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The class of multivariate Lévy-driven autoregressive moving average (MCARMA) processes, the continu-
ous-time analogs of the classical vector ARMA processes, is shown to be equivalent to the class of
continuous-time state space models. The linear innovations of the weak ARMA process arising from sam-
pling an MCARMA process at an equidistant grid are proved to be exponentially completely regular (β-
mixing) under a mild continuity assumption on the driving Lévy process. It is verified that this continuity
assumption is satisfied in most practically relevant situations, including the case where the driving Lévy
process has a non-singular Gaussian component, is compound Poisson with an absolutely continuous jump
size distribution or has an infinite Lévy measure admitting a density around zero.
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representation; strong mixing; vector ARMA process

1. Introduction

CARMA processes are the continuous-time analogs of the widely known discrete-time ARMA
processes (see, e.g., [8] for a comprehensive introduction); they were first defined in [12] in
the univariate Gaussian setting and have stimulated a considerable amount of research in recent
years (see, e.g., [5] and references therein). In particular, the restriction of the driving process
to Brownian motion was relaxed and [6] allowed for Lévy processes with finite logarithmic
moments. Because of their applicability to irregularly spaced observations and high-frequency
data, they have turned out to be a versatile and powerful tool in the modeling of phenomena from
the natural sciences, engineering and finance. Recently, [19] extended the concept to multivariate
CARMA (MCARMA) processes with the intention of being able to model the joint behavior of
several dependent time series. MCARMA processes are thus the continuous-time analogs of
discrete-time vector ARMA (VARMA) models (see, e.g., [18]).

The aim of this paper is twofold: first, we establish the equivalence between MCARMA and
multivariate continuous-time state space models, a correspondence which is well known in the
discrete-time setting [14]; second, we investigate the probabilistic properties of the discrete-time
process obtained by recording the values of an MCARMA process at discrete, equally spaced
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points in time. A detailed understanding of the innovations of the weak VARMA process which
arises is a prerequisite for proving asymptotic properties of statistics of a discretely observed
MCARMA process. One notion of asymptotic independence which is very useful in this context
is complete regularity (see Section 4 for a precise definition) and we show that the innovations
of a discretized MCARMA process have this desirable property. Our results therefore not only
provide important insight into the probabilistic structure of CARMA processes, but they are also
fundamental to the development of an estimation theory for non-Gaussian continuous-time state
space models based on equidistant observations.

In this paper, we show that a sampled MCARMA process is a discrete-time VARMA pro-
cess with dependent innovations. While the mixing behavior of ARMA and more general linear
processes is fairly well understood (see, e.g., [1,20,21]), the mixing properties of the innova-
tions of a sampled continuous-time process have received very little attention. From [9], it is
only known that the innovations of a discretized univariate Lévy-driven CARMA process are
weak white noise, which, by itself, is typically of little help in applications. We show that the
linear innovations of a sampled MCARMA process satisfy a set of VARMA equations and we
conclude that under a mild continuity assumption on the driving Lévy process, they are geo-
metrically completely regular and, in particular, geometrically strongly mixing. This continuity
assumption is further shown to be satisfied for most of the practically relevant choices of the
driving Lévy process, including processes with a non-singular Gaussian component, as well as
compound Poisson processes with an absolutely continuous jump size distribution and infinite
activity processes whose Lévy measures admit a density in a neighborhood of zero.

This paper is structured as follows. In Section 2 we review some well-known properties of
Lévy processes, which we will use later. The class of multivariate CARMA processes, in a
slightly more general form than in the original definition of [19], is described in detail in Sec-
tion 3 and shown to be equivalent to the class of continuous-time state space models. In Section 4
the main result about the mixing properties of the sampled processes is stated and demonstrated
to be applicable in many practical situations. The proofs of the results are presented in Section 5.

We use the following notation. The space of m × n matrices with entries in the ring K is
denoted by Mm,n(K) or Mm(K) if m = n. AT denotes the transpose of the matrix A, the matrices
Im and 0m are the identity and the zero element of Mm(K), respectively, and A ⊗ B stands for
the Kronecker product of the matrices A and B . The zero vector in R

m is denoted by 0m, and
‖ · ‖ and 〈·, ·〉 represent the Euclidean norm and inner product, respectively. Finally, K[z] (K{z})
is the ring of polynomial (rational) expressions in z over K and IB(·) is the indicator function of
the set B .

2. Multivariate Lévy processes

In this section we review the definition of a multivariate Lévy process and some elementary
facts about these processes which we will use later. More details and proofs can be found in, for
instance, [23].

Definition 2.1. A (one-sided) R
m-valued Lévy process (L(t))t≥0 is a stochastic process with

stationary, independent increments, continuous in probability and satisfying L(0) = 0m almost
surely.
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Every R
m-valued Lévy process (L(t))t≥0 can be assumed to be càdlàg and is completely char-

acterized by its characteristic function in the Lévy–Khintchine form Eei〈u,L(t)〉 = exp{tψL(u)},
u ∈ R

m, t ≥ 0, where ψL has the special form

ψL(u) = i〈γ ,u〉 − 1

2
〈u,�G u〉 +

∫
Rm

[
ei〈u,x〉 − 1 − i〈u,x〉I{‖x‖≤1}

]
νL(dx).

The vector γ ∈ R
m is called the drift, the non-negative definite, symmetric m × m matrix �G

is the Gaussian covariance matrix and νL is a measure on R
m, referred to as the Lévy measure,

satisfying

νL({0m}) = 0,

∫
Rm

min(‖x‖2,1)νL(dx) < ∞.

