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Abstract

The probabilistic properties of Rd-valued Markov-Switching ARMA processes with a
general state space parameter chain are analysed. Stationarity and ergodicity conditions
are given and an easy-to-check general sufficient stationarity condition based on a tailor-
made norm is introduced. Moreover, it is shown that causality of all individual regimes is
neither a necessary nor a sufficient criterion for strict negativity of the associated Lyapunov
exponent.

We also consider finiteness of moments and prove geometric ergodicity and strong
mixing. The easily verifiable sufficient stationarity condition is extended to ensure these
properties.

Keywords:
Lyapunov exponent, non-linear time series models, stochastic difference equation, strict sta-
tionarity, strong mixing, V-uniform ergodicity

1 Introduction

In order to model time series that exhibit structural breaks, but behave locally linear, a vast
number of modifications of the classical ARMA model (see e.g. Brockwell & Davis (1991))
using time dependent ARMA coefficients have been introduced, including Markov-Switching
ARMA (MS-ARMA) processes, where the ARMA coefficients are allowed to change over
time according to a Markov chain. In this paper we extend the well-known MS-ARMA pro-
cesses with the ARMA parameters being a Markov chain with finitely many states (cf., for
instance, Francq & Zaköıan (2001) or Yao (2001)) by allowing for an arbitrary (i.e. possibly
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uncountable) state space of the parameter process, study various probabilistic properties and
introduce a new feasible criterion for these properties to hold.

Since the seminal paper by Hamilton (1989) MS-ARMA models have been used act-
ively in econometrics to model various time series (see Hamilton (1990), Krolzig (1997) or
Hamilton & Raj (2002), for instance, and the references therein). Moreover, they have also
been used extensively in electrical engineering (see Tugnait (1982) or Doucet, Logothetis &
Krishnamurthy (2000) and references therein). In all applications so far the Markov parameter
chain had only finitely many states and only the theoretical statistical paper Douc, Moulines
& Rydén (2004) allowed for infinitely many. However, it may often be advantageous to use
an MS-ARMA model with an uncountable state space of the ARMA coefficients where the
Markovian structure is described by only a few parameters instead of a model with a discrete
but large state space. One natural model, for example, are MS-ARMA processes where the
ARMA coefficients are chosen from a distribution centred around the old coefficients (see
Examples 5.1, 5.2 for concrete univariate MS-AR(1) processes of this type). Thus the com-
prehensive probabilistic study of MS-ARMA processes with a general state space presented in
the following provides the basis for interesting new specifications of MS-ARMA processes in
applications. Moreover, it should be noted that our general model includes random coefficient
ARMA models and that the effects of a heavy-tailed noise in MS-ARMA models of this form
are studied in Stelzer (2007)

The outline of this paper is as follows. We start in Section 2 by defining MS-ARMA
processes with a general state space parameter chain and consider throughout vector-valued
processes. Here we mainly discuss the literature on the finite state space case and the extension
to infinite (non-countable) state spaces. In particular, we show that the sufficient stationarity
and ergodicity criteria from the finite state space case extend to our general model. In Section
3 we analyse the relation between causality of the individual regimes (the possible ARMA
coefficient sets) and the stationarity of the MS-ARMA process. Furthermore, we establish as
our main result a feasible sufficient stationarity condition, which is based on a general result
on the norm of matrices of a special structure. The existence of moments is discussed in the
next section and finally we establish V-uniform ergodicity and thereby geometric ergodicity
and strong mixing in Section 5.

2 The Markov-switching ARMA model

In defining MS-ARMA processes, one starts from a (multivariate) ARMA equation (see e.g.
Brockwell & Davis (1991)) with drift and allows for random coefficients which are modelled
as a Markov chain. We denote the real d×d (m×n) matrices by Md(R) (Mm,n(R)). Moreover,
“stationarity” always means strict stationarity.

Definition 2.1 (MS-ARMA(p, q) process). Let p, q ∈ N0, p+ q ≥ 1 and ∆ = (µt,Σt,Φ1t, . . . ,

Φpt,Θ1t, . . . ,Θqt)t∈Z be a stationary and ergodic Markov chain with some (measurable) subset

2



S of Rd ×Md(R)1+p+q as state space. Moreover, let ε = (εt)t∈Z be an i.i.d. sequence of Rd-
valued random variables independent of ∆ and set Zt := Σtεt ∈ Rd. A stationary process
(Xt)t∈Z in Rd is called MS-ARMA(p, q,∆, ε) process, if it satisfies

Xt − Φ1tXt−1 − · · · − ΦptXt−p = µt + Zt + Θ1tZt−1 + · · ·+ ΘqtZt−q (2.1)

for all t ∈ Z. (2.1) is referred to as the MS-ARMA(p, q,∆, ε) equation.
Furthermore, a stationary process (Xt)t∈Z is said to be an MS-ARMA(p, q) process, if it

is an MS-ARMA(p, q,∆, ε) process for some ∆ and ε satisfying the above conditions.

Remark 2.2. a) The elements of S are called “regimes” extending the notion from the finite
state space literature. S is assumed to be equipped with a metric inherited from some norm
on Rd ×Md(R)1+p+q and the Borel σ-algebra S.

b) “Ergodic” is to be understood in its general measure theoretic meaning, namely that
the back-shift invariant σ-algebra over the sequence space is trivial, see e.g. Ash & Gardner
(1975) or the comprehensive monograph Krengel (1985).

c) The above definition extends the one from the case with only finitely many regimes
(see e.g. Francq & Zaköıan (2001)). It includes random coefficient autoregressions (i.e. AR
processes with i.i.d. random coefficients) as analysed e.g. in Nicholls & Quinn (1982), Feigin
& Tweedie (1985) or Klüppelberg & Pergamenchtchikov (2004).

d) Sometimes it may be of interest to consider a set-up with the dimensions of X and ε
being different. To this end one can simply take ε to be an Rk-valued sequence and Σ to be
Md,k(R)-valued. All results of this paper except Proposition 5.4 extend immediately to this
set-up. Yet, Proposition 5.4 remains also valid when assuming k ≥ d and that Σt is always of
full rank. 2

Given some i.i.d. noise (εt) and parameter chain (∆t), the natural question arising is,
whether there exists a stationary and ergodic solution (Xt) to (2.1). Below, the zeros appearing
denote zeros in Mm,n(R) or Rd with the appropriate dimensions m,n and d being obvious
from the context.

