Moment based estimation of supOU processes
and a related stochastic volatility model
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Summary: After a quick review of superpositions of OU (supOU) processes, integrated sup-
OU processes and the supOU stochastic volatility model we estimate these processes by using
the generalized method of moments (GMM). We show that the GMM approach yields consistent
estimators and that it works very well in practice. Moreover, we discuss the influence of long
memory effects.

1 Introduction

Lévy-driven Ornstein-Uhlenbeck processes, short OU processes, are a widely studied
class of stochastic processes. When used to describe the volatility in a financial model
the resulting stochastic volatility model covers many of the stylized facts such as heavy
tails, volatility clustering, jumps, etc. (see Cont and Tankov (2004)). A Lévy-driven
Ornstein-Uhlenbeck process Y = (Y;).er is the solution of the stochastic differential
equation

dY; = aY,dt + dL, , (1.1)

where @ € R and L = (L;);cr is a Lévy process. Under the assumptions ¢ < 0 and
E(log(]L1] V 1)) < oo there exists a unique stationary solution of (1.1) which is given

by

t
Y;:/ e t=9)qL, .

— 00

These Lévy-driven Ornstein-Uhlenbeck processes are popular mean-reverting jump pro-
cesses. Since the mean-reversion parameter a is constant, these processes have always
the same exponential decay at all times. Likewise the autocorrelation function is simply
e Typically, however, the autocovariance function of the squared returns of financial
prices decays much faster in the beginning than at higher lags. An obvious generaliza-
tion would be a random mean-reverting parameter, i.e. we substitute the constant a by a
random variable A which is different for every jump of the Lévy process. This feature
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allows to model more flexible autocovariance functions. The works of Barndorff-Nielsen
(2001) and Barndorff-Nielsen and Stelzer (2011) focus on that generalization and ended
up with a superposition of OU processes, called supOU process. Furthermore, it turned
out that supOU processes may have the nice feature of exhibiting long memory (long
range dependence), i.e. they may have a slowly polynomially decaying autocovariance
function. In Barndorff-Nielsen and Stelzer (2013) the authors went a step further and
studied a stochastic volatility model in which the volatility process is modeled by a pos-
itive supOU process and call it a supOU SV model. Moreover, they showed that long
memory in the volatility process yields long memory in the squared log-returns of a
supOU SV model. This may be a desirable stylized fact of the log-returns which can
only be exhibited by few models. This makes the supOU processes and the supOU SV
model particularly interesting for modelling financial data. In Stelzer and ZaviSin (2015)
derivative pricing and the calibration of the model to market option prices are discussed.

However, the modeling of financial data also demands statistical estimation proce-
dures for supOU processes and for the supOU SV model. Unfortunately, the classical
and efficient Maximum-Likelihood approach seems not applicable, since the density of
supOU processes is not known. Therefore, in this paper we propose the generalized
method of moments which leads to a consistent estimation of supOU processes, inte-
grated supOU processes and of the supOU SV model. In a semiparametric framework we
consider in detail examples in which the random mean-reverting parameter A is Gamma
distributed and we calculate the moment functions in closed form. Afterwards we show
how to estimate the parameters and we discuss the estimation approach in a simulation
study. We use a two step iterated GMM estimator i.e. we weight all moments equally
in the first step and in the second step we weight the different moments according to the
estimation result of the step before. In the illustrations we find out that the GMM estima-
tor works well and yields (for sufficiently many observations) good and well-balanced
estimators.

This paper is organized as follows. In the second section we give a short review of
supOU processes, integrated supOU processes and the supOU SV model. Moreover we
give the second order structure of these processes and consider a special case in which
we discuss the occurrence of long memory. In Section 3 we introduce the generalized
method of moments, give the moment functions and show that the GMM approach yields
consistent estimators. In the next section we illustrate how the GMM approach works in
practice. In the last section we give a short conclusion.

2 Review of supOU processes

In this section we give a short review and some intuition on supOU processes, integrated
supOU processes and of the supOU stochastic volatility model. For a comprehensive
study we refer to Barndorff-Nielsen (2001); Barndorff-Nielsen and Stelzer (2011, 2013).

2.1 supOU and integrated supOU processes

To introduce a random mean-reverting parameter A for the jumps of an OU process we
generalize the driving Lévy process to a so called Lévy basis which is also known as
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infinitely divisible independently scattered random measure (abbreviated i.d.i.s.r.m.).
In the following R_ denotes the set of negative real numbers and 5;(R_ xR) denotes
the bounded Borel sets of R_ x R.

Definition 2.1 A family A = {A(B) : B € By(R_ x R)} of real-valued random vari-
ables is called a real-valued Lévy basis on R_ x R if:

o the distribution of A(B) is infinitely divisible for all B € B,(R_ x R),

e for any n € N and pairwise disjoint sets By, ..., B,, € By(R_ x R) the random
variables A(B1), ..., A(B,,) are independent,

e for any sequence of pairwise disjoint sets B, € By(R_ x R) with n € N sat-
isfying UnenB,, € By(R_ x R) the series > -, A(B,,) converges a.s. and
A(UHGNBn) = 27010:1 A(Bn)

As in Barndorff-Nielsen and Stelzer (2011) and most other previous works on supOU

processes we consider only Lévy bases whose characteristic functions have the following
form

E(exp(iuA(B))) = exp(¢(u)II(B))

forallu € Randall B € B,(R_ x R), where IT = 7 x A is the product of a probability
measure 7 on R_ and the Lebesgue measure on R and

o(u) = duy — %Zzﬁ +/

(eim -1- iux1{|1§1}>u(dx)
R

is the cumulant transform of an infinitely divisible distribution on R with Lévy-Khint-
chine triplet (v, 3, ). We call the quadruple (v, X, v, ) the generating quadruple, since
it determines completely the distribution of the Lévy basis. It follows that the Lévy
process L defined by

L= A(R_ x (0,4]) and L_; = A(R_ x (—t,0))

has characteristic triplet (v, ¥, ) and is called the underlying Lévy process. Using such
a Lévy basis we finally end up with a superposition of Ornstein-Uhlenbeck processes
which is called supOU process. The following definition is analogous to Proposition 2.1
of Fasen and Kliippelberg (2007) and Barndorff-Nielsen (2001).