We will work with two-sided Lévy processes L = (L(t))t∈R. These are obtained from two inde-
pendent copies (L1(t))t≥0, (L2(t))t≥0 of a one-sided Lévy process via the construction

L(t) =
{

L1(t), t ≥ 0,
− lim

s↗−t
L2(s), t < 0.

Throughout the paper, we restrict our attention to Lévy processes with zero means and finite
second moments.

Assumption L1. The Lévy process L satisfies EL(1) = 0 and E‖L(1)‖2 < ∞.

The assumption EL(1) = 0 is made only for notational convenience and is not essential for
our results to hold. The premise that L has finite variance is, in contrast, a true restriction,
which is very often made in the analysis of (C)ARMA processes. The treatment of the infi-
nite variance case requires different techniques and often does not lead to comparable results. It
is well known that L has finite second moments if and only if

∫
‖x‖≥1 ‖x‖2ν(dx) is finite, and that

�L = EL(1)L(1)T is then given by
∫

Rm xxTνL(dx) + �G .

3. MCARMA processes and state space models

If L is a two-sided Lévy process with values in R
m and p > q are positive integers, then the

d-dimensional L-driven autoregressive moving average (MCARMA) process with autoregressive
polynomial

z �→ P(z) := Idzp + A1z
p−1 + · · · + Ap ∈ Md(R[z]) (3.1a)

and moving average polynomial

z �→ Q(z) := B0z
q + B1z

q−1 + · · · + Bq ∈ Md,m(R[z]) (3.1b)

is thought of as the solution to the formal differential equation

P(D)Y(t) = Q(D)DL(t), D ≡ d

dt
, (3.2)
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which is the continuous-time analog of the discrete-time ARMA equations. We note that we
allow for the driving Lévy process L and the L-driven MCARMA process to have different
dimensions and thus slightly extend the original definition of [19]. All the results we need from
[19] are easily seen to continue to hold in this more general setting. Since, in general, Lévy
processes are not differentiable, equation (3.2) is purely formal and, as usual, interpreted as
being equivalent to the state space representation

dG(t) = AG(t)dt + B dL(t), Y(t) = CG(t), t ∈ R, (3.3)

where A, B, C are given by

A =

⎛⎜⎜⎜⎜⎜⎝
0 Id 0 . . . 0

0 0 Id
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 Id

−Ap −Ap−1 . . . . . . −A1

⎞⎟⎟⎟⎟⎟⎠ ∈ Mpd(R), (3.4a)

B = (βT
1 · · · βT

p )T ∈ Mpd,m(R),
(3.4b)

βp−j = −I{0,...,q}(j)

[
p−j−1∑

i=1

Aiβp−j−i + Bq−j

]

and

C = (Id ,0d, . . . ,0d) ∈ Md,pd(R). (3.4c)

In view of representation (3.3), MCARMA processes are linear continuous-time state space mod-
els. We will consider this class of processes and see that it is in fact equivalent to the class of
MCARMA models.

Definition 3.1. An R
d -valued continuous-time linear state space model (A,B,C,L) of dimen-

sion N is characterized by an R
m-valued driving Lévy process L, a state transition matrix

A ∈ MN(R), an input matrix B ∈ MN,m(R) and an observation matrix C ∈ Md,N(R). It con-
sists of a state equation of Ornstein–Uhlenbeck type

dX(t) = AX(t)dt + B dL(t) (3.5a)

and an observation equation

Y(t) = CX(t). (3.5b)

The R
N -valued process X = (X(t))t∈R is the state vector process and Y = (Y(t))t∈R is the

output process.
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A solution Y to equations (3.5) is called causal if for all t , Y(t) is independent of the σ -algebra
generated by {L(s) : s > t}. Every solution to equation (3.5a) satisfies

X(t) = eA(t−s)X(s) +
∫ t

s

eA(t−u)B dL(u), s, t ∈ R, s < t. (3.6)

The independent increment property of Lévy processes implies that X is a Markov process. We
always work under the following standard causal stationarity assumption.

Assumption E1. The eigenvalues of A have strictly negative real parts.

The following is well known [25] and recalls conditions for the existence of a stationary causal
solution of the state equation (3.5a) for easy reference.

Proposition 3.2. If Assumptions L1 and E1 hold, then equation (3.5a) has a unique strictly
stationary, causal solution X given by

X(t) =
∫ t

−∞
eA(t−u)B dL(u), t ∈ R, (3.7)

which has the same distribution as
∫∞

0 eAuB dL(u). Moreover, X(t) has mean zero,

Var(X(t)) = EX(t)X(t)T =: �0 =
∫ ∞

0
eAuB�LBTeATu du, (3.8a)

Cov
(
X(t + h),X(t)

) = EX(t + h)X(t)T = eAh�0, h ≥ 0, (3.8b)

and �0 satisfies A�0 + �0A
T = −B�LBT.