Proposition 2.3 (State Space Representation). Define

Xt = (XT
t , X

T
t−1, . . . , X

T
t−p+1, Z

T
t , . . . , Z

T
t−q+1)

T ∈ Rd(p+q), (2.2)

Σt = (ΣT
t , 0

T, . . . , 0T

︸ ︷︷ ︸
p−1

,ΣT
t , 0

T, . . . , 0T

︸ ︷︷ ︸
q−1

)T ∈Md(p+q),d(R),

mt = (µT
t , 0

T, . . . , 0T)T ∈ Rd(p+q), Ct = mt + Σtεt

Φt =




Φ1t · · · Φ(p−1)t Φpt

Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0



∈Mdp(R), J =




0 · · · · · · 0
Id 0 · · · 0

0
. . . 0 · · · ...

0 · · · 0 Id 0



∈Mdq(R),
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Θt =




Θ1t · · · Θ(q−1)t Θqt

0 · · · · · · 0

0 · · · · · · ...
0 · · · · · · 0



∈Mdp,dq(R), At =

(
Φt Θt

0 J

)
∈Md(p+q)(R). (2.3)

Then (2.1) has a stationary and ergodic solution, if and only if

Xt = AtXt−1 + Ct (2.4)

has one.

Proof: We obviously have that any stationary solution of (2.1) leads via (2.2) to one of (2.4)
and, vice versa, that the first d components of a stationary solution of (2.4) are one for (2.1).
That an ergodic solution of (2.4) gives an ergodic solution of (2.1) and vice versa follows from
standard ergodicity theory (use e.g. Brandt, Franken & Lisek (1990, Lemma A 1.2.7)). 2

Remark 2.4. a) In order to avoid degeneracies in the state space representation, we pre-
sume without loss of generality p ≥ 1 from now on. In the case of a purely autoregress-
ive MS-ARMA equation, i.e. q = 0, it is implicitly understood that Jt and Θt vanish,
Xt =

(
XT

t , X
T
t−1, . . . , X

T
t−p+1

)T, Σt =
(
ΣT

t , 0
T, . . . , 0T

)T and At = Φt.
b) This proposition shows also that any d-dimensional MS-ARMA(p, q) process can be

represented as a d(p+ q)-dimensional MS-AR(1) process. 2

Regarding notation, ‖ ·‖ shall denote any norm on Rd(p+q) as well as the induced operator
norm and D→ convergence in distribution. If k = 0, the product AtAt−1 · · ·At−k+1 below
is understood to be identical to the identity Id(p+q) on Rd(p+q), a convention to be used
throughout for products of this structure.

Theorem 2.5. a) (Stationary solution). Equation (2.4) and the MS-ARMA(p, q,∆, ε) equa-
tion (2.1) have a unique stationary and ergodic solution, if E(log+ ‖A0‖) and E(log+ ‖C0‖)
are finite and the Lyapunov exponent γ := inf

t∈N0

(
1

t+ 1
E (log ‖A0A−1 · · ·A−t‖)

)
is strictly

negative. The unique stationary solution X = (Xt)t∈Z of (2.4) is given by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k (2.5)

and this series converges absolutely a.s.
b) (Convergence to the stationary solution). Let V0 be an arbitrary Rd(p+q)-valued random

variable defined on the same probability space as (∆t, εt)t∈Z and define (Vt)t∈N recursively via
(2.4) (or let V0, . . . , V−p+1, Z0, . . . , Z−q+1 be arbitrary Rd valued random variables and define
(Vt)t∈N via (2.1), Vt := (Vt, . . . , Vt−p+1, Zt, . . . , Zt−q+1)T).

Then ‖Xt −Vt‖ a.s.→ 0 as t→∞ and, in particular, Vt
D→ X0 as t→∞.
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Proof: (εt)t∈Z is i.i.d. and thereby mixing. As, moreover, (∆t)t∈Z is ergodic, Brandt et al.
(1990, Theorem A 1.2.6)) implies that the joint random sequence (∆, ε) = (∆t, εt)t∈Z is
stationary and ergodic, which in turn gives that the transformed sequence (At,Ct)t∈Z is
stationary and ergodic (Brandt et al. (1990, Lemma A 1.2.7)). Hence, we obtain a) from
the multidimensional extension of Theorem 1 of Brandt (1986) by Bougerol & Picard (1992,
Theorem 1.1). Part b) is now also immediate from Brandt (1986, Theorem 1). 2

For a finite state space of ∆ Theorem 2.5 a) has been given in Francq & Zaköıan (2001)
together with a proof along the same lines. The results in b) will later be extended to geometric
ergodicity of (Xt,∆t), but this requires considerably more involved conditions.

Remark 2.6. Let (At)t∈Z be any stationary and ergodic random sequence in Md(R) and

γ = inf
t∈N0

1
t+ 1

E (log ‖A0 · · ·A−t‖) its Lyapunov exponent. Then γ is independent of the

algebra norm. Consequently, one can work with some algebra norm that makes it rather
straightforward to show γ < 0. Observe also that E(log ‖A0‖) < 0 suffices to ensure γ < 0.

Although in our case matrices of the structure of At are of norm greater or equal to one
in all usual matrix norms, the latter is used in the next section to obtain a feasible condition.

A classical result from Furstenberg & Kesten (1960, Theorem 1) states that the infimum
can be replaced by a limit, i.e.

