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Abstract

We consider a mixed moving average (MMA) process X driven by a Lévy basis
and prove that it is weakly dependent with rates computable in terms of the mov-
ing average kernel and the characteristic quadruple of the Lévy basis. Using this
property, we show conditions ensuring that sample mean and autocovariances of X
have a limiting normal distribution. We extend these results to stochastic volatility
models and then investigate a Generalized Method of Moments estimator for the
supOU process and the supOU stochastic volatility model after choosing a suitable
distribution for the mean reversion parameter. For these estimators, we analyze the
asymptotic behavior in detail.
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1 Introduction

Lévy-driven continuous-time moving average processes, i.e. processes (Xt)t∈R of the form
Xt =

∫
R f(t− s)dLs with f a deterministic function and L a Lévy process, are frequently

used to model time series, especially, when dealing with data observed at high frequency.
Moreover, causal moving averages can be used to model the volatility process when the
dynamics of a logarithmic financial asset price are modeled. Popular examples include,
for instance CARMA processes [16, 39], the increments of fractionally integrated Lévy
processes [38] and non-Gaussian Ornstein-Uhlenbeck type processes [9] where f(s) =
eas1[0,∞)(s) with a ∈ R−. By allowing f to depend on a random parameter A and replacing
the Lévy process by a Lévy basis one arrives at so-called mixed moving averages (MMA
in short) as for instance in [3, 10, 27].
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An important example of MMA are the supOU processes studied in [3, 10, 25, 27].
In the univariate case, assume

∫
|x|>1

log(|x|) ν(dx) <∞ and
∫

R− −
1
A
π(dA) <∞, where ν

is a Lévy measure and π is the probability distribution on R− of the random parameter
A, see Definition 2.1 for details. If Λ is a Lévy basis on R with those characteristics, then
the process

Xt =

∫
R−

∫ t

−∞
eA(t−s) Λ(dA, ds) ∀t ∈ R,

is called a supOU process. Whereas a non-Gaussian Ornstein-Uhlenbeck process neces-
sarily exhibits autocorrelation eah for h ∈ N, the supOU process has a flexible dependence
structure. For example, its autocorrelations can show a polynomial decay depending on
the probability distribution π. Moreover, when a discrete probability distribution π for
the random parameter A is considered, we obtain a popular model used, for example, in
stochastic volatility models [3], in modeling fractal activity times [36, 37] and in astro-
physics [35].

MMA processes can also be used, under suitable conditions, as building blocks for
more complex models. We study in this paper the class of MMA stochastic volatility
models. An example of the class is the supOU SV model, defined in [10, 11], where the
log-price process (of some financial asset) is defined for t ∈ R+ as

Jt =

∫ t

0

√
XsdWs, J0 = 0,

and (Ws)s∈R+ is a standard Brownian motion independent of the process (Xs)s∈R+ which
is a non-negative supOU process. Some examples of applications of the supOU SV model
can be found in [12, 32, 49].

The aim of this paper is twofold. First, to show that sample moments of an MMA
and of the returns of an MMA SV model have a limiting normal distribution. Secondly, to
develop a statistical estimation procedure for the MMA and MMA SV model in a semi-
parametric framework, where the distribution of the random parameter A is specified in
detail, and establishing its asymptotic properties.

For this end, it is of high importance to understand the dependence structure of the
class of MMA processes. In [27], it is shown that an MMA process driven by a Lévy basis
is mixing. However, in order to prove distributional limit theorems which enable valid
asymptotic inference stronger notions of asymptotic independence are needed. Often one
applies strong mixing properties (see [21, 46]) to this end. Usually they are established
by using a Markovian representation and showing geometric ergodicity of it. In turn
this requires often smoothness conditions on the driving random noise and it is well-
known that even autoregressive processes of order one are not strongly mixing when the
distribution of the noise is not sufficiently regular (see [1]). We want to obtain results for
MMA processes in general, which typically have no suitable Markovian representation, and
without regularity conditions on the driving Lévy basis apart from moment conditions.
As will become obvious later on, the weak dependence concepts introduced by Doukhan
and Louhichi [23] and Doukhan and Dedecker [18], respectively called η-weak dependence
and θ-weak dependence, are very suitable for our purposes. For an extensive introduction
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on the weak dependence of causal and non-causal processes we refer the reader to [19]. We
then show the asymptotic normality of the sample mean and the sample autocovariance
functions of an MMA process in its non-causal and causal specification. Moreover for the
MMA stochastic volatility models, we show the θ-weak dependence of the return process
and the distributional limit of its sample moments. In [29, 30, 31], the limiting behavior
of integrated and partial sums of supOU processes is analyzed in relation to the growth
rate of their moments, called intermittency when the grow rate is fast. This leads to some
conclusions regarding their asymptotic finite dimensional distributions and to identify
different limiting theorems depending on the short or long memory shown by the supOU
process. In our paper, for short memory supOU processes and more general MMA and
MMA SV model we can additionally give, exploiting the weak dependence properties,
conditions under which functional central limit theorems hold in distribution as well as
consider general moments.

Later in the paper, we discuss a Generalized Method of Moments (GMM in short)
procedure to estimate the parameters of a supOU and supOU SV model. Unfortunately,
the classical and efficient maximum-likelihood approach seems not applicable in this case,
since the density of the supOU processes is not known in general. However, the supOU
process has a known moment structure and GMM estimators can be defined as in [48]. In a
semiparametric framework, we consider in detail the case in which the random parameter
A is Gamma distributed and the moment functions are known in closed form. For the
GMM estimators of the supOU process and the return process of a supOU SV model we
show the asymptotic normality of both estimators (whose consistency has been shown
in [48]). Finally, via an explicit computation of the third and fourth order cumulants of
the supOU and return process, we give the explicit form of the asymptotic covariance
matrices of the GMM estimators.

Interestingly, our result can also be seen as a first step in obtaining an estimation
theory for the ambit processes (homogeneous and stationary) which include an additional
multiplicative random input in the definition of an MMA process, see [4, 5, 8].

The paper is organized as follows. In Section 2, the definition of a Lévy basis and
MMA process is given. In Section 3, the weak dependence properties of an MMA process
are discussed. In Section 4, the asymptotic distributions of the moments of non-causal and
causal MMA processes are shown. In Section 5, the definition of an MMA SV model is
given and the θ-weak dependence of the return process is analyzed along with its sample
moments asymptotic. In Section 6, the asymptotic normality of the GMM estimators of
the supOU process and of the supOU SV model is then proven.

2 Lévy bases and mixed moving average processes

We start with some preliminary results leading to the definition of an MMA process.
Throughout, we assume that all random variables and processes are defined on a given
complete probability space (Ω,A,P) equipped with a filtration when relevant. Let S de-
note a non-empty topological space, B(S) the Borel σ-field on S, π some probability
measure on (S,B(S)) and Bb(S×R) the bounded Borel sets of S×R. A Lévy basis, which
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is also known as an infinitely divisible independently scattered random measure, is defined
as follows.

Definition 2.1. A family Λ = {Λ(B) : B ∈ Bb(S × R)} of Rd-valued random variables
is called an Rd-valued Lévy basis on S × R if:

• the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(S × R),

• for arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ Bb(S × R) the random
variables Λ(B1), . . . ,Λ(Bn) are independent and

• for any pairwise disjoint sets B1, B2, . . . ∈ Bb(S × R) with
⋃
n∈N Bn ∈ Bb(S × R) we

have, almost surely, Λ(
⋃
n∈N Bn) =

∑
n∈N Λ(Bn).

We restrict ourselves to time-homogeneous and factorisable Lévy bases, i.e. Lévy
bases with characteristic function

E[ei〈u,Λ(B)〉] = eΦ(u)Π(B) (1)

for all u ∈ Rd and B ∈ Bb(S×R), where Π = π×λ is the product of a probability measure
π on S and the Lebesgue measure λ on R and

Φ(u) = i〈γ, u〉 − 1

2
〈u,Σu〉+

∫
Rd

ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖) ν(dx)

is the cumulant transform of an infinitely divisible (i.d. in short) distribution with char-
acteristic triplet (γ,Σ, ν), where γ ∈ Rd, Σ ∈ S+

d - i.e. the space of the positive semi-
definite matrices - and ν is a Lévy measure - a Borel measure on Rd with ν(0) = 0 and∫

Rd(‖x‖
2 ∧ 1)ν(dx) < ∞ . By L we denote the underlying Lévy process associated with

(γ,Σ, ν) and given by

Lt = Λ(S × (0, t]) and L−t = −Λ(S × (−t, 0)) for t ∈ R+.

The quadruple (γ,Σ, ν, π) determines the distribution of the Lévy basis completely and
therefore it is called the generating quadruple.

In the following, norms of vectors or matrices are denoted by ‖ · ‖. We are going to
work especially with the Euclidean norm or its induced operator norm unless otherwise
stated. However, due to the equivalence of all norms none of the results in the paper
depends on the choice of the norm. For more information on Rd-valued Lévy bases see
[43] and [45].

Following [43], it can be shown that a Lévy basis has a Lévy-Itô decomposition.

Theorem 2.2. Let Λ be a homogeneous and factorisable Rd-valued Lévy basis on S × R
with generating quadruple (γ,Σ, ν, π). Then there exists a modification Λ̃ of Λ which is
also a Lévy basis with generating quadruple (γ,Σ, ν, π) such that there exists an Rd-valued
Lévy basis Λ̃G on S×Rd with generating quadruple (0,Σ, 0, π) and an independent Poisson
random measure µ on (Rd×S×R,B(Rd×S×R)) with intensity measure ν×π×λ which
satisfy

4



Λ̃(B) = γ(π × λ)(B) + Λ̃G(B) +

∫
‖x‖≤1

∫
B

x(µ(dx, dA, ds)− dsπ(dA)ν(dx))

+

∫
‖x‖>1

∫
B

xµ(dx, dA, ds) (2)

for all B ∈ Bb(S × R) and all ω ∈ Ω.
Provided

∫
‖x‖≤1

‖x‖ν(dx) <∞, it holds that

Λ̃(B) = γ0(π × λ)(B) + Λ̃G(B) +

∫
Rd

∫
B

xµ(dx, dA, ds)

for all B ∈ Bb(S × R) with

γ0 := γ −
∫
‖x‖≤1

xν(dx). (3)

Furthermore, the integral with respect to µ exists as a Lebesgue integral for all ω ∈ Ω.

Here an Rd-valued Lévy basis Λ̃ on S × R is called a modification of a Lévy basis Λ
if Λ̃(B) = Λ(B) a.s. for all B ∈ Bb(S × R). We refer the reader to [34, Section 2.1] for
further details on the integration with respect to Poisson random measures.

We also recall the following multivariate extension of [45, Theorem 2.7]. We denote
by A′ the transpose of a matrix A in what follows.

Theorem 2.3. Let Λ be an Rd-valued Lévy basis with generating quadruple (γ,Σ, ν, π),
f : S × R → Mn×d(R) be a B(S × R)-measurable function. Then f is Λ-integrable as a
limit in probability in the sense of Rajput and Rosiński [45], if and only if∫

S

∫
R

∥∥∥f(A, s)γ+

∫
Rd
f(A, s)x

(
1[0,1](‖f(A, s)x‖)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA) <∞, (4)∫
S

∫
R
‖f(A, s)Σf(A, s)′‖ ds π(dA) <∞, (5)

and ∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx) ds π(dA) <∞. (6)

If f is Λ-integrable, the distribution of
∫
S

∫
R f(A, s) Λ(dA, ds) is infinitely divisible with

characteristic triplet (γint,Σint, νint) given by

γint =

∫
S

∫
R

(
f(A, s)γ +

∫
Rd
f(A, s)x

(
1[0,1](‖f(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

)
ds π(dA)

(7)

Σint =

∫
S

∫
R
f(A, s)Σf(A, s)′ ds π(dA) (8)

and

νint(B) =

∫
S

∫
R

∫
Rd

1B(f(A, s)x) ν(dx) ds π(dA) (9)

for all Borel sets B ⊆ Rn \ {0}.
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Implicitly, we assume that Σint or νint are different from zero throughout the paper
to rule out the deterministic case.

When the underlying Lévy process has finite variation we can do ω-wise Lebesgue
integration; that is, the integral can be obtained as a Lebesgue integral for each ω ∈ Ω.

Corollary 2.4. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ, 0, ν, π)
satisfying

∫
‖x‖≤1

‖x‖ν(dx) <∞, and define γ0 as in (3), that is Φ(u) = i〈u, γ0〉+
∫

(ei〈u,x〉−
1)ν(dx). Furthermore, let f : S×R→Mn×d be a B(S×R)-measurable function satisfying∫

S

∫
R
‖f(A, s)γ0‖ds π(dA) <∞, (10)

and ∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖

)
ν(dx) ds π(dA) <∞. (11)

Then, ∫
S

∫
R
f(A, s)Λ(dA, ds) =

∫
S

∫
R

f(A, s) γ0 dsπ(dA)

+

∫
Rd

∫
S

∫
R
f(A, s)xµ(dx, dA, ds), (12)

and the right hand side is a Lebesgue integral for every ω ∈ Ω. Moreover, the distribution∫
S

∫
R f(A, s) Λ(dA, ds) is infinitely divisible with characteristic function

E
(

exp
(

i〈u,
∫
S

∫
R
f(A, s) Λ(dA, ds)〉

))
= ei〈u,γint,0〉+

∫
Rn (ei〈u,x〉−1)νint(dx) u ∈ Rn,

where

γint =

∫
S

∫
R

f(A, s)γ0 ds π(dA),

νint(B) =

∫
S

∫
R

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA) ∀B ∈ Rn \ {0}.

