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Abstract

The tail behaviour of stationary Rd-valued Markov-Switching ARMA processes driven
by a regularly varying noise is analysed. It is shown that under appropriate summability
conditions the MS-ARMA process is again regularly varying as a sequence. Moreover, it is
established that these summability conditions are satisfied if the sum of the norms of the
autoregressive parameters is less than one for all possible values of the parameter chain,
which leads to feasible sufficient conditions.

Our results complement in particular those of Saporta (2005) where regularly varying
tails of one-dimensional MS-AR(1) processes coming from consecutive large values of the
parameter chain were studied.
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1 Introduction

Markov-switching ARMA (MS-ARMA) processes are a modification of the well-known ARMA
processes by allowing for time-dependent ARMA coefficients, which are modelled as a Markov
chain. These processes are particularly popular in econometric modelling (see e.g. Krolzig
(1997) or Hamilton & Raj (2002) and the references therein) since the seminal paper by
Hamilton (1989). In this paper we study the tail behaviour of multivariate MS-ARMA pro-
cesses which are driven by a regularly varying i.i.d. noise sequence. In economics and finance,
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in particular, shocks are often regarded as being heavily tailed and a straightforward way to
include this feature into MS-ARMA models is to use a regularly-varying and thus heavy-tailed
noise sequence.

In our analysis we allow the driving parameter chain to have a general state space as in
Stelzer (2006), instead of assuming only finitely many regimes as usual (see e.g. Francq &
Zaköıan (2001) or Krolzig (1997)). So far models with infinitely many regimes have not been
used in applications, but Douc, Moulines & Rydén (2004) included this case in their general
theoretical statistical discussion. As our upcoming Example 5.3 exhibits, such models allow
for an interesting dependence structure using only a few parameters.

Under appropriate summability conditions on the coefficients, we establish that the MS-
ARMA process is (multivariate) regularly varying with the same index of regular variation as
the driving noise sequence. Moreover, the spectral measure of regular variation is determined
by the spectral measure of the noise. Extending a result of Stelzer (2006) we see that the
summability conditions are satisfied (for all indices of regular variation), if in almost all
regimes the sum of some norm of the autoregressive coefficients is strictly less than one.

Recently Saporta (2005) studied one-dimensional MS-AR(1) processes with finitely many
regimes and obtained that the possible appearance of consecutive large AR(1) coefficients
(explosive regimes) implies that the tail of the stationary distribution follows a power law
under some technical conditions. For random coefficient autoregressive processes (i.e. the AR
coefficients are i.i.d.) similar results are given in Kesten (1973) and Klüppelberg & Perga-
menchtchikov (2004).

The paper is organized as follows. In Section 2 we briefly recall the details of the MS-
ARMA model and in Section 3 the details of multivariate regular variation. Thereafter, we
analyse MS-ARMA processes with a regularly varying noise in Section 4 and conclude with
some illustrative examples in Section 5.

2 Markov-switching ARMA processes

In this section (stationary) multivariate Markov-switching ARMA processes are briefly re-
viewed referring to Stelzer (2006) for more details. We denote the real d× d (m×n) matrices
by Md(R) (Mm,n(R)).

In defining MS-ARMA processes, one starts from a (multivariate) ARMA equation (see
e.g. Brockwell & Davis (1991)) with drift and allows for random coefficients which are modelled
as a Markov chain. Thus a stationary process (Xt)t∈Z in Rd is called an MS-ARMA(p, q,∆, ε)
process, if it satisfies the MS-ARMA(p, q) equation

Xt − Φ1tXt−1 − · · · − ΦptXt−p = Zt + Θ1tZt−1 + · · ·+ ΘqtZt−q (2.1)

for all t ∈ Z, where p, q ∈ N0 with p+ q ≥ 1 are the autoregressive and moving average orders
and the (ARMA) parameter process ∆ = (Σt, Φ1t, . . . , Φpt, Θ1t, . . . ,Θqt)t∈Z is a stationary
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and ergodic Markov chain with some (measurable) subset S of Md(R)1+p+q as state space.
Moreover, ε = (εt)t∈Z is an i.i.d. sequence of Rd-valued random variables independent of ∆
and Zt := Σtεt ∈ Rd.

The elements of the set S (the possible ARMA parameter sets) are called “regimes”, and
“ergodic” is to be understood in its general measure theoretic meaning.