γ = lim
n→∞

1
n+ 1

E(log ‖A0A−1 · · ·A−n‖). 2 (2.6)

Actually it is only the autoregressive part Φt of the matrix At that determines the Lya-
punov exponent. Francq & Zaköıan (2001, p. 343) showed this for a finite state space Markov
parameter chain, but their proof is also valid in our general case.

Proposition 2.7. Let ‖ · ‖ denote arbitrary algebra norms on Md(p+q)(R) and Mdp(R) and

E
(
log+ ‖A0‖

)
<∞, then γ̃ := inft∈N0

(
1

t+1E (log ‖Φ0Φ−1 · · ·Φ−t‖)
)

= γ.

“Causality” is an important concept in the analysis of ARMA processes. The following
definition gives an appropriate extension to MS-ARMA processes.

Definition 2.8 (Causality). An MS-ARMA(p, q,∆, ε) process (Xt)t∈Z is said to be causal, if
there is some measurable function f such that Xt = f(∆t,∆t−1, . . . , εt, εt−1, . . .) ∀ t ∈ Z.

Remark 2.9. a) The unique stationary solution to an MS-ARMA equation constructed in
Theorem 2.5 is causal.

b) If ∆ is an i.i.d. sequence, the results of Bougerol & Picard (1992) show under technical
conditions that the strict negativity of the Lyapunov coefficient is also necessary for the
existence of a causal solution to an MS-ARMA equation. Confer also Goldie & Maller (2000)
for a general discussion of the one-dimensional case. 2
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3 Global and Local Stationarity

The above discussion has shown that it is important to find criteria ensuring strict negativity
of the Lyapunov exponent that can be easily used in practice. In this section we discuss the
relation to causality in the sense of Brockwell & Davis (1991, Definition 3.1.3; p. 468) of the
individual regimes.

Definition 3.1. An MS-ARMA process is called locally stationary, if almost surely all the
eigenvalues of Φ0 are strictly less than one in modulus, and it is said to be globally stationary,
if the Lyapunov exponent γ is strictly negative.

We use the term “local stationarity” extending a notion introduced in Francq & Zaköıan
(2001) regarding L2-stationarity. Note, however, that this term is also used in a very different
sense in the literature.

Intuitively local stationarity means that, whenever we fix the ARMA coefficients to one
set of possible values (the same one for all times!), we obtain a causal ARMA process.

By Theorem 2.5 and Remark 2.9 a) global stationarity implies that the MS-ARMA process
is causal, provided the logarithmic moment conditions are satisfied. Before giving a theorem on
simultaneous local and global stationarity, we show that the relation between local and global
stationarity is highly non-trivial, as in general neither of the two is sufficient or necessary for
the other.

Proposition 3.2 (MS-ARMA(1, q)). Let a one-dimensional MS-ARMA(1, q) process be given
and assume that E(log+ ‖A0‖) is finite. Then local stationarity is a sufficient condition for
global stationarity.

Proof: For s ∈ S let Φ0(s) = Φ0|∆0 = s. Local stationarity gives |Φ0(s)| < 1 a.s. and thus
γ = γ̃ = E(log |Φ0|) < 0. 2

In view of Remark 2.4 b) and the upcoming Example 3.2 it is clear that extending the result
to d > 1 is not possible.
Example 3.1: (Non-necessity of local stationarity) Consider an MS-ARMA(1, q) process in
one dimension and let ∆t have two states ∆(1),∆(2) and stationary distribution (π(1), π(2)).
Then E(log |Φ0|) < 0 translates into π(1) log |Φ(1)|+ π(2) log |Φ(2)| < 0, where Φ(1) and Φ(2)

are the two possible values for Φt. This is equivalent to |Φ(1)|π(1)
< |Φ(2)|−π(2)

. From the last
equation it is immediate to see that |Φ(1)| can be arbitrarily large provided |Φ(2)| is close
enough to zero. So, local stationarity is not necessary for global stationarity. 2

For a similar example but with an uncountable state space see Example 5.2.
Example 3.2: (Non-sufficiency of local stationarity) Take a stationary and ergodic Markov
chain ∆ with two states and transition matrix

P =

(
p11 p12

p21 p22

)
.
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Let further the regimes ∆(1) and ∆(2) be given by the two equations

Xt = Φ(1)
1 Xt−1 + Φ(1)

2 Xt−2 + εt and Xt = Φ(2)
1 Xt−1 + εt,

where Φ(1)
1 = 9/5, Φ(1)

2 = −9/10 and Φ(2)
1 = −1/5. So, the possible states of At are

A(1) =

(
9/5 −9/10
1 0

)
and A(2) =

(
−1/5 0

1 0

)
.

As one obtains ρ(A(1)) = |(9/10)± (3/10)i| = 3/
√

10 < 1 and ρ(A(2)) = 1/5 for the spectral
radii, both regimes correspond to causal AR processes.

The crucial observation is that R := A(1)A(2) and T := A(2)A(1) both have spectral radius
63/50 > 1. Fixing p12 and p21 to the value one, we obtain an ergodic and periodic Markov
chain ∆, which has stationary distribution (π(1), π(2)) = (0.5, 0.5). Observe that aperiodicity
is not required for ergodicity in our sense, as any stationary, irreducible and positive recurrent
countable state space Markov chain is ergodic in our sense (see Ash & Gardner (1975, Section
3.5)). Let us further assume temporarily that the noise ε is not random at all, but εt = 1 for
all times. So Ct = (1, 0)T. One readily calculates for n ∈ N

RnC0 =

( (−63
50

)n

−1
5

(−63
50

)n−1

)
and A(2)RnC0 =

(
−1

5

(−63
50

)n

(−63
50

)n

)
.