The above corollary follows immediately from the Lévy-Itô decomposition (2) and the
usual integration theory with respect to a Poisson random measure. We notice that the
result (12) is an immediate consequence of working with an underlying Lévy process of
finite variation, as no compensation for the small jumps is needed if

∫
‖x‖≤1

‖x‖ν(dx) <∞.

We can now introduce an MMA process driven by a Lévy basis.

Definition 2.5. Let Λ be an Rd-valued Lévy basis on S×R and let f : S×R→Mn×d(R)
be a B(S × R)-measurable function satisfying assumptions (4), (5) and (6). Then, the
process

Xt : =

∫
S

∫
R
f(A, t− s) Λ(dA, ds) (13)

is well defined for each t ∈ R, infinitely divisible and strictly stationary. It is called a
n-dimensional mixed moving average process and f its kernel function.
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We conclude the section giving sufficient conditions ensuring the finiteness of moments
of an MMA process.

Proposition 2.6. Let X be an n-dimensional MMA process driven by a Lévy basis Λ
satisfying the conditions of Theorem 2.3.

(i) If
∫
‖x‖>1

‖x‖r ν(dx) <∞ and f ∈ Lr(S×R, π⊗λ) for r ∈ [2,∞), then E[‖Xt‖r] <∞.

(ii) If
∫
‖x‖>1

‖x‖r ν(dx) <∞ and f ∈ Lr(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ) for r ∈ (0, 2),

then E[‖Xt‖r] <∞.

Proof. Following [47, Corollary 25.8], we have to show that
∫
‖x‖>1

‖x‖r νint(dx) < ∞.
Since ∫

‖x‖>1

‖x‖r νint(dx)

=

∫
S

∫
R

∫
Rd
‖f(A, s)x‖r1(1,∞)(‖f(A, s)x‖)ν(dx)dsπ(dA)

≤
∫
S

∫
R

∫
Rd
‖f(A, s)‖r‖x‖r1(1,∞)(‖x‖)ν(dx)dsπ(dA)

+

∫
S

∫
R

∫
Rd
‖f(A, s)‖r∨2‖x‖r∨21(0,1)(‖x‖)1(1,∞)(‖f(A, s)x‖)ν(dx)dsπ(dA),

we can conclude that (i) and (ii) follow, given that ν is a Lévy measure.

If the underlying Lévy process L is of finite variation, an analogous proof gives the
following results.

Corollary 2.7. Let X be an n-dimensional MMA process driven by a Lévy basis Λ sat-
isfying the conditions of Corollary 2.4.

(i) If
∫
‖x‖>1

‖x‖r ν(dx) <∞ and f ∈ Lr(S×R, π⊗λ) for r ∈ [1,∞), then E[‖Xt‖r] <∞.

(ii) If
∫
‖x‖>1

‖x‖r ν(dx) <∞ and f ∈ Lr(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ) for r ∈ (0, 1),

then E[‖Xt‖r] <∞.

3 Weak dependence properties of a mixed moving

average process

Let (At)t∈R be the filtration generated by Λ defined as the σ-algebras At generated by
the set of random variables {Λ(B) : B ∈ B(S × (−∞, t])} for t ∈ R. If an MMA process
is adapted to (At)t∈R, we call it causal. Otherwise it is referred to as being non-causal.

In the following we will refer by N to the set of the non negative integers, by N∗ to
the set of the positive integers, by R− to the set of negative real numbers and by R+ to
the set of the non negative real numbers.
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3.1 Non-causal case

Let
F =

⋃
u∈N∗

Fu

where Fu is the class of bounded functions from (Rn)u to R Lipschitz with respect to a
distance δ1 on (Rn)u defined by

δ1(x∗, y∗) =
u∑
i=1

δ(xi, yi), (14)

where x∗ = (x1, . . . , xu) and y∗ = (y1, . . . , yu) and xi, yi ∈ Rn for all i = 1, . . . , u. We
consider Rn equipped with the Euclidean norm and then δ(xi, yi) = ‖xi − yi‖.

Definition 3.1. A process X = (Xt)t∈R with values in Rn is called an η-weakly dependent
process if there exists a sequence (η(r))r∈R+ converging to 0, satisfying

|Cov(F (Xi1 , . . . , Xiu), G(Xj1 , . . . , Xjv))| ≤ c(uLip(F )‖G‖∞ + vLip(G)‖F‖∞)η(r) (15)

for all

(u, v) ∈ N∗ × N∗

r ∈ R+

(i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv
functions F : (Rn)u → R and G : (Rn)v → R belonging to F and satisfying
‖G‖∞ ≤ 1, ‖F‖∞ ≤ 1 and Lip(F ) + Lip(G) <∞
where Lip(F ) = supx6=y

|F (x)−F (y)|
‖x1−y1‖+‖x2−y2‖+...+‖xn−yn‖

and where c is a constant independent of r. We call (η(r))r∈R+ the sequence of the η-
coefficients.

The above definition makes the asymptotic independence between past and future
explicit, this means that the past is progressively forgotten. In terms of the initial process
X, past and future are elementary events respectively defined through finite-dimensional
marginals as Au = (Xi1 , . . . , Xiu) and Bv = (Xj1 , . . . , Xjv) for i1 ≤ . . . ≤ iu ≤ iu + r ≤
j1 ≤ . . . ≤ jv and r ≥ 0.

The weak dependence property, as stated in Definition (15), depends upon the class
of functions H = {f ∈ F : ‖f‖∞ ≤ 1}. However, it can also be defined in F as dis-
cussed in [23]. Note, a similar definition can be given for the strong mixing property
introduced by Rosenblatt [46]. Let σ(Au) and σ(Bv) be the σ-algebras generated by the
finite-dimensional marginals Au and Bv and F∗ =

⋃
u∈NF∗u where F∗u is the class of

bounded functions from (Rn)u to R. We define

α(σ(Au), σ(Bv)) = sup
f,g∈H∗

|Cov(f(Au), g(Bv))|, (16)
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where H∗ = {f ∈ F∗ : ‖f‖∞ ≤ 1}, and then α-strong mixing coefficient is

α(r) = sup
u,v

max
i1 ≤ . . . ≤ iu
ji ≤ . . . ≤ jv
r = j1 − iu

α(σ(Au), σ(Bv)).

We notice that definition (15) holds for a set of functions in H whereas (16) holds
for functions belonging to H∗. This means that if a process X is strongly mixing then it
is also weakly dependent but the reverse implication does not necessarily hold. The only
known case of the equivalence of the two definitions can be found in [22, Proposition 1]
where it is shown that an η-weakly dependent integer valued process satisfies the strong
mixing condition.

We now show that a non-causal MMA process is an η-weakly dependent process.

Proposition 3.2. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0 and

∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R → Mn×d(R) a B(S × R)-

measurable function and f ∈ L2(S ×R, π⊗ λ). Then, the resulting MMA process X is an
η-weakly dependent process with coefficients

ηX(r) =
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−r)(2s) ds π(dA)

) 1
2

(17)

+
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(r,+∞)(2s) ds π(dA)

) 1
2
,

for all r ≥ 0, where E[L1L
′
1] = ΣL = Σ +

∫
Rd xx

′ν(dx).

Proof. First, we define ∀t ∈ R and m ≥ 0 the truncated sequence

X
(m)
t =

∫
S

∫
R
f(A, t− s)1[−m,m](t− s) Λ(dA, ds) =

∫
S

∫ t+m

t−m
f(A, t− s) Λ(dA, ds). (18)

Since the kernel function f is square integrable, we have that properties (5) and (6) hold
and so f is Λ-integrable (Theorem 2.3) and X is well defined. Moreover, Proposition 2.6
holds, E[X2

t ] <∞ for all t ∈ R and we can determine an upper bound of the expectation

E‖Xt −X(m)
t ‖ = E

∥∥∥∫
S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds) +

∫
S

∫ +∞

t+m

f(A, t− s)Λ(dA, ds)
∥∥∥

≤
(

E
∥∥∥∫

S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds)

∥∥∥2) 1
2

+
(

E
∥∥∥∫

S

∫ ∞
t+m

f(A, t− s) Λ(dA, ds)
∥∥∥2) 1

2
.

Due to the stationarity of X the above estimation is independent of t and equal to(∫
S

∫ −m
−∞

tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)
) 1

2
+
(∫

S

∫ ∞
m

tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)
) 1

2

(19)
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Let F and G belong to the class of bounded functions H, (u, v) ∈ N∗ × N∗, r ∈ R+,
(i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤
jv, X

∗
i = (Xi1 , . . . , Xiu), X∗j = (Xj1 , . . . , Xjv), and X

∗(m)
i = (X

(m)
i1

, . . . , X
(m)
iu

), X
∗(m)
j =

(X
(m)
j1

, . . . , X
(m)
jv

) where for all m ≥ 0

X
(m)
iu

=

∫
S

∫ iu+m

iu−m
f(A, iu − s) Λ(dA, ds) and X

(m)
j1

=

∫
S

∫ j1+m

j1−m
f(A, j1 − s) Λ(dA, ds).

(20)
Then, if j1 − m − iu − m ≥ 0, that can also be expressed as j1 − iu ≥ 2m, Iu = S ×
[iu −m, iu + m] and J1 = S × [j1 −m, j1 + m] are disjoint sets or they have intersection
S × {j1 −m} when j1 − iu = 2m. Noting that π × λ(S × {j1 −m}) = 0 by the definition

of a Lévy basis, the two sequences (X
(m)
i )i1,...,iu and (X

(m)
j )j1,...,jv are independent and so

are F (X
∗(m)
i ) and G(X

∗(m)
j ). Therefore,

|Cov(F (X∗i ), G(X∗j ))| ≤ |Cov(F (X∗i )−F (X
∗(m)
i ), G(X∗j ))|+|Cov(F (X

∗(m)
i ), G(X∗j )−G(X

∗(m)
j ))|

≤ 2(E|F (X∗i )− F (X
∗(m)
i )|+ E|G(X∗j )−G(X

∗(m)
j )|)

the last relation comes from ‖F‖∞, ‖G‖∞ ≤ 1

≤ 2
(
Lip(F )

u∑
l=1

E‖Xil −X
(m)
il
‖+ Lip(G)

v∑
k=1

E‖Xjk −X
(m)
jk
‖
)

using the result (19) for m = r
2

≤ 2(uLip(F ) + vLip(G))
{(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′) 1(−∞,−r)(2s) dsπ(dA)

) 1
2

+
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′) 1(r,+∞)(2s) dsπ(dA)

) 1
2
}

= 2(uLip(F ) + vLip(G))ηX(r),

which converges to zero as r goes to infinity by applying the dominated convergence
theorem.

The following Corollary establishes the η weak dependence of an MMA when its
underlying Lévy process has finite mean possibly different from zero.

Corollary 3.3. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
and

∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R → Mn×d(R) a B(S × R)-measurable function

satisfying assumption (4) and f ∈ L2(S × R, π ⊗ λ). Then, the resulting MMA process X
is an η-weakly dependent process with coefficients

ηX(r) =
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−r)(2s) ds π(dA) (21)
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+
∥∥∥∫

S

∫
R
f(A,−s)µ1(−∞,−r)(2s) ds π(dA)

∥∥∥2) 1
2
+
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(r,+∞)(2s) ds π(dA)

+
∥∥∥∫

S

∫
R
f(A,−s)µ1(r,+∞)(2s) ds π(dA)

∥∥∥2) 1
2

for all r ≥ 0, where E[L1] = µ = γ+
∫
‖x‖>1

xν(dx) and E[L1L
′
1] = ΣL = Σ +

∫
Rd xx

′ν(dx).

Proof. Let X
(m)
t defined as in Proposition 3.2 for all t ∈ R and m ≥ 0. Then, (19) becomes(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(−∞,−m)(s) ds π(dA)+

∥∥∥∫
S

∫
R
f(A,−s)µ1(−∞,−m)(s) ds π(dA)

∥∥∥2) 1
2

+
(∫

S

∫
R
tr(f(A,−s)ΣLf(A,−s)′)1(m,+∞)(s) ds π(dA)+

∥∥∥∫
S

∫
R
f(A,−s)µ1(m,+∞)(s) ds π(dA)

∥∥∥2) 1
2

Proceeding as in the proof of Proposition 3.2, the η-coefficients (21) are obtained.

When the underlying Lévy process is of finite variation we can lighten the moment
assumptions on the MMA process. The below result applies to all finite variation MMA
process with finite mean.

Corollary 3.4. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ, 0, ν, π)
such that

∫
Rd ‖x‖ν(dx) <∞, f : S × R→ Mn×d(R) a B(S × R)-measurable function and

f ∈ L1(S × R, π ⊗ λ) and define γ0 as in (3). Then, the resulting MMA process X is an
η-weakly dependent process with coefficients

ηX(r) =

∫
S

∫
R

∫
Rd
‖f(A,−s)x‖ 1(−∞,−r)

⋃
(r,+∞)(2s) ν(dx) ds π(dA) (22)

+

∫
S

∫
R
‖f(A,−s)γ0‖ 1(−∞,−r)

⋃
(r,+∞)(2s) ds π(dA),

for all r ≥ 0.

