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Abstract

For the multivariate COGARCH process, we obtain explicit expressions for the second-
order structure of the “squared returns” process observed on an equidistant grid. Based
on this, we present a generalized method of moments estimator for its parameters. Under
appropriate moment and strong mixing conditions, we show that the resulting estimator is
consistent and asymptotically normal. Sufficient conditions for strong mixing, stationarity
and identifiability of the model parameters are discussed in detail. We investigate the finite

sample behavior of the estimator in a simulation study.
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1 Introduction

The modeling of financial data has received much attention over the last decades, where sev-
eral models have been proposed for capturing its “stylized facts”. Prominent models are the
class of ARCH (autoregressive conditionally heteroskedastic) and GARCH (generalized ARCH)
processes introduced in Engle| (1982); [Bollerslevi (1986). They are able to capture most of these
stylized facts of financial data (see |Cont| (2001)); |Guillaume et al. (1997))). A special feature of
GARCH like processes is that they usually exhibit heavy tails even if the driving noise is light
tailed, a feature most other stochastic volatility models do not have (Fasen et al.| (2006)).

In many financial applications, it is most natural to model the price evolution in continuous
time, especially when dealing with high-frequency data. The COGARCH process is a natural
generalization of the discrete time GARCH process to continuous time. It exhibits many “stylized
features” of financial time series and is well suited for modeling high-frequency data (see Bayraci
and Unall (2014)); Bibbona and Negril (2015); [Haug et al.| (2007); Kliippelberg et al[(2011); Maller
et al. (2008); [Muller| (2010)).
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In many cases one needs to model the joint price of several financial assets which exhibit a
non-trivial dependence structure and therefore, multivariate models are needed. The MUCOGA-
RCH process introduced in Stelzer| (2010)) is a multivariate extension of the COGARCH process.
It combines the features of the continuous time GARCH processes with the ones of the multi-
variate BEKK GARCH process of [Engle and Kroner| (1995). It is a d—dimensional stochastic

process and it is defined as

t
Gt:/ vMdL,, t>o0, (1.1)
0

where L is an R%valued Lévy process with non-zero Lévy measure and cadlag sample paths. The
matrix-valued volatility process (Vs),cr+ depends on a parameter § € © C RY, it is predictable
and its randomness depends only on L. We assume that we have a sample of size n of the
log-price process with true parameter 6y € © observed on a fixed grid of size A > 0, and
compute the log returns

1A

G; = VML, i=1,...,n. (1.2)

(i—1)A
Therefore, an important question is how to estimate the true parameter 6y based on observations
(G;). In the univariate case, several methods have been proposed to estimate the parameters
of the COGARCH process (Bayraci and Unal| (2014)); Bibbona and Negri| (2015)); ldo Régo Sousal
et al.| (2019)); Haug et al|(2007); [Maller et al. (2008)). All these methods rely on the fact that
the COGARCH process is, under certain regularity conditions, ergodic and strongly mixing.

In the univariate case, |Fasen| (2010) proved geometric ergodicity results for the COGARCH
process (in fact, their results apply to a wider class of Lévy driven models). Recently, [Stelzer and
Vestweber| (2019)) derived sufficient conditions for the existence of a unique stationary distribu-
tion, for the geometric ergodicity, and for the finiteness of moments of the stationary distribution
in the MUCOGARCH process. These results imply ergodicity and strong mixing of the log-price
process (G;)5°,, thus paving the way for statistical inference. We will use their results to apply
the generalized method of moments (GMM) for estimating the parameters of the MUCOGA-
RCH process. To this end we compute the second-order structure of the squared returns in closed
form, under appropriate assumptions.

Consistency and asymptotic normality of the GMM estimator is obtained under standard
assumptions of strong mixing, existence of moments of the MUCOGARCH volatility process and
model identifiability. Thus we discuss sufficient conditions, easily checkable for given parameter
spaces ensuring strong mixing and existence of relevant moments.

The identifiability question is rather delicate, since the formulae for the second-order struc-
ture of the log-price returns involve operators which are not invertible and, therefore, the strategy
used for showing identifiability as used in the one-dimensional COGARCH process cannot be
generalised. In the end we can establish identifiability conditions that are not overly restrictive
and easy to use.

Our paper is organized as follows. In Section 2, we fix the notation and briefly introduce Lévy
processes. In Section 3 we define the MUCOGARCH process, and obtain in Section 4 its second-

order structure. Section 5 introduces the GMM estimator and discusses sufficient conditions for



stationarity, strong mixing and identifiability of the model. In Section [, we study the finite
sample behavior of the estimators in a simulation study. Finally, Section [A] presents the proofs
for the results of Sections [3] and [l

2 Preliminaries

2.1 Notation

Denote the set of non-negative real numbers by RT. For z € C,R(z) and J(z) denote the real
and imaginary part, respectively. We denote by M,, 4(R), the set of real m x d matrices and
write My(R) for My 4(R). The group of invertible d x d matrices is denoted by GL4(R), the
linear subspace of symmetric matrices by Sq, the (closed) positive semidefinite cone by S;r and
the (open) positive definite cone by ST*. We write I, for the d x d identity matrix. The tensor
(Kronecker) product of two matrices A, B is written as A ® B. The vec operator denotes the
well-known vectorization operator that maps the set of d X d matrices to R’ by stacking the
columns of the matrices below one another. Similarly, vech stacks the entries on and below
the main diagonal of a square matrix. For more information regarding the tensor product, vec
and vech operators we refer to |Bernstein| (2009); [Horn and Johnson| (1991)). The spectrum of a
square matrix is denoted by o(-). Finally, A* denotes the transpose of a matrix A € M, 4(R)
and A(; j) denotes the entry in the ith line and jth column of A. Arbitrary norms of vectors or
matrices are denoted by || - || in which case it is irrelevant which particular norm is used. The
norm || - ||2 denotes the operator norm on Mgy (R) associated with the usual Euclidean norm.
The symbol ¢ stands for any positive constant, whose value may change from line to line, but is
not of particular interest.

Additionally, we employ an intuitive notation with respect to (stochastic) integration with
matrix-valued integrators, referring to any of the standard texts (for example, Protter| (2005)))
for a comprehensive treatment of the theory of stochastic integration. Let (A;);er+ in My, q(R)
and (By)yer+ in M, (R) be cadlag and adapted processes and (L¢)segp+ in My, (R) be a semi-
martingale. We then denote by fot As_dL¢B,_ the matrix C; € My, ,(R) which has ij-th entry
Z%zl o1 fg A s—Bijs—dLy 5. If (X¢)4er+ is a semimartingale in R™ and (Y};);cg+ one in R,
then the quadratic variation ([X,Y];);cgr+ is defined as the finite variation process in M, 4(R)
with ij-th entry [X;,Y;]; for t e RY, i =1,...,mand j = 1,...,d. We also refer to Lemma 2.2
in Behme| (2012) for a collection of basic properties related to integration with matrix-valued
integrators. Lastly, let @ : M2 (R) — Mz (R) be the linear map defined by

(QX) (k=1)d+1,(p—1)d+q = X(k—1)d+p,(I-1)d+q Tor all k,l,p,qg=1,...,d,

which has the property that Q(vec(X) vec(Z)T) = X®Z for all X, Z € Sy ((Pigorsch and Stelzer,
2009b), Theorem 4.3)). Let K be the commutation matrix characterized by Ky vec(A) = vec(A*)
for all A € My(R) (see Magnus and Neudecker| (1979) for more details). Define @ € M (R)
as the matrix associated with the linear map vecoQ o vec™! on Rd4, and g € Mju(R) as the

matrix associated with the linear map vec(Kyvec™ (z)) for x € RY".



2.2 Lévy processes

A Lévy process L = (L;),cp+ in R? is characterized by its characteristic function in Lévy-
Khintchine form Ee!*1t) = exp{tiy(u)} for t € Rt with

Wr(u) =iy, u) — %(u, Tru) + /Rd (e — 1 —i(u,2) o 1 (|z])))ve(dz), ueRY,
where v, € R T € S; and the Lévy measure vz, is a non-zero measure on RY satisfying
vr({0}) = 0 and [pa ([|2]|* A1) v(dz) < co. We assume w.l.o.g. L to have cadlag paths. The
discontinuous part of the quadratic variation of L is denoted by ([L, L]?),;cr+ and it is also a Lévy
process. It has finite variation, zero drift and Lévy measure vy 1jo(B) = [pa I (z2*) vi(dz) for
all Borel sets B C S;. For more details on Lévy processes we refer to |Applebaum! (2009); |Sato
(1999).

3 The MUCOGARCH process

Throughout, we assume that all random variables and processes are defined on a given filtered
probability space (2, F, P, (F)ter), with T = N in the discrete-time case and T = R™ in the
continuous-time one. In the continuous-time setting, we assume the usual conditions (complete,
right-continuous filtration) to be satisfied. We can now recall the definition of the MUCOGARCH

process.

Definition 3.1 (MUCOGARCH(1,1) - (Stelzer, 2010, Definition 3.1)). Let L be an R?-valued
Lévy process, A, B € My(R) and C € S;Jr. The process G = (Gt)ier+ solving

G, = VML, (3.1)
dY; = (BY,_ +Y,_B*)dt + AV,Y2d[L, LV, A* (3.3)

with initial values Go in R? and Yy in S} (R) is called a MUCOGARCH(1,1) process. The process
Y = (Yi)ier+ s called e MUCOGARCH(1,1) volatility process. Hereafter we will always write
MUCOGARCH for short.