Thus, both RnC0 and A(2)RnC0 diverge to infinity in norm for n → ∞ and, hence, it
is straightforward to see that the series X0 =

∑∞
k=0 AtA−1 · · ·A−k+1C−k, is almost sure

divergent. Therefore, Theorem 2.5 implies that the Lyapunov coefficient associated with the
above chosen parameter chain ∆ cannot be strictly negative. This shows that causality of all
regimes does not ensure global stationarity. 2

Regarding L2-stationarity similar results have been given in Francq & Zaköıan (2001).
Actually, the last example is a deeper analysis of their Example 5.

The following general result on sets of matrices of the special structure of At or Φt provides
the necessary insight to obtain a condition ensuring local and global stationarity.

Theorem 3.3. Let d, p ∈ N, q ∈ N0 and A ⊂ Md(p+q)(R) be a set of matrices such that for
each A ∈ A there are matrices A1(A), . . . , Ap(A), B1(A), . . . , Bq(A) ∈Md(R) such that

A =




A1(A) · · · Ap−1(A) Ap(A) B1(A) · · · Bq−1(A) Bq(A)
Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




.
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Assume, moreover, that there is a norm ‖·‖d on Rd and c < 1 such that sup
A∈A

∑p
i=1 ‖Ai(A)‖d <

c and sup
A∈A

∑q
i=1 ‖Bi(A)‖d <∞ hold for the induced operator norm.

Then there is a norm ‖ · ‖ on Rd(p+q) and c′ < 1 such that supA∈A ‖A‖ < c′ in the induced
operator norm. Especially, ‖x0x1 · · ·xk‖ < (c′)k+1 for any k ∈ N and sequence (xn)n∈N0 with
elements in A.

Proof: Choose c1, . . . , cp ∈ R such that 1 = c1 > c2 > . . . > cp > c. Then

sup
A∈A

p∑

i=1

‖Ai(A)‖d

ci
≤ sup

A∈A

p∑

i=1

‖Ai(A)‖d

cp
<

c

cp
< 1.

Next choose M ∈ (c/cp, 1) and c̃ ∈ R+ such that

sup
A∈A

p∑

i=1

‖Ai(A)‖d

cp
+ sup

A∈A

q∑

i=1

‖Bi(A)‖d

c̃
< M < 1

and cp+1, . . . , cp+q ∈ R with cp+1 > . . . > cp+q > c̃. Define a norm ‖ · ‖ on Rd(p+q) by

‖(xT
1 , . . . , x

T
p , y

T
1 , . . . , y

T
q )T‖ = max{c1‖x1‖d, . . . , cp‖xp‖d, cp+1‖y1‖d, . . . , cp+q‖yq‖d}.

For any (xT
1 , . . . , x

T
p , y

T
1 , . . . , y

T
q )T ∈ Rd(p+q) and A ∈ A we have

∥∥∥A(xT
1 , . . . , x

T
p , y

T
1 , . . . , y

T
q )T

∥∥∥

=

∥∥∥∥∥∥

(
p∑

i=1

(Ai(A)xi)T +
q∑

i=1

(Bi(A)yi)T, xT
1 , . . . , x

T
p−1, 0

T, yT
1 , . . . , y

T
q−1

)T
∥∥∥∥∥∥

= max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi +
q∑

i=1

Bi(A)yi

∥∥∥∥∥
d

,
c2
c1
c1‖x1‖d, . . . ,

cp
cp−1

cp−1‖xp−1‖d,

0,
cp+2

cp+1
cp+1‖y1‖d, . . . ,

cp+q

cp+q−1
cp+q−1‖yq−1‖d

}

≤ max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi +
q∑

i=1

Bi(A)yi

∥∥∥∥∥
d

,

max
2≤k≤p+q,k 6=p+1

{
ck
ck−1

}
‖(xT

1 , . . . , x
T
p , y

T
1 , . . . , y

T
q )T‖

}

and, moreover,
∥∥∥∥∥

p∑

i=1

Ai(A)xi +
q∑

i=1

Bi(A)yi

∥∥∥∥∥
d

≤
p∑

i=1

‖Ai(A)‖d‖xi‖d +
p∑

i=1

‖Bi(A)‖d‖yi‖d

≤
(

p∑

i=1

‖Ai(A)‖d

ci
+

q∑

i=1

‖Bi(A)‖d

cp+i

)∥∥∥(xT
1 , . . . , x

T
p , y

T
1 , . . . , y

T
q )T

∥∥∥ .
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From this one deduces

sup
A∈A

‖A‖ ≤ max

{
sup
A∈A

p∑

i=1

‖Ai(A)‖d

cp
+ sup

A∈A

q∑

i=1

‖Bi(A)‖d

c̃
, max
2≤k≤p+q,k 6=p+1

{
ck
ck−1

}}

≤ max
{
M, max

2≤k≤p+q,k 6=p+1

{
ck
ck−1

}}
=: c′ < 1

which concludes the proof. 2

Note that q can also taken to be zero in the above theorem. Then the second condition
supA∈A

∑q
i=1 ‖Bi(A)‖d <∞ vanishes and matrices with the structure of Φt are analysed.

This immediately leads to a feasible condition for the strict negativity of the Lyapunov
exponent.

Corollary 3.4. Consider an MS-ARMA(p, q,∆, ε) equation with E(log+ ‖A0‖) < ∞ and
assume that there is a norm ‖ · ‖d on Rd and c̄ < 1 such that

∑p
i=1 ‖Φi0‖d ≤ c̄ a.s. Then the

MS-ARMA process is globally and locally stationary.