Proof. As the kernel function f is in L1, the properties (10) and (11) are satisfied. Thus,
f is Λ-integrable and X well defined. Moreover, because of Corollary 2.7, E[Xt] < ∞.
Using the notation of Proposition 3.2, for all t ∈ R and m ≥ 0

E‖Xt −X(m)
t ‖ ≤

∫
S

∫
R

∫
Rd
‖f(A,−s)x‖1(−∞,−m)

⋃
(m,+∞)(s) ν(dx) ds π(dA),

+

∫
S

∫
R
‖f(A,−s)γ0‖ 1(−∞,−m)

⋃
(m,+∞)(s) ds π(dA),

where X
(m)
t is the truncated sequence (18). Thus, for m = r

2
and F , G, X∗i and X∗j

|Cov(F (X∗i ), G(X∗j ))|

11



≤ 2(uLip(F ) + vLip(G))

∫
S

∫
R

∫
Rd
‖f(A,−s)x‖ 1(−∞,−r)

⋃
(r,+∞)(2s) ν(dx) ds π(dA)

+

∫
S

∫
R
‖f(A,−s)γ0‖ 1(−∞,−r)

⋃
(r,+∞)(2s) ds π(dA)

= 2(uLip(F ) + vLip(G))ηX(r).

Finally, we conclude by applying the dominated convergence theorem.

The η coefficients have some hereditary properties. For example, let h : Rn → R be a
Lipschitz function, then if the sequence (Xt)t∈R is η-weakly dependent, the same is true
for the sequence (h(Xt))t∈R. The latter can be readily checked directly based on Definition
3.1. Hereditary properties for functions that are not Lipschitz on the whole space Rn can
be found in [2] Lemma 6, for stationary processes. Below follows a multivariate extension
of this Lemma for h : Rn → Rm.

Proposition 3.5. Let (Xt)t∈R be an Rn-valued stationary process and assume there exists

some constant C > 0 such that E[‖X0‖p]
1
p ≤ C, with p > 1, h : Rn → Rm be a function

such that h(0) = 0, h(x) = (h1(x), . . . , hm(x)) and

‖h(x)− h(y)‖ ≤ c‖x− y‖(1 + ‖x‖a−1 + ‖y‖a−1), (23)

for x, y ∈ Rn, c > 0 and 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt). If (Xt)t∈R is an η-weakly
dependent process, then (Yt)t∈R is an η-weakly dependent process such that

∀ r ≥ 0, ηY (r) = C ηX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. For (u, v) ∈ N∗ × N∗, (i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤
iu + r ≤ j1 ≤ . . . ≤ jv, let us call

Y ∗i = (h(Xi1), . . . , h(Xiu)), Y ∗j = (h(Xj1), . . . , h(Xjv)).

Let F : Rmu → R, G : Rmv → R bounded, such that ‖F‖∞, ‖G‖∞ ≤ 1, and Lipschitz
functions with respect to the distance (14), then

F (Y ∗i ) = F (h(Xi1), . . . , h(Xiu)), G(Y ∗j ) = F (h(Xj1), . . . , h(Xjv)),

and

F (M)(Y ∗i ) = F (h(X
(M)
i1

), . . . , h(X
(M)
iu

)), G(M)(Y ∗j ) = F (h(X
(M)
j1

), . . . , h(X
(M)
jv

)),

where X
(M)
i = Xi1‖Xi‖≤M and w.l.o.g M > 1. According to Definition 3.1, we start by

analyzing
|Cov(F (Y ∗i ), G(Y ∗j ))| (24)

≤ |Cov(F (Y ∗i )−F (M)(Y ∗i ), G(Y ∗j ))|+|Cov(F (M)(Y ∗i ), G(Y ∗j )−G(M)(Y ∗j ))|+|Cov(F (M)(Y ∗i ), G(M)(Y ∗j ))|.

12



We have that

|Cov(F (Y ∗i )− F (M)(Y ∗i ), G(Y ∗j ))| ≤ 2‖G‖∞E|F (Y ∗i )− F (M)(Y ∗i )| (25)

≤ 2Lip(F )
u∑
l=1

E‖h(Xil)− h(X
(M)
il

)‖.

By assumption, for each l = 1, . . . , u

E(‖h(Xil)− h(X
(M)
il

)‖) ≤ cE(‖Xil −X
(M)
il
‖(1 + ‖Xil‖a−1 + ‖X(M)

il
‖a−1)) (26)

≤ cE(‖Xil‖1‖Xil‖>M) + cE(‖Xil‖a−1‖Xil‖1‖Xil‖>M)

+cE(‖Xil‖1‖Xil‖>M)Ma−1

≤ cE
(
‖Xil‖

‖Xil‖p−1

Mp−1
1‖Xil‖>M

)
+ cE

(
‖Xil‖a−1‖Xil‖p−a

Mp−a ‖Xil‖1‖Xil‖>M
)

+cE
(
‖Xil‖

‖Xil‖p−1

Mp−1
1‖Xil‖>M

)
Ma−1

≤ cE(‖Xil‖p1‖Xil‖>M)M1−p + 2cE(‖Xil‖p1‖Xil‖>M)Ma−p

≤ 3cE(‖Xil‖p)Ma−p.

Therefore (25) is less than or equal to 6c uLip(F )CpMa−p. An analogous bound holds
for |Cov(F (M)(Y ∗i ), G(Y ∗j ) − G(M)(Y ∗j ))|. Moreover, F (M) is a Lipschitz function on the

set A = {x = (x1, . . . , xu) ∈ Rnu : ‖xi‖ ≤M for i = 1, . . . , u}. Let Z(M),W (M) ∈ A, then

|F (h(Z
(M)
1 ), . . . , h(Z(M)

u ))− F (h(W
(M)
1 ), . . . , h(W (M)

u ))|

≤ Lip(F )
u∑
l=1

‖h(Z
(M)
l )− h(W

(M)
l )‖

≤ cLip(F )
u∑
l=1

‖Z(M)
l −W (M)

l ‖(1+‖Z(M)
l ‖a−1‖W (M)

l ‖a−1) ≤ 3cLip(F )Ma−1

u∑
l=1

‖Z(M)
l −W (M)

l ‖.

The same argument holds also for the function G(M).
X

(M)
t is a process with values in A and η-weakly dependent with the same coefficients

as Xt, then
|Cov(F (M)(Y ∗i ), G(M)(Y ∗j ))| =

≤ 3c(uLip(F ) + vLip(G))Ma−1ηX(r).

To conclude, (24) is less than or equal to

6c(uLip(F ) + vLip(G))
(Ma−1

2
ηX(r) + CpMa−p

)
.

By choosing M = ηX(r)
1

1−p and calling C = 6c(Cp + 1
2
), we obtain that

ηY (r) = CηX(r)
p−a
p−1 .

13



For a polynomial function h(x) we have

Corollary 3.6. Let (Xt)t∈R be an Rn-valued stationary process and assume there exists

some constant C > 0 such that E[|X0|p]
1
p ≤ C, with p > 1, h : Rn → Rm be a function

such that h(0) = 0 and h(x) = (h1(x), . . . , hm(x)) with hs(·) for s = 1, . . . ,m being a
polynomial with degree at most a for 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt) for t ∈ R an
Rm-valued process. If (Xt)t∈R is an η-weakly dependent process,then (Yt)t∈R is an η-weakly
dependent process such that

∀ r ≥ 0, ηY (r) = C ηX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. The function h satisfies the assumption (23) for each polynomial degree a less than
p. Proposition 3.5 can then be applied.

3.2 Causal case

Definition 3.7. A process X = (Xt)t∈R with values in Rn is called a θ-weakly dependent
process if there exists a sequence (θ(r))r∈R+ converging to 0, satisfying

|Cov(F (Xi1 , . . . , Xiu), G(Xj1 , . . . , Xjv))| ≤ c(vLip(G)‖F‖∞)θ(r) (27)

for all
(u, v) ∈ N∗ × N∗

r ∈ R+

(i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv
functions F : (Rn)u → R and G : (Rn)v → R respectively belonging to H∗ and H
where Lip(G) = supx 6=y

|G(x)−G(y)|
‖x1−y1‖+‖x2−y2‖+...+‖xn−yn‖

and where c is a constant independent of r. We call (θ(r))r∈R+ the sequence of the θ-
coefficients.

The θ-weak dependence condition is stronger than the one for η-weak dependence.
Hence, moment conditions and decay demands on the rate of the θ-coefficients for central
limit theorems are typically weaker than in the case of η-weak dependence, see [18]. It
should be also noticed that η(r) ≤ θ(r) and that in the case of integer valued processes,
[22], the θ-weak dependence implies the strong mixing condition.

A causal MMA process is defined as follows

Definition 3.8. Let Λ be an Rd-valued Lévy basis on S×R+ and let f : S×R+ →Mn×d(R)
be a B(S × R+)-measurable function satisfying assumptions (4), (5) and (6). Then, the
process

Xt : =

∫
S

∫ t

−∞
f(A, t− s) Λ(dA, ds) (28)

is well defined for each t ∈ R, infinitely divisible and strictly stationary. It is called a
causal n-dimensional mixed moving average process and f its kernel function.

14



Proposition 3.9. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0 and

∫
‖x‖>1

‖x‖2ν(dx) < ∞, f : S × R+ → Mn×d(R) a B(S × R+)-

measurable function and f ∈ L2(S × R+, π ⊗ λ). Then, the resulting causal MMA process
X is a θ-weakly dependent process with coefficients

θX(r) =
(∫

S

∫ −r
−∞

tr(f(A,−s)ΣLf(A,−s)′) ds π(dA)
) 1

2
(29)

for all r ≥ 0, where E[L1L
′
1] = ΣL = Σ +

∫
Rd xx

′ν(dx).

Proof. First, we define ∀t ∈ R and m ≥ 0 the truncated sequence

X
(m)
t =

∫
S

∫ t

−∞
f(A, t− s)1[0,m](t− s) Λ(dA, ds) =

∫
S

∫ t

t−m
f(A, t− s) Λ(dA, ds). (30)

Since the kernel function f is square integrable, we have that properties (5) and (6)
hold and then f is Λ-integrable (Theorem 2.3) and X is well defined. Thus, because of
Proposition 2.6, E[X2

t ] < ∞ for all t ∈ R and we can determine an upper bound of the
expectation

E‖Xt −X(m)
t ‖ = E

∥∥∥∫
S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds)

∥∥∥
≤
(

E
∥∥∥∫

S

∫ t−m

−∞
f(A, t− s) Λ(dA, ds)

∥∥∥2) 1
2
.

Due to the stationarity of X the above estimation is independent of t and equal to(∫
S

∫ −m
−∞

tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)
) 1

2
(31)

Let F and G belong respectively to the class of bounded functions H∗ and H, (u, v) ∈
N∗×N∗, r ∈ R+, (i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤
. . . ≤ jv, X

∗
i = (Xi1 , . . . , Xiu) and X

∗(m)
j = (X

(m)
j1

, . . . , X
(m)
jv

) where for all m ≥ 0

Xiu =

∫
S

∫ iu

−∞
f(A, iu − s) Λ(dA, ds) and X

(m)
j1

=

∫
S

∫ j1

j1−m
f(A, j1 − s) Λ(dA, ds). (32)

Then, if j1 −m− iu ≥ 0, which can also be expressed as j1 − iu ≥ m, Iu = S × (−∞, iu]
and J1 = S × [j1 −m, j1] are disjoint sets or they have intersection S × {j1 −m} when
j1−m = iu. Noting that π×λ(S×{j1−m}) = 0, by the definition of a Lévy basis, the two

sequences (Xi)i1,...,iu and (X
(m)
j )j1,...,jv are independent and so are F (X∗i ) and G(X

∗(m)
j ).

Therefore, let m = r

|Cov(F (X∗i ), G(X∗j ))| ≤ |Cov(F (X∗i ), G(X∗j )−G(X
∗(m)
j ))|+ |Cov(F (X∗i ), G(X

∗(m)
j ))|

≤ 2E|G(X∗j )−G(X
∗(m)
j )|

15



the last relation comes from ‖F‖∞ ≤ 1

≤ 2Lip(G)
v∑
k=1

E‖Xjk −X
(m)
jk
‖

using the result (31)

≤ 2vLip(G)
(∫

S

∫ −r
−∞

tr(f(A,−s)ΣLf(A,−s)′) dsπ(dA)
) 1

2

= 2vLip(G) θX(r),

which converges to zero as r goes to infinity by applying the dominated convergence
theorem.

Also in the case of θ-weak dependence, the θ-coefficients change when the underlying
Lévy process has mean different from zero.

Corollary 3.10. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that

∫
‖x‖>1

‖x‖2ν(dx) <∞, f : S×R+ →Mn×d(R) a B(S×R+)-measurable function

satisfying assumption (4) and f ∈ L2(S × R+, π ⊗ λ). Then, the resulting causal MMA
process X is a θ-weakly dependent process with coefficients

θX(r) =
( ∫

S

∫ −r
−∞ tr(f(A,−s)ΣLf(A,−s)′) ds π(dA)

+‖
∫
S

∫ −r
−∞ f(A,−s)µ ds π(dA)‖2

) 1
2

(33)

for all r ≥ 0, where E[L1] = µ = γ+
∫
‖x‖>1

xν(dx) and E[L1L
′
1] = ΣL = Σ +

∫
Rd xx

′ν(dx).