Theorem 2.2 (supOU process) Let A be a real-valued Lévy basis on R_ x R with gen-
erating quadruple (v, X, v, ) which satisfies

1
/$>1log(|x)u(dx) < oo and / —Zw(dA) < 0.

Then the process (X¢)icr given by

t
X, = / / A=) A (dA, ds)
R_ J—o0

is well defined for all t € R and stationary. We call the process X a supOU process.
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To apply supOU processes in a practical or a financial framework, we need to estimate
the generating quadruple. Maximum Likelihood or a similar approach is not feasible
since the density of a supOU process is not known. Hence, we propose here a moment
based estimation for which the second order structure of supOU processes is needed.

Theorem 2.3 (Barndorff-Nielsen and Stelzer (2011), Theorem 3.9) Let X be a sta-

tionary real-valued supOU process driven by a Lévy basis A satisfying the conditions of
Theorem 2.2. If

/ r?*v(dz) < oo 2.1
z>1

then X has finite second moments and it holds

E(Xp) = —,u/ %ﬂ(dA) ) var(Xy) = —UQ/R iw(dA) )
Ah

COV(Xh,X()) = —O’2 ‘/Ri 9A

w(dA) ,
where p :=E[L1] = v+ f‘z|>1 zv(dx), 0% :=var(Ly) = ¥+ [, 2*v(dx) and L is the
underlying Lévy process.

SupOU processes may exhibit the very interesting stylized fact of a slowly decay-
ing autocorrelation function. More precisely, a stochastic process is said to have long
memory effects (or long range dependence) if the autororrelation function p(h) satisfies

p(h) ~I(h)h™ 2  forh — oo,

where H € (0,1) and the function [ is slowly varying, i.e. lim; % =1 Vz>0.
Of course, this means that p is regularly varying at infinity with index —H. Long memory
effects are discussed in detail in Cont (2010) and Taqqu (2003). In Section 2.2 we focus
on these long memory effects and present a special case in which supOU processes have
such a slowly decaying autocorrelation function.

In some empirical studies, see e.g. Cont (2001) or Guillaume et al. (1997), it is
suggested that the prices of financial assets may have long memory effects. Positive
Ornstein-Uhlenbeck type processes are convenient to model the volatility in stochastic
volatility models, see e.g. Barndorff-Nielsen and Shephard (2002), but they do not yield
long memory effects. Therefore Barndorff-Nielsen and Stelzer (2013) replaced the posi-
tive Ornstein-Uhlenbeck type process by a positive supOU process and called it a supOU
SV model. In their work, they show that long memory effects in the volatility process
yield long memory effects in the squared log-returns which makes this stochastic volatil-
ity model very interesting for modelling financial data.

As before it seems appropriate to use moment estimators for estimating a supOU SV
model. Later we will see that the integrated supOU process, which we introduce now, can
be used to determine the moments of such a supOU SV model. We only consider positive
integrated supOU processes as they are mainly of interest in connection with stochastic
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volatility models where they are naturally positive. However, the results remain true in
general as an inspection of the proofs in Barndorff-Nielsen and Stelzer (2011) shows. To
the best of our knowledge integrated supOU processes have not been used in modelling
so far. The main purpose of our analyis of integrated supOU processes is thus to better
understand the behaviour of our estimators, because they can be seen as an intermediate
step between supOU processes and supOU SV models.

Definition 2.4 (integrated supOU process) Let X be a supOU process with generating
quadruple (v, 0, v, ) such that

Yo ="y —/ av(dz) >0, / |z|v(dx) < oo and v(R_)=0
jel<1 lel<1

hold. Assume that (V,,)nen is given by

nA
V, = / Xqds
(n—1)A

where A is a fixed positive number. Then we call the process V' an integrated supOU
process.

The assumption v(R_) = 0 implies that all jumps of the underlying Lévy process are
positive, f\xl <1 |z|v(dr) < oo gives that the paths have finite variation and vy := 7 —
flxl <1 av(dx) > 0 ensures that the drift of the underlying Lévy process is non-negative.
Together the assumptions imply that the underlying Lévy process is a subordinator and
the resulting supOU process is non-negative.

Again we want to estimate such processes via moment estimators and therefore we

need their second order structure.

Theorem 2.5 (Barndorff-Nielsen and Stelzer (2013), Theorem 3.4) Let V be an in-
tegrated supOU process such that (2.1) holds. Then the process (Vy,)nen is stationary
and square-integrable with

BV = ~a [ r(aA).
1 (e 1
Var(V1) = _0'2‘/]R ﬁ <614 — Z — A)']T(dA) N
cov(Viy1, V1) = —02/R ﬁ(f}m = 2fp + fr-1)m(dA) ,

where fp, := e, 1= E[L1] = o + [y zv(dz), 0% == var(Ly) = [ x> v(dz) and
L is the underlying Lévy process.
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2.2 A concrete specification with possible long memory effects

In this section we present the first and second order structure of a supOU process X and
an integrated supOU process V' under the assumption that the stochastic mean-reverting
parameter A is Gamma distributed. Furthermore, we investigate in which cases these
supOU processes have long memory effects.