It is an immediate consequence that the output process Y has mean zero and autocovariance
function h �→ γY(h) = CeAh�0C

T, and that Y can be written as a moving average of the driving
Lévy process as

Y(t) =
∫ ∞

−∞
g(t − u)dL(u), t ∈ R; g(t) = CeAtBI[0,∞)(t). (3.9)

These equations serve, with A, B and C defined as in equations (3.4), as the definition of an
MCARMA process with autoregressive and moving average polynomials given by equations
(3.1). It shows that the behavior of the process Y depends on the values of the individual matrices
A,B,C only through the products CeAtB , t ∈ R. These products are, in turn, intimately related
to the rational matrix function H : z �→ C(zIN − A)−1B , which is called the transfer function of
the state space model (3.5). A pair (P,Q), P ∈ Md(R[z]), Q ∈ Md.m(R[z]), of rational matrix
functions is a left matrix fraction description for the rational matrix function H ∈ Md(R{z}) if
P(z)−1Q(z) = H(z) for all z ∈ C. The next theorem gives an answer to the question of what
other state space representations besides (3.3) can be used to define an MCARMA process. The
proof is given in Section 5.
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Theorem 3.3. If (P,Q) is a left matrix fraction description for the transfer function z �→
C(zIN −A)−1B , then the stationary solution Y of the state space model (A,B,C,L) defined by
equations (3.5) is an L-driven MCARMA process with autoregressive polynomial P and moving
average polynomial Q.

Corollary 3.4. The classes of MCARMA and causal continuous-time state space models are
equivalent.

Proof. By definition, every MCARMA process is the output process of a state space model.
Conversely, given any state space model (A,B,C,L) with output process Y, [10], Appendix 2,
Theorem 8, shows that the transfer function H : z �→ C(zIN − A)−1B possesses a left matrix
fraction description H(z) = P(z)−1Q(z). Hence, by Theorem 3.3, Y is an MCARMA process.

�

4. Complete regularity of the innovations of a sampled
MCARMA process

For a continuous-time stochastic process Y = (Y(t))t∈R and a positive constant h, the corre-
sponding sampled process Y(h) = (Y(h)

n )n∈Z is defined by Y(h)
n = Y(nh). A common problem

in applications is the estimation of a set of model parameters based on observations of the val-
ues of a realization of a continuous-time process at equally spaced points in time. In order to
make MCARMA processes amenable to parameter inference from equidistantly sampled obser-
vations, it is important to have a good understanding of the probabilistic properties of Y(h). One
such property which has turned out to be useful for the derivation of asymptotic properties of
estimators is mixing, for which there are several different notions (see, e.g., [4] for a detailed
exposition). Let I denote Z or R. For a stationary process X = (Xn)n∈I on some probability
space (	,F ,P), we write Fm

n = σ(Xj : j ∈ I, n < j < m), −∞ ≤ n < m ≤ ∞. The α-mixing
coefficients (α(m))m∈I are then defined by

α(m) = sup
A∈F 0−∞,B∈F∞

m

|P(A ∩ B) − P(A)P(B)|.

If limm→∞ α(m) = 0, then the process X is called strongly mixing, and if there exist constants
C > 0 and 0 < λ < 1 such that αm < Cλm, m ≥ 1, it is called exponentially strongly mixing. The
β-mixing coefficients (β(m))m∈I are similarly defined as

β(m) = E sup
B∈F∞

m

∣∣P(B|F 0−∞) − P(B)
∣∣.

If limm→∞ β(m) = 0, then the process X is called completely regular or β-mixing, and if there
exist constants C > 0 and 0 < λ < 1 such that βm < Cλm, m ≥ 1, it is called exponentially
completely regular. It is clear from these definitions that α(m) ≤ β(m) and that (exponential)
complete regularity implies (exponential) strong mixing. It has been shown in [19], Proposi-
tion 3.34, that every causal MCARMA process Y with a finite κ th moment, κ > 0, is strongly
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mixing and this naturally carries over to the sampled process Y(h). In this paper, we therefore do
not investigate the mixing properties of the process Y(h) itself, but rather of its linear innovations.

Definition 4.1. Let (Yn)n∈Z be an R
d -valued stationary stochastic process with finite second

moments. The linear innovations (εn)n∈Z of (Yn)n∈Z are then defined by

εn = Yn − Pn−1Yn, Pn = orthogonal projection onto span{Yν :−∞ < ν ≤ n}, (4.1)

where the closure is taken in the Hilbert space of square-integrable random variables with inner
product (X,Y ) �→ E〈X,Y 〉.

From now on, we work under an additional assumption, which is standard in the univariate
case.

Assumption E2. The eigenvalues λ1, . . . , λN of the state transition matrix A in equation (3.5a)
are distinct.

A polynomial p ∈ Md(C[z]) is called monic if its leading coefficient is equal to Id and Schur-
stable if the zeros of z �→ detp(z) all lie in the complement of the closed unit disc. We first
give a semi-explicit construction of a weak VARMA representation of Y(h) with complex-valued
coefficient matrices, a generalization of [7], Proposition 3.

Theorem 4.2. Assume that Y is the output process of the state space system (3.5) satisfying
Assumptions L1, E1, E2, and Y(h) is its sampled version with linear innovations ε(h). Define the
Schur-stable polynomial ϕ ∈ C[z] by

ϕ(z) =
N∏

ν=1

(1 − ehλν z) =: (1 − ϕ1z − · · · − ϕNzN). (4.2)

There then exists a monic Schur-stable polynomial � ∈ Md(C[z]) of degree at most N − 1 such
that

ϕ(B)Y(h)
n = �(B)ε(h)

n , n ∈ Z, (4.3)

where B denotes the backshift operator, that is, Bj Y(h)
n = Y(h)

n−j for every non-negative integer j .