We conclude the study of the θ-weak dependence properties of an MMA process with
the computation of the θ-coefficients for an underlying Lévy process of finite variation.

Corollary 3.11. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ, 0, ν, π)
such that

∫
Rd ‖x‖ν(dx) < ∞, f : S × R+ → Mn×d(R) a B(S × R+)-measurable function

and L1(S × R+, π ⊗ λ) and define γ0 as in (3). Then, the resulting causal MMA process
X is a θ-weakly dependent process with coefficients

θX(r) =

∫
S

∫ −r
−∞

∫
Rd
‖f(A,−s)x‖ ν(dx) ds π(dA) (34)

+

∫
S

∫ −r
−∞
‖f(A,−s)γ0‖ ds π(dA),

for all r ≥ 0.
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Proof. The kernel function f is in L1 then the properties (10) and (11) are satisfied and
then f is Λ-integrable and X well defined and with finite mean by Corollary 2.7. Using
the notation in Proposition 3.9, for all t ∈ R and m ≥ 0

E‖Xt−X(m)
t ‖ ≤

∫
S

∫ −m
−∞

∫
Rd
‖f(A,−s)x‖ ν(dx) ds π(dA)+

∫
S

∫ −m
−∞
‖f(A,−s)γ0‖ ds π(dA),

(35)

where X
(m)
t is the truncated sequence (30). Thus, for m = r and F , G, X∗i and X∗j

|Cov(F (X∗i ), G(X∗j ))|

≤ 2vLip(G)
(∫

S

∫ −r
−∞

∫
Rd
‖f(A,−s)x‖ ν(dx) ds π(dA) +

∫
S

∫ −r
−∞
‖f(A,−s)γ0‖ ds π(dA)

)
= 2vLip(G) θX(r).

Finally, we conclude by applying the dominated convergence theorem.

Remark 3.12. The η-coefficients of a causal MMA process can be chosen to be equal to
the θ-coefficients for each r ≥ 0. This can be easily seen by noticing that the truncated
sequences (20) in Proposition 3.2 are equal to the truncated sequences (32) in Proposition
3.9. This leads to select the parameter m = r in both proofs. Moreover, (19) is equal to
(31) and then ηX(r) = θX(r). The same observations hold when comparing the results in
Corollary 3.3 or Corollary 3.4 with Corollary 3.10 or Corollary 3.11.

An example of a causal MMA process is the supOU process studied in [3] and [10].
Let us analyze its weak dependence properties in the univariate case. We consider the
kernel function f(A, s) = eAs1[0,∞)(s), A ∈ R−, s ∈ R and Λ a 1-dimensional Lévy basis
on R− × R with generating quadruple (γ,Σ, ν, π) such that∫

|x|>1

log(|x|) ν(dx) <∞, and

∫
R−
− 1

A
π(dA) <∞, (36)

then the process

Xt =

∫
R−

∫ t

−∞
eA(t−s) Λ(dA, ds) (37)

is well defined for each t ∈ R and strictly stationary. For the supOU process, A represents
a random mean reversion parameter.

If E[L1] = 0 and
∫
|x|>1
|x|2ν(dx) <∞, (37) is θ-weakly dependent with coefficients

θX(r) =
(∫

R−

∫ −r
−∞

e−2Asσ2 ds π(dA)
) 1

2
=
[
− σ2

∫
R−

e2Ar

2A
π(dA)

] 1
2

(38)

= Cov(X0, X2r)
1
2 ,

by using [10, Theorem 3.11] and where σ2 = Σ +
∫

R x
2ν(dx).
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If E[L1] = µ and
∫
|x|>1
|x|2ν(dx) <∞, the supOU process is θ-weakly dependent with

coefficients

θX(r) =
(
Cov(X0, X2r) +

4µ2

σ4
Cov(X0, Xr)

2
) 1

2
. (39)

If
∫

R |x|ν(dx) < ∞, γ0 = γ −
∫
|x|≤1

x ν(dx) > 0 and ν(R−) = 0, i.e. the underlying Lévy

process is a subordinator, then (37) admits θ-coefficients

θX(r) = −µ
∫

R−

eAr

A
π(dA), (40)

and when in addition
∫
|x|>1
|x|2ν(dx) <∞

θX(r) =
2µ

σ2
Cov(X0, Xr). (41)

Note that in the finite superposition case strong mixing of the supOU process has
been shown in [36, 37] based on Masuda’s result [40]. As this crucially hinges on an
embedding into a finite dimensional Markov process this does not readily extend to the
general case.

Remark 3.13. The necessary and sufficient condition
∫

R− −
1
A
π(dA) for the supOU pro-

cess to exist is satisfied by many continuous and discrete distributions π, see [48, Section
2.4] for more details. For example, a probability measure π being absolutely continuous
with density π′ = (−x)αl(x) and regularly varying at zero from the left with α > 0 (see
[13]), i.e. l is slowly varying at zero, satisfies the above condition. If moreover, l(x) is
continuous in (−∞, 0) and limx→0− l(x) > 0 exists, it holds that

Cov(X0, Xr) ∼
C

rα
, with a constant C > 0 and r ∈ R+

where for α ∈ (0, 1) the supOU process exhibits long memory and for α > 1 short mem-
ory, see [28, Definition 3.1.2]. Concrete examples where the covariances are calculated
explicitely, in this set-up, can be found in [7].

Remark 3.14. A natural question is whether one can improve the weak dependence co-
efficients that we obtain.

[24, Lemma 4.1] shows that for stationary processes with finite m-moments (m >
2 + δ, for δ > 0) being λ and thus η-weakly dependent (cf. [24, Definition 2.1])

|Cov(X0, Xr)| ≤ 9 E[‖X0‖m]
1

m−1 λ(r)
m−2
m−1 .

The above arguments can be easily adapted to the causal case and θ-weak dependence where
we likewise get

|Cov(X0, Xr)| ≤ 9 E[‖X0‖m]
1

m−1 θ(r)
m−2
m−1 .

If the stationary process has finite moments of any order we thus obtain the inequalities

|Cov(X0, Xr)| ≤ 9 η(r) and |Cov(X0, Xr)| ≤ 9θ(r). (42)
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Equation (41) shows that our weak dependence coefficients are sharp for a supOU
process having as underlying Lévy process a subordinator with finite second moment. Note
that “sharp” here means that the right and left hand side of the inequalities (42) only differ
by a constant, as for the weak dependence coefficients one usually - like in the upcoming
CLTs - only cares about their summability/integrability in r. The inequalities (42) com-
pared to (38) and (39) show that we might obtain smaller weak dependence coefficients
for the supOU process having an underlying Lévy process of infinite variation. In fact
following Remark 3.13, if Cov(X0, Xr) ∼ r−α for α > 0, then the left hand side in (42)
decays like r−α whereas the right hand side decays like r−α/2.

Inspecting the proofs of Corollaries 3.4 and 3.11 and Propositions 3.2 and 3.9, where
the η and θ-coefficients are determined, the crucial issue is that we use the equality (12)

to compute a bound of the term E‖Xt − X
(m)
t ‖ in the finite variation case, whereas we

bound E‖Xt −X(m)
t ‖ by means of a second moment in the infinite variation one. We do

the latter because to the best of our knowledge there are no sharper bounds known for the
first absolute moment of an infinitely divisible distribution that are suitably expressible in
terms of the characteristic triplet in this set-up.

To conclude, we state the hereditary property of a θ-weakly dependent process.

Proposition 3.15. Let (Xt)t∈R be an Rn-valued stationary process and assume there exists

some constant C > 0 such that E[|X0|p]
1
p ≤ C, with p > 1, h : Rn → Rm be a function

such that h(0) = 0, h(x) = (h1(x), . . . , hm(x)) and

‖h(x)− h(y)‖ ≤ c‖x− y‖(1 + ‖x‖a−1 + ‖y‖a−1),

for x, y ∈ Rn, c > 0 and 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt). If (Xt)t∈R is a θ-weakly
dependent process, then (Yt)t∈R is a θ-weakly dependent process such that

∀ r ≥ 0, θY (r) = C θX(r)
p−a
p−1 ,

with the constant C independent of r.

Proof. Analogous to Proposition 3.5.

4 Sample moments of an MMA process

We consider a sample ofN observations of a univariate MMA process {X∆, X2∆, . . . , XN∆},
where ∆ is a positive integer.

Xi∆ : =

∫
S

∫
R
f(A, i∆− s)Λ(dA, ds), for i ∈ Z. (43)

If the underlying Lévy process L has finite first moment, we define X̃i∆ = Xi∆ − E[X0].
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The sample mean of the process X is defined as

1

N

N∑
i=1

Xi∆ (44)

and its sample autocovariance function at lag k ∈ N.

1

N

N∑
j=1

X̃j∆X̃(j+k)∆. (45)

W.l.o.g, we consider below E[X0] = 0 and ∆ = 1 in order to lighten the notations and,
when the asymptotic properties of the sample auto-covariance functions are investigated,
we focus on the features of the processes

Yj,k = XjXj+k −D(k) for all k ∈ N, (46)

where we denote by D(k) the covariances at lag k defined, when E[X0] = 0, by

D(k) = Cov(X0, Xk) = E[X0Xk] =

∫
S

∫
R
f(A,−s)ΣLf(A, k − s)′ ds π(dA), for k ∈ Z,

(47)
where E[L1L

′
1] = ΣL = Σ +

∫
Rd xx

′ν(dx).
We start by analyzing the asymptotic properties of the sample mean (44) for a non-

causal and a causal MMA process.

Theorem 4.1. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0 and

∫
‖x‖>1

‖x‖2+δν(dx) <∞, for some δ > 0, f : S×R→M1×d(R) a

B(S × R)-measurable function and f ∈ L2+δ(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ). If (Xi)i∈Z

as defined in (43) is an η-weakly dependent process with coefficients ηX(r) = O(r−β) and
β > 4 + 2

δ
, then

σ2
η =

∑
k∈Z

Cov(X0, Xk) (48)

is finite, non-negative and as N →∞

1√
N

N∑
i=1

Xi
d→ N (0, σ2

η). (49)

Proof. We have that E[X2+δ
0 ] < ∞ for δ > 0 because of Proposition 2.6. Moreover, the

η-weakly dependent process X satisfies the sufficient conditions of [24, Theorem 2.2]. The
absolute summability of the series (48) follows and so the asymptotic normality (49).

In the case of a causal MMA process, the required decay rate of the θ coefficients is
lower than in the η-weak dependence case.
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Theorem 4.2. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0 and

∫
‖x‖>1

‖x‖2+δν(dx) <∞, for some δ > 0, f : S×R+ →M1×d(R) a

B(S×R+)-measurable function and f ∈ L2+δ(S×R+, π⊗λ)∩L2(S×R+, π⊗λ). If (Xi)i∈Z

as defined in (43) is a θ-weakly dependent process with coefficients θX(r) = O(r−α) and
α > 1 + 1

δ
, then

σ2
θ =

∑
k∈Z

Cov(X0, Xk) (50)

is finite, non-negative and as N →∞

1√
N

N∑
i=1

Xi
d→ N (0, σ2

θ). (51)

Proof. The MMA process has finite 2 + δ-moment for δ > 0 (Proposition 2.6) and is
ergodic, as shown in [27]. By Lemma 2 in [18], the condition D(2, θ/2, X0) holds. Then,
by Corollary 1 in [18] and the ergodicity of the process X, (51) follows by applying [20,
Theorem 1].

Remark 4.3. In the special case of the supOU process, being representable as a finite sum
of independent Ornstein-Uhlenbeck processes with gamma or inverse gaussian marginals,
a comparable result can be found in [37, Theorem 2].

Remark 4.4. Theorem 4.1 and 4.2 as well as all the upcoming central limit theorems can
be also formulated as functional central limit theorems, following [24] and [18] respectively.
However, we state the theorems just for the sample moments we are interested in (and
which we are using in Section 6) to lighten the notations.

For example, denote for t ∈ [0, 1] and n ≥ 1

Sn(t) = X1 + · · ·+X[nt],

in the case of a non-causal MMA process, and

S∗n(t) = X1 + · · ·+X[nt] + (nt− [nt])X[nt]+1

for a causal MMA process. Then, under the assumptions of Theorem 4.1 or 4.2, n−
1
2Sn(t)

converges in distribution in the Skorohod space D[0, 1] to σηWand n−
1
2S∗n(t) converges

in distribution in the space C[0, 1] to σθW , respectively. Here, W denotes a standard
Brownian motion.

Remark 4.5. In the finite variation case, (49) or (51), respectively, hold under∫
‖x‖>1

‖x‖2+δν(dx) <∞, for some δ > 0, and f ∈ L2+δ(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ)

or f ∈ L2+δ(S × R+, π ⊗ λ) ∩ L1(S × R+, π ⊗ λ), respectively.