The interpretation of the model parameters B and C is the following. If o(B) € {z € C:
R(z) < 0}, the process V, as long as no jump occurs, “mean reverts” to the level C' at matrix
exponential rate given by B. Since all jumps are positive semidefinite, C' is not a mean level but,
instead, a lower bound for V.

By (Stelzer, 2010, Theorems 3.2 and 4.4), the MUCOGARCH process is well-defined, the
solution (Y3);er+ is locally bounded and of finite variation. Additionally, the process (Gt, Y);er+
and its volatility process (Y;);cg+ are time homogeneous strong Markov processes on R? x S;{
and S;, respectively.

Since the price process (Gi)iegr+ In is defined in terms of the Lévy process L and
(Yy)ter ,» the existence of its moments is closely related to the existence of moments of L and

the stationary distribution of (Y;)ier, -



Lemma 3.2. Suppose that E||Yy||P < co and E|L1||?” < oo for some p > 1. Then:
(a) E||Y:||P < oo for all t € RT and t — E||Y;||P is locally bounded.

(b) E||G¢]|?? < oo for all t € RY and t — E||G4||?? is locally bounded.

4 Second-order structure of “squared returns”

In this section, we derive the second-order structure of the MUCOGARCH “squared returns”
process (G;G})icn defined in terms of (1.2, which will be used in Section [5| to estimate the
parameters A, B and C of the MUCOGARCH process. The proofs are postponed to Section [A]

We group the needed assumptions as follows.
Assumptions a (Lévy process).
(a.1) ELy =0
(a.2) var(Li) = (ow + or)l4, with ow > 0 and o, > 0.
(a.3)
/Rd zvixjxpvp(de) =0, foralli,j, ke {l,...,d}.
(a.4) E||Li|* < oo.
(a.5) There exists a constant pr, > 0 such that

E[vec([L, L*]°), vec([L, L*]°)*]} = pr(Iz2 + K4 + vec(Iy) vec(Iy)*).

(.6) E|lL1]* < oo,

Assumptions b (Parameters).

(b.1) Ae GL4(R).

(b.2) The matrices B and C defined below satisfy o(B),c(C) € {z € C: R(z) < 0}.

B = BRI+I®B+o,(A®A) (4.1)
C = B®Id2+.[d2 ®B+AR,

where A= (A®@ A)® (A® A), R = pr(Q+ KqQ+ Iz1), and Kq and Q as in Section [2.1]
Assumption ¢ (MUCOGARCH volatility).
(c1) (Yi)ier, is a second-order stationary MUCOGARCH wvolatility process.

(c.2) (Yi)ier, is a stationary MUCOGARCH wvolatility process and its stationary distribution
satisfies E||Yp||* < oo.



Sufficient conditions for Assumption ¢ are given in (Stelzer, |2010, Theorem 4.5). Note that
implies We recall now the expressions for the second-order structure of the process Y
and of the log-price returns process (G;);en. First, for a second-order stationary R?-valued pro-
cess, its autocovariance function acovy : R — My(R) is denoted by acovx (h) = cov (Xp, Xo) =
E(X,Xg) —E(Xo) E (Xo)" for h > 0 and by acovx(h) = (acovx(—h))* for h < 0. For matrix-
valued processes (Z;)icr, We set acovz = acoVye(z)-

Proposition 4.1 ((Stelzer, [2010, Theorems 4.8, 4.11, Corollary 4.19 and Proposition 5.2)). If
Assumptions |(a.1)H(a.b), [(b.2)| and |(c.1)| hold, then

E(vec(Yp)) = —orB ' (A® A)vec(C) (4.2)
var(vee(Yp)) = var(vec(Vp)) = —C [(c7C(B™' @ B™1) A+ AR) (vec(C) ® vec(C))
+(op(A® A) @ Iz + AR) vec(C) @ E(vec(Y)))
+ (ol @ (A® A) + AR)E(vec(Yy)) ® vec(C)]

acovy (h) = acovy(h) = e®var(vec(Yp))
E(Gi1) = 0
var(G1) = (op +ow)AE(C +Y)) (4.3)
acovg(h) = 0 for all h € Z\{0}.

Based on Lemma [3.2] and Proposition [£.1} we obtain now the second-order properties of the
MUCOGARCH process.

Lemma 4.2. If Assumptions a,b and ¢ hold, then

acovgar(h) = B2 B (I — e7B2) (o + ow)var(vec(Vp))

x (52 — Ip)[(ow + or)(B) ' =2((A® A)")7!], heN, Y
Evec(G1GY) vee(G1GT)" (4.5)
= Apr((Q + KuQ + 12)(Evee(Vh) vee(Vo)")) x
(L2 + Ka)Q(D*)(I2 + Kg) + D + D,
with,
D= (o +ow) (%(UL + o) AE veo(Vo)E vec(Vo)" -+ var(vec(Vo))B) (4.6)
Bi= [(B) (5 — 1) — LpA] [(ow + 01)(B) " — 2((A® 4)) ] (4.7)

Remark 4.3. If the Lévy process L has paths of finite variation, then Lemmal4.3 holds without
the moment assumptions and . This is because expectations involving stochastic inte-
grals with finite variation Lévy integrators can be computed by using the compensation formula
(see Remark . In the following, we will define the moment based estimator for MUCOGA-
RCH processes driven by general Lévy processes (without path restrictions). Only in Section
we will give a consistency result that distinguishes between Lévy process with paths of finite and

infinite variation.



Next, we define an estimator for the parameters A, B and C, which basically consists of

comparing the sample moments to the model moments.

5 Moment based estimation of the MUCOGARCH process

In this section, we consider the matrices Ay, By € My(R) and Cy € S;LJF from Definition as
depending on a parameter § € © C R? for ¢ € N.

The data used for estimation is an equidistant sample of d-dimensional log-prices (G;)7_; as
defined in with true parameter 6y € ©. We assume that the true or, o and pr as used

in Assumptions |(a.2)| and |(a.5)| are known. These assumptions are not very restrictive and are

comparable to assuming iid standard normal noise in the discrete time multivariate GARCH

process, which is very common (Francq and Zakotan, 2019, eq. (10.6)).

5.1 Generalized Method of Moments (GMM) estimator

In order to estimate the parameter y € ©, we compare the sample moments (based on a sample
of log-prices) to the model moments (based on the expressions (4.3)), (4.4) and (4.5)), provided
they are well defined). More specifically, based on the observations (G;)I; and a fixed r < n,

the sample moments are defined as

vee(G;GY)
n-r vec(vec(G;G}) vec(G;G})*)

. 1 n—r 1

i=1
vec(vec(GiG}) vec(GiyrG7L,)")
The used number of lags of the true autocovariance function r needs to be chosen in such a way
that the model parameters are identifiable and also to ensure a good fit of the autocovariance
structure to the data. For each 6 € O, let

Eg VeC(Gl G’f)

Eg vec(vec(G1G7) vec(G1GT)™)

ko, = , (5.2)

Eg vec(vec(G1GT) vec(G14+GT4,)")

where the expectations are explicitly given by (4.3)), (4.4) and (4.5) by replacing A, B and C' by
Ay, By and CYy, respectively. Then, the GMM estimator of 6y is given by

b = argmin { (np — ko) Qlenr — ko) |, (5.3)
0cO
where (2 is a positive definite weight matrix. The matrix 2 may be depend on the data but

should converge in probability to a positive definite matrix of constants.

5.2 Asymptotic properties: general case

Additionally to Assumptions a, b and ¢ we need assumptions for proving consistency and asymp-
totic normality of 0,,. These are mainly related to identifiability of the model parameters, sta-

tionarity, strong mixing and existence of certain moments of (G;);en-.



Assumptions d (Parameter space and log-price process).

(d.1) The parameter space © is a compact subset of RY.

(d.2) The true parameter 6y lies in the interior of ©.

(d.3) [Identifiability]. Let r > 1 be fized. For any 0 # 0 € © we have ko # k.-
(d.4) The map 0 — (Ag, By, Cy) is continuously differentiable.

(d.5) The sequence (G;)ien is strictly stationary and exponentially c-mixing.
Assumption e (Moments).

(e.1) There exists a positive constant § > 0 such that E||G1||¥+ < oc.

Assumption e can be written in terms of moments of L and Yp (see Lemma|3.2). We are now

ready to state the strong consistency of the empirical moments in (5.1)).
Lemma 5.1. If Assumptions a, b, ¢ and|(d.5)| hold, then l%n,r 2% kg, as n — oo.

Proof. 1t follows from |(d.5)| that the log-price process (G;);en is ergodic and since both
E| vec(G1G7)|| and E||vec(G1G7) vec(G 141G ;,)*|| are finite (Lemma with p = 2 under
(a.4)| and |(c.1)]), we can apply Birkhoft’s ergodic theorem ((Krengel, |1985, Theorem 4.4)) to

conclude the result. O

Next, we state the weak consistency property of the GMM estimator.

Theorem 5.2. If Assumptions a,b, c,|(d.1),|(d.3)H(d.5)| hold, then the GMM estimator defined
in (5.3) is weakly consistent.

Proof. We check Assumptions 1.1-1.3 in Matyas (1999) that ensure weak consistency of the
GMM estimator in ((5.3]). Assumption 1.1 is satisfied due to our identifiability condition |(d.3)
It follows from (/5.3 combined with Lemma [5.1| that

sup || kn.r — ko.r — (kagr — ko.r)|l = lkns — kool 230, 1 — o0,

0cO

which is Assumption 1.2 of Matyas (1999)). Since the weight matrix © in (5.3)) is non-random,

their Assumption 1.3 is automatically satisfied, completing the proof. O

In order to prove asymptotic normality of the GMM estimator, we need some auxiliary

results.