This result is very important for the proof of the mixing properties of the innovations sequence
ε(h) because it establishes an explicit linear relationship between ε(h) and Y(h). A good under-
standing of the mixing properties of ε(h) is not only theoretically interesting, but is also practi-
cally of considerable relevance for the purpose of statistical inference for multivariate CARMA
processes. One estimation procedure in which the importance of the mixing properties of the
innovations of the sampled process is clearly visible is Gaussian maximum likelihoood (GML)
estimation. Assume that � ⊂ R

s is a compact parameter set and that a parametric family of
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MCARMA processes is given by the mapping � � ϑ �→ (Aϑ,Bϑ,Cϑ,Lϑ). It follows from The-
orem 4.2 and [8], Section 11.5, that the Gaussian likelihood of observations yL = (y1, . . . ,yL)

under the model corresponding to a particular value ϑ is given by

LyL(ϑ) = (2π)−Ld/2

(
L∏

n=1

detVϑ,n

)−1/2

exp

{
−1

2

L∑
n=1

eT
ϑ,nV

−1
ϑ,neϑ,n

}
, (4.4)

where eϑ,n is the residual of the minimum mean-squared error linear predictor of yn given the
preceding observations, and Vϑ,n is the corresponding covariance matrix. From a practical per-
spective, it is important to note that all quantities necessary to evaluate the Gaussian likelihood
(4.4) can be conveniently computed by using the Kalman recursions ([8], Section 12.2) and the
state space representation given in Lemma 5.2. In case the observations yL are (part of) a re-
alization of the sampled MCARMA process Y(h)

ϑ0
corresponding to the parameter value ϑ0, the

prediction error sequence (eϑ0,n)n≥1 is – up to an additive, exponentially decaying term which
comes from the initialization of the Kalman filter – (part of) a realization of the innovations se-
quence ε(h) of Y(h)

ϑ0
. In order to be able to analyze the asymptotic behavior of the natural GML

estimator

ϑ̂L = argmax
ϑ∈�

LyL(ϑ)

in the limit as L → ∞, it is necessary to have a central limit theorem for sums of the form

1√
L

L∑
n=1

∂

∂ϑ
[log detVϑ,n + eT

ϑ,nV
−1
ϑ,neϑ,n]

∣∣∣∣
ϑ=ϑ0

. (4.5)

Existing results in the literature [4,15] ensure that various notions of weak dependence, and, in
particular, strong mixing, are sufficient for a central limit theorem for the expression (4.5) to hold.
Theorem 4.3 below is thus the necessary starting point for the development of an estimation the-
ory for multivariate CARMA processes which involves some additional issues like identifiability
of parametrizations and is thus beyond the scope of this paper.

Before presenting the sufficient condition for the innovations ε(h) to be completely regular, we
first observe that the eigenvalues λ1, . . . , λN of A are the roots of the characteristic polynomial
z �→ det(zIN − A), which, by the fundamental theorem of algebra, implies that they are either
real or occur in complex conjugate pairs. We can therefore assume that they are ordered in such
a way that for some r ∈ {0, . . . ,N},

λν ∈ R, 1 ≤ ν ≤ r, λν = λν+1 ∈ C\R, ν = r + 1, r + 3, . . . ,N − 1.

By Lebesgue’s decomposition theorem [16], Theorem 7.33, every measure μ on R
d can be

uniquely decomposed as μ = μc + μs, where μc and μs are absolutely continuous and singular,
respectively, with respect to the d-dimensional Lebesgue measure. If μc is not the zero measure,
then we say that μ has a non-trivial absolutely continuous component.
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Theorem 4.3. Assume that Y is the output process of the continuous-time state space model
(A,B,C,L) satisfying Assumptions L1, E1 and E2. Denote by ε(h) the innovations of the sam-
pled process Y(h) and further assume that the law of the R

mN -valued random variable

M (h) = [M(h)
1

T · · · M(h)
r

T
M(h)

r+1

T
M(h)

r+3

T · · · M(h)
N−1

T ]T
, (4.6)

where

M(h)
ν = [Re M(h)

ν

T
Im M(h)

ν

T ]T
, M(h)

ν =
∫ h

0
e(h−u)λν dL(u), ν = 1, . . . ,N, (4.7)

has a non-trivial absolutely continuous component with respect to the mN -dimensional Lebesgue
measure. Then, ε(h) is exponentially completely regular.

The assumption on the distribution of M (h) made in Theorem 4.3 is not very restrictive. Its
verification is based on the following lemma, which allows us to derive sufficient conditions in
terms of the Lévy process L which show that it is indeed satisfied in most practical situations.

Lemma 4.4. There exist matrices G ∈ MmN(R) and H ∈ MmN,m(R) such that M (h) = M (h),
where (M (t))t≥0 is the unique solution to the stochastic differential equation

dM (t) = GM (t)dt + H dL(t), M (0) = 0mN. (4.8)

Moreover, rankH = m and the mN × mN matrix
[
H GH · · · GN−1H

]
is non-singular.

The last part of the statement is referred to as controllability of the pair (G,H) and is essential
in the proofs of the following explicit sufficient conditions for Theorem 4.3 to hold.

Proposition 4.5. Assume that the Lévy process L has a non-singular Gaussian covariance ma-
trix �G . Theorem 4.3 then holds.

Proof. By [24], Corollary 2.19, the law of M (h) is infinitely divisible with Gaussian co-
variance matrix given by

∫ h

0 eGuH�G HTeGTu du. By the controllability of (G,H) and [3],
Lemma 12.6.2, this matrix is non-singular and [23], Exercise 29.14 completes the proof. �

A simple Lévy process of practical importance which does not have a non-singular Gaussian
covariance matrix is the compound Poisson Process, which is defined by L(t) =∑N(t)

n=1 Jn, where
(N(t))t∈R+ is a Poisson process and (Jn)n∈Z is an i.i.d. sequence independent of (N(t))t∈R+ ; the
law of Jn is called the jump size distribution. The proof of [22], Theorem 1.1, in conjunction with
Lemma 4.4, implies the following result.