Compared to Stelzer (2006) we do not include an intercept (mean) µt in the parameter
chain ∆ and the defining equation (2.1), as this makes the following results notationally
easier. Note, however, that the results of this paper can be immediately applied to the
case with a general µt under an appropriate condition ensuring relative light-tailedness of∑∞

k=0 A0A−1 · · ·A−k+1m−k using Basrak (2000, Remark 2.1.20) (see also Mikosch (1999,
Remarks 1.3.5, 1.5.11)) with mt := (µT, 0T, . . . , 0T)T ∈ Rd(p+q).

Given some i.i.d. noise (εt) and parameter chain (∆t), the natural question arising is,
whether there exists a stationary (always understood in the strict sense) solution to (2.1). If
one defines

Xt = (XT
t , XT

t−1, . . . , X
T
t−p+1, Z

T
t , . . . , ZT

t−q+1)
T ∈ Rd(p+q), (2.2)

Σt = (ΣT
t , 0T, . . . , 0T

︸ ︷︷ ︸
p−1

, ΣT
t , 0T, . . . , 0T

︸ ︷︷ ︸
q−1

)T ∈ Md(p+q),d(R), Ct = Σtεt,

Φt =




Φ1t · · · Φ(p−1)t Φpt

Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0



∈ Mdp(R), J =




0 · · · · · · 0
Id 0 · · · 0

0
. . . 0 · · · ...

0 · · · 0 Id 0



∈ Mdq(R),

Θt =




Θ1t · · · Θ(q−1)t Θqt

0 · · · · · · 0

0 · · · · · · ...
0 · · · · · · 0



∈ Mdp,dq(R), At =

(
Φt Θt

0 J

)
∈ Md(p+q)(R), (2.3)

where the zeros appearing denote zeros in Mm,n(R) or Rd with the appropriate dimensions
m,n and d being obvious from the context, then (2.1) has a stationary and ergodic solution,
if and only if

Xt = AtXt−1 + Ct (2.4)

has one and this process X is a state space representation of the MS-ARMA process X.
In order to avoid degeneracies in the state space representation, we presume without

loss of generality p ≥ 1 from now on. Moreover, in the case of a purely autoregressive
MS-ARMA equation, i.e. q = 0, it is implicitly understood that Jt and Θt vanish, Xt =(
XT

t , XT
t−1, . . . , X

T
t−p+1

)T, Σt =
(
ΣT

t , 0T, . . . , 0T
)T and At = Φt.

Regarding notation, ‖ ·‖ shall denote any norm on Rd(p+q) as well as the induced operator
norm. If k = 0, the product AtAt−1 · · ·At−k+1 below is understood to be identical to the
identity Id(p+q) on Rd(p+q), a convention to be used throughout for products of this structure.
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Theorem 2.1 (Brandt (1986, Th. 1)). Equation (2.4) and the MS-ARMA(p, q,∆, ε) equa-
tion (2.1) have a unique stationary and ergodic solution, if E(log+ ‖A0‖) and E(log+ ‖C0‖)
are finite and the Lyapunov exponent γ := inf

t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
is strictly

negative. The unique stationary solution X = (Xt)t∈Z of (2.4) is given by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k (2.5)

and this series converges absolutely a.s.

3 Multivariate regular variation

As we are dealing with processes in Rd and shall also consider the state space representa-
tion of an MS-ARMA process in Rd(p+q), we recall first some results on multivariate regular
variation in this section. Comprehensive references on this topic are Resnick (1987, Section
5.4.2; 2004), Mikosch (2003), and for univariate regular variation Bingham, Goldie & Teugels
(1989). Intuitively for a random variable X (in Rd) regular variation with index α means that
the tail probabilities P (‖X‖ > x) decay like x−α and the spectral measure appearing below
gives the relative mass in the tails of the distribution of X in the different directions.

Let ‖ · ‖ denote an arbitrary, fixed norm on Rd and Sd−1 the unit sphere in Rd with
respect to this norm ‖ · ‖. Moreover, let v→ denote vague convergence, M+(E) the set of
Radon measures over some space E, B(E) the Borel sets over E and Bµ the µ-boundaryless
sets for some measure µ, i.e. all sets B with µ(∂B) = 0, where ∂B denotes the boundary of
B. Multivariate regular variation is now defined as follows.