Let us consider a semiparametric framework in which we assume that 7 is the distri-
bution of BR where B € R_ and R ~ I'(ar, 1) with oy > 1 (cf. Barndorff-Nielsen
and Stelzer (2011), Example 3.1). Furthermore, we emphasize that setting the second
parameter of the Gamma distribution equal to one does not restrict the model since this is
equivalent to varying B, cp. Barndorff-Nielsen and Stelzer (2013). From Example 3.1 in
Barndorff-Nielsen and Stelzer (2011) we get that the supOU process X has finite second
moments and applying Theorem 2.5 yields

2

I o
E(Xo) = —m , var(Xo) = —m s
o2(1 — Bh)1—o=
COV(XU7X}L) = _éB(O[—)l) N

where 1 and o2 denote the expectation and the variance of the underlying Lévy process,
respectively. Moreover, the moment structure depends only on the parameter vector 3 :=
(@, 02, arr, B) and the autocorrelation function

p(h) = (1 — Bh)'~o=

exhibits long memory effects for ., € (1,2) as one can see immediately.
In the case of the corresponding integrated supOU process V' we get from Barndorff-
Nielsen and Stelzer (2013), Theorem 3.4, that

Ap
B(ay —1)
0 (fntr = 2fn + fro1)

2B3(ay — 1) (ar — 2)(ay — 3) '

— 3—ar _ 1 _ —
(v - 212 B) 1-ABla, =3)

E(V1) =~ B3(ar — 1)(ar — 2)(ax — 3)

cov(Vi, Vign) =

where f5, := (1 — BAR)3~% and y, 0% denote the expectation and the variance of the
underlying Lévy process, respectively. As in the case of a supOU process, the moments
depend only on the parameter vector 3 := (u, 02, ar, B) and for o, € (1,2) the process
exhibits long memory effects, see Barndorff-Nielsen and Stelzer (2011), Example 3.1.

Remark 2.6 In applications there are often several natural choices for the time scale
possible. For example, for financial data one can quite often either use one trading day
or one trading year (c. 250 trading days) as the unit time interval. It is easy to see
that our supOU processes are supOU processes regardless of the choice of the unit time
interval and that o, in the above concrete specification does not depend on this choice,
whereas 1,02, B scale proportionally to the length of the unit time interval. So for
example if 11, 02, B are obtained for the unit time interval being one trading day, then the
“annualized” parameters are 250 - 11, 250 - 02,250 - B.
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2.3 SupOU SV model

Stochastic volatility models in which the volatility process is a positive Ornstein-Uhlen-
beck type process capture most of the stylized facts as heavy tails, volatility clustering,
jumps, etc. If we model the volatility process by a positive supOU process, we may add
the feature of long memory effects as described in Section 2.2.

Definition 2.7 Let W be a standard Brownian motion independent of the Lévy basis and
Y be a supOU process with generating quadruple (v, 0, v, ) such that

v - / zv(dx) > 0, / |z|v(dz) < oo and v(R_)=0
lz]<1 |z|<1

hold. Then we define (the log price process) (Xi)i>o by
dXy = /3 dWy Xo=0,

and say that the process X follows a supOU type SV model. In the following we abbre-
viate the supOU type SV model by SVsupOU (~,0, v, ).

There is no drift in the supOU SV model included. The reason is compared to
Barndorff-Nielsen and Stelzer (2011) that in the presence of a drift one has no longer
an explicit formula for the second order structure available. To obtain meaningful esti-
mates one thus should apply our estimation procedure to demeaned observations. Like-
wise, we should mention that our specification implies that the distribution of the log
returns is symmetric. In general by including a leverage effect as in Barndorff-Nielsen
and Stelzer (2013) asymmetric distributions can be achieved. However, then the second
order moment structure of the squared returns seems not to be obtainable in a reasonably
explicit manner and additional parameters appear. In the end this implies that the model
with leverage seems not to be estimatable in a simple GMM approach like ours in the
following sections. One could resort to use estimation methods based on the character-
istic function (cf. Pigorsch and Stelzer (2009); Taufer et al. (2011) for the OU case).
However, such an approach is beyond the scope of the present paper. One important
advantage of our upcoming approach is that it is semi-parametric, since we only specify
in detail the distribution 7 of the mean reversion parameter whereas the underlying Lévy
process only is required to have finite second moments. Unlike in methods based on the
characteristic function, this implies that our estimators are robust to specification errors
in the underlying Lévy process. Of course, if one assumes a model for the underlying
Lévy process that is fully specified by mean and variance, as it would be the case e.g.
for a Gamma Lévy process, our estimation methodology allows to obtain all parameters
of the model. In general one should bear in mind that our simple model is not suitable
for markedly skewed data. For instance, for exchange rates the log returns are typically
rather symmetric.

In financial markets one usually observes the log-returns on a discrete-time basis.
This suggests that we focus on the log-returns (Y;,),cn which are given by

nA

Y, = Xna — X(n—1)a = / V2 dWy for some fixed A > 0.
(n—=1)A
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Using the It6 Isometry as in Pigorsch and Stelzer (2009), it turns out that the second
order structure of the supOU SV model can be determined by using the second order
structure of the integrated supOU process. This is the main reason why we considered
integrated supOU processes before.

Theorem 2.8 (Barndorff-Nielsen and Stelzer (2013), Theorem 3.4) Let X,Y be an
SV supOU (v,0,v,7) model satisfying (2.1). Then (Y,)nen as well as (Y,),en are
stationary and square integrable with

E(Y;)=0, var(Yy) = E(1}) , cov(Yii1,Y1) =0Vh >0, (2.2)
E(Y?) = E(W), var(Y?) = 3var(Vy) + 2E(V;)?, (2.3)
cov (Y2, 1, YY) = cov(Vig1, Vi) VA > 0. 2.4

Due to Equation (2.4) long memory effects carry over from the integrated supOU
process to the squared log-retuns. Hence the squared log-returns exhibit long memory
effects if 7 is the distribution of BR where B € R_, R ~ I'(ar, 1) and o € (1, 2).

2.4 Alternative specifications for the distribution of the mean rever-
sion parameter

The only concrete specification of 7 discussed so far was a Gamma distribution on the
negative half axis (i.e. a Gamma distribution mirrored at the origin). In most of the
literature on supOU processes this is the only concrete specification discussed apart from
simple discrete distributions on finitely many points. The main motivation of going from
OU to supOU processes is to be able to obtain long memory or at least models which do
not have exponentially fast decay rates for the autocovariance function.