Remark 4.6. Assuming that f is not equal to zero π-almost everywhere and that f ≥ 0
or f ≤ 0, the asymptotic variance in Theorems 4.1 and 4.2 is not degenerate. This is the
case for example when working with the supOU process (37). Moreover, it is worthy to
observe that the assumptions in Theorem 4.2 clearly indicate that we obtain asymptotic
normality of the sample mean for a causal MMA process just in the short memory case.
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To find an asymptotic distribution for the sample autocovariance functions (45), we
first show that (Yj,k)j∈Z are η-weakly or θ-weakly dependent processes. In addition to
the hereditary properties in Proposition 3.5 and 3.15, we need to establish when the
weak dependence properties of a univariate MMA process are inherited by the process
Zt = (Xt, Xt+1, . . . , Xt+k) for all k ∈ N.

Proposition 4.7. Let Λ be an Rd-valued Lévy basis with generating quadruple (γ,Σ, ν, π)
and f : S × R→ M1×d(R) be a B(S × R)-measurable function satisfying the assumptions
of Theorem 2.3. If for all t ∈ R, X is a non-causal or causal MMA as defined in (13) or
(28) respectively, then

Zt =

∫
S

∫
R
g(A, t− s) Λ(dA, ds),

where g(A, s) =


f(A, s)

f(A, s− 1)
. . .

f(A, s− k)

 is a B(S × R)-measurable function with values in

Mk+1×d(R) and k ∈ N, is an MMA process. Moreover, if X satisfies the assumptions
of Proposition 3.2 (Corollary 3.3) or Proposition 3.9 (Corollary 3.10) then Z is η or
θ−weakly dependent respectively with coefficients

ηZ(r) = DηX(r − 2k) for r ≥ 2k or θZ(r) = DθX(r − k) for r ≥ k, (52)

where D = (k + 1)
1
2 . In the case when the assumptions of Corollaries 3.4 or 3.11 hold,

the process Z is respectively η or θ-weakly dependent with coefficients

ηZ(r) = DηX(r − 2k) for r ≥ 2k or θZ(r) = DθX(r − k) for r ≥ k, (53)

and D = k + 1.

Proof. For k = 1, the first step of the proof consists of checking that g is a Λ-integrable
function as prescribed by Theorem 2.3. W.l.o.g, we consider in our calculations the norm

‖(x, y)‖ = ‖x‖+ ‖y‖

for x, y ∈M1×d(R). We have that∫
S

∫
R

∥∥∥g(A, s)γ +

∫
Rd
g(A, s)x

(
1[0,1](‖g(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA) (54)

=

∫
S

∫
R

∥∥∥( f(A, s)
f(A, s− 1)

)
γ

+

∫
Rd

(
f(A, s)

f(A, s− 1)

)
x
(

1[0,1]

(∥∥∥( f(A, s)
f(A, s− 1)

)
x
∥∥∥)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA)

=

∫
S

∫
R

∥∥∥f(A, s)γ +

∫
Rd
f(A, s)x

(
1[0,1](‖g(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA)
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+

∫
S

∫
R

∥∥∥f(A, s− 1)γ+

∫
Rd
f(A, s− 1)x

(
1[0,1](‖g(A, s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥ ds π(dA).

Noting that 1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s)x‖) and 1[0,1](‖g(A, s)x‖) ≤ 1[0,1](‖f(A, s−
1)x‖), it then holds that (54) is finite.

Let us pass to the second condition∫
S

∫
R
‖g(A, s)Σg(A, s)′‖ ds π(dA)

≤
∫
S

∫
R

(
‖f(A, s)Σf(A, s)′‖+ ‖f(A, s− 1)Σf(A, s− 1)′‖

)
ds π(dA).

Therefore, f being a kernel of an MMA process, the above integral is finite. Finally, we
have ∫

S

∫
R

∫
Rd

(
1 ∧ ‖g(A, s)x‖2

)
ν(dx) ds π(dA)

≤ 2

∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx) ds π(dA)

+2

∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s− 1)x‖2

)
ν(dx) ds π(dA) <∞.

Thus the kernel function g is a Λ-integrable function. By induction the statement can be
shown for each k ∈ N. Because all the assumptions of Theorem 2.3 hold, we have that Z
is an MMA process.

Depending now on the properties of the underlying Lévy process, we can distinguish
three different scenarios for the η and θ-weak dependence. When X satisfies the assump-
tions of Proposition 3.2,

ηZ(r) =
(∫

S

∫
R
tr(g(A,−s)Σg(A,−s)′) 1(−∞,−r)(2s) dsπ(dA)

) 1
2

+
(∫

S

∫
R
tr(g(A,−s)Σg(A,−s)′) 1(r,+∞)(2s) dsπ(dA)

) 1
2

≤
(∫

S

∫
R
tr(f(A,−s)Σf(A,−s)′) 1(−∞,−r)(2s) dsπ(dA) + . . .

+

∫
S

∫
R
tr(f(A, k − s)Σf(A, k − s)′) 1(−∞,−r)(2s) dsπ(dA)

) 1
2

+
(∫

S

∫
R
tr(f(A,−s)Σf(A,−s)′) 1(r,+∞)(2s) dsπ(dA) + . . .

+

∫
S

∫
R
tr(f(A, k − s)Σf(A, k − s)′) 1(r,+∞)(2s) dsπ(dA)

) 1
2

≤ (k + 1)
1
2

(∫
S

∫
R
tr(f(A,−s)Σf(A,−s)′) 1(−∞,−r+2k)(2s) dsπ(dA)

) 1
2
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+
(∫

S

∫
R
tr(f(A,−s)Σf(A,−s)′) 1(r−2k,+∞)(2s) dsπ(dA)

) 1
2

≤ (k + 1)
1
2ηX(r − 2k),

for each r > 2k. Thus, Z is a k + 1-dimensional MMA process with η coefficients

ηZ(r) = (k + 1)
1
2ηX(r − 2k).

If X satisfies the assumptions of Proposition 3.9, it can be shown similarly that Z is
θ-weakly dependent with coefficients

θZ(r) = (k + 1)
1
2 θX(r − k).

Similar calculations follow in the finite variation case leading to the statements (53).

Proposition 4.8. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
and

∫
‖x‖>1

‖x‖2+δν(dx) <∞, for some δ > 0, f : S×R→M1×d(R) a B(S×R)-measurable

function and f ∈ L2+δ(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ). If (Xi)i∈Z as defined in (43)
is η or θ-weakly dependent respectively with coefficients ηX or θX , then for all k ≥ 0 the
processes (Yj,k)j∈Z are respectively η or θ-weakly dependent with coefficients

ηY (r) = C(
√

2ηX(r − 2k))
δ

1+δ or θY (r) = C(
√

2θX(r − k))
δ

1+δ .

If L is a process of finite variation and f ∈ L2+δ(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ), then

ηY (r) = C(2ηX(r − 2k))
δ

1+δ or θY (r) = C(2θX(r − k))
δ

1+δ .

The constant C, appearing in the η and θ-coefficients, is independent of r.

Proof. Let us consider a 2-dimensional process Z = (Xj, Xj+k)j∈Z with k ∈ N. The η or
θ coefficients of the process Z are

ηZ(r) =
√

2ηX(r − 2k) or θZ(r) =
√

2θX(r − k)

by Proposition 4.7. The 2 + δ moment, for δ > 0, of the MMA process exists because
of Proposition 2.6. Let us now consider h : R2 → R as h(x1, x2) = x1x2. The function h
satisfies assumption (23), for p = 2 + δ, c = 1 and a = 2. Then, Proposition 3.5 or 3.15
applies and h(Z) = XjXj+k, as well as Yj,k, has either coefficients

ηY (r) = C(
√

2ηX(r − 2k))
δ

1+δ or θY (r) = C(
√

2θX(r − k))
δ

1+δ .

The finite variation case follows easily by applying Proposition 4.7 and using the coeffi-
cients (53).
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We can now give a distributional limit theorem for the processes Yj,k, namely deter-
mining the asymptotic distribution of

1

N

N∑
j=1

Yj,k for all k ∈ N.

Corollary 4.9. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0,

∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0, f : S × R → M1×d(R) a

B(S×R)-measurable function and f ∈ L4+δ(S×R, π⊗λ)∩L2(S×R, π⊗λ). Let (Yj,k)j∈Z

be defined as in (46) for k ∈ N. If (Xi)i∈Z as defined in (43) is η-weakly dependent with
coefficients ηX(r) = O(r−β) such that β > (4 + 2

δ
)(3+δ

2+δ
) or it is θ-weakly dependent with

coefficients θX(r) = O(r−α) such that α > (1 + 1
δ
)(3+δ

2+δ
), then

γ2
k =

∑
l∈Z

Cov(Y0,k, Yl,k) =
∑
l∈Z

Cov(X0Xk, XlXl+k)

is finite, non-negative and as N →∞

1√
N

N∑
j=1

Yj,k
d→ N (0, γ2

k) (55)

Proof. Since the results of Proposition 2.6 apply, by using [24, Theorem 2.2] in the case
of an η-weakly dependent process or [20, Theorem 1] when the process X is θ-weakly
dependent, the distributional limit (55) holds.

Remark 4.10. The asymptotic variance γ2
k can be expressed in terms of the fourth order

cumulant of a zero mean MMA process and its covariances as follows.
Let us consider an R4-valued MMA process X = (Xi, Xj, Xk, Xl) with (i, j, k, l) ∈ R4

and kernel function g(A, s) = [f(A, s− i), f(A, s− j), f(A, s− k), f(A, s− l)]′ with values
in M4×d(R). The Lévy basis Λ, underlying the definition of X, satisfies the assumptions
of Corollary 4.9. Thus, X is infinitely divisible with characteristic triplet (γint,Σint, νint)
as given in Theorem 2.3 and characteristic exponent

log(E[ei〈u,X〉]) = i〈γint, u〉 −
1

2
〈u,Σintu〉+

∫
Rd

ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖) νint(dx).

We denote by κ(i, j, k, l) the fourth order cumulant of X. By [28, Proposition 4.2.2.]

κ(i, j, k, l) = E[XiXjXkXl]− E[XiXj]E[XkXl]− E[XiXk]E[XjXl]− E[XiXl]E[XjXk].

On the other hand, cf. [28, Definition 4.2.1],

κ(i, j, k, l) =
∂4

∂u1∂u2∂u3∂u4

log(E[ei〈u,X〉])
∣∣∣
u1=u2=u3=u4=0
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=

∫
S

∫
R

∫
Rd
f(A, s− i)x x′ f(A, s− j)′ f(A, s− k)x x′ f(A, s− l)′ ν(dx) ds π(dA). (56)

Then, ∀(l, k) ∈ R2

Cov(Y0,k, Yl,k) = κ(0, k, l, l + k) +D(l)2 +D(k + l)D(k − l).

where D(l) is defined in (47).
Analogously, the formula to compute the third order cumulant κ(i, j, k) can be derived.

In fact,

κ(i, j, k) =

∫
S

∫
R

∫
Rd
f(A, s− i)x x′ f(A, s− j)′ f(A, s− k)x ν(dx) ds π(dA) (57)

and for a zero mean MMA process holds that E[XiXjXk] = κ(i, j, k). This computation is
useful in Section 6.

Corollary 4.11. Let Λ be an Rd-valued Lévy basis with characteristic quadruple (γ,Σ, ν, π)
such that E[L1] = 0,

∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0, f : S × R → M1×d(R)

a B(S × R)-measurable function and f ∈ L4+δ(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ). Let
Zj = (Yj,0, . . . , Yj,k) for all j ∈ Z. If (Xi)i∈Z is η-weakly dependent with coefficients
ηX(r) = O(r−β) such that β > (4 + 2

δ
)(3+δ

2+δ
) or it is θ-weakly dependent with coefficients

θX(r) = O(r−α) such that α > (1 + 1
δ
)(3+δ

2+δ
), then respectively for each p, q ∈ {0, . . . , k}

with k ∈ N,∑
l∈Z

Cov(X0Xp, XlXl+q) =
∑
l∈Z

k(0, p, l, l + q) +D(l)D(l + q − p) +D(q + l)D(l − p),

where k(l, i, j, k) is defined in (56) and D(k) in (47) for each l, i, j, k ∈ Z, is finite and as
N →∞

1√
N

N∑
j=1

Zj
d→ Nk+1(0,Ξ)

where

Ξ =

 ∑l∈Z Cov(X2
0 , X

2
l )

∑
l∈Z Cov(X2

0 , XlXl+1) . . .
∑

l∈Z Cov(X2
0 , XlXl+k)

. . .
∑

l∈Z Cov(X0X1, XlXl+1) . . .
∑

l∈Z Cov(X0X1, XlXl+k)
. . . . . . . . .

∑
l∈Z Cov(X0Xk, XlXl+k)


is positive semidefinite.

Proof. Let us consider the vector Z as defined in Proposition 4.7. Given the assumptions of
the Corollary, Z is η-weakly dependent with coefficients ηZ(r) = DηX(r−2k) or θ-weakly
dependent with coefficients θZ(r) = DθX(r−k) because of Proposition 4.7 and given that
the results of Proposition 2.6 apply. We apply now the function f : Rk+1 → Rk+1 to the
vector Z such that

f(Zj) =

 X2
j

...
XjXj+k

 = Zj +

 D(0)
...
D(k)

 .