Definition 3.1 (Regular variation on Rd). a) Let X be an Rd-valued random variable. If
there exists an Sd−1-valued random variable θ such that for some α > 0 and every u > 0

P
(
‖X‖ > tu, X

‖X‖ ∈ ·
)

P (‖X‖ > t)
v→ u−αP (θ ∈ ·)

in M+(Sd−1) for t → ∞, then X is said to be (multivariate) regularly varying and we write
X ∈ Rα.

The parameter α is called the index of regular variation and P (θ ∈ ·) ∈ M+(Sd−1) the
spectral measure of regular variation of X

b) A random sequence (Xn)n∈Z in Rd is called regularly varying (as a sequence), if all
its finite dimensional distributions are regularly varying.

For the necessary background on vague convergence of Radon measures on locally com-
pact Polish spaces see, for example, Resnick (1987) or Bauer (1992). It is immediate that
multivariate regular variation of X implies that ‖X‖ is univariate regularly varying with the
same index.
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Several equivalent definitions for multivariate regular variation exist, confer e.g. Basrak
(2000), Lindskog (2004) or Resnick (2004) for detailed discussions. We employ the following
characterization in the following, as it makes transformations straightforward. Below, Bδ(0)
is the ball in Rd around the origin with radius δ > 0.

Theorem 3.2. Let X be an Rd-valued random variable. Then the following are equivalent:
(i) X is regularly varying.
(ii) There exists a positive sequence (an)n∈N, an →∞ as n →∞, and a non-zero νX ∈

M+

(
Rd\{0}

)
with νX

(
Rd\Rd

)
= 0 such that

nP (X ∈ an·) v→ νX(·)

in M+

(
Rd\{0}

)
for n →∞.

If (ii) holds, then there exists an α > 0 such that νX(tA) = t−ανX(A) for all Borel sets
A and ∂Bδ(0) ∈ BνX for all δ > 0. In particular, νX has no atoms.

νX is referred to as the measure of regular variation of X.

Remark 3.3. a) (One point uncompactification) Rd\{0} is called the one point uncompac-
tification of Rd. For d = 1 this is obtained as follows: Take the space R with the usual
topology and form the two point compactification by setting R = R ∪ {∞,−∞} and adding
the neighbourhoods of ±∞, i.e. the sets [−∞, a) and (a,∞] with a ∈ R, to the basic open
sets. Then take R\{0} and remove the open neighbourhoods of 0 from the topology. For the
d-dimensional case one takes the compactification Rd, which is simply the d-fold product of
R, with the product topology. Then one removes the point 0 from Rd and the open neigh-
bourhoods of 0 from the topology.

One can interpret this procedure as interchanging the roles of zero and infinity. In Rd\{0}
compact sets can by characterized by being closed (in the usual sense) and bounded away
from zero. By this procedure we obtain a locally compact Polish space, a possible metric on
R\{0} is given by d(x, y) := |x−1− y−1| (cf. Resnick (1987, p. 225f)). For the construction of
a possible metric on Rd\{0} see Lindskog (2004, Theorem 1.5), for instance.

b) (ii) is norm-free and thus it does not matter, which norm is used in the definition.
Therefore the results of this paper do not depend on the particular norm. However, the
spectral measure is different for different norms, see also Hult & Lindskog (2002).

c) νX is non-degenerate, if and only if νX((a,∞]Sd−1) > 0 for one and hence all a > 0
(note (a,∞]Sd−1 := {xz : x ∈ (a,∞], z ∈ Sd−1}). 2

By Lr
R with r ∈ (0,∞] we denote the usual space of r-times integrable real-valued random

variables. On Rd (or Md(R)) equipped with a norm ‖ · ‖ we define Lr
Rd (or Lr

Md(R)) as the
space of all Rd- (or Md(R)-) valued random variables X with ‖X‖ ∈ Lr

R. For short we often
omit the space subscript and write Lr. Observe that the results from the standard theory
of the Lr

R spaces extend immediately to the multidimensional Lr spaces and note that for a
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regularly varying random variable X with index α one has that X ∈ Lβ ∀ 0 < β < α and
X 6∈ Lβ ∀ β > α.

The next theorem provides the basis for our analysis of MS-ARMA processes with regularly
varying noise. For some matrix A we denote by A−1 the pre-image under A.