It is immediate that this desired feature can only be obtained if 7((—¢,0)) > 0 for
every € > 0, i.e. it needs to be possible that mean reversion rates arbitrarily close to zero
can occur. The necessary (and sufficient) condition

1
/]R, —Zﬂ‘(dA) < 00 (2.5)

for the supOU process to exist is equivalent to

0
/ —lw(dA) < 00, (2.6)
—1 A

as 7 is a probability measure. Clearly, if 7 has a density which is regularly varying with
index a > 0 at zero from the left (a function f : (—o00,0) — R is said to be regularly
varying at zero from the left with index p € R if f(Az)/f(z) — A asx 7 0 for all
A > 0, cf. (Bingham et al., 1987, p. 18)), then (2.5) is satisfied. Likewise, (2.5) is
definitely violated whenever 7 has a density which is regularly varying with index a < 0
at zero. Note that if as above 7 is the distribution of BR where B € R_, R ~ I'(ar, 1)
and a,; € (1,2), then the density of 7 is regularly varying with index o, — 1.
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In general one can easily see that in the case of a continuous density of 7 on (—o0, 0)
we have lim,_»o dm(x)/dx = 0 as a necessary condition for (2.5) to hold.

This shows immediately that many concrete specifications for 7 lead to valid supOU
models, because any probability distribution with a density going faster to zero than
(—x)° for some € > 0 as x 0 can be employed. Likewise, many discrete distributions
can be used. For example, if 7 is a probability distribution concentrated on (—1/k)en,
it suffices that w(—1/k) goes faster to zero than 1/k¢ for some € > 0 as k — oo.

The question now is for which choices of m we get indeed long memory or at least
a regularly varying (at co) autocovariance/autocorrelation function. The autocorrelation

function an
—Jr_ SaT(dA)
1
- fR_ ﬂﬂ'(dA)
only depends on 7 provided it exists. Thus it suffices to understand when the mapping
Ah . .
h— — [ Sxm(dA) is regularly varying at co.

In Fasen and Kliippelberg (2007) actually necessary and sufficient conditions for reg-
ular variation of the autocorrelation function at oo have been obtained for general mea-
sures 7 in terms of the behaviour of an auxiliary measure at zero. As our focus is mainly
on applications where it seems very natural to look only at absolutely continuous 7, we
give the following sufficient conditions for regular variation of the autocorrelation func-

tion and we decided to present an elementary direct proof instead of employing Fasen
and Kliippelberg (2007), Proposition 2.5.

corr(Xp, Xo) =

Proposition 2.9 Let A be a real-valued Lévy basis on R_ xR with quadruple (v, %, v, )
which satisfies

/ r?v(dz) < oo
|z|>1

and where  is absolutely continuous with the density 7' (x) = (—x)*l(x) being regu-
larly varying at zero from the left with index o > 0 (i.e. | is slowly varying at zero).

a) Then the supOU process (X)icr given by

t
X, = / / A=A (dA, ds)

is well defined for all t € R and (second order) stationary.

b) Ifadditionally there exists a function f : (—00,0) — R such that lé(—ml//hIZ) < f(x)
forall x € R, h > 0 sufficiently big and [, e*(—z)*"' f(z)dz < oo, then the

autocorrelation function of X is regularly varying with index —« at infinity.

In particular, if o« € (0,1), then the supOU process has long memory.

Proof: The existence and (second order) stationarity is clear from the results of Section
2.1 and the discussion preceding the theorem.
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It remains to show b).
Substituting z = Ah, we have for all A > 0

1

eAh eAh
- [ Giran = [ Geariaaa= g [ et mas,

As I(—1/xz) is slowly varying at infinity, dominated convergence implies

e?(—2) (2 z
i - (l(—)l/hg( P e = / ¢*(=2)""dz =T(a)

Together this implies that

I(e)
-2 [o 7a7m(dA)

which concludes. O

corr(Xp, Xo) ~ hial(—l/h) as h — oo,

Remark 2.10  a) If/is continuous and lim, ~o [(x) > 0 exists, then the conditions of
b) are satisfied (at least for all h big enough), as lim,_, ., {(z) < oo follows from
the fact that 7’ is a probability density. Actually, one even has corr( Xy, Xo) ~ h%
with a constant C' > 0.

b) The above theorem also applies to cases where the slowly varying function [ goes
to infinity as x goes to 0.
For instance, consider 7'(z) = C'ln(—1/z)(—x)*1(_1,0)(z) with « > 0 and
C > 0 such that we have a probability density. Then one can easily see that

lé(j{/hg) =1- ITIE(_,S) <1 —In(—=z) for h big enough and that

e

/7 e*(—2)* 1 —In(—2))dz = /7 e*(—2)2 7 H(—=2)% (1 —In(—2))dz < oo,

as lim, ~o(—2)% In(—2) = 0 and ffl e*(—2)% ~1dz < co. Hence, for this choice
of ™ we have

1 -
corr(Xp, Xo) ~ o In(h)C as h — oo,
with a constant C' > 0.

This result and the general Proposition 2.5 of Fasen and Kliippelberg (2007) show that
it is the regular variation of 7 at zero that causes the power decay of the autocorrelation
function at infinity in the Gamma example of Section 2.2. This implies that many choices
of 7 can give long memory. On the other hand our previous Gamma example is somewhat
representative as varying the parameter o, gives all possible asymptotic decay rates.

When thinking about which other popular continuous probability distributions one
could use, one may be tempted to think about the Generalized Inverse Gaussian (GIG)
family, as it includes the Gamma distribution. However, it is easy to see that in that
case we have the regular variation at 0 if and only if the GIG distribution is a Gamma
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distribution. On the positive side, for example, the Beta distribution on [—1,0] (i.e.
'(z) = m (—2)P~H(1 + x)9 11—y g (x) with p,q > 0) gives another concrete
specification satisfying the regular variation condition of Proposition 2.9 (and Remark
2.10 a)) provided p > 1.