Proof: Apply Theorem 3.3 on the subset A = {Φ0 :
∑p

i=1 ‖Φi0‖d ≤ c̄} of the state space of
Φ0 to obtain an operator norm ‖·‖ which ensures ‖Φ0‖ < c′ a.s. for some c′ < 1. This ensures
E(log ‖Φ0‖) < 0 and so implies the above claim immediately. 2

Remark 3.5. For d = 1 the condition on
∑p

i=1 ‖Φi0‖d corresponds to the general stationarity
condition for TAR models (i.e. a piecewise AR model, where the parameter set is chosen
dependent on the current value of the process) as given in An & Huang (1996). Actually,
using the basic set-up of the latter article one can immediately give a direct proof of the
TAR stationarity condition using only our Theorem 3.3 and Tweedie’s drift criterion (cf. An
& Huang (1996, Lemma 2.2)). This illustrates that Theorem 3.3 can be applied to various
piecewise ARMA processes, as no particular features of MS-ARMA are needed. 2

4 Existence of Moments

In this section we give sufficient conditions for the finiteness of moments of MS-ARMA pro-
cesses using the following notion of r-times integrability for multivariate random variables.

Definition 4.1. Denote by Lr
R with r ∈ (0,∞] the usual space of r-times integrable real-valued

random variables and let ‖ · ‖ be a norm on Rd (or Md(R)). Then Lr
Rd (or Lr

Md(R)) is defined
as the space of all Rd- (or Md(R)-) valued random variables X with ‖X‖ ∈ Lr

R. For short we
often omit the space subscript and write Lr.

Moreover, ‖ · ‖Lr : Lr → R+
0 , X 7→ E(‖X‖r)1/r defines (up to a.s. identity) a norm on Lr

for r ≥ 1 and dLr(·, ·) : Lr×Lr → R+
0 , (X,Y ) 7→ E(‖X −Y ‖r) a metric on Lr for 0 < r < 1.

The Lr spaces are independent of the norm ‖·‖ used on Rd (or Md(R)). However, different
norms ‖ · ‖ on Rd (or Md(R)) lead to different norms ‖ · ‖Lr and metrics dLr(·, ·). Yet, due to
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the equivalence of all norms on Rd (or Md(R)) it is immediate to see that for different norms
‖ · ‖ the induced norms and metrics on Lr are equivalent. This implies that the results of this
section do not depend on the norm used.

All results from the well-known theory of the Lr
R spaces extend immediately to the mul-

tidimensional Lr spaces.

Theorem 4.2. Assume that E(log+ ‖A0‖), E(log+ ‖C0‖) < ∞ and γ < 0. If, moreover, for
some r ∈ [1,∞]

∞∑

k=0

‖A0A−1 · · ·A−k+1C−k‖Lr (4.1)

or for some r ∈ (0, 1)
∞∑

k=0

E (‖A0A−1 · · ·A−k+1C−k‖r) (4.2)

converges, then the unique stationary solution Xt of the MS-ARMA equation (2.1) given in
Theorem 2.5 a) and its state space representation Xt are in Lr. Moreover, the series (2.5)
defining Xt converges in Lr.

Proof: We assume t = 0 w.l.o.g. For r ∈ [1;∞] Lr is a Banach space and thus the absolute
convergence in (4.1) implies the convergence of the series (2.5) in Lr and that Xt ∈ Lr. Using
the norm ‖(x1, x2, . . . , xi)T‖∞ = max{|x1|, |x2|, . . . , |xi|} on Rd(p+q) and Rd, this immediately
gives Xt ∈ Lr for the MS-ARMA process.

For r ∈ (0, 1) we observe that Lr is a complete metric space and for m,n ∈ N, m > n,

dLr

(
m∑

k=0

A0 · · ·A−k+1C−k,
n∑

k=0

A0 · · ·A−k+1C−k

)
= dLr

(
m∑

k=n+1

A0 · · ·A−k+1C−k, 0

)

≤
m∑

k=n+1

E (‖A0 · · ·A−k+1C−k‖r) .

Therefore, (4.2) implies that (
∑m

k=0 A0 · · ·A−k+1C−k)m∈N is a Cauchy sequence in Lr and
thus convergent. Now proceed as in the case r ∈ [1,∞]. 2

Remark 4.3. a) Using the root criterion, we have that (4.1) or (4.2) hold, if

lim sup
k→∞

‖A0A−1 · · ·A−k+1C−k‖1/k
Lr < 1 or lim sup

k→∞
E (‖A0A−1 · · ·A−k+1C−k‖r)1/k < 1.

b) It is immediate that the above theorem remains valid when replacing the MS-ARMA
equation with a multivariate stochastic difference equation Xt = AtXt−1 + Ct with arbit-
rary stationary and ergodic input (At,Ct) and referring to the results of Brandt (1986) and
Bougerol & Picard (1992) instead of Theorem 2.5. Then it is the multidimensional extension
of the results of Karlsen (1990). 2

The following proposition gives a decomposition of the above conditions into an asymptotic
condition for the sequence At and an integrability condition on Ct.
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Proposition 4.4. Let r ∈ (0,∞) and assume that there exist u, v ∈ [1,∞] with 1/u+1/v = 1
such that A0 · · ·A−k+1 ∈ Lru ∀k ∈ N and C0 ∈ Lrv. If either

lim sup
k→∞

E(‖A0A−1 · · ·A−k+1‖ru)1/k < 1 (4.3)

for 0 < u <∞ or
lim

k→∞
‖A0A−1 · · ·A−k+1‖1/k

L∞ < 1 (4.4)

for u = ∞, then γ < 0 and (4.1) for r ≥ 1 or (4.2) for 0 < r < 1 holds.

Proof: From the standard result on the limit of subadditive sequences (cf., for instance, Hille
& Phillips (1957, Lemma 4.7.1)) it can be straightforwardly deduced that limk→∞ ‖A0 · · ·
A−k+1‖1/k

L∞ exists and equals infk∈N ‖A0 · · ·A−k+1‖1/k
L∞ , if A0 ∈ L∞.