Theorem 3.4. Let ε = (εk)k∈N0 be an i.i.d. sequence of Rd-valued random variables in Rα

and ν, (an)n∈N be the measure and normalizing sequence associated to εk in Theorem 3.2
(ii). Assume, moreover, that A = (Ak)k∈N0 is a sequence of Mqd(R)-valued random variables
independent of ε.
If α < 1, assume that there is a 0 < η < α with α + η < 1 such that Ak ∈ Lα+η for all k ∈ N0

and ∞∑

k=0

E
(‖Ak‖α+η

)
< ∞ and

∞∑

k=0

E
(‖Ak‖α−η

)
< ∞. (3.1)

If α ≥ 1, assume that there is a 0 < η < α such that Ak ∈ Lα+η for all k ∈ N0 and

∞∑

k=0

E
(‖Ak‖α+η

)1/(α+η)
< ∞ and

∞∑

k=0

E
(‖Ak‖α−η

)1/(α+η)
< ∞. (3.2)

Then the tail behaviour of Y =
∑∞

k=0 Akεk is given by

nP

( ∞∑

k=0

Akεk ∈ an·
)

v→ ν̃(·) :=
∞∑

k=0

E
(
ν ◦A−1

k (·)) as n →∞ (3.3)

in M+

(
Rq\{0}).

In particular, Y =
∑∞

k=0 Akεk is in Rα with associated measure ν̃ and normalizing se-
quence (an)n∈N, provided there is a relatively compact K ∈ B (

Rq\{0}) and an index j ∈ N0

such that E
(
ν

(
A−1

j (K)
))

> 0.

This theorem is a straightforward generalization of Resnick & Willekens (1991, Th. 2.1),
who consider random vectors and matrices with positive entries. We omit giving a proof, since
an inspection of Resnick & Willekens (1991) shows that all their arguments carry through to
our set-up (see also Stelzer (2005, Th. 3.19)).

Remark 3.5. Condition (3.1) or (3.2), respectively, is independent of the norm used and
motivated mainly by the proof. If Ak ∈ Lβ for some β > α and all k ∈ N0 and

lim sup
k→∞

E
(
‖Ak‖β

)1/k
< 1,

then (3.1) or (3.2), respectively, is satisfied for all admissible η with η ≤ β − α, as the root
criterion from standard analysis shows. 2
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4 MS-ARMA processes driven by regularly varying noise

Returning back to MS-ARMA processes we are now equipped with the necessary tools to
study the effects of a regularly varying noise sequence ε.

Theorem 4.1. Let (εt)t∈Z be an i.i.d. sequence of Rd-valued random variables in Rα and ν,
(an)n∈N the associated measure and normalizing sequence of Theorem 3.2 (ii). Assume further
that E(log+ ‖A0‖) < ∞ and γ < 0.

If α < 1, assume there is an η with 0 < η < α and α+η < 1 such that A0 · · ·A−k+1Σ−k ∈
Lα+η for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

)
< ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

)
< ∞. (4.1)

If α ≥ 1, assume that there is an η with 0 < η < α such that A0 · · ·A−k+1Σ−k ∈ Lα+η

for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

) 1
α+η < ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

) 1
α+η < ∞. (4.2)

Then the following hold:
a) There is a unique stationary and ergodic solution X = (Xt)t∈Z to the MS-ARMA

equation (2.1) given by Theorem 2.1.
b) The tail behaviour of X0, the state space representation of the stationary solution, is

given by

nP (X0 ∈ an·) v→ ν̃(·) =
∞∑

k=0

E
(
ν ◦ (A0 · · ·A−k+1Σ−k)

−1 (·)
)

as n →∞. (4.3)

c) For the stationary solution X0 the tail behaviour is described by

nP (X0 ∈ an·) v→ ν̄(·) =
∞∑

k=0

E
(
ν ◦ (PA0 · · ·A−k+1Σ−k)

−1 (·)
)

as n →∞, (4.4)

where P := (Id, 0, . . . , 0) ∈ Md,(p+q)d(R) with Id being the identity on Rd.
d) Provided there is a relatively compact K ∈ Rd\{0} with E

(
ν ◦ Σ−1

0 (K)
)

> 0, X0 and
X0 are in Rα with normalizing sequence (an) and measures ν̃ and ν̄, respectively.

e) Finally, if ε0 ∈ Lα, then X0 and X0 are in Lα.