26



The assumptions of Proposition 3.5 hold with p = 4 + δ, c = 1, a = 2, then f(Zt) is η or

θ-weakly dependent with coefficients C(DηX(r−2k))
2+δ
3+δ or C(DθX(r−k))

2+δ
3+δ . The process

Z is then a process with the same weak dependence coefficients as f(Zt). For all a ∈ Rk+1,
a′Z is an η or a θ-weakly dependent process, because a linear function is Lipschitz, having
the same coefficients as the process Z. By [24, Theorem 2.2] or [20, Theorem 1], then

1√
N

N∑
j=1

a′Zj
d−→ N (0, a′Σa)

as N →∞. Applying the Cramer-Wold device, the asymptotic normality of the vector Z
is shown.

Remark 4.12. In this paper we consider the classical case of equidistant observations.
In many applications different sampling schemes are also highly relevant and for some
special cases results have been obtained. For example, [14] considers the asymptotics of
the autocovariance function for Lévy-driven moving average processes sampled at an in-
dependent renewal sequence and [26] consider the asymptotics of the pathwise Fourier
transform/periodogram for Lévy-driven CARMA processes sampled at deterministic ir-
regular grids. Considering independent renewal sampled Lévy-driven MMA processes is
beyond the scope of the present paper and the content of future research just starting in
[15] where the preservation of strong mixing and weak dependence properties is discussed
in general.

5 Sample moments of an MMA SV model

Let us consider a Lévy basis with characteristic quadruple (γ, σ2, ν, π) and values in R and
the respective univariate casual MMA process X with kernel function f : (S × R+)→ R.
Its dependence structure is given by

Cov(X0, Xt) =

∫
S

∫ 0

−∞
f(A,−s)σ2f(A, t− s) ds dπ with t ∈ R

and controlled by the probability measure π. If we choose a causal MMA process as
the model for the volatility of a logarithmic asset price, its dependence structure can be
modeled in a versatile way by choosing the distribution π. Then, the typical decay of the
autocovariances of the squared returns, see [17], can be more easily reproduced.

Let the logarithmic asset price (Jt)t∈R+ be

Jt =

∫ t

0

√
XsdWs, J0 = 0, (58)

where (Wt)t∈R+ is a standard Brownian motion and (Xt)t∈R+ is an adapted, stationary
and square-integrable causal MMA process with values in R+ being independent of W .
We call (58) an MMA SV model. In the literature, stochastic volatility models where X
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is given by a sum of independent non-Gaussian OU type process are given in [6, 9] which
have been later extended to supOU processes in [10, 11]. The latter is an example of an
MMA SV model whose dependence structure is going to be analysed in this section. Other
financial market models using supOU processes as building blocks and allowing for short
and long range dependence can be found in [33, 36, 37].

We show the θ-weak dependence of the return process, over equidistant time intervals
[(t− 1)∆, t∆]

Yt = Jt∆ − J(t−1)∆ =

∫ t∆

(t−1)∆

√
XsdWs (59)

where for convenience of notation we consider t ∈ R, and the asymptotic normality of its
related sample moments. To this aim, the moments of the return process by using the
Itô isometry, as in [44], turn out to be determined as a function of the moments of the
integrated process

Vt =

∫ t∆

(t−1)∆

Xs ds, (60)

for t ∈ R and ∆ a positive constant. Note that, (Vt)t∈R corresponds to the integrated
volatility process computed over a time interval [(t − 1)∆, t∆]. It is immediate from the
definitions (59) and (60) that the strict stationarity of the process (Xs)s∈R and its square-
integrability imply the stationarity and the square-integrability of the processes (Yt)t∈R,
(Y 2

t )t∈R and (Vt)t∈R. Note that, under the square integrability assumption, the moments
of the return process can be determined up to the 4th order.

In general, we consider all processes adapted with respect to the filtration (At)t∈R

generated by the set of random variables {Λ(B) : B ∈ B(S×(−∞, t])} and the increments
of the Brownian motion {(Wu −Ws)s≤u≤t} for all t ∈ R.

In order to ensure that the stochastic integrals involving an MMA process as integrand
are well defined we assume throughout that

(H) :


The Lévy basis Λ has generating quadruple (γ, 0, ν, π) such that∫

R |x|ν(dx) <∞, γ −
∫
|x|≤1

xν(dx) ≥ 0 and ν(R−) = 0;

the kernel function f is B(S × R+)-measurable, non-negative
and satisfies the assumptions of Corollary 2.4;
Xs =

∫ s
−∞ f(A, s− u) Λ(dA, du) is adapted and càdlàg.

Sufficient conditions for an MMA process to have càdlàg sample paths can be found
in [42, Theorem 3.1] and the references therein.

We now show the weak dependence properties of the return process.

Proposition 5.1. Let W be a standard Brownian motion independent of the Lévy basis
Λ and assume Assumptions (H) are satisfied. Then, the return process defined in (59) is
θ-weakly dependent with coefficients

θY (r) =
√

∆ θX((r − 1)∆), (61)

where (θX(r))r∈R+ are the coefficients (34), for all r ≥ 1.
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Proof. The assumptions (H) imply that the resulting MMA process is non-negative and

the process Yt is well defined and square-integrable by Corollary 2.7. Let Y
(m)
t be defined

for m ≥ 0

Y
(m)
t =

∫ t∆

(t−1)∆

√
X

(m)
s dWs

where X
(m)
s is defined in (30). Then,

E[|Yt − Y (m)
t |] = E

[∣∣∣ ∫ t∆

(t−1)∆

√
Xs −

√
X

(m)
s dWs

∣∣∣] (62)

≤ E
[ ∫ t∆

(t−1)∆

(
√
Xs −

√
X

(m)
s )2 ds

] 1
2

by using the inequality
√
a+ b−

√
a ≤
√
b for all a, b ∈ R+

≤ E
[ ∫ t∆

(t−1)∆

|Xs −X(m)
s | ds

] 1
2

≤ E
[ ∫ t∆

(t−1)∆

∣∣∣ ∫
S

∫ s−m

−∞
f(A, s− u) Λ(dA, du)

∣∣∣] 1
2 ≤

√
∆θX(m).

The last inequality follows by (35).
Let F and G belong respectively to the class of bounded functions H∗ and H, (u, v) ∈

N∗×N∗, r ∈ R+, (i1, . . . , iu) ∈ Ru and (j1, . . . , jv) ∈ Rv with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤
. . . ≤ jv, Y

∗
i = (Yi1 , . . . , Yiu) and Y

∗(m)
j = (Y

(m)
j1

, . . . , Y
(m)
jv

) where for all m ≥ 0

Yiu =

∫ iu∆

(iu−1)∆

√
Xs dWs and Y

(m)
j1

=

∫ j1∆

(j1−1)∆

√
X

(m)
s dWs.

Then, if (j1 − 1)∆ − m − iu∆ ≥ 0 that can also be expresses as j1 − iu ≥ m
∆

+ 1,
Iu = S × (−∞, iu∆] and J1 = S × [(j1 − 1)∆ − m, j1∆] are disjoint sets or have as
intersection a set of measure zero when iu∆ = (j1 − 1)∆−m, i.e. π × λ(S × {iu∆}) = 0.

Then, by the definition of a Lévy basis, the integrands of Yiu and Y
(m)
j1

are independent

and so are Yiu and Y
(m)
j1

because of the independence of W and the Lévy basis. Then,

the sequences (Yi)i≤iu and (Y
(m)
j )j≥j1 are independent and so are F (Y ∗i ) and G(Y

∗(m)
j ).

Therefore, let m = (r − 1)∆

|Cov(F (Y ∗i ), G(Y ∗j ))| ≤ |Cov(F (Y ∗i ), G(Y ∗j )−G(Y
∗(m)
j ))|+ |Cov(F (Y ∗i ), G(Y

∗(m)
j ))|

≤ 2E|G(Y ∗j )−G(Y
∗(m)
j )|

the last relation comes from ‖F‖∞ ≤ 1

≤ 2Lip(G)
v∑
k=1

E|Yjk − Y
(m)
jk
|
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using (62)

= 2vLip(G)
√

∆ θX((r − 1)∆),

which converges to zero as r goes to infinity by applying the dominated convergence
theorem.

Let us consider a supOU process X defined as in (37) such that the underlying Lévy
process L is a subordinator. It can be shown that the process is adapted and càdlàg under
the assumptions (ii) and (iii) of [10, Theorem 3.12]. Then, Assumptions (H) are satisfied
and we can define a supOU SV model and the resulting return process

Yt =

∫ t∆

(t−1)∆

√∫
R−

∫ s

−∞
eA(s−u) Λ(dA, du)dWs. (63)

By applying Proposition 5.1, Y is θ-weakly dependent with coefficients

θY (r) =

√
−∆µ

∫
R−

eA∆(r−1)

A
π(dA), (64)

where µ is the mean of the underlying Lévy process.

We consider a sample of N observations of Y and we define the following sample mo-
ments for the return process.

The sample mean

1

N

N∑
i=1

Y1+i, (65)

the sample autocovariance function for k ∈ N

1

N

N∑
j=1

Y1+jY1+j+k, (66)

and the fourth order (non-centered) sample moments for k ∈ N

1

N

N∑
j=1

Y 2
1+jY

2
1+j+k. (67)

When the asymptotic properties of the sample autocovariance functions are investigated,
we focus on the processes

Wj,k = Y1+jY1+j+k − T (k), (68)

where we denote by T (k) the covariances of order k defined by

T (k) = E[Y1Y1+k],
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whereas in the case of the fourth order sample moments on

W̃j,k = Y 2
1+jY

2
1+j+k −D∗(k)− E[V1]2, (69)

where we denote by D∗(k) the covariances of order k defined by

D∗(k) = Cov(V1, V1+k)

where V is the integrated process defined in (60).
Analogous to Proposition 4.7, we show that the θ-weak dependence of the return

process is inherited by the process Zt = (Yt, Yt+1, . . . , Yt+k) for all k ∈ N.

Lemma 5.2. Let Λ be a Lévy basis and X an MMA process satisfying Assumptions (H)
and W be a standard Brownian motion independent of Λ. We consider the process

Zt =

 Yt
...
Yt+k

 =


∫ (t)∆

(t−1)∆

√
Xs dWs

...∫ (t+k)∆

(t+k−1)∆

√
Xs dWs

 =

∫ (t+k)∆

(t−1)∆

Gs dWs

where Yt is the return process defined in (59) and Gs is an Rk+1×R valued process defined

as Gs =


√
Xs1((t−1)∆,t∆](s)√
Xs1(t∆,(t+1)∆](s)

...√
Xs1((t+k−1)∆,(t+k)∆](s)

. Then, Z is θ-weakly dependent with coefficients

θZ(r) = D∗
√

∆θX((r − k − 1)∆)

for r ≥ k + 1 being D∗ = (k + 1) and θX given in (34).

Proof. For m ≥ 0, let Z
(m)
t be

Z
(m)
t =

∫ (t+k)∆

(t−1)∆

√
G

(m)
s dWs

where G
(m)
s =



√
X

(m)
s 1((t−1)∆,t∆](s)√

X
(m)
s 1(t∆,(t+1)∆](s)
...√

X
(m)
s 1((t+k−1)∆,(t+k)∆](s)

. Then,

E[‖Zt − Z(m)
t ‖] = E

[∥∥∥ ∫ (t+k)∆

(t−1)∆

Gs −G(m)
s dWs

∥∥∥] (70)

≤ E
[ ∫ (t+k)∆

(t−1)∆

tr((Gs −G(m)
s )(Gs −G(m)

s )′) ds
] 1

2
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by means of the triangular inequality

≤ E
[ ∫ t∆

(t−1)∆

(
√
Xs −

√
X

(m)
s )2 ds

] 1
2

+ . . .+ E
[ ∫ (t+k)∆

(t+k−1)∆

(
√
Xs −

√
X

(m)
s )2 ds

] 1
2

≤ (k + 1)
√

∆θX(m).

Proceeding as in Proposition 4.7 and in Proposition 5.1 the claim follows.

It can also be shown that the process Zt is mixing, and thus ergodic, proceeding as
in the proof of [27, Theorem 4.2].

The following asymptotic result holds for (65).

Theorem 5.3. We assume that Assumptions (H) hold and that
∫
|x|>1
|x|1+δν(dx) < ∞,

for some δ > 0, and f belongs to L1+δ(S × R+, π ⊗ λ) ∩ L1(S × R+, π ⊗ λ). If (Yi)i∈R as
defined in (59) is a θ-weakly dependent process such that the volatility process X admits

coefficients θX(r) = O(r−α) with α > 2
(

1 + 1
δ

)
, then σ2

Y = V ar(Y1) is non-negative and

as N →∞
1√
N

N∑
i=1

Y1+i
d→ N (0, σ2

Y ). (71)

Proof. Corollary 2.7 applies and the return process is ergodic because of its mixing prop-
erties shown in [27, Theorem 4.2]. [20, Theorem 1] can be applied, analogously as in
Theorem 4.2, assuring the result (71) where the asymptotic variance of the sample mean
is given by the absolute summable series

∑
l∈Z Cov(Y1, Y1+l) = V ar(Y1).

Applying Proposition 5.2 and Proposition 3.15, the following can be easily shown.