γ < 0 is obvious for u = ∞ using (4.4) and else follows from Jensen’s inequality and (4.3).
Finally, (4.1) for r ≥ 1 or (4.2) for 0 < r < 1 are established by using Remark 4.3 a),

applying Hölder’s inequality and observing lim
k→∞

E(‖Crv
−k‖)1/k = 1 (unless Ct = 0 a.s.). 2

For r ∈ [1,∞) it is immediate that lim supk→∞E(‖A0 · · ·A−k+1‖r)1/k < 1 is equivalent to
lim supk→∞ ‖A0 · · ·A−k+1‖1/k

Lr < 1.

Corollary 4.5. If A0 ∈ L∞, limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 and C0 ∈ Lr, r ∈ (0,∞], then

the MS-ARMA process Xt and its state space representation Xt are in Lr.

Proof: For r = ∞ this is obvious from Theorem 4.2, else it is a direct consequence of
Proposition 4.4. 2

The following result extends the feasible stationarity criterion of the foregoing section to
a condition enabling one to deduce finiteness of the moments of the MS-ARMA process from
the moments of C0.

Theorem 4.6. Assume that there is a c̄ < 1, M ∈ R+ and a norm ‖ · ‖d on Rd such that∑p
i=1 ‖Φi0‖d ≤ c̄ and

∑q
i=1 ‖Θi0‖d ≤M a.s. Let, moreover, E(log+ ‖C0‖) be finite.

a) Then E(log+ ‖A0‖) < ∞, γ < 0 and thus there is a unique stationary and ergodic
solution (Xt)t∈Z to the MS-ARMA(p, q,∆, ε) equation (2.1) given by Theorem 2.5 a).

b) If C0 ∈ Lr for some r ∈ (0,∞], then the solution Xt of the MS-ARMA equation (2.1)
and its state space representation Xt are in Lr. Moreover, the series defining Xt (as given in
Theorem 2.5 a)) converges in Lr.

Proof: The conditions give A0 ∈ L∞ and thereby E(log+ ‖A0‖) < ∞. γ < 0 is now
Corollary 3.4. Regarding b), it only remains to show in view of the last corollary that
limk→∞ ‖A0 · · ·A−k+1‖1/k

L∞ < 1 holds, but this is immediate using Theorem 3.3 as in the
proof of Corollary 3.4. 2
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5 Geometric Ergodicity and Strong Mixing

It is immediate to see that the joint sequence (Xt,∆t) is a Markov chain. In this section
we analyse (V -uniform) geometric ergodicity and strong mixing of (Xt,∆t) and thereby of
MS-ARMA processes. We start with recalling some notions on Markov chains (see Meyn &
Tweedie (1993) for a comprehensive discussion).

Consider a Markov chain X = (Xt)t∈N with topological state space S equipped with the
Borel σ-algebra S and denote by Pn(·, ·) with n ∈ N its n-step transition kernel. X is said
to be a weak Feller chain, if E (g(X1)|X0 = y) is continuous in y ∈ S for all bounded and
continuous g : S → R. If µ is some non-degenerate measure on (S,S) and µ(A) > 0 implies∑∞

n=1 P
n(x,A) > 0 for all x ∈ S and A ∈ S, thenX is called µ-irreducible. Assume V : S → R

is measurable and V (x) ≥ 1 ∀x ∈ S. If there is a probability measure π on (S,S) such that

‖Pn − π‖V := sup
x∈S

sup
g∈FV

∣∣∫
S g(y)(P

n(x, dy)− π(dy))
∣∣

V (x)
→ 0 as n→∞, (5.1)

where FV := {f : S → R, measurable, |f(x)| ≤ V (x) ∀ x ∈ S}, then the Markov chain X is
said to be V -uniformly ergodic. Moreover, V -uniform ergodicity implies geometric ergodicity.

A discrete time stationary stochastic process X = (Xn)n∈Z is called strongly mixing, if

αl := sup
{|P (A ∩B)− P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞l
} → 0

as l→∞, where F0−∞ := σ (. . . , X−2, X−1, X0) and F∞l = σ (Xl, Xl+1, Xl+2, . . .). The values
αl are called mixing coefficients. If there are constants C ∈ R+ and a ∈ (0, 1) such that
αl ≤ Cal, X is said to be strongly mixing with geometric rate. Finally, it should be noted
that many results regarding statistical properties hold under strong mixing.

As it is most convenient, when analysing stationary MS-ARMA processes, we have, apart
from Theorem 2.5 b), always considered processes starting in the infinite past so far. The
geometric ergodicity results of this section are useful both, when (Xt,∆t) is started in the
infinite past as well as at time zero with arbitrary initial values (X0,∆0).

The next theorem studies the V-uniform ergodicity of MS-ARMA processes. Regarding
the topological properties recall Remark 2.2 a) and observe that it means, in particular, that
one cannot use the discrete metric/topology for a countable and non-finite state space S of
∆, as this contradicts the required compactness. On Rd(p+q) × S the metric/topology is, of
course, understood to be the product metric/topology.

Theorem 5.1. a) (Geometric ergodicity). Assume that (Xt,∆t) is a µ-irreducible and aperi-
odic weak Feller chain, the support of µ has non-empty interior and the state space S of ∆ is
compact. If, moreover, there are η ∈ (0, 1] and c < 1 such that

E(‖A1‖η|∆0 = δ) ≤ c ∀ δ ∈ S (5.2)

for some norm ‖ · ‖ on Rd(p+q) and ε1 ∈ Lη, then (Xt,∆t) is V -uniformly ergodic with
V : Rd(p+q) × S → R given by (x, δ) 7→ 1 + ‖x‖η.
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b) (Infinite past, strong mixing). If (∆t)t∈Z is additionally stationary and ergodic, then
E(log+ ‖A0‖), E(log+ ‖C0‖) < ∞, γ < 0 and thus there is a unique stationary and ergodic
solution X = (Xt)t∈Z to the MS-ARMA(p, q,∆, ε) equation (2.1) given by Theorem 2.5 a).
Moreover, (Xt,∆t)t∈Z, the state space representation X as well as the MS-ARMA process X
itself are strongly mixing with geometric rate.