Proof: From Σ0 ∈ Lα+η and ε0 ∈ Rα one gets C0 = Σ0ε0 ∈ Lβ ∀ 0 < β < α and, hence,
E(log+ ‖C0‖) < ∞. Therefore a) is Theorem 2.1. Parts b) and c) follow from Theorem 3.4 us-

ing the series representation of X0 given in Theorem 2.1 and Xt =
∞∑

k=0

PAt · · ·At−k+1Σt−kεt−k,

noting that P is the projection on the first d coordinates.
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Turning to d) we observe that

E
(
ν ◦Σ−1

0 (A1 ×A2 × · · · ×Ap+q)
)

= E(ν ◦ Σ−1
0 (A1 ∩Ap+1)) (4.5)

×δ0(A2 × · · · ×Ap−1 ×Ap+2 × · · ·Ap+q)

for Ai ∈ B(Rd), where δ0 denotes the Dirac measure with respect to 0 in Rd(p+q−2). So, setting
K̃ = K × 0Rd(p−1) × K × 0Rd(q−1) gives a relatively compact set with E(ν ◦ Σ−1

0 (K̃)) > 0.

Furthermore, E(ν ◦ (PΣ0)−1(K)) = E(ν ◦Σ−1
0 (K ×Rd(p+q−1)))

(4.5)
= E(ν ◦Σ−1

0 (K)) > 0 and
thus ν̃ and ν̄ are non-degenerate, which proves d).

ε0 ∈ Lα and (4.1) or (4.2), respectively, ensure that the conditions (4.1) or (4.2) of Stelzer
(2006, Th. 4.2) hold with r = α, as ε and ∆ are independent. Thus e) follows from this
Theorem. 2

Remark 4.2. a) From the above results the extremal domain of attraction of the station-
ary marginal distribution of the MS-ARMA process can be immediately deduced using e.g.
Resnick (1987, Corollary 5.18). In the case d = 1, we have tail equivalence of the station-
ary distribution and the driving noise and, in particular, that the distributions of ε0 and X0

both belong to the maximum domain of attraction of the Fréchet distribution Φα (cf. e.g.
Resnick (1987) or Embrechts, Klüppelberg & Mikosch (1997)), provided the upper tails are
non-degenerate.

b) For the non-degeneracy condition E(ν ◦ Σ−1(K)) > 0 in d) it suffices that Σ0 has a
strictly positive probability of being invertible. (If Σ0 is invertible, Σ−1

0 (B0(1)) ⊆ ‖Σ−1
0 ‖B0(1),

hence Σ−1
0

(
(1,∞]Sd−1

)
=

(
Σ−1

0 (B0(1))
)c ⊇ (‖Σ−1

0 ‖,∞]Sd−1 and thus

ν ◦Σ−1
0

(
(1,∞]Sd−1 × 0Rd(p−1) × (1,∞]Sd−1 × 0Rd(q−1)

)
= ν ◦ Σ−1

0

(
(1,∞]Sd−1

)
> 0

due to the non-degeneracy of ν.)
c) For the one-dimensional stochastic difference equation Xt = AtXt−1 + Ct with i.i.d.

(At, Ct) similar results are to be found in Grey (1994) or Konstantinides & Mikosch (2005)
and for one-dimensional positive valued random coefficient autoregressive models in Resnick
& Willekens (1991). 2

The regular variation results can be strengthened further.

Theorem 4.3. If all conditions of Theorem 4.1 including the existence of a relatively compact
K ∈ Rd\{0} with E

(
ν ◦ Σ−1

0 (K)
)

> 0 are satisfied, then X = (Xt)t∈Z as well as X = (Xt)t∈Z
are regularly varying as a sequence with index α.

Proof: It remains to show that all finite dimensional distributions of X = (Xt)t∈Z are regu-
larly varying. We restrict ourselves to showing that the two-dimensional marginals are again
regularly varying. It is obvious that the very same arguments can be used for all higher
dimensional marginals.
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W.l.o.g. we only consider the joint distribution of X0 and Xh for h ∈ N. From the series
representations of X0 and Xh we construct a series representation of (XT

0 ,XT
h )T as follows.

