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Abstract

The question which multivariate GARCH models in the vec form are representable
in the BEKK form is addressed. Using results from linear algebra, it is established
that all vec models not representable in the simplest BEKK form contain matrices
as parameters which map the vectorised positive semi-definite matrices into a strict
subset of themselves. Moreover, a general result from linear algebra is presented
implying that in dimension two the models are equivalent and in dimension three a
simple analytically tractable example for a vec model having no BEKK representation
is given.
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1 Introduction

Multivariate GARCH models have been studied intensively in recent years and many dif-
ferent specifications have been used in the literature (cf. Bauwens, Laurent & Rombouts
(2006) for a comprehensive overview and Boussama (1998, 2006) for a detailed discussion
on strict stationarity and geometric ergodicity). In this paper we present some results on
the relationship between the vec and BEKK models. These models have been presented
and analysed in detail in Engle & Kroner (1995). In that paper it has been noted that
all BEKK models are representable as vec ones, but regarding the converse it has only
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been shown that all diagonal vec models are representable as diagonal BEKK ones and
stated that the BEKK parametrisation “eliminates very few if any interesting models al-
lowed by the vec representation”. However, apart from the recent paper by Scherrer &
Ribarits (2007), which came to our attention only after finishing the work on the present
paper, no further results on the relationship between the two models seem to have been
obtained since then, nor are there simple and tractable examples of vec models which are
not representable in the BEKK form to be found in the literature.

Applying long known results from linear algebra in a straightforward manner, we show
in this paper that in dimension two the models are actually equivalent and that all vec-
models not representable in the simplest BEKK form with invertible parameter matrices
exhibit necessarily some degeneracy, viz. that one of the matrices appearing in the vec
model is degenerated in the sense that it maps the vectorised positive semi-definite matrices
to a strict subset of themselves. Finally, we present an example of a vec model with no
BEKK representation in dimension three. Comparing our results to those of Scherrer &
Ribarits (2007) they have shown the equivalence in dimension two using semi-definite
programming, whereas we note that it is an immediate consequence of a long known result
in linear algebra. The linear algebra literature we are referring to seems not to have been
used in connection to GARCH models before, but it is obviously intimately connected
to multivariate GARCH models and should be useful to obtain other results as well. For
an example of a vec model having no BEKK representation Scherrer & Ribarits (2007)
refer to Ribarits (2006). The example presented in that thesis on page 61 (stated in a
transformed way only) is of a rather complicated structure and it is argued by numerical
optimisation and not an analytical proof that it gives an admissible vec term which cannot
be represented in the BEKK form. In contrast to this we present a very simple example
with interesting properties which is analysed completely analytically.

The remainder of this paper is organised as follows. We briefly state the necessary
definitions of multivariate GARCH models in the next section and then present our results
in Section 3.

Regarding notation we denote the set of real d × d matrices by Md(R), the group of
invertible d× d matrices by GLd(R), the linear subspace of symmetric matrices by Sd and
the positive semi-definite cone by S+

d . Finally, AT is the transposed of a matrix A ∈ Md(R).

2 Multivariate GARCH processes

The well-known single dimensional GARCH(p, q) model introduced in Bollerslev (1986) is
defined via an i.i.d. sequence (εn)n∈N and the equations

Xn =
√

σ2
nεn (1)

σ2
n = α0 +

q∑
i=1

αiX
2
n−i +

p∑
j=1

βjσ
2
n−j (2)
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for n ∈ N. Moreover, the initial values σ2
0, σ

2
−1, . . . , σ

2
1−p and the parameters α1, . . . , αq,

β1, . . . , βp are non-negative and α0 > 0. X = (Xn)n∈N is referred to as a GARCH(p, q)
process and σ2 is its latent conditional variance process.

When one moves from a scalar X to a d-dimensional X, the variance process σ2 be-
comes a d × d covariance matrix process Σ and one uses the vec (or alternatively vech)
transformation in order to specify the model. The vec transformation maps the d× d ma-
trices bijectively to Rd2

by stacking the columns of a matrix below one another. This leads
to the vec-model (Engle & Kroner (1995)) which is given by:

Xn = Σ1/2
n εn (3)

vec(Σn) = vec(C) +

q∑
i=1

Ãivec(Xn−iX
T
n−i) +

p∑
j=1

B̃jvec(Σn−j). (4)

for n ∈ N where (εn)n∈N is now an Rd-valued i.i.d. sequence and Σ
1/2
n denotes the unique

positive semi-definite matrix whose square is Σn, i.e. Σ
1/2
n ∈ S+

d and Σ
1/2
n Σ

1/2
n = Σn. To

ensure the positive semi-definiteness of the process Σ the initial values and C have to be
positive semi-definite and Ã1, . . . , Ãq, B̃1, . . . , B̃p need to be d2 × d2 matrices mapping the
vectorised positive semi-definite matrices into themselves.

For notational convenience we shall not only use the vec-model in the following, but
also an obviously equivalent specification defined directly on the symmetric matrices. This
model, referred to as the “general d-dimensional GARCH(p, q) model” in the following, is
given by

Xn = Σ1/2
n εn (5)

Σn = C +

q∑
i=1

AiXn−iX
T
n−i +

p∑
j=1

BjΣn−j. (6)

The only difference to the vec-model is that A1, . . . , Aq and B1, . . . , Bp are now linear
operators from Sd to Sd that map the positive semi-definite d×d matrices into themselves,
i.e. Ai(S+

d ) ⊆ S+
d and Bj(S+

d ) ⊆ S+
d for i = 1, . . . , q and j = 1, . . . , p.