Proposition 5.4. We assume that Assumptions (H) hold and that
∫
‖x‖>1

‖x‖2+δν(dx) <

∞, for some δ > 0, and f belongs to L2+δ(S × R+, π ⊗ λ) ∩ L1(S × R+, π ⊗ λ). If (Yi)i∈Z

as defined in (59) is θ-weakly dependent process with coefficients θY as in (61), then, for
all k > 0 Z = (Wj,0,Wj,1, . . . ,Wj,k)j∈Z is θ-weakly dependent with coefficients

θZ(r) = C(D∗
√

∆θX((r − k − 1)∆))
δ

1+δ ,

Moreover, if we assume that
∫
‖x‖>1

‖x‖4+δν(dx) < ∞, for some δ > 0, and f belongs to

L4+δ(S × R, π ⊗ λ) ∩ L1(S × R, π ⊗ λ), then the process Z̃ = (W̃j,0, W̃j,1, . . . , W̃j,k)j∈Z is
θ-weakly dependent with coefficients

θZ̃(r) = C(D∗
√

∆θX((r − k − 1)∆))
δ

3+δ .

The constant C is independent of r and D∗ = k + 1 in the above formulas.
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Corollary 5.5. We assume that Assumptions (H) hold and that
∫
‖x‖>1

‖x‖2+δν(dx) <∞,

for some δ > 0, and f belongs to L2+δ(S × R+, π ⊗ λ) ∩ L1(S × R+, π ⊗ λ). If (Zi)i∈Z as
defined in Proposition 5.4 is θ-weakly dependent such that the volatility process X admits
coefficients θX(r) = O(r−α) with α > (1 + 1

δ
)(2+2δ

δ
), then for each p, q ∈ {0, . . . , k} with

k ∈ N, ∑
l∈N

Cov(W0,p,Wl,q)

are finite and as N →∞
1√
N

N∑
j=1

Zj
d→ Nk+1(0,Ψ)

where

Ψ =

 ∑l∈Z Cov(Y 2
1 , Y

2
l+1)

∑
l∈Z Cov(Y 2

1 , Yl+1Yl+2) . . .
∑

l∈Z Cov(Y 2
1 , Yl+1Yl+k+1)

. . .
∑

l∈Z Cov(Y1Y2, Yl+1Yl+2) . . .
∑

l∈Z Cov(Y1Y2, Yl+1Yl+k+1)
. . . . . . . . .

∑
l∈Z Cov(Y1Yk+1, Yl+1Yl+k+1)

 .
is positive semidefinite.

Proof. Since Corollary 2.7 holds, Z is a θ-weakly dependent process with coefficients

given in Proposition 5.4, θZ(r) = C(D∗
√

∆θX((r − k − 1)∆))
δ

1+δ . For all a ∈ Rk+1, a′Z is
a θ-weakly dependent process, because a linear function is Lipschitz, and ergodic having
the same θ-coefficients as the process Z. Under the assumptions of the Corollary, [20,
Theorem 1] is then applied and

1√
N

N∑
j=1

a′Zj
d−→ N (0, a′Ψa)

as N →∞. Applying the Cramer-Wold device, the asymptotic normality of the vector Z
is shown.

Corollary 5.6. We assume that Assumptions (H) hold and that
∫
‖x‖>1

‖x‖4+δν(dx) <∞,

for some δ > 0, and f belongs to L4+δ(S × R+, π ⊗ λ) ∩ L1(S × R+, π ⊗ λ). If (Z̃i)i∈Z as
defined in Proposition 5.4 is θ-weakly dependent such that the volatility process X admits
coefficients θX(r) = O(r−α) with α > (1 + 1

δ
)(6+2δ

δ
), then for each p, q ∈ {0, . . . , k} with

k ∈ N, ∑
l∈N

Cov(W̃0,p, W̃l,q)

are finite and as N →∞
1√
N

N∑
j=1

Z̃j
d→ Nk+1(0,M)

33



where

M =

 ∑l∈Z Cov(Y 4
1 , Y

4
l+1)

∑
l∈Z Cov(Y 4

1 , Y
2
l+1Y

2
l+2) . . .

∑
l∈Z Cov(Y 4

1 , Y
2
l+1Y

2
l+k+1)

. . .
∑

l∈Z Cov(Y 2
1 Y

2
2 , Y

2
l+1Y

2
l+2) . . .

∑
l∈Z Cov(Y 2

1 Y
2

2 , Y
2
l+1Y

2
l+k+1)

. . . . . . . . .
∑

l∈Z Cov(Y 2
1 Y

2
k+1, Y

2
l+1Y

2
l+k+1)

 .
is positive semidefinite.

Proof. The proof follows as in Corollary 5.5, using the θ coefficients of the process Z̃ as
determined in Proposition 5.4.

Remark 5.7. In view of Section 6, let us give explicit formulas of the third and fourth
order cumulant of an integrated process V and of the covariances Cov(W̃0,p, W̃l,q) for
p, q ∈ {0, . . . , k} and k ∈ N under the assumptions of Corollary 5.6. Let us consider an
integrated process as defined in (60) with mean E[V1] = C∗. For all (i, j, k, l) ∈ R4, we
call K(i, j, k) and K(i, j, k, l) the centered cumulant or order three and four which are
respectively equal to

K(i, j, k) =

∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

∫ (k+1)∆

k∆

κ(s, t, u) ds dt du, (72)

with κ(s, t, u) given in (57), and

K(i, j, k, l) =

∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

∫ (k+1)∆

k∆

∫ (l+1)∆

l∆

κ(s, t, u, z) ds dt du dz, (73)

where κ(s, t, u, z) is defined in (56). Moreover,

D∗(l) = Cov(V1, V1+l) =

∫ ∆

0

∫ (l+1)∆

l∆

D(u− s)dsdu, (74)

where D(·) is the covariance function, as in (47), of the centered MMA process underlying
the definition of the integrated process.Hence, by means of the Itô formula, the indepen-
dence of the process (Xt)t∈R with (Wt)t∈R and using arguments similar to the formula (40)
in [44]

Cov(W̃0,p, W̃l,q)

= K(0, p, l, l+q)+C∗(K(0, p, l)+K(0, p, l+q)+K(p, l, l+q)+K(0, l, l+q))+C∗2(D∗(l−p)+D∗(l+q−p)

+D∗(l) +D∗(l + q)) +D∗(l)D∗(l + q − p) +D∗(l + q)D∗(l − p) + A(0, p, l, l + q),

where A(i, j, k, l) is defined in Table 1 for (i, j, k, l) ∈ R4.
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(i, j, k, l) A(i, j, k, l)
{l 6= i 6= j 6= k} 0

{i 6= j} ∧ {j = k = l} 12
∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

∫ (j+1)∆

j∆

∫ s
j∆

E[XtXzXsXu]dudsdzdt

{i 6= j 6= k} ∧ {k = l} 4
∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

∫ (k+1)∆

k∆

∫ s
k∆

E[XtXzXsXu]dudsdzdt

{i = j} ∧ {k = l} ∧ {i 6= k} 4
∫ (i+1)∆

i∆

∫ (i+1)∆

i∆

∫ (k+1)∆

k∆

∫ s
k∆

E[XtXzXsXu]dudsdzdt

+4
∫ (i+1)∆

i∆

∫ t
i∆

∫ (k+1)∆

k∆

∫ (k+1)∆

k∆
E[XtXzXsXu]dudsdzdt

+16
∫ (i+1)∆

i∆

∫ (k+1)∆

k∆

∫ t
i∆

∫ s
k∆

E[XtXsXzXu]dudsdzdt

{i = j = k = l} E
[
24
( ∫ (i+1)∆

i∆
Xt dt

)2 ∫ (i+1)∆

i∆
Xs

∫ s
i∆
Xududs

]
+E
[
96
∫ (i+1)∆

i∆

∫ s
i∆
Xu

∫ u
i∆
Xz dzduds

]
Table 1: Explicit closed formula for the summand A(i, j, k, l) for (i, j, k, l) ∈ Z4.

6 Generalized method of moments for the supOU

process and supOU SV model

In this section, we apply the developed asymptotic theory to determine the asymptotic
normality of GMM estimators of the supOU process and of the supOU SV model defined
in [48].

Let X and Y be a supOU process and a return process as respectively defined in (37)
and (63). We assume, ∫

|x|>1

x2ν(dx) <∞,

then, as shown in [48, Theorem 2.3 and Theorem 2.8], the supOU process X and the
return process Y have known moments given by

E[X0] = −µ
∫

R−

1

A
π(dA), Var[X0] = −σ2

∫
R−

1

2A
π(dA), Cov[X0, Xk∆] = −σ2

∫
R−

eAk∆

2A
π(dA),

and

E[Y1] = 0, V ar[Y1] = −∆µ

∫
R−

1

A
π(dA), Cov(Y1, Y1+k) = 0

E[Y 2
1 ] = −∆µ

∫
R−

1

A
π(dA), V ar(Y 2

1 ) = −3σ2

∫
R−

1

A2

(eA∆

A
− 1

A
−∆

)
π(dA)+2

(
−∆µ

∫
R−

1

A
π(dA)

)2

Cov(Y 2
1 , Y

2
1+k) = −σ2

∫
R−

1

2A3
(sk+1 − 2sk + sk−1) π(dA),

where µ = E[L1] and σ2 = V ar[L1] are the mean and variance of the underlying Lévy
process and sk := eA∆k.

Assumption 6.1. Let us assume that the mean reversion parameter A is Gamma dis-
tributed. That is, we assume that π is the distribution of Bξ where B ∈ R− and ξ is
Γ(απ, 1) distributed with απ > 2.
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We emphasize that setting the second parameter of the Gamma distribution equal to
one does not restrict the model since this is equivalent to varying B. Under Assumption
6.1, we observe the decay of the autocovariances of the supOU process as given in Remark
3.13, notice that in this set-up α = απ − 1.

The moments of the supOU process X and of the return process Y , under Assumption
6.1, have been computed in [48, Section 2.2]

E[X0] = − µ

B(απ − 1)
, Var[X0] = − σ2

2B(απ − 1)
, Cov[X0, Xk∆] = −σ

2(1−Bk∆)1−απ

2B(απ − 1)
,

(75)

E[Y1] = 0 V ar(Y1) = − ∆µ

B(απ − 1)
, Cov(Y1, Y1+k) = 0

E[Y 2
1 ] = − ∆µ

B(απ − 1)
, V ar(Y 2

1 ) = −3σ2 (1−B∆)3−απ − 1−∆B(απ − 3)

B3(απ − 1)(απ − 2)(απ − 3)
+2
(
− ∆µ

B(απ − 1)

)2

(76)

Cov(Y 2
1 , Y

2
1+k) = − σ2(fk+1 − 2fk + fk−1)

2B3(απ − 1)(απ − 2)(απ − 3)
,

where fk := (1 − B∆k)3−απ . Therefore, the moment structure, up to the 2nd order for
the supOU process and up to the 4th order for the return process, depends only on the
parameter vector θ := (µ, σ2, απ, B).

6.1 SupOU process

Suppose we observe a sample {Xt : t = 1∆, . . . , N∆} for the supOU process with ∆ a
positive constant. We construct the following moment functions, as in [48], by using the
auto-covariances up to a lag m ≥ 2 of X.

First, let us define X
(m)
t = (Xt∆, X(t+1)∆, . . . , X(t+m)∆) for t = 1, . . . , N −m and the

measurable function h : Rm+1 ×Θ→ Rm+2 as

h(Xt, θ) =



hE(X
(m)
t , θ)

h0(X
(m)
t , θ)

...

hk(X
(m)
t , θ)

...

hm(X
(m)
t , θ)


=



Xt∆ + µ
B(απ−1)

X2
t∆ −

(
µ

B(απ−1)

)2

+ σ2

2B(απ−1)

Xt∆X(t+1)∆ −
(

µ
B(απ−1)

)2

+ σ2(1−B∆)1−απ

2B(απ−1)

...

Xt∆X(t+k)∆ −
(

µ
B(απ−1)

)2

+ σ2(1−Bk∆)1−απ

2B(απ−1)

...

Xt∆X(t+m)∆ −
(

µ
B(απ−1)

)2

+ σ2(1−Bm∆)1−απ

2B(απ−1)


. (77)

We can now define the sample moment function for the supOU process as
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gN,m(X, θ) =



1
N−m

∑N−m
t=1 hE(X

(m)
t , θ)

1
N−m

∑N−m
t=1 h0(X

(m)
t , θ)

...
1

N−m
∑N−m

t=1 hk(X
(m)
t , θ)

...
1

N−m
∑N−m

t=1 hm(X
(m)
t , θ)


(78)

=



1
N−m

∑N−m
t=1

(
Xt∆ + µ

B(απ−1)

)
1

N−m
∑N−m

t=1

(
X2
t∆ −

(
µ

B(απ−1)

)2

+ σ2

2B(απ−1)

)
1

N−m
∑N−m

t=1

(
Xt∆X(t+1)∆ −

(
µ

B(απ−1)

)2

+ σ2(1−B∆)1−απ

2B(απ−1)

)
...

1
N−m

∑N−m
t=1

(
Xt∆X(t+k)∆ −

(
µ

B(απ−1)

)2

+ σ2(1−Bk∆)1−απ

2B(απ−1)

)
...