Lemma 5.3. If Assumptions a, b, ¢, |(d.1)| and|(d.4)| hold, then the map © — kg, in (5.2)) is

continuously differentiable.

Proof. The the map © — kg, depends on the moments given in (4.3), (4.4) and (4.5). These
moments are given in terms of products and Kronecker products involving the quantities Ay,
Ae_l, By, Be_l, e=B o > 0, Cy, Cy and C(;l. From|(d.4)|we obtain the continuous differentiability



of Bg,B, !, Cy,Cy " and A, on ©. Let i € {1,...,q} be fixed. According to (2.1) in[Wilcox! (1967),

the matrix exponential is differentiable and

i —aBy _ ¢ —(a—u)By i —ubBy
80ie = /0 e 8(%66 e du. (5.4)

Using the definition of By in (4.1)) combined with |(d.1) and |(d.4)| gives

sup || Byl < 2<sup HBg||> I Za| + UL(sup HA9|]2> < 00.
0cO 6cO 6co

Additionally, an application of the chain rule to 8%1_39 combined with |(d1)| and |(d4)| gives

SUPpco Ha%iBGH < oo and, therefore,

o~ (a—w)By < 0 B@) o—Bs

O 5,

1

sup

9co 00;

< sup ella—ulHu 15 <Sup
0cO 0cO

), wel0,al.  (5.5)

Thus, the continuous differentiability of the map in (5.4)) follows by dominated convergence
with dominating function as in (5.5)). Another application of the chain rule shows that the map
6 — kg, is continuously differentiable on ©. O

Lemma 5.4. Assume that Assumptions a,b, c,|(d.5) and|(e.1)| hold and let
Sop = E(FLFY) + S B{(FiFiy.) + E(F FL)) (5.6)
i=1
with Fy = D; — kg, » and D; as defined in (5.1). Then for r € Ny
\/ﬁ(]%n,r — kgo’r) £> ./\/(0, 290), n — oo.

Proof. For the asymptotic normality of (5.1) we use the Cramér-Wold device and show that
1 n—r J
\/ﬁ(g Z; AF) 4 N0, X" g, \), 1 — o0,
1=

for all vectors A € R&++1d* Denote by ag the mixing coefficients of (G;);en. Since each Fj is a
measurable function of Gy, . .., G4, it follows from and Remark 1.8 of Bradley| (2007)) that
(A" F})ien is a-mixing with mixing coefficients satisfying ap(n) < ag(n—(r+1)) for all n > r+2.
Therefore, °° ((arp(n))¥ < oo for all € > 0. From we obtain E||\*Fy||*t</4 < oo for
some € > 0. Thus, the CLT for a-mixing sequences applies, see e.g. (Ibragimov and Linnik, 1971,
Theorem 18.5.3), so that

ﬁ(ii)\F) 4 N(0,0), n— oo,

where
o0
(=EXFIFfA+2) EXFIFT A
i=1
Since N*F1F{ ;A = N (F1F ;)"\ we get (5.6]) after rearranging the above equation. O



Theorem 5.5. Assume that Assumptions a,b, ¢, d and |(e.1)| hold and that the matriz ¥ in
(5.6) is positive definite. Then the GMM estimator defined in (5.3) is asymptotically normal
with covariance matrix

(\790)_11.90(t790>_17 (5'7)
where Ty, = (Vokoyr) QU Voke,r) and Zg, = (Vokayr) 220,2(Vokoyr)-

Proof. We check Assumptions 1.7-1.9 of Theorem 1.2 in Matyas| (1999). Since by Lemma
the map 6 — kg, is continuously differentiable, their Assumption 1.7 is valid. Now, for any
sequence 6, such that 0, LS fp as n — oo, it follows from the continuous mapping theorem by
the continuity of the map © — 8%]@,7« in Lemma, that %(l%n,r — ky,) Lt (ko, — %k@o) as
n — oo. Therefore, Assumption 1.8 in |[Matyas (1999) is also satisfied. Since Lemma implies

Assumption 1.9, we conclude the result. ]

Remark 5.6. In order to apply the results of Section[5.4 we need to check Assumption ¢, model
identiﬁability strong mizing of the log-price returns sequence and existence of certain
moments of its stationary distribution (Assumption e) . In Sectians and we give sufficient
conditions for identifiability of the model parameters, strict stationarity and strong mizing. Then

we use these results to derive in Section[5.5 more palpable conditions under which Theorems
and[5.9 can be applied.

5.3 Sufficient conditions for strict stationarity and strong mixing

Sufficient conditions for the existence of a unique stationary distribution of (Y;);cg+, geometric
ergodicity and for the finiteness of moments of order p of the stationary distribution have recently
been given in Stelzer and Vestweber| (2019). We state these conditions in the next theorem, which
are conditions (i), (iv) and (v) of Theorem 4.3 in Stelzer and Vestweber| (2019)).

Theorem 5.7 (Geometric Ergodicity - (Stelzer and Vestweber, |2019, Theorem 4.3)). Let Y be a
MUCOGARCH volatility process which is p-irreducible with the support of i having non-empty

interior and aperiodic. Assume that one of the following conditions is satisfied:

i) setting p = 1 there exists = € ST such that
gp d
EB+B'EZ+4+0,A'EA€ —Sit, (5.8)

ii) there exist p € [1,00) and Z € STt such that
(i) p d

[, (14 Ko alolB)? 1) veld) + pEz.o <0 5.9)
where
Kep—  max tr((EBtBTE)X) ond K= 4 —  max tr(z‘liiEAX)’
’ XeST tr(X)=1 tr(EX) T xestur(x)=1  tr(EX)
(iii) there exist p € [1,00) and Z € S; T such that
max {2771} Kz 4 /Rd Iyl3 (1 + [lyI3K=4)""" vi(dy) + Kz,p < 0 (5.10)

where Kz g, K= o are as in (ii).
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Then a unique stationary distribution for the MUCOGARCH wvolatility process Y exists, Y is
positive Harris recurrent, geometrically ergodic and its stationary distribution has a finite p-th

moment.

A consequence of Theorem [5.7]is that the process Y is exponentially S-mixing. This implies
a-mixing of the log-price process as we state next. For more details on mixing conditions we

refer to [Bradley| (2007)).

Corollary 5.8. IfY is strictly stationary and exponentially B-mizing, then the log-price process

(G})ien is stationary, exponentially a-mizing, and as a consequence also ergodic.

Proof. Since Y is an exponentially S-mixing, homogeneous strong Markov process (Stelzer} 2010}
Theorem 4.4), and driven only by the discrete part of the quadratic variation of L, the proof
follows by the same arguments as for Theorem 3.4 in Haug et al.| (2007)). O

Next, we state a result which gives sufficient conditions for the irreducibility of the MUCOG-
ARCH volatility process Y process, which is one of the sufficient conditions for the geometric
ergodicity result in Theorem

Theorem 5.9 (Irreducibility and Aperiodicity - (Stelzer, 2010, Theorem 5.1 and Corollary
5.2)). Let Y be a MUCOGARCH wolatility process driven by a Lévy process whose discrete part
is a compound Poisson process L with A € GL4(R) and R(o(B)) < 0. If the jump distribution
of L has a non-trivial absolutely continuous component equivalent to the Lebesgue measure on
R? restricted to an open neighborhood of zero, then Y is irreducible w.r.t. the Lebesque measure

restricted to an open neighborhood of zero in Sjl' and aperiodic.

5.4 Sufficient conditions for identifiability

In this Section we investigate the identifiability of the model parameters from the model mo-
ments, i.e., we investigate the injectivity of the map 6 — kg, on an appropriate compact set ©.
Recall that we can divide the this map into the composition of 8 — (Ag, By, Cp) — kg . Injectiv-
ity of 6 — (Ap, By, Cp) holds if e.g. it simply maps the entries of 6 to the entries of the matrices
(Ap, By, Cp). Thus, we only need to investigate the injectivity of the map (Ag, By, Cy) — ko,r.
As we will see, there will appear some restrictions on the matrices Ay, By, which are related to
the fact that we need to take the logarithm of a matrix exponential, and we need to ensure this
is well defined. We will omit 6 from the notation, except when explicitly needed. We start with
the identifiability of the matrix C.

Lemma 5.10. Assume that Assumptions|(a.1){(a.5)}|(0.2)| and|(c.1)| hold and that o(B) C {z €
C: R(z) < 0}. If the matrices A and B are known, then E(G1G?7) uniquely determines C.

Proof. Since 0(B®I+1® B) =0(B)+0(B) C {z € C: R(z) <0}, the matrix BQI+I® B
is invertible. The rest of the proof follows by noting that from (4.2) and (4.3)) it follows that

vec(C) = (o + ow) 'ATH B ® I+ I ® B) ' Bvec(E(G1GY)).
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For the identification of the matrices A and B we need to use the second-order structure of
the squared returns process in Lemma [£.2] We first state three auxiliary results, which provide

conditions such that we can identify the components of the autocovariance function in (4.4]).

Lemma 5.11. Assume that B € My(R) is diagonalizable with S € GL4(C) such that S~'BS is
diagonal. If

0L20LUW‘||A®AHS < —2max{R(c(B)}, (5.11)
with
IX[ls = [1(S7' @ STHX(S®9))[2, X € Mp(R),S € GL4(C), (5.12)
then the matrix
(ow +0o1)(B) " —2((A@ A)")"! (5.13)

s tnvertible.