In the following we carry out a moment based estimation of the supOU (SV) model
assuming the Gamma choice for 7. The methodology can in principle be applied to many
other choices of 7. The crucial step is to show that the parameters are identifiable from
the chosen moments. For our methodology it is not really necessary that one can compute
the moments of the model in a form as nice as the one below, since in the worst case one
can compute them via numerical integration.

3 Moment based estimation under a Gamma distributed
mean reversion parameter

In this section we study a moment based estimation approach of supOU processes, inte-
grated supOU processes and of the supOU SV model. For comprehensive introductions
to the generalized method of moments we refer to Hall (2005); Hansen (1982) or Méatyas
(1999).

Assumption 3.1 Let 7 be the distribution of BR where B € R_ and R ~ T'(a, 1).

We recall that Assumption 3.1 implies that we are in a semiparametric setting and
that we estimate the parameter vector 8 = (i, 02, ar, B).

Let X = (X}):cr be the underlying process (either the supOU process, the integrated
one or the discrete-time returns in the supOU SV model) and X = (X7, Xs, ..., X ) be
a vector of N € N equidistant observations made from it. We introduce the vector

X" = (X, .., Xegm)  forte{l,...,N—m},

since the estimation procedure will include autocovariances up to a lag m > 2. In the
first step, we have to find a measurable function f : R™t x W — R4, called moment
function, such that

Ef(X™.0)]=0 & B=p,

where W C R* denotes a compact parameter space which includes the true parameter
vector . In the second step we estimate 3y by minimizing the objective

where gy m(X,8) = +— ZZ]\S"’ f(Xl-(m)7 B) and I is a positive definite matrix to

weight the d different moments collected in gy ,,. It is well-known that there exists an
optimal choice of the weighting matrix I, but determining that matrix in the forefront
of the estimation is in practice mostly impossible. Because of that we use a two-step
iterated GMM estimator which is easy to implement and improves the estimates. For
more details on that topic we refer to Hall (2005), Sections 3.5 and 3.6.
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Theorem 3.1 Let X be either a supOU process, an integrated supOU process or a
supOU SV model. Moreover, let f : R™T1 x W — RY be a measurable function such that

E[f(Xt(m), B)] identifies the true parameter vector 3y , i.e. such that ]E[f(Xt(m)7 B) =0
if and only if 5 = By. Then the above described GMM estimator is consistent.

Proof: From Fuchs and Stelzer (2013) we know that supOU processes, integrated supOU
processes and the supOU SV model are ergodic. Hence we have ergodicity of the mean
and the result follows by Matyés (1999), Theorem 1.1. O

Proposition 3.2 (Moment function for supOU processes) Let X be a supOU process
as introduced in Section 2.1, m > 2 be a fixed integer and

fe(X™, )

Fear (X, B)
Fe(x™ gy =| Ax™.B)

Fm(X(™, )
where

(m) _
Je(X,B) = X + B(T—l)

2 2
m) gy x2_ (M 4
fvar(Xt 56) - Xt <B(Ol7r — 1)) * 2B(a7r - 1)
0_2(1 o Bh)lfaw
2B(a; — 1)

2
(m) _ K
(X, B) = Xe Xen — <B(aﬂ—1)>

Then the parameter vector By is identifiable.

Proof: Taking expectations of fx (X t(m), B) itis elementary to see that the identifiability
is equivalent to showing unique identifiability from the stationary expectation, variance
and the stationary autocovariance function.

Hence, to prove the identifiability of the parameter vector [ it is enough to con-
sider four equations, the equation with the expectation, with the variance and with the

autocorrelations p(hq1), p(he) with lags hy, ho where hy # hs and hy, he > 0. From
log p(h1) __ log(1—Bhi)
log p(h2) ~ log(1—Bhs)
% gives us (1 — Bhy)® + Bhy — 1 = 0. The left hand side of the last equation
is a function in B which has a positive second derivative. Hence, it is a strictly convex
function which has at most two zeros. Because one zero is at zero, the parameter B is the
unique strictly negative zero. With that uniquely determined B we are able to determine

o, uniquely by

the autocovariances/-correlations it follows that . Defining ¢ :=

_logp(h)
log(1 — Bhy) ~

Aqp =
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The expectation and the variance equations yield unique ¢ and o2 which completes the
identifiability of Sy. Now Theorem 3.1 yields the result. O

In the case of an integrated supOU process we have not been able to show the iden-
tifiability based on a finite number of moments. Instead we can show an asymptotical
identifiability.

Definition 3.3 A parameter vector 3 of a stochastic process Y is said to be asymptoti-
cally identifiable if the mapping 3 : W — RN with f — E(fk (Y, B))keN has a unique
zero at the true parameter 5y where fi is the k-th component of the moment function
f:RYx W — RN,

Now we show that the parameters of our model are asymptotically identifiable from
the expectation, the variance and (all lags of the) autocovariance function of either the
integrated supOU process or the log returns of a supOU SV model.

Proposition 3.4 (Moment function for the integrated supOU processes) Let X be a
supOU process as introduced in Section 2.1 and V- = (V) nen the corresponding inte-
grated supOU process and

fe(V,B)
V,8) = 1(V,
WER= W s
where
_ Ap
fe(V,B) =Vi+ m

Ap )2 ,(1 = BAY3~ % —1 - AB(ay — 3)
B(ay —1) B3(ar — 1)(agr — 2)(ar — 3)

Ap )2+ o*(fog1 — 20+ frn1)
B(ay —1) 2B3(ay — 1) (ar — 2)(ar — 3)

fvar(va /8) = Vl2 - <

(V. 8) =ViVig, — (

Then the parameter vector By is asymptotically identifiable.