Set

Ah =

(
0Md(p+q),d(R)

Σh

)
, Ah−k =

(
0Md(p+q),d(R)

AhAh−1 · · ·Ah−k+1Σh−k

)
for k = 1, 2, . . . , h− 1

A0 =

(
Σ0

AhAh−1 · · ·A1Σ0

)
,

Ah−k =

(
A0A−1 · · ·Ah−k+1Σh−k

AhAh−1 · · ·Ah−k+1Σh−k

)
for k = h + 1, h + 2, . . . ,

then (XT
0 ,XT

h )T =
∑∞

k=0Ah−kεh−k and the sequences (Ah−k)k∈N0 and (εh−k)k∈N0 are mutu-
ally independent. On R2d(p+q) consider the norm ‖·‖∗ defined via the norm ‖·‖ used on Rd(p+q)

by ‖(xT
1 , xT

2 )T‖∗ = max{‖x1‖, ‖x2‖}. For any matrix A ∈ M2d(p+q),d(R) with A = (AT
1 , AT

2 )T,
where A1, A2 ∈ Md(p+q),d(R), it holds that ‖A‖∗ ≤ max{‖A1‖, ‖A2‖} ≤ ‖A1‖ + ‖A2‖. Using
(4.1) or (4.2), respectively, the triangle inequalities in Lα±η and the elementary inequality
|a + b|r ≤ |a|r + |b|r for 0 < r ≤ 1 and all a, b ∈ R, we thus obtain from the definition of Ah−i

that Ah−i ∈ Lα+η for all i ∈ N0 and
∑∞

k=0 E
(
‖Ah−k‖α+η

∗
)

< ∞,
∑∞

k=0 E
(
‖Ah−k‖α−η

∗
)

< ∞,

if α < 1, or
∑∞

k=0 E
(
‖Ah−k‖α+η

∗
)1/(α+η)

< ∞,
∑∞

k=0 E
(
‖Ah−k‖α−η

∗
)1/(α+η)

< ∞, if α ≥ 1.

So Theorem 3.4 gives nP
(
(XT

0 ,XT
h )T ∈ an·

) v→ ν̂(·) :=
∑∞

k=0 E
(
ν ◦ A−1

h−k(·)
)

as n →∞. Since
A−1

h (0Rd(p+q) ×K × 0Rd(p−1) ×K × 0Rd(q−1)) = Σ−1
h (K), the measure ν̂ is non-degenerate un-

der the non-degeneracy condition of Theorem 4.1 d) and so (XT
0 ,XT

h )T is multivariate regularly
varying with index α, measure ν̂ and normalizing sequence (an). To obtain the result for the
marginal distribution of the MS-ARMA process, i.e. for (X0, Xh), one again simply needs to
employ a projection onto the first and (p + q + 1)th d-dimensional coordinate. 2

Using Remark 3.5 and Jensen’s inequality to obtain γ < 0 one gets some asymptotic criteria
replacing the summability conditions.

Lemma 4.4. Let (εt)t∈Z be a sequence of i.i.d. Rd-valued random variables in Rα and ν,
(an)n∈N the associated measure and normalizing sequence of Theorem 3.2 (ii). Assume that
there is a β > α such that A0 · · ·A−k+1Σ−k ∈ Lβ and A0 · · ·A−k+1 ∈ Lβ for all k ∈ N0 and
that

lim sup
n→∞

E
(
‖A0 · · ·A−n+1Σ−n‖β

)1/(n+1)
< 1, lim sup

n→∞
E

(
‖A0 · · ·A−n+1‖β

)1/n
< 1. (4.6)

Then the conditions of Theorem 4.1 are satisfied.

Under an independence condition this simplifies further.

Corollary 4.5. Assume Σ−k is independent of A0 · · ·A−k+1 ∀ k ∈ N0. Then Σ0 ∈ Lβ

and A0 · · ·A−k+1 ∈ Lβ ∀ k ∈ N0 are sufficient for A0 · · ·A−k+1Σ−k ∈ Lβ ∀k ∈ N0 and
lim supn→∞E

(‖A0 · · ·A−n+1‖β
)1/n

< 1 implies already that (4.6) is satisfied.
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In order to obtain a condition that can be verified easily, we use the following Theorem
from Stelzer (2006) and thereby extend the feasible stationarity condition given in Corollary
3.4 of that paper to ensure that the conditions for a regularly varying noise to determine the
tail-behaviour of the stationary MS-ARMA process are satisfied.

Theorem 4.6. Let d, p ∈ N, q ∈ N0 and A ⊂ Md(p+q)(R) be a set of matrices such that for
each A ∈ A there are matrices A1(A), . . . , Ap(A), B1(A), . . . , Bq(A) ∈ Md(R) such that

A =




A1(A) · · · Ap−1(A) Ap(A) B1(A) · · · Bq−1(A) Bq(A)
Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




.