Proposition 4.6. Assume that L is a compound Poisson process with absolutely continuous jump
size distribution. Theorem 4.3 then holds.
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Under a similar smoothness assumption, the conclusion of Theorem 4.3 also holds in the case
of infinite activity Lévy processes. The statement follows from applying [22], Theorem 1.1, to
equation (4.8).

Proposition 4.7. Assume that the Lévy measure νL of L satisfies νL(Rm) = ∞ and that there
exists a positive constant ρ such that νL restricted to the ball {x ∈ R

m :‖x‖ ≤ ρ} has a density
with respect to the m-dimensional Lebesgue measure. Theorem 4.3 then holds.

While the preceding three propositions already cover a wide range of Lévy processes encoun-
tered in practice, there are some relevant cases which are not yet taken care of, in particular, the
construction of the Lévy process as a vector of independent univariate Lévy processes (Corol-
lary 4.11 below). To also cover this and related choices, we employ the polar decomposition for
Lévy measures [2], Lemma 2.1. By this result, for every Lévy measure νL, there exists a proba-
bility measure α on the (m − 1)-sphere Sm−1 := {x ∈ R

m :‖x‖ = 1} and a family {νξ : ξ ∈ Sm−1}
of measures on R

+ such that for each Borel set B ∈ B(R+), the function ξ �→ νξ (B) is measur-
able and

νL(B) =
∫

Sm−1

∫ ∞

0
IB(λξ)νξ (dλ)α(dξ), B ∈ B(Rm\{0m}). (4.9)

A hyperplane in a finite-dimensional vector space is a linear subspace of codimension one.

Proposition 4.8. If the Lévy measure νL has a polar decomposition (α, νξ : ξ ∈ Sm−1) such that
for any hyperplane H ⊂ R

m, it holds that
∫
Sm−1 IRm\H(ξ)

∫∞
0 νξ (dλ)α(dξ) = ∞, then Theo-

rem 4.3 holds.

Proof. The proof rests on the main theorem of [26]. We denote by imH the image of the linear
operator associated with the matrix H . Since rankH = m and the pair (G,H) is controllable,
we only have to show that νL({x ∈ R

m :Hx ∈ imH\H}) = ∞ for all hyperplanes H ⊂ imH ,
and since R

m ∼= imH , the last condition is equivalent to νL(Rm\H) = ∞ for all hyperplanes
H ⊂ R

m. Using equation (4.9) and the fact that for every ξ ∈ Sm−1 and every λ ∈ R
+, the vector

λξ is in H if and only if the vector ξ is, this is seen to be equivalent to the assumption of the
proposition. �

Corollary 4.9. If the Lévy measure νL has a polar decomposition (α, νξ : ξ ∈ Sm−1) such that
α(Sm−1\H) is positive for all hyperplanes H ∈ R

m and νξ (R
+) = ∞ for α-almost every ξ , then

Theorem 4.3 holds.

Corollary 4.10. If the Lévy measure νL has a polar decomposition (α, νξ : ξ ∈ Sm−1) such that
for some linearly independent vectors ξ1, . . . , ξm ∈ Sm−1, it holds that α(ξ k) > 0 and νξ k

(R+) =
∞ for k = 1, . . . ,m, then Theorem 4.3 holds.

Corollary 4.11. Assume that l ≥ m is an integer and that the matrix R ∈ Mm,l(R) has full
rank m. If L = R (L1 · · · Ll)

T, where Lk , k = 1, . . . , l, are independent univariate Lévy pro-
cesses with Lévy measures νL

k satisfying νL
k (R) = ∞, then Theorem 4.3 holds.
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5. Proofs

5.1. Proofs for Section 3

Proof of Theorem 3.3. The first step of the proof is to show that any pair (P,Q) of the form
(3.1) is a left matrix fraction description of C(zIpd − A)−1 B, provided A, B and C are defined
as in equations (3.4). We first show the relation

(zIpd − A)−1 B = [w1(z)
T · · · wT

p(z) ]T , (5.1)

where wj(z) ∈ Md,m(R{z}), j = 1, . . . , p, are defined by the equations

wj(z) = 1

z

(
wj+1(z) + βj

)
, j = 1, . . . , p − 1, (5.2a)

and

wp(z) = 1

z

(
−

p−1∑
k=0

Ap−kwk+1(z) + βp

)
. (5.2b)

Since it has been shown in [19], Theorem 3.12, that w1(z) = P(z)−1Q(z) this will prove the

assertion. Equation (5.1) is clearly equivalent to B = (zIpd − A)
[
w1(z)

T · · · wT
p(z)

]T
, which

explicitly reads

βj = zwj (z) − wj+1(z), j = 1, . . . , p − 1,

βp = zwp(z) + Apw1(z) + · · · + A1wp(z)

and is thus equivalent to equations (5.2).
For the second step consider a given state space model (A,B,C,L). Using the spectral repre-

sentation [17], Theorem 17.5,

eAt = 1

2πi

∫
�

ezt (zIN − A)−1 dz, t ∈ R, (5.3)

where � is some closed contour in C winding around each eigenvalue of A exactly once, it
follows that

Y(t) =
∫ t

−∞
CeA(t−u)B dL(u) = 1

2πi

∫ t

−∞

∫
�

ez(t−u)C(zIN − A)−1B dz dL(u)

= 1

2πi

∫ t

−∞

∫
�

ez(t−u)P (z)−1Q(z)dz dL(u)

= 1

2πi

∫ t

−∞

∫
�

ez(t−u)C(zIpd − A)−1 B dz dL(u)

=
∫ t

−∞
CeA(t−u)B dL(u),
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where A, B and C are defined in terms of (P,Q) by equations (3.4). Thus Y is an MCARMA
process with autoregressive polynomial P and moving average polynomial Q. �

5.2. Proofs for Section 4

In this section we present the proofs of our main results, Theorem 4.2, Theorem 4.3 and
Lemma 4.4, as well as several auxiliary results. The first is a generalization of [7], Proposition 2,
expressing MCARMA processes as a sum of multivariate Ornstein–Uhlenbeck processes.