Proof: Taking expectations of fy (V) it is again elementary to see that the identifi-
ability is equivalent to showing unique identifiability from the stationary expectation,
variance and the stationary autocovariance function.

Let o # 2,3. From Barndorff-Nielsen and Stelzer (2013), Example 3.1 and Prop.
3.5 (i), we get
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A%t [ y2y(da) (—Bh)t o
0

hhm COV((“//I-&-ha“//lv)) _ hhm 2B(a7r—1)00 _ <;) l1—anr .
—00 COV 5 —00 3—an —a
142k, 1 —sha—y | #2v(dx) (—2Bh)! e

0

This yields a unique a;. Using again Barndorff-Nielsen and Stelzer (2013), Example 3.1
and Prop. 3.5 (i), we also obtain

- L A3—a(a _ 2)(a - 3)h1_“(—B)3—a
p(h) ~ pp.a(h) == 2(1— BAB—* —1-AB(a—3))

The derivative of pp o(h) with respect to B is a monotone function in B. Hence there
can only be one B < 0 such that E[fy (Y, 3)] = 0. The uniqueness of x and o2 follow
from fg(V,8) = 0 and f,..(V, ) = 0, respectively. The remaining cases ., = 2 and
o = 3 can be treated similarly. a

Due to (2.3) and (2.4) we are able to deduce the moment function for the supOU SV
model easily.

Corollary 3.5 (Moment function for the supOU stochastic volatility model) Ler X,
Y be a supOU SV model as introduced in Section 2.3, Y = (Y, )nen equidistant log
returns observed on a grid with size A > 0 and

fvar(K B)
fvar(2(}/a f)
v,8)=| H.B
fsv(Y,B) By B)
where
_ Ap
foar (Y, 8) = Y + Blas—1)

B (1 - BA)*~® —1— AB(a, —3) Ap
fvarQ(Kﬂ)_i/l4+3a2 B3(aﬂ__1)(aﬂ_—2)(aﬂ-—3) _3<B(Oé7r_1)> 7

Ap >2+ o (fnr1 — 2fn + fno1)
B(ay —1) 2B3(ar — 1)(ar — 2)(ar — 3)°

Then the parameter vector 3y is asymptotically identifiable.

fh(Yv 5) = Y12Y12+h - <

Proof: Analogous to the proof of Proposition 3.4. O

From Propositions 3.5 and 3.6 one conjectures that for reasonably big m the model is
identifiable and that thus the GMM estimators are consistent (cf. Theorem 3.1). Unfor-
tunately, it seems very hard to prove this. Thus for large values of m in practice the pro-
cedure should give consistent estimators. Actually, it may well be that (non-asymptotic)
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identifiability comparable to Proposition 3.2 is true, but given the highly involved form
of the autocovariance function proving this appears out of reach. In the simulated exam-
ples in Section 4 we see that a very moderate high choice of m, which corresponds to
the highest used order of the autocovariance function, gives good estimation results. The
choice of m is discussed in Section 4.1.

4 Illustrative examples

4.1 Set-up and methodology of the simulation study

In this section we illustrate that the moment estimators are working well concentrating on
the supOU process itself and the stochastic volatility model. In applications the stochastic
volatility model seems the most relevant and the presence of the additional Brownian
noise should imply that the estimation is more difficult than for the supOU process itself.

We assume the semiparametric framework of Section 2.2 and that the underlying
Lévy process L of the supOU process X is a compound Poisson process. Actually, we
take a compound Poisson process with rate 0.1 and I'(3, 20)-distributed positive jumps
for the simulations. The choice of the parameters is motivated by looking at simulated
paths and inspecting whether they have a reasonable shape for daily log returns of finan-
cial data and its volatility process.

Applying the Lévy-Ité6 decomposition to the supOU process X (see e.g. Theorem
2.2 of Barndorff-Nielsen and Stelzer (2013)) yields for a general underlying compound

Poisson process
t
Xt:// / e (de, dA, ds)
RJR_ J—o0

where 4 is a Poisson random measure. From that representation it follows that X can be
written as

Xp= Y MUy 4 S ety (@.1)

i1, i<t i=1

where

T¢::ii”jand7-_1;::zl:T_j VieN,
j=1 j=1

and (T3)iez\{0}> (Ui)iez\qoy and (A;);ez\ oy are independent sequences of iid dis-
tributed random variables with T; ~ exp(v(R)), U; ~ ﬁu and A; ~ . In the concrete
specification used in our simulated examples we have T; ~ exp(0.1), U; ~ I'(3, 20) and
A; ~ —BT(a, 1).

Now we are able to simulate the introduced stochastic processes easily and to illus-
trate our moment estimators. In the following we simulate the processes 1000 times
(independently) with 10000 observations (on a unit grid) in each run. Clearly the infinite
sum in (4.1) can only be obtained approximately. We decided to ignore all jumps before
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time —2000, i.e. in the end we simulate the Lévy basis exactly on R~ x [—2000, 10000]
and set it to zero outside this area. This allows us to simulate the volatility process, i.e.
the supOU process, (up to the truncation error of the infinite sum) exactly on [0, 10000].
These exact values were then used in a standard Euler scheme with grid size 1/20 to
simulate the log returns in the stochastic volatility model over unit intervals.

Afterwards we calculate the GMM estimators for each of the 1000 observed paths,
i.e. we solve the optimization problem (3.1) separately for each path. We estimate the
parameters both based on the values of the supOU process itself as well as of the log-
returns — both observed on a unit grid. To weight the moments appropriately we use the
2-step iterated GMM Estimation as described in Hall (2005), Section 3.6. This means
that the weighting matrix I equals the identity matrix in the first step and in the second
step the weighting matrix I is an approximation of S~! where

. LS pxm)
S=1 — X 4.2
n;ﬂ;ovar<ﬁtg_l f(X ,ﬂl)) 4.2)
and (31 is the estimation result of the first step. Actually, we take the very simple estimator

§i= 137 X, ) FX™, B
t=1

which performs quite well in our studies, but could in principle be improved by using
estimators taking autocorrelation effects into account.