Assume, moreover, that there is a norm ‖·‖d on Rd and c < 1 such that sup
A∈A

∑p
i=1 ‖Ai(A)‖d <

c and sup
A∈A

∑q
i=1 ‖Bi(A)‖d < ∞ hold for the induced operator norm.

Then there is a norm ‖ · ‖ on Rd(p+q) and c′ < 1 such that supA∈A ‖A‖ < c′ in the induced
operator norm. Especially, ‖x0x1 · · ·xk‖ < (c′)k+1 for any k ∈ N and sequence (xn)n∈N0 with
elements in A.

Lemma 4.7. Assume that there are c < 1, C,M ∈ R+ and a norm ‖ · ‖ on Rd such
that

∑p
i=1 ‖Φi0‖ ≤ c,

∑q
i=1 ‖Θi0‖ ≤ M and ‖Σ0‖ ≤ C a.s. Then A0 · · ·A−k+1Σ−k ∈ Lβ,

A0 · · ·A−k+1 ∈ Lβ for all k ∈ N0 and (4.6) is satisfied for all β > 0.

Proof: Define the subset A = {A0 :
∑p

i=1 ‖Φi0‖d ≤ c} of the state space of Φt. Then the
conditions of this Lemma imply that the process (At)t∈Z a.s. takes only values in A at all
times t ∈ Z. From Theorem 4.6 we thus obtain obtain an operator norm ‖ · ‖ which ensures
‖A0A−1 · · ·A−k+1‖ < (c′)k a.s. for some c′ < 1 and all k ∈ N0. Thus, A0 · · ·A−k+1 ∈ Lβ for
all β > 0 and the second part of (4.6) is satisfied. Furthermore, ‖A0 · · ·A−k+1Σ−k‖ ≤ C(c′)k

implies A0 · · ·A−k+1Σ−k ∈ Lβ for all k ∈ N0 and β > 0 and that the first part of (4.6) is
satisfied. 2

Note that in Stelzer (2006) it was shown that under similar conditions an MS-ARMA
process is not only stationary, but also geometrically ergodic/strongly mixing and has finite
moments of at least as many orders as the driving noise ε. Moreover, the conditions imply in
particular that all regimes correspond to the ARMA parameters of causal ARMA processes
and are actually considerably more restrictive. However, the correspondence of all regimes
to causal ARMA processes does not ensure the existence of a stationary solution to the
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Figure 1: Simulations of an i.i.d. symmetric 1.5-stable noise sequence (upper left), the MS-ARMA(2,1) process

from Example 5.1 (upper right) and the MS-AR(1) processes from Examples 5.2 (lower left) and 5.3 (lower

right)

MS-ARMA equation. The intricate relationship between the stationarity of the MS-ARMA
process and the causality of its regimes has been studied in detail in Stelzer (2006, Sec. 3)
and regarding second order stationarity in Francq & Zaköıan (2001).

5 Some illustrative examples

Finally, we consider some examples and simulate sample models in order to illustrate the
behaviour of MS-ARMA models, in particular, the effects of a regularly varying noise sequence.
We shall look at real-valued MS-ARMA(p,q) processes with Σt = 1, i.e. Xt = Φ1tXt−1 + . . .+
ΦptXt−p + εt + Θ1tεt−1 + . . . + Θqtεt−q. As noise we take an i.i.d. sequence εt with symmetric
1.5-stable distribution, cf. Figure 1 (upper left) for a simulation. In particular, this noise is
non-degenerately regularly varying in both tails with index 1.5. The results of Stelzer (2006)
give that all examples below are geometrically ergodic. Thus, we use arbitrary starting values
for the MS-ARMA processes and show the simulated values after an appropriate burn-in
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period only. Observe that considering only univariate models is no real restriction, since for
multivariate regularly varying processes it is best to look at the norm and the qualitative
behaviour we are interested in in the following is not different.

In the first two examples we presume that there are only two possible states of ∆ given
by ∆(1) and ∆(2) and that the transition matrix of the Markov parameter chain ∆ is

P =

(
p11 p12

p21 p22

)
=

(
p̄ 1− p̄

1− p̄ p̄

)

for some p̄ ∈ (0, 1). Thus, the stationary distribution is (π(1), π(2)) = (1/2, 1/2) and ∆ is
aperiodic and irreducible.
Example 5.1: Take p̄ = 3/4 and let us consider an MS-ARMA(2,1) process with the two
regimes given by the equations

Xt = 0.6Xt−1 − 0.3Xt−2 + εt + 2εt−1 and Xt = −0.5Xt−1 + 0.2Xt−2 + εt + 0.5εt−1.