Proposition 5.1. Let Y be the the output process of the state space system (3.5) and assume that
Assumption E2 holds. Then, there exist vectors s1, . . . , sN ∈ C

m\{0m} and b1, . . . ,bN ∈ C
d\{0d}

such that Y can be decomposed into a sum of dependent, complex-valued Ornstein–Uhlenbeck
processes as Y(t) =∑N

ν=1 Yν(t), where

Yν(t) = eλν(t−s)Yν(s) + bν

∫ t

s

eλν(t−u) d〈sν,L(u)〉, s, t ∈ R, s < t. (5.4)

Proof. We first choose a left matrix fraction description (P,Q) of the transfer function
z �→ C(zIN − A)−1B such that z �→ detP(z) and z �→ detQ(z) have no common zeros
and z �→ detP(z) has no multiple zeros. This is always possible, by Assumption E2. In-
serting the spectral representation (5.3) of eAt into the kernel g(t) (equation (3.9)), we
get g(t) = 1

2πi

∫
�

eztC(zIN − A)−1B dzI[0,∞)(t) and, by construction, the integrand equals
eztP (z)−1Q(z)I[0,∞)(t). After writing P(z)−1 = 1

detP(z)
adjP(z), where adj denotes the adju-

gate of a matrix, an elementwise application of the residue theorem from complex analysis ([11],
Theorem 9.16.1) shows that

g(t) =
N∑

ν=1

eλν t 1

(detP)′(λν)
adjP(λν)Q(λν)I[0,∞)(t),

where (detP)′(λν) := d
dz

detP(z)|z=λν is non-zero because z �→ detP(z) has only simple zeros.
The same fact, in conjunction with the Smith decomposition of P ([3], Theorem 4.7.5), also
implies that rankP(λν) = d − 1 and thus rank adjP(λν) = 1 ([3], Fact 2.14.7(ii)). Since detP
and detQ have no common zeros, [(detP)′(λν)]−1 adjP(λν)Q(λν) also has rank one and can
thus be written as bνsT

ν for some non-zero sν ∈ C
m and bν ∈ C

d ([13], Section 51, Theorem 1).
�

Lemma 5.2. Assume that Y is the output process of the state space model (3.5). The sampled
process Y(h) then has the state space representation

Xn = eAhXn−1 + Nn, Nn =
∫ nh

(n−1)h

eA(nh−u)B dLu, Y(h)
n = CX(h)

n . (5.5)
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The sequence (Nn)n∈Z is i.i.d. with mean zero and covariance matrix

�� = ENnNT
n =

∫ h

0
eAuB�LBTeATu du. (5.6)

Proof. Equations (5.5) follow from setting t = nh, s = (n − 1)h in equation (3.6). It is an im-
mediate consequence of the Lévy process L having independent, homogeneous increments that
the sequence (Nn)n∈Z is i.i.d. and that its covariance matrix �� is given by equation (5.6). �

From this, we can now proceed to prove the weak vector ARMA representation of the pro-
cess Y(h).

Proof of Theorem 4.2. It follows from setting t = nh, s = (n − 1)h in equation (5.4) that Y(h)
n

can be decomposed as Y(h)
n =∑N

ν=1 Y(h)
ν,n, where Y(h)

ν , satisfying

Y(h)
ν,n = eλνhY(h)

ν,n−1 + Z(h)
ν,n, Z(h)

ν,n = bν

∫ nh

(n−1)h

eλν(nh−u) d〈sν,L(u)〉,

are the sampled versions of the component MCAR(1) processes from Proposition 5.1. Analo-
gously to [9], Lemma 2.1, we can show by induction that for each k ∈ N0 and all complex d × d

matrices c1, . . . , ck , it holds that

Y(h)
ν,n =

k∑
r=1

crY(h)
ν,n−r +

[
eλνhk −

k∑
r=1

creλνh(k−r)

]
Y(h)

ν,n−k

(5.7)

+
k−1∑
r=0

[
eλνhr −

r∑
j=1

cj eλνh(r−j)

]
Z(h)

ν,n−r .

If we then use the fact that e−hλν is a root of z �→ ϕ(z), which means that eNhλν −ϕ1e(N−1)hλnu −
· · · − ϕN = 0, and set k = N , cr = Idϕr , then equation (5.7) becomes

ϕ(B)Y(h)
ν,n =

N−1∑
r=0

[
erhλν −

r∑
j=1

ϕj eλνh(r−j)

]
Z(h)

ν,n−r .