Proof. From (Bernstein, [2009, fact 2.16.14), X~ + Y ~! is non-singular if and only if X + Y is
non-singular and X,Y are non-singular. Setting X = —5 <V = —2(A® A) and using the

(or+ow)’
definition of B in (4.1) we get
1 —
X+Y = ((B®I+I®B)+(ULUW)(A®A)>.
(UL —l—Uw) 2

Since B is diagonalizable, we can use (Bernstein, 2009, Proposition 7.1.6) to obtain
BRI+I®B=(S®S)(ST'BS®I)(S oS,

which guarantees that B ® I + I ® B is also diagonalizable. Now we rewrite the first equation
on p. 106 in |Stelzer| (2010) with the matrix B replaced by (B® I + 1 ® B) + @(A ® A)
and apply the Bauer-Fike Theorem (Horn and Johnson, 1991} Theorem 6.3.2) to see that
implies that all eigenvalues of (X +Y)(or+ow) arein {z € C: R(z) < 0} and, therefore, X +Y

is invertible. ]

Lemma 5.12. If A € My(R) is such that A y,...,Aqj—1) = 0 and Az > 0 for some
je{1,...,d}, then the map X — AXAT for X € Sy identifies A.

Proof. Assume first that A(; 1y > 0. For each i € {1,...,d}, let ¢; be the ith column unit vector
in R? and define the matrix E(7) = eie?. The first line of the matrix AEGD AT is

(A?l,l)v AanAey, - AanAa)- (5.14)

Since A(1,1) > 0, (5.14) allows us to identify first A(; ;) and then A ), ..., A(4,1). Now, for each
k € {2,...,d}, note that EMF) + B1) is symmetric. Simple calculations reveal that the first
line of the matrix A(E(MF) + EEDYAT is

(A1) Aa k), AanAek + Aa Aty - Aan Ak + Aa kA (5.15)
Since A(1,1y > 0, we identify A(j y) from the first entry of (5.15)). Now, since also A9 1), ..., A1)
are already known, we can identify Ay y),..., A(gr)- Thus, all entries of A can be identified.
The cases A(; ;) > 0 for some j > 1 follow similarly. O
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Lemma 5.13. Assume that the Assumptions a,b and ¢ and the conditions of Lemmal[5.13 hold,
that the matriz in (5.13)) s invertible, that o(B) C {z € C : —1 < ¥(2)A < 7, R(z) < 0}
and that var(vech(Vp)) is invertible. Define M = (eB2)~tacovy gg+(1). Then, acove gg:(1) and

acovy ga+(2) uniquely identify B and M.

Proof. Since M is given in terms of B and acovggg+(1), we only need to identify B. Observe
that we are using the vec operator only for convenience, as it interacts nicely with tensor prod-
ucts of matrices and thus gives nicely looking formulae. However, the volatility and “squared
returns” processes take values in S; which is a d(d+ 1)/2-dimensional vector space, whereas the
vec operator assumes values in a d?-dimensional vector space. Instead of using the vech oper-
ator and cumbersome notation, we take an abstract point of view. The variance of a random
element of S; is a symmetric positive semi-definite linear operator from S; to itself. Likewise,
the autocovariance of G1G7 and G, G} 4 isa linear operator from S; to itself. The condition
that var(vech(Vp)) is invertible is equivalent to the invertibility of the linear operator, which is

the variance of V. Similarly all other d? x d? matrices in
BB (1 — 7% (or + ow)var(vec(Vp)) (€52 — Ipp)[(ow +or)(B*) ™! = 2((A® A)*) 7]

are representing linear operators from Sy to itself. Under the assumptions made, the above
product involves only invertible linear operators. Hence acovy gg+(h) is invertible (over Sq) for

every h > 0. Thus,

BA

e’ = acovg ga+(2)[acovy ga- (1)]_1.

By the assumptions on the eigenvalues of B there is a unique logarithm for e®® (see (Horn and
Johnson|, 1991} Section 6.4) or (Schlemm and Stelzer} |2012, Lemma 3.11)), so BA and thus B is
identified. Finally, note that the matrices in the vec representations are uniquely identified by
the employed linear operators on S; due to (Pigorsch and Stelzer, 2009al, Proposition 3.1) and

Lemma (.12 O

Lemma 5.14 (Identifiability of A, B and C). For all§ € ©, assume the conditions of Lemmal[5.13,
0(Bg) C {z € C: R(2) < 0} and that the entries of the matrices Ag and By satisfy: for some
k#1e {1,...,d}, A(k,l),9 > 0, A(k,l),9 % A(l,k’),@ and B(k,l),@ = B(Uf)ﬂ' Then ]{972 uniquely
identifies Ag, By and Cy.

Proof. Recall that we omit 6 in the notation. Assume w.l.o.g that o;, = 1. Because of Lemmal5.10

we only need to show the identification of A and B.
Assume first that d = 2. Then the matrix B from (4.1]) is

2B1,1) + A%I,l) B2y + Aa,1yAa,) B2y +Aa,1yAa,2) A%l,z)
By +AanAey  Bay + Beez) +AanAee Aa2 Ay Baz) +AnAes
By +AanAe Aa2Aey Bay +Beaz) +AanAez Baz +Aa2Aee

A%y Bia1) + Ay A2) B + AenAee) 2B(2,2) + A2 2)
(5.16)

Using the entry at position (1,4) and the fact that A ) > 0 allow us to identify A o).
Then, we use the entry at position (2, 3) to identify A(2,1)- Now, we use the entries at positions
(1,2) and (2, 1) together with the fact that A(j ) # A1) and By 2) = B(2,1) to write A 1) =
(B(i,2) — B2,1))/(A1,2) — Aga,1))- Similarly we use the entries at positions (3,4),(4,3) to get
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A2 = (Bza) — Bug))/(Aq2) — A1) Now, since all the entries of A are known, we can use
the entries at positions (1,1),(1,2) and (2,2) to identify the entries of B.

Now assume that d > 2. We assume w.l.o.g. that A(; 2y > 0, A1 2) # A(2,1) and By 2) = A1)
Write the matrix B from in the following block form:

BLL ... pd
B=BeI+I@B+A@A=| : L], (5.17)
B ... pgldd
where B(#7) € My(R) for all i,j = 1,...,d. First, we have that
By + Au) A, AnAnz Aa2las Aa2An,
51.2) Aapden BazytAazder Aapdes Aa A
A2 A Aa2Aw2 Aa2Aus - Baz tAa24w)
(5.18)

Since A(12) > 0 we can identify it from (5.18)), because 582)) = A%l,Z)‘ Then we use the off-

diagonal entries of the matrix B2 in ([5.18)) together with A1,y to identify all the off-diagonal
entries of the matrix A. Next we identify the diagonal entries of A. It follows from (5.17]) that

Bgff)) = B + A Aa2)

. k=1,...,d (5.19)
Bg,’f)) = B,y + Ay A2,)

Since A(172) - A(2,1) # 0 and B(Lg) = B(271), the system of equations (5.19)) gives
kk kK
Ay = (B((1,2)) - 65271)))/(A(1,2) —Apy), k=1,....d

Finally, since the matrix A is now completely known, we can use (5.17) to identify all entries of
B. O

In Lemma we identify the matrices A and B only from B and, therefore, some mild
restrictions on the off-diagonal entries of B appear. In order to avoid those restrictions, we
could to take the structure of E vec(vec(G1G7) vec(G1G7)*) in into account when prov-
ing identifiability and we expect that one can improve the identification results since more
moment conditions are used. However, already in the 2-dimensional case the results on identi-
fication conditions are quite involved, and this has mainly to do with the fact that the linear
operator (Q + K Q + I;2) at the right hand side of is not one-to-one in the space of
matrices of the form Evec(Vy)vec(Vp)*. In the end, in order to use the moment conditions
E vec(vec(G1G7) vec(G1G7)*), we need to assume that the matrices B® I +1® B and A® A
commute (see (Do Régo Sousaj, 2019, Lemma 3.5.18)). Since commutativity is a quite strong
condition, it seems highly preferable to work with the class of MUCOGARCH processes, which
are identifiable by Lemma The exponential decay of the autocovariance function of the
model is still quite flexible, because of the interplay between the matrices A and B (see ,

for instance).
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5.5 Asymptotic properties: general case revisited

Here, we combine the results of Sections to give easily verifiable conditions under which
the GMM estimator 6,, will be consistent and asymptotically normal. We assume that the
parameter 6 contains the entries of the matrices (Ag, By, Cy) so that the map 0 — (Ay, By, Cp)
is automatically injective and continuously differentiable on ©.

First, we define

Izlls = [(ST'®@S Dalls, xeRT,S e GLyC) (5.20)

1X 2 )
max ———=— ), SeGLyC). 5.21
xSttt <H vec(X)s © (5:21)

Kys =
Consider now the following group of assumptions:
Assumptions f (Parameter space). For all 0 € © it holds:
(f.1) The matrices By satisfy o(By) C {z € C: R(z) < 0}.
(f.2) The matriz By satisfy o(By) C {z € C: —m < J(2)A < 7, R(z) < 0}.

1.3) The matriz By € My(R) is diagonalizable with Sy € GL4(C) such that S; ' BpSy is diago-
0

nal.

(f.4) The entries of the matrices Ag and By satisfy: for some k # 1 € {1,...,d}, Ay e > 0,
A0 F Ak and By g = Bk .-

(f.5) The matriz varg(vech(Vp)) is invertible.

