004; Rydberg, 1997). The
distribution of the incrementk(t) — L(t — 1) of a bivariate normal-inverse Gaussian Lévy processasattterized
by the density

dexpx) exp(Bx)) 1+ ag(x)

2 epag) o007 | (<

fnc (X u, @, B,6,A) =

where

00) = 0% + (X~ A~ ), K2 = a2~ (B.AB) > O,

andu € R? is a location parametes; > 0 is a shape parametg,c R? is a symmetry parametef,> 0 is a scale
parameter and € M7 (R), detA = 1, determines the dependence between the two component@)f. For our
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parameter| sample mean bias sample std. dev| mean est. std. dev.
91 -1.0001 0.0001 0.0354 0.0381
i -2.0078 0.0078 0.0479 0.0539
J3 1.0051 -0.0051 0.1276 0.1321
D4 -2.0068 0.0068 0.1009 0.1202
s -2.9988 -0.0012 0.1587 0.1820
Je 1.0255 -0.0255 0.1285 0.1382
97 2.0023 -0.0023 0.0987 0.1061
g 0.4723 -0.0028 0.0457 0.0517
Jg -0.1654 0.0032 0.0306 0.0346
P10 0.3732 0.0024 0.0286 0.0378

Table 3. Quasi maximum likelihood estimates for the parameters of a bivariate
NIG-driven CARMA; » process observed at integer times over the time horizon
[0,2000] The second column reports the empirical mean of the estimators as
obtained from 350 independent paths; the third and fourth columns contain the
resulting bias and the sample standard deviation of the estimators, respectively,
while the last column reports the average of the expected standard deviations
of the estimators as obtained from the asymptotic normality result Theorem 3.4.

simulation study we chose parameters

(3,2), (4.5)

5=1 a=3 B=(L1, A:( 5/4 ‘1/2), L

12 1 i

resulting in a skewed distribution with semi-heavy tailsgan zero and covarian@ ~ _01622 03708

A sample of 350 independent replicates of the bivariate CARMprocess Y (t))er driven by a normal-inverse
Gaussian Lévy process (t))r With parameters given in Eq. (4.5) were simulated on the disfiaint time grid
0,0.01,...,2000 by applying an Euler scheme to the stochastiewrdintial equation (3.5) making use of the ca-
nonical parametrization given in Table 1. For the simulatithe initial valueX(0) = 03 and parameter§;.; =
(-1,-2,1,-2,-3,1,2) was used. Each realization was sampled at integer timesl), and quasi maximum like-
lihood estimates ofty, . . ., 9, as well as gg, 9o, #10) := vechz! were computed by numerical maximization of the
quasi log-likelihood function using a ftierential evolution optimization routine (Price et al., 83p@h conjunction
with a subspace trust-region method (Branch et al., 199% By al., 1988). In Table 3 the sample means and
sampled standard deviations of the estimates are repdvteckover, the standard deviations were estimated using
the square roots of the diagonal entries of the asymptotiar@nce matrix (2.41) witts(L) = [L/logL]¥3, and

the estimates are also displayed in Table 3. One sees thhtabethe diference between the sample mean and
the true parameter value, is very small in accordance wethagymptotic consistency of the estimator. Moreover,
the estimated standard deviation is always slightly latgan the sample standard deviation, yet close enough to
provide a useful approximation for, e. g., the constructboonfidence regions. In order not to underestimate the
uncertainty in the estimate, such a conservative apprdiomto the true standard deviations is desirable in practic
Overall, the estimation procedure performs very well ingmaulation study.

04751 -0.1622 )

4.3. Application to weekly bond yields

In this section we provide an illustrative data example giplyathe techniques established in the preceding sections
to the bivariate weekly series of Moody’s seasoned Aaa arsddBgporate bond yields from October 1966 through
April 2009; these data are available from the Federal ResBank of St. Louis. We first took the logarithm of
the data and the resulting series was seen to have a unitr@eaich component, so the next step in the data pre-
paration was dferencing at lag 1. Using a moving window of length 52 — coroegjing to a period of one year
— we removed the stochastic volatilityffects displayed by the filerenced time series to obtain data with no obvi-
ous departure from stationarity. Figure 1 shows the weelyddog-yields after dferencing and devolatilization.
We have fitted bivariate CARMA processes of McMillan degrees 2, 3,4 using the quasi maximum likelihood
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Figure 1. Weekly series of Moody's seasoned Aaa and Baa corporate bond yields after differencing and devolatilization

method described in Section 3.4 and employing the canoparametrizations of Section 4.1. The numerical val-
ues ofd as well as their standard errors estimated by the squareofdbe diagonal entries in the approximate
asymptotic covariance matrl%é, defined in Eq. (2.41), can be found in Table 4. The last roldis the value

of twice the negative logarithm of the Gaussian likelihoddhe observations under the model corresponding to
the estimated parameter valite The quality of the fit can be assessed from Table 4 where wearthe auto-
correlation functions of the fitted models with the empiri@atocorrelation function of the data. One sees how the
fit becomes better as one increases the model order in acoerddth an increasing value of the Gaussian likeli-
hood; in particular, the autocorrelations of the secondpmment at higher lags are better captured by the higher
order models. This phenomenon is well known from the estonatf discrete-time parametric processes where
penalty terms in the likelihood together with order selattcriteria like the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC) are used to falize the trade-6 between goodness of fit and model
complexity. Understanding their applicability in a contous-time set-up remains a problem for future research.
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