Proof: a): Let ψ denote a maximal irreducibility measure for (Xt,∆t) in the sense of Meyn
& Tweedie (1993, Proposition 4.2.2). Thus, µ is especially absolutely continuous with respect
to ψ, i.e. ψ(A) = 0 implies µ(A) = 0, and therefore suppψ ⊇ suppµ, which shows that the
support of ψ has non-empty interior.

As 0 < η ≤ 1, we have ‖a + b‖η ≤ ‖a‖η + ‖b‖η for all a, b ∈ Rd(p+q). Thus, for any
x ∈ Rd(p+q) and δ ∈ S

E(V (X1,∆1)|X0 = x,∆0 = δ) = E(‖A1x+ C1‖η + 1|X0 = x,∆0 = δ)

≤ E(‖A1‖η|∆0 = δ)‖x‖η +E(‖C1‖η|∆0 = δ) + 1,

since ∆1 only depends on ∆0. As S is compact, ε1 ∈ Lη and is independent of ∆, there is a
M > 0 such that E(‖C1‖η|∆0 = δ) < M − 1 for all δ ∈ S. Hence, E(‖X1‖η +1|X0 = x,∆0 =

δ) ≤ c‖x‖η +M. Choose τ > 0 with 1− τ > c and then set R =
(

M
1−τ−c

)1/η
and C = BR(0)

(the ball with radius R in Rd(p+q)). For all x ∈ Cc = Rd(p+q)\C we have (1− τ − c)‖x‖η ≥M

and therefore

E(V (X1,∆1)|X0 = x,∆0 = δ) ≤ c‖x‖η + (1− τ − c)‖x‖η ≤ (1− τ)V (x, δ) (5.3)

for all (x, δ) ∈ Cc × S. Setting K := C × S we obtain a compact set. Hence, Meyn &
Tweedie (1993, Proposition 6.2.8 (ii)) ensures that K is a petite set (cf. Meyn & Tweedie
(1993, Section 5.5.2) for a definition). Combining (5.3) with the observation E(V (X1)|X0 =
x,∆ = δ) ≤ c‖x‖η + M ≤ cM

1−τ−c + M =: b for all x ∈ C, we obtain E(V (X1)|X0 = x,∆ =
δ) ≤ (1− τ)V (x, δ) + 1K(x, δ)b. An application of Theorem 16.0.1 of Meyn & Tweedie (1993)
concludes the proof now.

b): The compactness of S and ε1 ∈ Lη ensure the finiteness of E(‖C0‖η) and thus
E(log+ ‖C0‖). Likewise, (5.2) gives E(‖A1‖η) ≤ c, which implies E(log+ ‖A0‖) <∞ and γ <
0. So, there is a unique stationary and ergodic solution (Xt)t∈Z to the MS-ARMA(p, q,∆, ε)
equation (2.1) given by Theorem 2.5 a). The strong mixing properties are implied by the V -
uniform ergodicity (see Meyn & Tweedie (1993, Ch. 16)) and the fact that strong mixing of a
joint random sequence (At, Ct)t∈Z implies this property for the individual sequences (At)t∈Z
and (Ct)t∈Z, which is obvious from the definition. 2

Remark 5.2. a) A straightforward sufficient condition for (5.2) is the existence of a norm
‖ · ‖ and c < 1 such that ‖A1‖ ≤ c for all possible states of ∆1. Moreover, Jensen’s inequality
shows that E(‖A1‖γ |∆0 = δ) ≤ c ∀ δ ∈ S for some γ ≥ 1 implies the validity of (5.2) for all
η ∈ (0, 1].
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b) Yao & Attali (2000) gave criteria for geometric ergodicity of non-linear Markov-
switching autoregressions with finitely many regimes, which were extended in Lee (2005). 2

Next we examine conditions for an MS-ARMA process to be weakly Fellerian.

Proposition 5.3. a) Assume that there is some measurable function F such that ∆t =
F (∆t−1, ut), where (ut) is an i.i.d. sequence assuming values in a measurable space (G,G),
and F (·, u) is continuous for any fixed u ∈ G. Then (Xt,∆t) is a weak Feller chain.

b) If (Xt,∆t) is weakly Fellerian, then (∆t) is a weak Feller chain.

Proof: a) Since projections are continuous, there are functions FA, Fm, FΣ such that At =
FA(∆t−1, ut), mt = Fm(∆t−1, ut), Σt = FΣ(∆t−1, ut) and FA, Fm, FΣ, are continuous in
∆t−1. Thus, we obtain that

(Xt,∆t) = (FA(∆t−1, ut)Xt−1 + Fm(∆t−1, ut) + FΣ(∆t−1, ut)εt, F (∆t−1, ut))

is a continuous function of (Xt−1,∆t−1).
Let g : Rd(p+q) × S → R be bounded and continuous and denote P (ε, u) the joint distri-

bution of (ε1, u1), then

E (g(X1,∆1)|X0 = x,∆0 = δ) =
∫

Rd×G

g (FA(δ, u)x+ Fm(δ, u) + FΣ(δ, u)ε, F (δ, u)) dP (ε, u)

is a continuous function of (x, δ), as the continuity lemma from standard integration theory
(see, for instance, Bauer (1992, Lemma 16.1)) shows.

b) Let g : S → R be bounded and continuous. Define g̃ : Rd(p+q)×S → R by g̃(x, δ) = g(δ).
Then g̃ is bounded and continuous and E(g(∆1)|∆0 = δ) = E(g̃(X1,∆1)|X0 = x,∆0 = δ) is
continuous, since ∆1 only depends on ∆0 and (Xt,∆t) is weakly Fellerian. Thus, ∆ is a weak
Feller chain. 2

Demanding the existence of such a function F is still a rather weak condition, as many
Markov chains are of this type (cf., for instance, Meyn & Tweedie (1993, Sec. 2.2 and Ch.
7)). Compared to the non-linear state space models studied in Meyn & Tweedie (1993) our
assumptions are even weaker, since we do not impose any differentiability restrictions on F .