Summing over ν and rearranging shows that this can be written as

ϕ(B)Y(h)
n =

N∑
ν=1

V(h)
ν,n−ν+1, (5.8)

where the i.i.d. sequences (V(h)
ν,n)n∈Z, ν ∈ {1, . . . ,N}, are defined by

V(h)
ν,n =

∫ nh

(n−1)h

N∑
μ=1

bμ

[
eλμh(ν−1) −

ν−1∑
κ=1

ϕκeλμh(ν−κ−1)

]
eλμ(nh−u) d〈sμ,L(u)〉. (5.9)
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By a straightforward generalization of [8], Proposition 3.2.1, there exists a monic Schur-stable
polynomial �(z) = Id +�1z+· · ·+�N−1z

N−1 and a white noise sequence ε̃ such that the (N −
1)-dependent sequence ϕ(B)Y(h) has the moving average representation ϕ(B)Y(h)

n = �(B)ε̃n.
Since both ϕ and � are monic, and ϕ is Schur stable (by Assumption E1), ε̃ is the innovation
process of Y(h) and so it follows that ε̃ = ε(h) because the innovations of a stochastic process are
uniquely determined. �

As a corollary, we obtain that the innovations sequence ε(h) itself satisfies a set of strong
VARMA equations, the attribute strong referring to the fact that the noise sequence is i.i.d., not
merely white noise.

Corollary 5.3. Assume that Y is the output process of the state space system (3.5) satisfying
Assumptions L1, E1 and E2. Further assume that ε(h) is the innovations sequence of the sampled
process Y(h). There then exists a monic, Schur-stable polynomial � ∈ Md(C[z]) of degree at
most N − 1, a polynomial θ ∈ Md,dN(R[z]) of degree N − 1 and a CdN -valued i.i.d. sequence

W(h) = (W(h)
n )n∈Z, such that

�(B)ε(h)
n = θ(B)W(h)

n , n ∈ Z. (5.10)

Proof. Combining equations (4.3) and (5.8) gives

ε(h)
n + �

(h)
1 εn−1 + · · · + �

(h)
N−1εn−N+1

(5.11)
= V(h)

1,n + V(h)
2,n−1 + · · · + V(h)

N,n−N+1, n ∈ Z,

and with the definitions

W(h)
n = [

V(h)
1,n

T · · · V(h)
N,n

T ]T ∈ C
dN , n ∈ Z, (5.12a)

θ(z) =
N∑

j=1

θj z
j−1,

(5.12b)
θν = [ 0d · · · 0d︸ ︷︷ ︸

ν−1 times

Id 0d · · · 0d︸ ︷︷ ︸
N−ν times

] ∈ Md,dN(R), ν = 1, . . . ,N,

equation (5.11) becomes �(B)ε
(h)
n = θ(B)W(h)

n , showing that ε(h) is indeed a vector ARMA
process. �

This corollary is the central step in establishing complete regularity of the innovations pro-
cess ε(h).

Proof of Theorem 4.3. We define the R
mN -valued random variables

M (h)
n = [M(h)

n,1
T · · · M(h)

n,r

T
M(h)

n,r+1
T

M(h)
n,r+3

T · · · M(h)
n,N−1

T ]T
, n ∈ Z,
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where

M(h)
n,ν = [

Re M(h)
n,ν

T
Im M(h)

n,ν

T ]T
,

M(h)
n,ν =

∫ nh

(n−1)h

eλν(nh−u) dL(u), ν = 1, . . . ,N, n ∈ Z.

Clearly, the sequence (M (h)
n )n∈Z is i.i.d. and M (h) is equal to M (h)

1 . We now argue that the

vector W(h)
n , as defined in equation (5.12a), is equal to a linear transformation of M (h)

n . By equa-

tion (5.9), W(h)
n = [�T ⊗ Id ]

[
(b1sT

1 M(h)
n,1)

T · · · (bN sT
N M(h)

n,N )T
]T

, where � = (γμ,ν) ∈ MN(C)

is given by γμ,ν = eλμh(ν−1) +∑ν−1
κ=1 ϕκeλμh(ν−κ−1). With the notation

B =

⎛⎜⎜⎜⎝
b1 0d . . . 0d

0d b2
. . .

...
...

. . .
. . . 0d

0d . . . 0d bN

⎞⎟⎟⎟⎠ ∈ MdN,N(C), S =

⎛⎜⎜⎜⎜⎝
sT

1 0T
d . . . 0T

d

0T
d sT

2
. . .

...

...
. . .

. . . 0T
d

0T
d . . . 0T

d sT
N

⎞⎟⎟⎟⎟⎠ ∈ MN,mN(C),

we get
[
(b1sT

1 M(h)
n,1)

T · · · (bN sT
N M(h)

n,N )T
]T = BS

[
M(h)

n,1

T · · · M(h)
n,N

T]T
. We recall that for ν =

r + 1, r + 3, . . . ,N − 1, the eigenvalues of A satisfy λν = λν+1 ∈ C\R, which implies that

M(h)
n,ν = Re M(h)

n,ν + i Im M(h)
n,ν and M(h)

n,ν+1 = M(h)
n,ν = Re M(h)

n,ν − i Im M(h)
n,ν .

Consequently, we obtain that
[
M(h)

n,1

T · · · M(h)
n,N

T]T
= [K ⊗ Im]M (h)

n , where

K =

⎛⎜⎜⎝
Ir

J
. . .