In the estimation of the supOU SV model based on the log returns we used the mean,
the second moment and the first five lags of the “autocovariance” function (actually of
h — E(Y?Y2,)) of the squared logreturns obtained in the simulation. The choice
of “m” is an intricate issue. We want to estimate four parameters. In order to have a
proper overidentified system for GMM, we thus need more than four moment conditions.
Actually, we have 2 + m conditions which requires m > 3. So five is very close to
the minimum and it is clear that m should be somewhat bigger than 3 to have a “more
overidentified” system. On the other hand the dimensionality and thus the computational
efforts increase with m. Moreover, it is folklore for GMM estimators that the finite
sample properties get bad when using too many moment conditions. In our simulation
studies it turned out that once in a while S is singular up to numerical precision for
m larger than 5. So we decided to fix m = 5 and refrain from studying in detail the
estimators for other m. Likewise, we used the mean, the variance and the first five lags
of the acf when using the observations of the supOU process itself.

In the illustrations below we see that this 2-step iterated GMM estimation works well.
Throughout the illustrations we concentrate on two different cases. In the first case we
assume a parameter vector 39 = (p0, 03, ar 0, Bo) = (0.015,0.003,4, —0.1) to cover
the case of short memory effects and in the second one we assume a parameter vector
Bo = (po, 08, ax 0, Bo) = (0.015,0.003,1.95, —0.1) to cover the case of long memory
effects.

All simulations and estimations have been carried out using R (R Core Team (2014)).
For the estimations we used the routine opt im with the BFGS algorithm after a straight-
forward variable transformation to obtain an unconstrained optimization problem. The
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initial values for the first step estimation were taken randomly from a neighbourhood of
the true parameters. In the second estimation step the starting values of the optimisation
were taken as the estimates of the first step, unless the optimisation algorithm in the first
step ended without proper convergence or the obtained estimates were rather far off. In
these cases the initial values for the second step were again taken randomly from a neigh-
bourhood of the true parameters in order to avoid ending up in a far off local minimum.
In our simulations we encountered that non-convergence of the optimisation routine in
the first step is not uncommon. In the second step non-convergence of the optimisation
routine happened almost never, i.e. in at most 6 (out of 1000) cases when using all 10000
observations and in at most 16 (out of 1000) cases when using only 1000 observations.
This shows that although the parameter estimators from the first step could be bad, the
resulting estimate for the weighting matrix is still good enough to give a much better
behaved optimisation problem in the second step and that using a good weighting matrix
is very important. In the upcoming plots of the results of our simulation study the paths
where the two step GMM estimator did not converge in the second optimisation step
were excluded.

4.2 Results of the simulation study
4.2.1 SupOU processes

In Figure 4.1 we see the estimation results for a supOU process using mean, variance
and lags 1,2, 4, 5 of the acf using 1000 independent paths with 10000 observations each.
The upper set of plots shows the short memory case and the lower set of plots shows
the long memory case where the thick line indicates the true parameter values in all
histograms. Likewise, Figure 4.2 shows normal QQ-plots of the obtained parameter
estimators. Obviously the estimation procedure works very well and the estimates are
in most cases rather evenly distributed around the true parameter values, although one
can also spot some mild skewness in several plots. In the histograms for «; in the short
memory case and for p in the long memory case we see a mild bias. Actually, when
“zooming into the histograms” one can see some small bias in most parameter estimates.
It is noteworthy that the estimator for o, tends to be too low in the short memory case,
but in most cases it stays above the “long memory threshold” 2.

The QQ-Plots for the estimators of 1 and o2 are very remarkable. They indicate
clearly an asymptotic normality of the estimators — both in the short and (maybe sur-
prisingly) long memory case. The tails of the estimators for a.; and B are systemically
deviating from the ones of the normal distribution. But again one does not see a real
difference between the short and long memory case. Moreover, the deviation is rather
small so that asymptotically a normal distribution (or another one not really far from it)
may still be valid.

If we compare these plots to the histograms (see Figure 4.3) and normal QQ-Plots
(see Figure 4.4) when we use only the last 1000 observations of every path for the es-
timators, we clearly see that then the quality of the estimation is considerably worse.
This shows that reliable estimation of supOU processes needs a substantial amount of
data. Clearly, the histograms are considerably more spread out (actually, the most ex-
treme outliers — less than 20 in all these cases — are not shown in the histograms) and
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Figure 4.1 Histograms of parameter estimates of 1000 paths of length 10000 of a supOU pro-
cess with short (upper set of plots) and with long memory (lower set of plots). The true values

are indicated by black lines.
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Figure 4.3 Histograms of parameter estimates of 1000 paths of length 1000 of a supOU process
with short (upper set of plots) and with long memory (lower set of plots). The true values are

indicated by black lines.
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Figure 4.5 Histograms of parameter estimates of 1000 paths of length 10000 of a supOU
stochastic volatility model with short (upper set of plots) and with long memory (lower set
of plots). The true values are indicated by black lines.
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Figure 4.6 Normal QQ-Plots of parameter estimates of 1000 paths of length 10000 of a supOU
stochastic volatility model with short (upper set of plots) and with long memory (lower set of
plots).
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Figure 4.7 Histograms of parameter estimates of 1000 paths of length 1000 of a supOU stochas-
tic volatility model with short (upper set of plots) and with long memory (lower set of plots).

The true values are indicated by black lines.
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Figure 4.8 Normal QQ-Plots of parameter estimates of 1000 paths of length 1000 of a supOU
stochastic volatility model with short (upper set of plots) and with long memory (lower set of
plots).
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biases/asymmetries are much more distinct. In particular, it is noteworthy that the “mem-
ory” parameter o, tends to be rather severely underestimated. Looking at the QQ-Plots,
the estimators based on 1000 observations are close to normal for o2 and (to a lesser
extent) for p, whereas for a; and B we have now distinctly non-normal tails.