(f.6) [l Ag ® Aglls, < —2max{R(c(By))} with Sy as in|(f.3) and [[Ag @ Agl|s, as in
G12).

(f.7) There exists 29 € S;r+ such that, condition (5.8)) holds with A, B replaced by Ay, By.

(f.8) m(4,0) <0 where
m(p,0) = /Rd((l + agl| vec(yy")lls,)” — Drr(dy) + 2pmax{R(o(By))}, (5.22)

ag = ||S6lI31155  13K2,8, | A0 @ Aglls, with Ky p, as in (5:21), || vec(yy®)lls, as in (5-20)
and Sy as in|(f.3)

Assumptions g (MUCOGARCH process at 6).

(9.1) The MUCOGARCH volatility process Y is stationary, p-irreducible with the support of p

having non-empty interior and aperiodic.
(9.2) m(p,6p) <0 for some p > 4.

Assumption |(f.1)](f.6)| collect the needed identifiability assumptions from Section As-
sumption |(f.7)|is a sufficient condition under which we have uniqueness of the stationary dis-

tribution of Y and geometric ergodicity (Section . For the asymptotic results of the GMM
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estimator in Theorems and we need to ensure E||Yy||P < oo for appropriate p > 1, and
this would require checking Assumptions or with p > 1. However, this imposes strong
conditions on the Lévy process (Stelzer and Vestweber) 2019, Remark 4.4). Instead, we require
diagonalizability of the matrix By , which is not a very restrictive assumption, and check
to ensure E||Yy||P < oo (Stelzer, 2010, Theorem 4.5), which is less restrictive.

In view of the above assumptions and the results of Sections we have the following

consistency result.

Corollary 5.15 (Consistency of the GMM estimator - L has paths of infinite variation). Suppose
that assumptions a, b, |(d.DI(f.1H(f.8) and|(g.1)| hold. Then the GMM estimator defined in (/5.3))

1s weakly consistent.

If the paths of the driving Lévy process are of finite variation, we can relax even more the
conditions from Corollary Before we state this result, we give the definition of asymptotic
second-order stationarity which will be used in its proof. A stochastic process X € Sy is said to be
asymptotically second-order stationary with mean u € R% , variance X € S and autocovariance

function f: RT — My (R) if it has finite second moments and
lim E (X:) = p, lim var (vec (X)) = 2

lim sup {[[cov (vec (X¢tn), vec (Xy)) — f(R)[|} = 0.

t=00 peR+
Corollary 5.16 (Consistency of the GMM estimator - L has paths of finite variation). Suppose
that assumptions a, b, |(d.1)|, |(f-D} |(f.2), [(f-DH(F. 7)) [(g.1)| hold and that L has paths of finite
variation. Then, the GMM estimator defined in s weakly consistent.

Proof. Let D € S:{ be a constant matrix, and consider a MUCOGARCH process (Y;)ier+
solving have starting value D. Then, a combination of Assumptions with the
fact that the starting value D is non-random and the hypothesis imposed on the matrices
By, By,Cy allow us to apply Theorem 4.20(ii) in |Stelzer| (2010)) to conclude that the process
(Y3)ier+ is asymptotically second-order stationary. Additionally, Theorem [5.7)(i) ensures that the
process (Y;);cr+ has a unique stationary distribution, is geometrically ergodic and its stationary
distribution has finite first moment, i.e., E||Yy| < oo. Since Y; € ST, and tr(Y*Y) (with tr
denoting the usual trace functional) defines a scalar product on Sy via tr(Y;*Y;) = vec(Y;*) vec(Y7)
it follows that

d d
E(Y;[3 =tr(Y;"Y;) = vec(Yy) vec(Y;) = ZEYW > var(Yii) + > (EYii)? 5.23)

tr(var(¥y)) + [E(Y2)[I3, ¢ > 0.

Since both maps t — E||Y;|| and t — var(Y;) are continuous ((Stelzer, [2010, eqs. (4.7) and
(4.16))), it follows from that lim sup,q E[|Y;||* < oc. Since Theorem (1) implies conver-
gence of the transition probabilities in total variation, which in turns implies weak convergence
(e.g. (Klenkel 2013, Exercise 13.2.2)), we have that Y; 4 Yy as t — oo, with Yj being the sta-
tionary version of Y. Hence, we can use the continuous mapping theorem and (Billingsleyl, |2008],

Theorem 25.11) to conclude that E||Yp||?> < oo. Finally, the result follows by an application of
Lemma [3:2] Theorem [5.2] Corollary 5.8 and Remark [A.2] O
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Recall that for the asymptotic normality result, we need to ensure that the stationarity
distribution of the MUCOGARCH volatility process has more than 4 moments (cf. |(e.1))). This

is summarized in the next corollary.

Corollary 5.17 (Asymptotic normality of the GMM estimator). If Assumptions a, b, |(d.1)|

(d.2)}, [(d.4)l, f and g hold, then the GMM estimator defined in (5.3|) is asymptotically normal
with covariance matriz as in (5.7)).

Proof. By the same arguments of (Stelzer, 2010, Theorem 4.5) combined with (Lindner and
Maller, 2005, Proposition 4.1) and |(g.2)| it follows that E||Yy||” < oo for some p > 4. The rest
of the proof is just an application of Theorem [5.5] O

Remark 5.18. The advantage of Corollaries[5.15[5.17 is that Assumption f can be checked nu-
merically and Assumption g holds true if e.g., the Lévy process L is a compound Poisson process
with jump distribution having a density which is strictly positive around zero (see Theorem .

If holds, the stationary distribution of Y is automatically a maximum irreducibility
measure. All mazimal irreducibility measures are equivalent and thus the support of the stationary
distribution has a support which has non-empty interior. The latter in turn implies that the
variance has to be an invertible operator (non-invertibility is equivalent to the distribution being
concentrated on a proper linear subspace) which is for 0.

In the next section, we investigate the finite sample performance of the estimators in a

simulation study.

6 Simulation study

To assess the performance of the GMM estimator, we will focus on the MUCOGARCH model in
dimension d = 2. We fix L, = LY+ /oW, for t € R* where L? is a bivariate compound Poisson
process (CPP), W is a standard bivariate Brownian motion, independent of L? and oy > 0 is
fixed. We choose L° as a CPP, since it allows to simulate the MUCOGARCH volatility process
V exactly. Thus, we only need to approximate the Brownian part of the (log) price process
G in , which is done by an Euler scheme. Setting L° as a CPP is not a very crucial
restriction, since for an infinite activity Lévy process one would need to approximate it using
only finitely many jumps. For example by using a CPP for the big jumps component of L° and an
appropriate Brownian motion for its small jumps component (see |Cohen and Rosinski| (2007))).
In applications, a CPP has also been used in combination with the univariate COGARCH(1,1)
process for modeling high frequency data (see Miiller| (2010)). The jump distribution of L? is
chosen as N(0,1/415) and the jump rate is 4, so that var(L;) = 2[5 and

E[vec([L, L*]°), vec([L, L*]°)*]3 = 1/4(I4 + Ko + vec(I3) vec(I2)*).

In this case, the chosen Lévy process L satisfies Assumptions a from Section (with o, = 1 and
ow > 0). Based on the identification Lemma we assume that the model is parameterized
with = (61, ..., 011)), and the matrices Ay, By and Cy are defined as:

(L) 92 ) p6) IR IC)
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with #2) > 0 and 0 # #®). Thus, Assumption and are automatically satisfied. The
data used for estimation is a sample of the log-price process G = (G;)!_; as defined in
with true parameter value fp € © C R observed on a fixed grid of size A = 0.1 (the grid size
for the Euler approximation of the Gaussian part is 0.01).

We experiment with two different settings, namely:

Example 6.1. We fiz oy =1,

0.85 0.10 —2.43 0.05 1 0.5
Ay, = , By, = and Cy, = . 6.1
% (—0.10 0.75) % ( 0.05 —2.42> % (0.5 1.5) (6.1)
Example 6.2. We fiz oy = 0, Ag, and Cy, are as in Ezample and
1(-2.43 0.05
By, = — . 6.2
Ty < 0.05 —2.42> (6:2)

For the chosen Lévy process here, Assumption is satisfied. In Example g is chosen
in such a way that the asymptotic normality of 6,, can be verified. Then, in Example we
rescale By, from Example @ in such a way that our sufficient conditions for weak consistency
are satisfied, but our sufficient conditions for asymptotic normality in Corollary are not
satisfied.

Due to the identifiability Lemma we need to choose r > 2. For comparison pur-
poses, we perform the estimation for maximum lags r € {2,5,10} and sample sizes n €
{1000, 10000,100000}. The computations are performed with the optim routine in combination
with the Nelder-Mead algorithm in R (R Core Team| (2017))). Initial values for the estimation
were found by the DEoptim routine on a neighborhood around the true parameter 6y. We only
consider estimators based on the identity matrix for the weight matrix € in . The results
are based on 500 independent samples of MUCOGARCH returns.