J

⎞⎟⎟⎠ ∈ MN(C), J =
(

1 i
1 −i

)
,

so that, in total, W(h)
n = FM (h)

n with F = [�T ⊗ Id ]BS[K ⊗ Im] ∈ MdN,mN(C). It follows that
the VARMA equation (5.10) for ε(h) becomes �(B)ε

(h)
n = θ̃ (B)M (h)

n , where θ̃ (z) = θ(z)F . By
the invertibility of �, the transfer function k : z �→ �(z)−1θ̃ (z) is analytic in a disc containing
the unit disc and permits a power series expansion k(z) =∑∞

j=0 �jz
j . We next argue that the

impulse responses �j are necessarily real d × mN matrices. Since both ε
(h)
n and M (h)

n are real-

valued, it follows from taking the imaginary part of the equation ε
(h)
n = k(B)M (h)

n that 0d =∑∞
j=0 Im�jM

(h)
n−j . Consequently, 0 = Cov(0d) = ∑∞

j=0 Im�j Cov(M (h)
n−j ) Im�T

j and since

each term in the sum is a positive semidefinite matrix, it follows that Im�j Cov(M (h)
n−j ) Im�T

j =
0 for every j . The existence of an absolutely continuous component of the law of M (h)

n−j with re-

spect to the mN -dimensional Lebesgue measure implies that Cov(M (h)
n−j ) is non-singular and it



Complete regularity of the innovations of sampled MCARMA processes 61

thus follows that Im�j = 0 for every j . Hence, k(z) ∈ Md,mN(R) for all real z, and consequently

k ∈ Md,mN(R{z}). [14], Theorem 1.2.1(iii), then implies that there exists a stable (M (h)
n )n∈N-

driven VARMA model for ε(h) with real-valued coefficient matrices. It has been shown in [20],
Theorem 1, that a stable vector ARMA process is geometrically completely regular provided
that the driving noise sequence is i.i.d. and absolutely continuous with respect to the Lebesgue
measure. A careful analysis of the proof of this result shows that the existence of an absolutely
continuous component of the law of the driving noise is already sufficient for the conclusion
to hold. We briefly comment on the necessary modifications to the argument. We first note that
under these weaker assumptions, the proof of [20], Lemma 3, implies that the n-step transition
probabilities P n(x, ·) of the Markov chain X associated with a vector ARMA model via its state
space representation have an absolutely continuous component for all n greater than or equal to
some n0. This immediately implies aperiodicity and φ-irreducibility of X, where φ can be taken
as the Lebesgue measure restricted to the support of the continuous component of P n0(x, ·). The
rest of the proof, in particular the verification of the Foster–Lyapunov drift condition for com-
plete regularity, is unaltered. This shows that ε(h) is geometrically completely regular and, in
particular, strongly mixing with exponentially decaying mixing coefficients. �

Proof of Lemma 4.4. By definition, M(h)
ν = Mν(h), where (Mν(t))t≥0 is the solution to

dMν(t) = λνMν(t)dt + dL(t), Mν(0) = 0m.

Taking the real and imaginary parts of this equation gives

d Re Mν(t) = ReλνMν(t)dt + dL(t) = [Reλν Re Mν(t) − Imλν Im Mν(t)]dt + dL(t),

d Im Mν(t) = ImλνMν(t)dt = [Reλν Im Mν(t) + Imλν Re Mν(t)]dt,

and consequently

d

(
Re Mν(t)

Im Mν(t)

)
= [�ν ⊗ Im]

(
Re Mν(t)

Im Mν(t)

)
dt +

(
Im

0m

)
dL(t), �ν =

(
Reλν − Imλν

Imλν Reλν

)
.

Using the fact that λν ∈ R for ν = 1, . . . , r and λν = λν+1 ∈ C\R for ν = r +1, r +3, . . . ,N −1,
it follows that M (h) = M (h), where (M (t))t≥0 satisfies dM (t) = GM (t)dt + H dL(t), and
G = G̃ ⊗ Im ∈ MmN(R) and H = H̃ ⊗ Im ∈ MmN,m are given by

G̃ = diag(λ1, . . . , λr ,�r+1,�r+3, . . . ,�N−1),

H̃ = (1 · · · 1︸ ︷︷ ︸
r times

1 0 1 0 · · · 1 0 )T.

Since rankH = m, the first claim of the lemma is proved. Next, we show that the controllabil-

ity matrix C := [
H GH · · · GN−1H

] ∈ MmN(R) is non-singular. With C̃ :=
[
H̃ G̃H̃ · · ·

G̃N−1H̃
]

and by the properties of the Kronecker product, it follows that C = C̃ ⊗ Im and thus
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detC = [det C̃ ]m. The matrix C̃ is given explicitly by

C̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λ1 λ2
1 · · · λN−1

1
...

...

1 λr λ2
r · · · λN−1

r

1 Reλr+1 Reλ2
r+1 · · · ReλN−1

r+1

0 Imλr+1 Imλ2
r+1 · · · ImλN−1

r+1
...

...

1 ReλN−1 Reλ2
N−1 · · · ReλN−1

N−1

0 ImλN−1 Imλ2
N−1 · · · ImλN−1

N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λ1 λ2
1 · · · λN−1

1
...

...

1 λr λ2
r · · · λN−1

r

1 λr+1 λ2
r+1 · · · λN−1

r+1

i iλr+1 iλ2
r+1 · · · iλN−1

r+1
...

...

1 λN−1 λ2
N−1 · · · λN−1

N−1

i iλN−1 iλ2
N−1 · · · iλN−1

N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with T ∈ MN(R) given by T = diag(1, . . . ,1,R, . . . ,R), R = 1

2

(
1
−i

−i
1

)
. Hence, the formula

for the determinant of a Vandermonde matrix ([3], Fact 5.13.3) implies that

detC =
[
(−1)(N−r)/2

∏
1≤μ<ν≤r

(λμ − λν)
∏

μ,ν∈Ir,N

μ<ν

Imλμ|λμ − λν |2

× |λμ − λν |2
∏

1≤μ≤r

ν∈Ir,N

|λμ − λν |2
]m

,

where Ir,N = {r +1, r +3, . . . ,N −1}. Hence, detC is not zero by Assumption E2 and the proof
is complete. �
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