4.2.2 The supOU SV model

Figures 4.5 and 4.6 show the histograms and QQ-plots for the parameter estimators when
using paths with 10000 log returns of the supOU SV model on a unit time grid. As is
to be expected the estimation quality is worse than when using the observations of the
supOU process (i.e. the latent volatility process itself), cf. Figures 4.1 and 4.2. This is
clearly evident in the histograms for i and o2 both in the short and long memory case.
However, there appears to be much less asymmetry and bias, which may be surprising,
but is also very nice, as in financial applications one typically has only log return data.
The estimators for a; and B appear to be as good as when using the supOU observations
in the long memory case and actually even better in the short memory case, where «; no
longer tends to be underestimated.

The normal QQ-plots — with the exception of « in the short memory case — show
now that the estimators are far away from a normal distribution. The histograms seem
to suggest that there may well be a reasonable distributional limit result, but it should
probably have heavy tails.

If we compare these plots to the histograms (see Figure 4.7) and normal QQ-Plots
(see Figure 4.8) when we use only the last 1000 observations of every path for the esti-
mators, we clearly see again that then the quality of the estimation is considerably worse.
Note that again the most extreme estimators are not depicted in the histogram. These
were less than 30 data points, except for o2 in the short memory case (c. 70 points),
in the long memory case (c. 70 points) and o2 in the long memory case (c. 150 points
not shown). So also for estimating supOU SV models it seems important to have a lot of
data. Most interesting is a comparison with the estimations based on 1000 observations
of the supOU process (Figures 4.3, 4.4). Whereas p and o2 are better estimated using the
supOU/volatility data, the parameters «,, and B, which determine the decay of the acf,
are clearly substantially better estimated using the simulated log return data both in the
long and short memory case. Most notable is that o, is much less underestimated in the
short memory case, although it still tends to be significantly underestimated.

4.3 Empirical data illustration

In an illustrative application to empirical data we estimate a supOU SV model under
Assumption 3.1 for the S&P 500 using mean, variance and lags 1 to 5 of the autocovari-
ance function of the squared log returns. We use the daily time series from 03/29/2010
to 03/20/2013 which corresponds to 750 observations. The data source was Bloomberg
Finance L.P. Before fitting the supOU SV model to the time series we demeaned it.

The two step GMM estimation procedure gives

(f1,6, 6, B) = (6.1 x 1075,1.4 x 107, 6.8, —0.0086).
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Note that the unit time scale is one day. The parameters can be “annualized” following
Remark 2.6.
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Figure 4.9 The empirical autocovariance (left) and autocorrelation (right) function of the
squared log returns of the S&P 500 data set compared to the ones estimated in the first GMM
step. The circles depict the autocovariance/correlation function of the estimated supOU SV
model and the bars depict the empirical one.
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Figure 4.10 The empirical autocovariance (left) and autocorrelation (right) function of the
squared log returns of the S&P 500 data set compared to the ones estimated by the rwo step
GMM procedure. The circles depict the autocovariance/correlation function of the estimated
supOU SV model and the bars depict the empirical one.

We plotted the empirical and the estimated autocovariance and autocorrelation func-
tions of the squared log returns in Figure 4.9 using the parameters obtained in the initial
estimation step without weighting the moment conditions and in Figure 4.10 using the
parameters obtained from the two step GMM procedure. Comparing the figures shows
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that using an appropriate weighting matrix for the moment conditions is extremely im-
portant. Due to the sizes of magnitude the first step focuses on the mean of the squared
log returns and thus is very inaccurate for the variance, as well as for the autocovariances
and autocorrelations, whose “decay parameter” « is estimated to be 19.

In Figure 4.10 we can see that after the second step the autocovariance function is well
approximated. Regarding the autocorrelation function we have at the beginning a small
sinusoidal effect in the empirical autocorrelation function which the model by its nature
cannot capture. However, in general the autocorrelation function is fitted extremely well,
especially its decay. This is remarkable given that we used only the first five lags for
the estimation. The power decay at rate h~5® of the model autocorrelation function
clearly fits well with the rather slow decay of the empirical autocorrelation, but recall
that the estimated model has no long memory effects as &, > 2. Note that interestingly
the calibration results of Stelzer and ZaviSin (2015), who report a calibrated o, of 4.4
for DAX option price data, are very similar in this respect. Of course, since we do not
have any asymptotic distribution results for our estimators we cannot test whether the
data suggests a.; > 2 (and thus short memory). Since we have only a “semiparametric
model” (there are many very different Lévy processes with the same 1 and o2) and we do
not know anything about the asymptotic dependence beyond autocorrelations, simulation
based techniques like bootstrapping seem not to be feasible to attack this question either.
If we look at our simulation study (with somewhat different parameters and a special
choice for the underlying Lévy process) we see that there o, tended to be significantly
underestimated, especially in the long memory case. This gives at least some support that
our estimators for the S&P 500 data suggest that there is no long memory. In this context
it seems also worth recalling that in our simulation study the “acf decay parameters” o,
and B could be estimated comparably well from log return data.

5 Conclusion

This paper developed a GMM estimation method for supOU processes and supOU SV
models which are of particular interest because of the possibility of long memory ef-
fects. In a simulation study the estimators behaved quite well and the results indicate that
one has not only consistency (as shown in the paper) but also nice distributional limits,
probably asymptotic normality when using supOU data.

How the estimators are actually distributed (e.g. asymptotic normality) is future work
beyond the scope of the present paper. First one needs to show central limit theorems for
supOU processes. The standard way via strong mixing appears very hard since supOU
processes are non-Markovian and the usual approach to show strong mixing is to em-
bed the model in a Markovian set-up and to show geometric ergodicity. In the future
we intend to establish asymptotic distribution results of the estimators using alternative
approaches like weak dependence. This may also allow to employ non-parametric tech-
niques like bootstraping.
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