In the following we report the finite sample results of the GMM for Examples and

6.1 Simulation results for Example

We can check numerically that the matrices Ag,, By, and Ag, are such that Assumptions b and

hold. Additionally, the eigenvalues of the matrix By, + By + orAj Ag, are —4.067
and —4.328, so it is negative definite and Assumptions holds. For our choice of 8y we have
that By, is diagonalizable with By, = Sg, Do, 5, ! where

—0.671 —0.741 —2.375 0
Sgo = and Dgo = .
—0.741 0.671 0 —2.475
In addition, for p = 4.001,

/R2((1 + agy || vee(yy™) sy, )” — Dvr(dy) + 2pmax{R(o(By,))} = —0.024 <0, (6.3)

s0|(g.2)|is also valid. Therefore, all assumptions for applying Corollary can be verified, which
imply assumption e, and ensure asymptotic normality. We also note that the chosen parameters

are very close to not satisfying Assumption (6.3)).
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We investigate the behavior of the bias and standard deviation in Figure[I] where we excluded
those paths for which the algorithm did not converge successfully (around 10 percent of the paths
of length n = 1000 and less than 3 percent for larger n). Figure [1| show the estimated absolute
values of the bias and standard deviation for different lags r and varying n. As expected, they
decay when n increases. Additionally, the results favor the choice of maximum lag » = 10, which
is already expected since using more lags of the autocovariance function usually helps to give
a better fit. It is also worth noting that the estimation of the parameters in the matrix By, is
more difficult than the other parameters, specially for n € {1000,10000}.

Figures 2| and 3| assess asymptotic normality though normal QQ-plots. Based on the previous
findings we fix r = 10, since it gave the best results. This might have to do with the fact that
using just a few lags for the autocovariance function (r = 2 or » = 5) are not sufficient for a
good fit. Here we do not exclude those paths for which the algorithm did not converge (these
are denoted by large red points in the normal QQ-plots in Figures [2[ and . These plots are
clearly in line with the asymptotic normality of the estimators. It is worth noting that the tails
corresponding to the estimates of By, deviate from the ones of a normal distribution for values of
n € {1000,10000}, but they get closer to a normal distribution for n = 100 000. The tails of the
plots for A(2,1),(§n in Figure [2|is not close to a normal (although the plots show its convergence).
This is maybe due to identifiability condition in Lemma which requires A 1)9 > 0 but
A2,1),6, = 0.1 is very close to the boundary. For n = 1000, there are very large negative outliers

for the estimates of By,, which affects the bias substantially.
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Figure 1: Example 1: Estimated absolute bias (lhs) and standard deviation (rhs) of 6, .. The colors green,
blue and red correspond to r = 2,5 and 10, respectively.
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Figure 2: Example 1: Normal QQ-plots of 8,, 19 for 6y as in (6.2). The red dots are values for which the

algorithm did not converge.
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Figure 4: Example 2: Estimated bias and std of én,r. The colors green, blue and red correspond to r = 2,5

and 10, respectively.
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Figure 5: Example 2: Normal QQ-plots of én,lO for 6y

algorithm did not converge.
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Figure 6: Example 2: Normal QQ-plots of én,lO for 6y as in (6.2)). The red dots are values for which the

algorithm did not converged.

6.2 Simulation results for Example
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In this section we analyze the behavior of the GMM estimator when the consistency conditions

are valid, but we cannot check the conditions for asymptotic normality. Here, we have o(By,/4+

25

0000T =u 000T =Uu

00000T =U

0000T =u 000T =u

00000T =Uu



B /4 + or Ay Ag,y) = {—0.594, —0.619} € (—o00,0) + iR. Thus, Corollary applies and gives
weak consistency of the GMM estimator. On the other hand, for p = 4.001 the integral in
is 14.22 > 0, and thus, we cannot apply Corollary to ensure asymptotic normality.

The results for Example are given in Figures The estimation of the entries of By,
does not seem to be substantially more difficult than the entries of Ag, and Cp,, as observed in
the previous example. Also, the estimated bias and std decreases in general as n grows, showing
consistency of the estimators. Also, the convergence rate seems slow and, therefore, probably
smaller than n'/2 (the asymptotic normality rate from Theorem [5.5). The QQ-plots for the
estimation of the parameters Ay 1), C(1,1) and C(y 1) also show some deviation from the normal

distribution.

7 Real data analysis

In this Section, we fit the MUCOGARCH model to 5 minutes log-returns of stock prices corre-
sponding to the SAP SE and Siemens AG companies (the data was obtained from the Refinitiv
EIKON system). For both datasets we have excluded overnight returns. The resulting bivariate

dataset has a total length of 12 135 (from 30-jun-2020 to 15-dez-2020) and is shown in Figure
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Figure 7: Log-returns (top) and sample acf of squared log-returns (bottom) for SAP SE (left) and Siemens

AG (right) exchange rates.
Based on the sample autocorrelation function of the squared log-returns we decided to use

15 lags to estimate a bivariate MUCOGARCH model. Before moving to the estimation step,
we re-scaled the data multiplying it by 1000 for numerical reasons. Since the GMM algorithm
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from requires a starting value, we first fit a one-dimensional COGARCH to each dataset
with the algorithm described in (Haug et al., 2007, Algorithm 1) and used them to construct
the corresponding 2-dimensional MUCOGARCH describing two independent log-return price
process. This will be a MUCOGARCH process whose parameters A, B, C' are diagonal matrices
and the driving Lévy process has independent components (Stelzer, 2010, Example 4.2). To
construct a second step GMM estimator, we use the estimated parameters from the first step to
estimate a weight matrix to replace €2 in . Indeed, as explained in (Matyas, 1999, Section
1.3.3), and given a consistent estimator f]go of Yg,, an asymptotically more efficient estimator
can be constructed as

0 = arg min {(l%n,r — ko) S0y (kny — ka,r)}- (7.1)
e

Given a bivariate dataset of log-price returns of size n following a MUCOGARCH model,
we can see from (5.6 that a natural estimator for Xy, is
1 n
Snar = Y (D= k) (De = kng) '+

=1 (7.2)

n M
% Z Z {(Dt = kny)(Deri = ng)* + (Degi — bing)*(Dy — kiny)}, M EN,

t=1 i=1
where we truncated the infinity sum in . The above estimator is a symmetric matrix,
regardless of the values chosen for M and n. As done in the proof of Lemma sufficient
conditions for it to be consistent are assumptions a, b, ¢ and On the other hand, we
cannot guarantee that it is going to be positive semidefinite, which is a condition required to
use it as a weight matrix in the estimator from . One way around it is to use the simpler

estimator (as in (Stelzer et al., 2015, Section 4.1)) of ¥y,, which ignores the second summation
on the rhs of (|7.2)), namely,

n
&\ (basiccov) _ 1 - S,
$;(basieCOV) _ - > (Di = kns)(Di = kny)*, MEN, (7.3)
t=1
The resulting estimators when applying the 2 step GMM with (7.3) for the bivariate dataset of

5min log-returns are given by:

e <0.442 0.259) . (—0.146 —0.014> d O <0.257 —0.134)‘ 7
0.054 0.054 —0.014 —0.080 —0.134 0.070

The parameters of the Levy process were chosen to be the same from example 1 as they allow
us to check consistency and asymptotic normality conditions. According to Corollary the
estimated parameters given in describe a MUCOGARCH model for which the GMM es-
timators is consistent. For the asymptotic normality, we need to verify assumption (f.8), which
requires computing m(p, 6p) with 6y replaced by a vector formed with the entries of the matrices
in (7.4). This computation results in 2.98, and therefore (£.8) is violated, and we cannot ensure
asymptotic normality.

To assess performance of the GMM estimator used to estimate the MUCOGARCH model
for real data, we perform a simulation study using the values from as #y. The results are
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Estimated Bias - GMM
True Value 1step 2 step (BasicCOV) 2 step (M =10) 2 step (diagCOV)

s 0.442 -0.024 -0.094 -0.055 -0.073
6 0.259  0.016 -0.026 0.040 -0.034
6 0.054  0.086 0.120 0.121 0.100
S 0.194  0.164 0.170 0.151 0.169
o) -0.146  0.010 0.014 -0.043 0.031
6(®) -0.014  -0.085 -0.076 -0.091 -0.072
67 -0.080 -0.081 -0.077 -0.162 -0.058
6 0.257  0.091 0.129 0.248 0.083
0 -0.134  0.147 0.148 0.176 0.148
610) 0.070  0.136 0.157 0.315 0.137

Estimated Std - GMM
True Value 1step 2 step (BasicCOV) 2 step (M =10) 2 step (diagCOV)

6 0.442  0.101 0.084 0.207 0.100
62 0.259  0.123 0.112 0.261 0.112
6 0.054  0.088 0.086 0.169 0.093
) 0.194  0.109 0.108 0.193 0.110
6 -0.146  0.080 0.091 0.402 0.067
6(®) -0.014  0.073 0.081 0.398 0.065
67 -0.080  0.072 0.085 0.650 0.062
6(®) 0.257  0.112 0.113 0.909 0.168
0 -0.134  0.093 0.101 0.645 0.139
610 0.070  0.091 0.103 1.137 0.126

Table 7.1: Estimated bias and std of ,, (1 step GMM) and HA%QZ, the 2 step GMM with 3 different
weighting matrices, namely: basicCOV from (7.3)), fullCOV from (7.2) with M = 10 and diagCOV, a
diagonal weighting matrix formed with the diagonal entries of (7.3).

reported in Table [7.1] and referred by basicCOV. We also compare it with the first step GMM
and two other 2 step GMM estimators: one using f)n, M from with M = 10 as a weight
matrix and another which uses a weighing diagonal matrix formed with the diagonal of ﬁ]m M-
These are referred in Table as fullCOV and diagCOV, respectively. Using fullCOV did not
improved the estimates when compared with basicCOV and diagCOV, and that might be to do
with the fact that inverting the estimated covariance matrix gave several warnings during the
estimation. The estimator based on diagCOV was somehow similar to the 1 step GMM, giving
smaller bias and std for the parameters (6 — #(® which correspond to the matrix B. The fact
that the 2 step GMM did not improved the 1step GMM results, might be because the sample

size n used to estimate the covariance matrix is too small.
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A  Proofs

A.1 Auxiliary results

Several results related to the algebra of multivariate stochastic integrals will be used here, for

which we refer to Lemma 2.1 in |Behme (2012). Furthermore, we need the following.