Obviously the conditions of Lemma 4.7 are satisfied and so Theorem 4.1 in combination
with Lemma 4.4 shows that the MS-ARMA process is stationary and regularly varying as a
sequence with index 1.5. The simulation in Figure 1 (upper right) shows that extreme values
of the MS-ARMA process occur only when there are extreme values in the driving noise
ε. So it clearly seems to be not the ARMA parameter chain but the noise sequence that
causes extremal values in the series. This observation is the intuitive reason behind the tail
equivalence of the MS-ARMA process and its noise shown in Theorem 4.1.
Example 5.2: Take p̄ = 3/4 and consider a real valued MS-AR(1) process with two regimes
given by the AR(1) coefficients Φ(1) = 1/2 and Φ(2) = 11/10, respectively. Although the
second regime is explosive and thus Lemma 4.7 is not applicable, we can still show stationarity
and regular variation as a sequence with index 1.5. Regarding the conditions of Lemma 4.4,
the only problem is (4.6), but as we have only finitely many regimes and a real-valued AR(1)
process, we can use the tools of Saporta (2005). Section 4.1 of that paper gives immediately
that in our set-up the constant λ > 0 defined in Saporta (2005, Theorem 1 (1)) exists and
is finite. Numerical calculations give λ ≈ 2.8875. Furthermore, Saporta (2005, Proposition 1,
Corollary 2) imply that (4.6) holds for all β < λ ≈ 2.8875. Thus, all conditions of Theorems
4.1 and 4.3 are satisfied. Again, the simulation in Figure 1 (lower left) shows that extremes of
the MS-ARMA processes are usually caused by extremes of the driving noise sequence. This
is again the intuition behind our theoretical results which give that asymptotically it is the
tail behaviour of the noise that determines the tail behaviour of the MS-ARMA process.

Of particular interest is, however, the downwards going spike at about time 1500, which
obviously is not caused by a large shock in the noise sequence ε. In fact, it comes from the
autoregressive coefficient being 1.1 over a rather long period. MS-AR(1) processes with finitely
many regimes where the tails of the stationary distribution are determined mainly by such
events were studied in Saporta (2005). Our theoretic results show that asymptotically the
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Figure 2: Simulation of the MS-AR(1) process in Example 5.2 with a standard normal noise ε

tails are, however, determined by the noise in this example and it is also easy to see that
this does not change, if we take any other noise ε which is regularly varying with index less
than λ. However, from Saporta (2005) one obtains that the MS-AR(1) process given above
with a different noise ε has a stationary distribution that is regularly varying with index
2.8875 provided ε0 ∈ Lr for some r > λ ≈ 2.8875. In this case not the noise but the possible
occurrence of explosive regimes determines the tail behaviour. An example of such a MS-
AR(1) process is depicted in Figure 2 where the same process as above is simulated with a
standard normal i.i.d. instead of a 1.5-stable noise ε. Note in particular how the spikes build
up due to consecutive occurrences of the explosive regime.

Observe also that we have obtained regular variation as a sequence for the MS-ARMA
processes with a regularly varying noise in Section 4, whereas the results of Saporta (2005)
only give that the stationary distribution is regularly varying in the tails.
Example 5.3: Finally, we consider an MS-AR(1) process with an uncountable state space
for the parameter Φ1t. Take a, b, c such that −1 < a < b < 1 and c > 0 and an i.i.d. sequence
(ut) uniformly distributed on the interval [−1, 1]. Then the evolution of the autoregressive
coefficient shall be given by Φ1t = max (min (Φ1,t−1 + cut, b) , a), i.e. we choose the new para-
meter uniformly from the neighbourhood with radius c of the old one, but do not allow it to
leave the interval [a; b]. Using Lemma 4.7, Lemma 4.4 and Theorem 4.1 one sees that the MS-
AR(1) process is stationary and regularly varying with index 1.5. The simulation in Figure 1
(lower right) with a = −0.9, b = 0.9 and c = 0.05 again illustrates that the tail behaviour is
determined by that of the noise sequence ε.

Observe that in the above examples one deducts immediately from (4.3) that both tails of
the stationary distribution of the MS-AR(1) process are non-degenerately regularly varying,
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since this holds for the noise ε.
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