The restrictions on the linear operators Ai and Bj (or Ãi and B̃j in the vec-model)
necessary to ensure positive semi-definiteness led to the introduction of the so-called BEKK
model (see again Engle & Kroner (1995)), which automatically ensures positive semi-
definiteness:

Xn = Σ1/2
n εn (7)

Σn = C +

q∑
i=1

li∑

k=1

Āi,kXn−iX
T
n−iĀ

T
i,k +

p∑
j=1

sj∑
r=1

B̄j,rΣn−jB̄
T
j,r, (8)

where Āi,k, B̄j,r are now arbitrary elements of Md(R). It is standard that the BEKK model

is equivalent to the vec model with Ãi =
∑li

k=1 Āi,k ⊗ Āi,k and B̃j =
∑sj

r=1 B̄j,r ⊗ B̄j,r with
⊗ denoting the tensor (Kronecker) product.
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3 The relationship between the vec and BEKK model

From the definitions of the models it is clear that studying the relationships between the
vec (or general) multivariate GARCH and the BEKK model further is intrinsically related
to characterising the linear operators on Sd that map the positive semi-definite matrices
into themselves. The latter has been studied for a long time in linear algebra under the
general topic “Linear Preserver Problems” (see, for instance, the overview articles Pierce,
Lim, Loewy, Li, Tsing, McDonald & Beasley (1992) and Li & Pierce (2001)). From the
results obtained there we need the following:

Proposition 3.1. Let A : Sd → Sd be a linear operator. Then:

1. A(S+
d ) = S+

d , if and only if there exists a matrix A ∈ GLd(R) such that A can be
represented as X 7→ AXAT .

2. For d = 2, A(S+
d ) ⊆ S+

d , if and only if there is an r ∈ N and Ā1, Ā2, . . . , Ār ∈ Md(R)
such that A can be represented as

X 7→
r∑

i=1

ĀiXĀT
i .

Proof. (a) was initially proved in Schneider (1965), alternatively a more general proof in
a Hilbert space context may be found in Li, Rodman & Semrl (2003). (b) was established
in Størmer (1963) (cf. also Loewy (1992)). ¥

From this we can immediately infer the relations between the general (or equivalently
vec) multivariate GARCH model and the BEKK model:

Theorem 3.2. 1. For d ≤ 2 the general (or vec) multivariate GARCH model and the
BEKK model are equivalent.

2. Every general multivariate GARCH(p,q) model satisfying Ai(S+
d ) = S+

d and Bj(S+
d ) =

S+
d for i = 1, 2, . . . , q and j = 1, 2, . . . , p can be represented as a BEKK GARCH(p,q)

model with li = sj = 1 ∀ i, j and Āi,1, B̄j,1 ∈ GLd(R).

For the vec model Ai(S+
d ) = S+

d and Bj(S+
d ) = S+

d for i = 1, 2, . . . , p and j = 1, 2, . . . , q
translates into demanding that Ãi and B̃j map the vectorised positive semi-definite matrices
onto themselves.

The above result means that when a general (or vec) multivariate GARCH model does
not have a BEKK representation with li = sj = 1 ∀ i, j and invertible Āi,1, B̄j,1 it has
to be the case that Ai or Bj map the positive semi-definite matrices into a strict subset
of themselves for some i = 1, 2, . . . , q or j = 1, 2, . . . , p. This is a somehow degenerated
situation, since it may imply that the distribution of Σn − C for all n ∈ N (and thus any
limiting or stationary distribution) is concentrated on a subset of the positive semi-definite
matrices.
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Let us now turn to providing an example for a vec model that cannot be represented
in the BEKK form. Consider d = 3 and the linear operator D : Sd → Sd given by




x11 x12 x13

x12 x22 x23

x13 x23 x33


 7→




x11 + 2x22 −x12 −x13

−x12 x22 + 2x33 −x23

−x13 −x23 x33 + 2x11.


 (9)

It has been shown by Choi (1975) that D(S+
d ) ⊆ S+

d and that there exist no r ∈ N and
E1, E2, . . . , Er ∈ M3(R) such that

DX =
r∑

i=1

EiXET
i for all X ∈ Sd.

Hence, using D as some Ai or Bj gives a general three-dimensional multivariate GARCH
model having no BEKK representation. Clearly this means that the corresponding vec
models have no BEKK representation. Since the operator D was defined on Sd only and
not on Md(R), the corresponding 9 × 9 matrix in the vec model is not unique, but the
corresponding vec models are unique. One of the possible 9 × 9 matrices the operator D
corresponds to is 



1 0 0 0 2 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 2
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
2 0 0 0 0 0 0 0 1




.

It should be noted that D is an invertible linear operator, as can easily be seen, and that
Proposition 3.1 implies D(S+

d ) ⊂ S+
d . An example for a positive semi-definite matrix not

being the image of another positive semi-definite matrix under D is



1 0 0
0 0 0
0 0 0


 = D




1/9 0 0
0 4/9 0
0 0 −2/9


 .

So we have given an example showing the following:

Proposition 3.3. For d ≥ 3 there exist general (or vec) multivariate GARCH models that
cannot be represented in the BEKK form.
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