Fact A.1 ((Stelzer, [2010, Lemma 6.9) with drift). Assume that (X;);cr+ is an adapted cadlag
My(R)-valued process satisfying E(||X¢||) < oo for all t € R, t — E(||X¢]|) is locally bounded
and (Ly)ter, is an R%-valued Lévy process of finite variation with E(||L1||) < oo. Then
A A
E / Xy dL, = / E(X,_)E(L1)ds.
0 0

Fact A.2. Let (A¢)ier+ in Mg(R), (Bi)ier+ in My 42(R) be adapted caglad processes satisfying
E||A¢||[|Be|| < oo for allt € RT, t — E||A¢||| B is locally bounded and (Ly)ier, be an R? valued
Lévy process satisfying Assumption 5.2 in|Stelzer| (2010). Then,

E/O Agd(vec([L, L]s))Bs = (ow +UL)/0 E[Ag vec(1;)Bg|ds.

Proof. First notice that vec([L, L];) is an R¥-valued Lévy process with finite variation. Then it
follows from Fact [A.] that

vec (E /Ot Agd(vec([L, L]s))BS) = IE/Ot(Bs ® Ag)d(vec([L, L])
— /OtE(BS ® Ag)E(vec([L, L)1))ds = (ow + o) /Ot E(Bs ® As) vec(Ig)ds
= (ow + o) vec (/OtE(ASIdBS)ds>,

so the result follows by an application of vec™!. O

Proof of Lemma It follows from (Stelzer} [2010, Proposition 4.7) (with k& = p) that
E||Y;||P < oo for all t € RT and ¢t — E||Y;||P is locally bounded. Then an application of (Protter,
2005, Theorem 66 of Ch. 5) together with the fact that E|L1||?’ < oo and the definition of

(Vi)ter, in (3.2) gives for all t > 0

t 2
/ vM2ar,
0

Lemma A.1. Assume that Assumptions|(a.1){(a.4)|, b and|(c.2)| hold. Then,

cov(vec(Ya), vec(G1G7)) = cov(vec(Ya), vec(GAGA))
= var(vec(Vp)) (82 — Ip)[(ow + or)(B*) 1 —2((A® A)*)7Y, A>0.

B[l Gl = E'

14 t t
< c/ E||V?|12Pds < c/ E|C + Y,_|/Pds.
0 0

(A1)
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Proof. Since |(a.4)] [(a.1)] and |(¢.1)| hold, we can apply Lemma with p = 2 to conclude that
both || vec(Ya)|| and ||G1G7|| are square integrable random variables and thus, the covariance
at the left hand side of (A.1)) is finite. Integration by parts formula (Stelzer, 2010} p. 111) gives

A A A
CACH _/ Vsl_/2dLsG:+/ Gg_@:{/ﬂ%/ VY2A[L, L, VY2 = A+ AR +Ca. (A2)
0 0 0

It follows from Lemma (a) and (b) with p = 2 together with the Cauchy-Schwarz inequality
that

t t
1/2 1/2
AEmWﬁmmsmﬂusé(wm|@/ow@|®/dw«m (A.3)

where the finiteness is due to the fact that the integrand is locally bounded, and thus, also
bounded on (0,t). Therefore (A;)icp+ is a martingale and A; € L? for all + > 0. Thus, the
integration by parts formula, the formula d(vec(4s))* = AL (Gi_ ® V1/2) (Lemma 2.1(vi) in
Behme (2012))) imply

cov(vec(Ya), vec(An))
= E(vec(Ya)(vec(Aa))*) — E(vec(Ya))E(vec(An))*

A A
=B [ el a(see(an) + [ dvec()(vec(d ) + lee(Y) (ec(a)) ] ) 0
A
=0+ E/O dvec(Ys)(vec(As_))* + E([vec(Y), (vec(A))*]a).
(A.4)

The first expectation in (A.4]) vanishes since
A 1/22
| ElvecvoPIG v as
8 1/2
S/ (El| vee(Ys)[|) 2 (B G |) 4 B[ VL)) 4ds < oo
0

by the generalized Holder inequality with (1/2+1/4 +1/4 = 1) (see e.g. (Kufner et al.l 1977,
Theorem 2.1)), Lemma/|3.2|and the fact that (L;);er, is an L?-martingale. Let C := (BRI+I®B)
and recall from p. 84 in [Stelzer (2010)) that

dvec(Ys) = Cvec(Y,_)ds + (A® A)(V? @ V) d vee([L, L]). (A.5)

Using (A.5]), the bilinearity of the quadratic covariation process, (Behme, 2012, eq. (2.1)),
Lemma Facts [A.1} |(a.3), (A.3]) and the It6 isometry we obtain

[vec(Y), (vec(A))*|a

_ U Crvec(Y. ds+/'(A®A)(v1/2®Vl/z)dvec([L,L]g),/'dL:(G* o VY2
0 0 A

_ / (A® A) (V2@ VI dvee([L, L), L*)(G:_ @ V). (A.6)
0

Recall that for arbitrary matrices M € M, »(R) and N € Mj,;(R) it holds [|A® B2 = || Al|2|| B2
(Bernstein, 2009, Fact 9.9.61). This together with the Holder inequality with (3/4 + 1/4 = 1)
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and Lemma [3.2] with p = 4 gives
A A
1/2 1 2 1 2 1/2 X
| BV e vl o Vs = [T EIVI3IG; - ads
A 3/2 A
=/ E|[Vee |13 1G5_[l2ds S/ (Bl Ve [13)* (B G5_12)"/*ds < oo.
0 0
Thus, applying expectations at both sides of (A.6|) gives
Elvec(Y), (vec(A))*]a = 0. (A.7)

Let I := Evec(Y;)(vec(As))* and notice that it follows from Lemma and the Cauchy-
Schwarz inequality that E||ls|| < oo and s — E||l5|| is locally bounded. Use (A.5)), (A.7), the
compensation formula, (Bernstein, 2009, Proposition 7.1.9), Evec(V;)vec(As—) = Is, the Itd

isometry and to get
A
Ian = IE/O dvec(Ys)(vec(As—))"
_ / : [Cvee(Y,_)ds + (A ® A)(V}/? @ V) d(vee([L, L]2)] (vec(As_))*
~ OA
_é /0 E vec(Y;_)(vee(A,_))*ds (A.8)
top / . E[(A® A)(V? & V%) vee(I) (vee(As_))*]ds
0

= (C+oL(A® A)) /0A lsds.

Solving the matrix-valued integral equation in (A.8]) and using that Ay = 0 implies [y = 0, gives
ls =0 for all s > 0 (see [Haug et al.| (2007)). Thus, it follows from (A.4)-(A.8|) that

cov(vec(Ya), vec(Aa)) =0, (A.9)
and, as a consequence cov(vec(Ya),vec(AX)) = 0. Let V,_ := Vl/2 ® Vl/2 Then,
vec(Ca) = / Vs—dvec([L, L*] / Vs_dvec([L, L*]?) (A.10)

A
—i—aw/ 1/2 1/2) vec(Ig)ds = / V,_dvec([L, L*]?) + JW/ vec(V;_)ds.
0 0
Using the compensation formula, Fact and the stationarity of (V;)scr, we get
A A
IE/ Vs_dvec([L, L") = (ow + UL)/ EVs_ vec(Ig)ds = A(ow + or)Evec(Vy). (A.11)
0

Additionally, it follows from Lemma [3.2] that E|| vec(V;) vec(Ya)*|| < oo for all s > 0 and that
s+ E|| vec(Vs) vec(Ya)*|| is locally bounded. Then,

E< /O > vee(Vo)ds (VeC(YA))*) - /0 ® Evee(Va_) (vee(Ya ) ds

A
= Avec(C)(Evec(Yp))* —i—/o E vec(Y;)(vec(Ya))*ds.
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Now it follows from the invertibility of (A ® A) and from the second equation following (3.5) in
Stelzer| (2010) that

A
/ Vs_dvec([L, L*]?)
0 (A.12)

A
= (A A)! <V€C(YA) — vec(Yp) — / (BeI1+1® B) Vec(YS_)ds).
0
The representation in (A.12)) gives

EK /0 ® Vs_dvec([L,L*]g)>(vec(YA))*]

A

- E [(A @A)~ ((vee(Ya) — vee(¥p) - /

| Beltion Vec(YS_)ds) (vec(YA))*]

= (A A)™! [E vec(Ya)(vec(Ya))" — Evec(Yy)(vec(Ya))*
A
_(B®I+I®B)/ Evec(YS_)(vec(YA))*ds]. (A.13)
0

Using the definition of Cx in (A.2)), together with (A.10), (A.11)) and (A.13]) gives

cov(vec(Ca), vec(Ya)) = (A® A)~! [Evec(YA)(vec(YA))* — Evec(Yy)(vec(Ya))*

A
(BeI+I®B) (/0 Evec(YS_)(vec(YA))*dsﬂ
+ Aoy vee(C)(E vee(Yy))* + ow /0 ® Evec(Ya_) (vee(Ya))*ds
—A(ow + o1)E vee(Vo)E(vec(Ya))*
—lowlp — (A2 A (BeI+I1%B) /OA E vee(Y;) (vee(Ya))*ds
+(A® A)~ ! [var(vec(Yy)) — cov(vec(Yp), vec(Ya))] — Aoy vec(C)E (vec(Yp))*