Now we turn to studying µ-irreducibility and aperiodicity. Denoting the Lebesgue measure
on Rr by λr the following proposition covers most cases of practical relevance.

Proposition 5.4. Let Pn
∆ denote the n-step transition kernel of the Markov chain ∆ and µ∆

be a non-degenerate measure on (S,S) such that for any A ∈ S with µ∆(A) > 0 and all x ∈ S
∞∑

n=p+q

Pn
∆(x,A) > 0 (5.4)

holds. Assume that ε0 has a strictly positive density with respect to λd and, moreover, that Σt

is invertible for all possible states of ∆t.
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a) Then (∆t) is µ∆- and (Xt,∆t) is λd(p+q) ⊗ µ∆-irreducible.
b) If the support of µ∆ has non-empty interior, then the same holds for λd(p+q) ⊗ µ∆.
c) Assume that ∆ is also aperiodic, then so is (Xt,∆t).

Proof: Condition (5.4) immediately implies that ∆ is µ∆-irreducible. Inspecting the iteration
Xt = AtXt−1 + Ct, it is obvious that under the above assumptions Xp+q+k can reach any
set of positive Lebesgue measure for all k ∈ N0 with strictly positive probability regardless of
the value (X0,∆0) and the evolution of the chain (∆t), since εt has a strictly positive density
and Σt is invertible. Combining this with the fact that for every set A with positive measure
µ∆ there is an n ≥ p+ q such that Pn

∆(x,A) > 0, yields a).
b) is now a trivial consequence of a), since we are using the product topology and

suppλd(p+q) = Rd(p+q). Furthermore, the above considerations on the sets which Xt can reach
give immediately that (Xt,∆t) cannot exhibit any cyclic behaviour, when ∆ is aperiodic. This
gives c). 2

Finally we extend the feasible sufficient stationarity criterion of Corollary 3.4 to one ensuring
(5.2). Again, this is an immediate consequence of Theorem 3.3.

Proposition 5.5. Assume that S is compact and that there is a norm ‖ · ‖d on Rd and c̄ < 1
such that

∑p
i=1 ‖Φi1‖d ≤ c̄ for all possible states of ∆1, then there is a norm ‖ · ‖ on Rd(p+q)

and c < 1 with ‖A1‖ ≤ c for all possible states of ∆1. In particular, (5.2) is satisfied for all
η ∈ (0, 1].

Remark 5.6 (Finite state space). For Markov chains with finite state space the usual con-
struction (given e.g. in Resnick (1992, Sec. 2.1)) implies automatically weak Fellerianity via
Proposition 5.3. However, as we may not use the discrete metric, this does not extend to a
non-finite countable state space; then one has to check the continuity at accumulation points
of S in detail.

Likewise, we take the counting measure on S as µ∆ in Proposition 5.4 in the case of a finite
state space of ∆, since this conforms with the standard notion of irreducibility. The counting
measure has always a non-empty interior of the support. Moreover, elementary arguments
show that irreducibility already implies (5.4). 2

To conclude this paper let us give a concrete example of a Markov-switching process with
an uncountable state space for the parameter chain.
Example 5.1: Assume that a Markov-switching AR(1) process (Xt) is given by

Xt = Φ1tXt−1 + εt, (5.5)

where the noise ε is an i.i.d. sequence εt with a standard normal distribution and the parameter
chain Φ1t is given as follows:

Let a, b, c be such that −1 < a < b < 1 and c > 0 and be (ut) an i.i.d. sequence uniformly
distributed on the interval [−1, 1]. Then the evolution of the autoregressive coefficient is given
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by Φ1t = max (min (Φ1,t−1 + cut, b) , a), i.e. we choose the new parameter uniformly from the
neighbourhood with radius c of the old one, but do not allow it to leave the interval [a; b].

Using Corollary 3.4 it is clear that Theorem 2.5 implies the existence of a unique stationary
and ergodic solution to (5.5). Likewise, Theorem 4.6 gives that Xt has a finite moment of
any order. Moreover, looking at the iteration above it is immediate that (Φ1t) is aperiodic,
irreducible with respect to the Lebesgue measure restricted to [a, b] and that (5.4) is satisfied.
Having observed this, Propositions 5.3 to 5.5 imply that Theorem 5.1 is also applicable and
thus the MS-ARMA process is geometrically ergodic/strong mixing. 2

The easiest way to see that the Markov parameter chain satisfies the conditions needed
is, of course, to use Corollary 3.4 or Proposition 5.5. But when these are applicable there
are no explosive regimes. However, in applications the presence of explosive regimes is often
desirable. In order to show that models with explosive regimes have some desirable probab-
ilistic properties one can often simply use the general conditions we have given directly. Let
us illustrate this with a concrete variant of the above example which has explosive regimes.
Example 5.2: Let an MS-ARMA process be given by the set-up of Example 5.1 with a =
−1.2, b = 1.2 and c = 1.5. Then E ( |Φ1,1| |Φ1,0 = δ) ≤ E ( |Φ1,1| |Φ1,0 = 1.2) for all δ ∈
[−1.2, 1.2] is obvious and one calculates E ( |Φ1,1| |Φ1,0 = 1.2) = 0.5 · 1.2 + 0.5

∫ 1.2
−0.3

x
1.5dx =

0.825.
Hence, condition (5.2) is satisfied with η = 1 and this implies that we have V -uniform

ergodicity and strong mixing, because the other conditions of Theorem 5.1 a) are fulfilled using
the same arguments as for Example 5.1. This gives immediately that the Markov parameter
chain can be chosen to be stationary and ergodic. If this is done, Theorem 5.1 b) applies and,
hence, shows that the MS-ARMA process given by (5.5) is stationary and ergodic. 2
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