—A(ow + or)E vec(Yy)E(vec(Yp))™,

where the last equality follows from Vj = C + Yj and the stationarity of (Y;)ser, . Using (4.2)
it follows first that

A A
/ E vec(Y;)(vec(Ya)) ds = / eBA=)var(vec(Yp))ds 4+ AE vec(Yp)E(vec(Yp))* (A14)
0 0 )
= B71(PA — Ip)var(vec(Yp)) 4+ AE vec(Yy)E(vec(Yp)),
and second that

var(vec(Yp)) — cov(vec(Yp), vec(Ya)) = — (€82 — I )var(vec(Yp)). (A.15)

Substituting B® I +1® B =B —o,(A® A), using (A.14), (A.15)), (4.1) and the formula for
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E vec(Yp) in gives
cov(vec(Cp), vec(Ya))
= [owlp — (A® A)7HB - o(A® A))] [B7H (P2 — Ip)var(vec(Ys))

+ AE vec(Yp)E(vec(Yp))*]
— (A® A)"HePA — Ip)var(vec(Yy)) — Ao vee(C)E(vee(Yp))*
— A(ow + or)Evec(Yy)E(vec(Yp))*
= [(ow +or)B™' = 2(A® A) (P — I )var(vec(Yp))
— [(A® A) "' BE vec(Yy) + o1, vec(C)| AE(vec(Yp))*
= [(ow +or)B™' —2(A® A) 7| (PA — I)var(vec(Yp))
- [(4A® A IB(—o B HA® A)vec(C)) + o, vec(C)] AE(vec(Yp))*
= [(ow + oL)B1—2(A® A)_l} (B2 — Ip)var(vec(Yp)).
Finally, the result of the Lemma follows from (A.2)), (A.9), (A.16) and the fact that

(A.16)

cov(vec(Ya), vec(GAGR)) = (cov(vec(GAGR), vec(Ya)))™ = (cov(vec(Ca), vec(Ya)))".

A.2 Proof of Lemma [4.2]

(i) The proof of Lemma [4.2] (i) follows directly from Lemma combined with (5.7) in Stelzer
(2010).
(ii) Denoting by || - || # the Frobenius norm we have by Lemma [3.2(b) with p = 2

E|| vec(G1G7) vec(G1G7) |l = EHVGC(GlGT)H%:EHGlGT”%
= tr(G1GiG1GY) = E||G4 )} < .

Let as := vec(GsG%), s € [0, A] and use the integration by parts formula to write

A A
Apnan = / as—d(aj) +/ das(a;_) + [a,a*]a
0 0

_ (/OAdas(a;_)>*+/0Adas(a:_)—|—[a,a*]A

hence we only need to prove that the random variables

A
/ das(a:_) and [a,a’]a,
0

have finite expectations and compute them in closed form. From ((A.2]), Lemma 2.1(vi) in Behme
(2012) and the symmetry of (V;)iecr, it follows that

(A.17)

da; = d(vec(GGY))

t t
- d(vec (/ Vsl_/QdLSG:Jr/ GS_dL:Vsl_/Q—ir/ VM24(L, L), v1/2>)
0 0 0

t t t
_ d( / (Gs- @ VHHAL, + / VM@ G, )AL, + / (V1/2®V1/2)dvec([L,L*]s)>

0 0 0
= (G eV + VM 2 G )L+ (VY2 @ V) dvec([L, L*),), t> 0. (A.18)
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By the sub-multiplicative property of || - ||2, the generalized Holder inequality with (1/4+1/4 +
1/2 =1) we have

A A
12 1/2 *
/0 E|Gs- ® V2|3llas_|2ds = /0 EIGo [2IV2 13 vee(GuG2)2ds (A19)
A A
- / E|[Ga_ |2V 121Gs G |3ds < / (EIIGa_ |84 EIIVa_ |24 (B Go_ 1§/ 2ds,

which is finite by Lemma with p = 4. Additionally, similar calculations and Lemma [3.2| with

= 2 shows that u»z(”vl/2 V2 1) las— 2 < (B Ve |I2)Y2(E[|Gs_ |32 < 0o for all s> 0 and
the map s — ]E(||V1/2 1/2||2Has |l2) is locally bounded. Thus it follows from , the 1t6
isometry, the fact that [L, L*]; = [L, L*]2 + 0,4t and fact [A.2] that

A
E / das(a)
0

A 1/2 1/2 A
= E(/ (Gs— & Vvs,/ + ‘/s,/ X GS_)dLsa:_ + /
0 0

V0V (el (L. 105
A
= (o1, +aw)</0 E((V,)? & Vl/2)vec(Id)a:)ds>

A
= (op + UW)/O E(vec(Vs—)a:_)ds.
(A.20)

It follows from (5.6) in Stelzer| (2010) that

A A
% 1
/ Ea}_ds = / (vec((or + ow)sEVp)) "ds = 5(0[, + ow ) A%E vec(Vp)*. (A.21)
0 0

Since we assumed here that all hypothesis for using Lemma are valid, we can use ((A.1)) with
A = s to get
A
/ cov(vec(Ys_),as—)ds
0

A
= V&I‘(V@C(Yb))(/ﬂ (eB*s . Id2)d3> [(UW + O'L)(B*)il _ 2((A Q A)*)—l] (A.22)

= var(vec(Yp))B,

where B is defined in (&.7). Using (A.20), [(c.1)| (A.21)), (A.22) gives

A A A
/0 Evec(Vs_)as_dS—/O cov(vec(Vs_),as_)ds—i—(Evec(Vs))/O E(a;_)ds

A A
= /0 cov(vec(Ys_),as—)ds + (E Vec(Vo))/O E(a:_)ds (A.23)
%(JL + ow ) AE vec(Vp) E vec(Vy)* + var(vec(Yy)) B
= (o + Uw)le,
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where D is defined in (4.6). Let fs := (Gs— ® ‘/;112 + V;,/2 ® Gs—),s > 0 and recall Vs_ =
Vl/2 ® Vl/2 Using (A.2), Lemma 2.1(vi) in Behme (2012) and the symmetry of 1/'51,/2 gives

[a,a%]a

_ [Vec ( / vi2aL,cr + / G, dLVY? ¢ / V;/Qd[L,L*]SVSm),

0 0

<v </ v M2drL,Gr /G dL;tV;/QJr/ v (L, L7, V1/2>> ]

[/ fo—dLs + /V _dvec([L, L*] /de +/dvec LL*S)*)VS} (A.24)
= /O fsrd[L, Lo fo— + /0 fs—d[L, vec([L, L*])*]sVs—

A A

+/ Vs_d[vec([L, L*]), L*]s fr_ +/ Vs—d[vec([L, L*]), vec([L, L*])*]Vs—
0 0

=10+ I+ I3+ 1.

By Lemma 3.2 with p = 2 and similar calculations as in (A.19) it follows that E||Vs_|[|| fs—|| < oo
for all s > 0 and the map s — E||Vs_|||| fs—| is locally bounded. Thus, it follows from ((a.3)

that we have EI;, = El3; = 0. Now, Lemma gives E||Vs_||? < o for all s > 0 and local

boundedness of the map s — E||V,_||>. Using the second-order stationarity of (Vs)ser, in|(c.1)

the compensation formula and the formulas at p. 108 in |Stelzer| (2010)
A
El, E( / Vs_d[vec([L,L*]),vec([L,L*])*]VS_>
0

= S Vdiveel[L, L°P), (vee([L. L) PY.-)

A
= /0 IE(VS*PL[Id2 + Kg + vec(ly) VeC(Id)*]st)ds (A.25)

A
. /0 (Q + KyQ + Lp)E(vec(Vy) vee(Vs)*)ds
= Apr(Q + K4Q + 12)E vec(Vy) vec(Vp)*.

To compute EI; we will need the following matrix identity, which is based on Fact 7.4.30 (xiv)
in Bernstein| (2009). Let A € My (R) and B, B® € My 4(R) be symmetric matrices. Then,

(A B+B® A)(A®B+B®A)*=(A® B+ K4(A® B))(A® B+ K4(A® B))*
= (I + K3)(A® B)(A* ® B)(I + Kq) = (I + K3)Q vec(AA*) vec(B*)(I + Kg).
(A.26)

Write bs := Evec(GsG%) vec(Vs)*, which is finite by Lemma with p = 2. Using the
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compensation formula, (A.26]) and the definition of f; gives
A
B( [ fedrzn)
0
A
- (01 —i—aw)/ E(f,f7)ds
0
A
— (o1 + ow) / B, o V24V 0a, )G o V2 v Pa Gt )ds  (A27)
0
A
= (o1 —l—Jw)/ (I 4+ Kg)Qbs(I + Kg)ds
0
A
— (o +ow)(I + K0)Q (/ bsds> (I+Ky).
0
Finally, it follows from (A.23)) that

A A
/ bids = / Evec(Vs)ak_ds = (o + ow) 'D. (A.28)
0 0

The result now is a direct consequence of (A.17)), (A.23)), (A.24), (A.25), (A.27) and (A.28).

Remark A.2. An inspection of the proofs of Lemmas [{.9 and shows that the moment
assumptions and|(c.2)| are only needed to compute expectations of stochastic integrals with

the integrator L. If L has paths of finite variation, these expectations can be computed by using

the compensation formulas given in Facts and [A.9 without and|(c.2)|
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