1
N−m

∑N−m
t=1

(
Xt∆X(t+m)∆ −

(
µ

B(απ−1)

)2

+ σ2(1−Bm∆)1−απ

2B(απ−1)

)


,

and estimate θ0 by minimizing the objective function

θ̂N,m0 = argmin gN,m(X, θ)′AN,mgN,m(X, θ) (79)

where AN,m is a positive definite matrix to weight the m+ 2 different moments collected
in gN,m(X, θ).

We aim to show the asymptotic normality of the GMM estimator (79). Hence, we
first need to show that the moment function h(Xt, θ0) satisfies a central limit theorem.

Theorem 6.2. Let Λ be a real valued Lévy basis with generating quadruple (γ,Σ, ν, π)
satisfying assumptions (36) such that

∫
|x|>1
|x|4+δ ν(dx) < ∞ for some δ > 0 and let

Assumption 6.1 hold with απ − 1 > (1 + 1
δ
)(6+2δ

2+δ
). Let X be the resulting supOU process,

then h(Xt, θ0) is a θ-weakly dependent process,

HΣ =
∑
l∈Z

Cov(h(X0, θ0), h(Xl, θ0)) (80)

is finite, positive semidefinite and as N →∞
√
NgN,m(X, θ0)

d−→ N (0, HΣ). (81)

Proof. Proposition 2.6 shows that the 4 + δ-th moments of the supOU process exist. We

call C := − µ
B(απ−1)

and, following the notations of Section 4, D(k) = −σ2(1−B∆k)1−απ

2B(απ−1)

for k = 0, . . . ,m. We then consider the vector Z = (Xt∆, X(t+1)∆, . . . , X(t+m)∆) and the

37



function f : Rm+1 → Rm+2 such that

f(Zt) = f


Xt∆

X(t+1)∆

. . .
X(t+k)∆

. . .
X(t+m)∆

 = h(Xt, θ0) +



C
D(0) + C2

. . .
D(k) + C2

. . .

. . .
D(m) + C2


.

Z is a θ-weakly dependent process with coefficients

θZ(r) = DθX(r −m∆)

where θX is given in Formula (39). The assumptions of Proposition 3.15 hold with
p = 4 + δ, c = 1, a = 2, thus f(Zt) is a θ-weakly dependent process with coefficients

C(DθX(r −m∆))
2+δ
3+δ for r ∈ N. Hence, h(Xt, θ0) is a θ-weak dependent process with the

same coefficients and mean zero. We have that θh(r) = CD
2+δ
3+δ

(
− σ2(1−B(2r−2m∆))1−απ

2B(απ−1)
+(

−2µ(1−B(r−m∆))1−απ

2B(απ−1)

)2) 2+δ
6+2δ

, where απ satisfies the inequality (απ − 1) > 2(1 + 1
δ
)(3+δ

2+δ
) by

assumption. Analogously to the proof of Corollary 4.11, by applying [20, Theorem 1] and
the Cramer-Wold device, we obtain the distributional result (81).

Remark 6.3. The coefficients of the matrix Cov(h(X0, θ0), h(Xl, θ0)) for l ∈ Z are

Cov(hE(X
(m)
0 , θ0), hE(X

(m)
l , θ0) = D(l), (82)

Cov(hE(X
(m)
0 , θ0), hp(X

(m)
l , θ0)) = κ(0, l, l + p) + C(D(l) +D(l + p)), (83)

Cov(hp(X
(m)
0 , θ0), hq(X

(m)
l , θ0)) = κ(0, p, l, l + q) (84)

+C(κ(0, p, l) + κ(0, p, l + q) + κ(p, l, l + q) + κ(0, l, l + q))

+C2(D(l − p) +D(l + q − p) +D(l) +D(l + q)) +D(l)D(l + q − p) +D(l + q)D(l − p).
for p, q ∈ {0, . . . ,m}, where C and D(l) are defined in the proof of Theorem 6.2 and
κ(i, j, k) and κ(i, j, k, l) are respectively the cumulants of the supOU process of order three
and four for i, j, k, l ∈ {0, . . . ,m} defined in (57) and (56).

In Table 2, the explicit expressions of the autocovariances and cumulants of the supOU
process are reported.

Corollary 6.4. Let Λ be a real valued Lévy basis with generating quadruple (γ, 0, ν, π) such
that

∫
R |x| ν(dx) <∞ and

∫
|x|>1
|x|4+δ ν(dx) <∞ for some δ > 0 and let Assumption 6.1

hold with απ−1 > (1+ 1
δ
)(3+δ

2+δ
). Let (Xt)t∈R be the resulting supOU process, then h(Xt, θ0)

is a θ-weakly dependent process,

HΣ =
∑
l∈Z

Cov(h(X0, θ0), h(Xl, θ0))

is finite, positive semidefinite and as N →∞
√
NgN,m(X, θ0)

d−→ N (0, HΣ).
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{l ≥ 0} {l < 0}
Cov(X0, Xl∆) = −σ2(1−B∆l)1−απ

2B(απ−1) Cov(X0, Xl∆) = −σ2(1+B∆l)1−απ

2B(απ−1)

{l ≥ 0} {l < 0}
κ(0, l, l + p) = −sσ3(1−B∆(2l+p))1−απ

3B(απ−1) κ(0, p, l) = −sσ3(1−B∆(p−l))1−απ
3B(απ−1)

{l ≥ p} {0 < l < p} ∨ {l ≤ 0}
κ(p, l, l + q) = −sσ3(1−B∆(2l−2p+q))1−απ

3B(απ−1) κ(p, l, l + q) = −sσ3(1−B∆(p−l+q))1−απ
3B(απ−1)

{l ≥ 0} {l < 0}
κ(0, p, l, l + q) = − (η−3)σ4

4B(απ−1) (1−B∆(p+ 2l + q))1−απ κ(0, p, l, l + q) = − (η−3)σ4

4B(απ−1) (1−B∆(p+ q − 2l))1−απ

Table 2: Explicit closed formula for the summands appearing in (82),(83) and (84), where
p ≤ q and µ = E[L1], σ2 = V ar[L1], s = σ−3E[(L1 − µ)3] and η = σ−4E[(L1 − µ)4].

The proof of the Corollary follows the same steps as Theorem 6.2.

Remark 6.5. Under the assumptions of Corollary 6.4, a slower decay of the autocovari-
ances of a supOU process is required to obtain (81) compared to Theorem 6.2. Moreover,
if all the moments of the underlying Lévy process exist then the asymptotic result of Corol-
lary 6.4 holds assuming that απ > 2. The latter assumption results in the slowest decay
of the autocovariances of X that can be reached under short memory, see Remark 3.13
remembering that in the notations of this section α = απ − 1, whereas the asymptotic
result of Theorem 6.2 holds, under these assumptions, for απ > 3.

Several assumptions have to be made to show the asymptotic normality of the GMM
estimator (79):

Assumption 6.6. The parameter space Θ is compact and large enough to include the
true parameter vector θ0.

Assumption 6.7. The matrix AN,m converges in probability to a positive definite matrix
of constants A.

Assumption 6.8. The matrix HΣ is positive definite.

In our set-up we always need to choose a parameter space such that µ ≥ 0, σ2 > 0,
απ > 2 and B < 0. However, Assumption 6.6 remains reasonable, due to the fact that
typically an optimization procedure is used to determine θ̂N,m and then some parameter
bounds are always imposed in practice.

Theorem 6.9. Let Λ be a real valued Lévy basis with generating quadruple (γ,Σ, ν, π)
and X a supOU process satisfying assumptions (36) such that

∫
|x|>1
|x|4+δ ν(dx) <∞ for

some δ > 0. Let Assumption 6.1 hold with απ−1 > (1+ 1
δ
)(6+2δ

2+δ
) or απ−1 > (1+ 1

δ
)(3+δ

2+δ
)

if in addition
∫

R |x| ν(dx) < ∞. Moreover, if Assumption 6.6, 6.7 and 6.8 hold, then as
N goes to infinity √

N(θ̂N,m0 − θ0)
d−→ N (0,MHΣM

′)

where M = (G′0AG0)−1G′0A, G0 = E[∂h(Xt,θ)
∂θ′

]θ=θ0, and HΣ =
∑

l∈Z Cov(h(X0, θ0), h(Xl, θ0)).
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Proof. We follow the steps of the proof of [41, Theorem 1.2]. This involves checking As-
sumption 1.1-1.9 in [41]. Note that Assumption 1.1-1.3 in [41] are sufficient to give the
consistency of the estimator, as obtained in [48, Theorem 3.2]. We show them for complete-
ness. Assumption 1.1(i) is fulfilled by the function h(Xt, θ) by construction. Assumption
1.1.(ii) is satisfied since the true parameter vector θ0 is identifiable as shown in [48, Propo-

sition 3.3]. Asssumption 1.2 in [41] requires that supθ∈Θ |g
(i)
N,m(X, θ)−E[h(i)(Xt, θ)]|

p−→ 0 as
N →∞, for all i = 1, . . . ,m+2, i.e. each vector component of gN,m(X, θ)−E[h(Xt, θ)] con-
verges uniformly in probability to zero for each θ ∈ Θ. Assumption 1.4-1.6 in [41] represent
three sufficient conditions that if fulfilled imply as consequence Assumption 1.2 in [41]. We
then show that all three of them hold in our set-up. Assumption 1.4 in [41] corresponds to
our Assumption 6.6 and Assumption 1.5 in [41] follows from the ergodicity of the supOU
process. Showing Assumption 1.6 in [41] means to prove that a stochastic Lipshitz-type
assumption holds for each component of the function h(Xt, θ). Let θi = (µi, σ

2
i , α

i
π, Bi) be

parameter vectors belonging to Θ for i = 1, 2. Then, for example for the first component∣∣∣hE(X
(m)
t , θ1)− hE(X

(m)
t , θ2)

∣∣∣ =
∣∣∣ µ1

B1(α1
π − 1)

− µ2

B2(α2
π − 1)

∣∣∣.
That means, by construction, the terms where Xt appears cancel out and the stochastic
Lipschitz-type condition reduces to a Lipschitz continuity condition on the non-random
terms in each component of h(Xt, θ). Since the terms have bounded first partial deriva-
tives, they are Lipshchitz continuous and Assumption 1.6 in [41] holds. Assumption 1.3
in [41] is implied by our Assumption 6.7. Assumption 1.7 in [41] is fulfilled by con-
struction, then h(Xt, θ) is continuously differentiable w.r.t. θ in Θ. Let GN,m(X, θ) =

1
N−m

∑N−m
t=1

∂h(Xt,θ)
∂θ′

, Assumption 1.8 in [41] requires that a weak law of large numbers ap-

plies to ∂h(Xt,θ)
∂θ′

in a neighborhood of θ0. That is, for each sequence θ∗N such that θ∗N
p−→ θ0

then GN,m(X, θ∗N)→ G0. We have that the matrix

∂h(Xt, θ)

∂θ′
=

1
B(απ−1)

0 − µ
B(απ−1)2

− µ
B2(απ−1)

− 2µ
B2(απ−1)2

1
2B(απ−1)

2µ2

B2(απ−1)3
− σ2

2B(απ−1)2
2µ2

B3(απ−1)2
− σ2

2B2(απ−1)

. . . . . . . . . . . .

− 2µ
B2(απ−1)2

(1−B∆k)1−απ

2B(απ−1)
2µ2

B2(απ−1)3
− σ2((απ−1)ln(1−B∆k)+1)

2B(απ−1)2(1−B∆k)απ−1
2µ2

B3(απ−1)2
+ σ2 B∆k(απ−1)−(1−B∆k)

2B2(απ−1)(1−B∆k)απ

. . . . . . . . . . . .

− 2µ
B2(απ−1)2

(1−B∆m)1−απ

2B(απ−1)
2µ2

B2(απ−1)3
− σ2((απ−1)ln(1−B∆m)+1)

2B(απ−1)2(1−B∆m)απ−1
2µ2

B3(απ−1)2
+ σ2B∆m(απ−1)−(1−B∆m)

2B2(απ−1)(1−B∆m)απ


.

Then, ∂h(Xt,θ)
∂θ′

does not depend on Xt, GN,m(X, θ) = ∂h(Xt,θ)
∂θ′

and G0 = ∂h(Xt,θ0)
∂θ′

. By the
continuous mapping theorem Assumption 1.8 in [41] then follows. Assumption 1.9 in [41]
follows by Theorem 6.2 or Corollary 6.4. Then, because of Assumption 6.8, the asymptotic
normality of the estimator follows from the same steps as in the proof of [41, Theorem
1.2] when we replace fT and FT by gN,m and GN,m.
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6.2 SupOU SV model

We work now with a sample {Yt : t = 1, . . . , N} and define Y
(m)
t = (Yt+1, Yt+2, . . . , Yt+m+1)

for t = 1, . . . , N −m.
The moment function is given by the measurable function h̃ : Rm+1 ×Θ→ Rm+2 as

h̃(Yt, θ) =


h̃V ar(Y

(m)
t , θ)

h̃0(Y
(m)
t , θ)

h̃1(Y
(m)
t , θ)

...

h̃m(Y
(m)
t , θ)

 =



Y 2
t+1 + µ∆

B(απ−1)

Y 4
t+1 − 3

(
∆µ

B(απ−1)

)2

+ 3σ2 (1−B∆)3−απ−1−∆B(απ−3)
B3(απ−1)(απ−2)(απ−3)

Y 2
t+1Y

2
t+2 −

(
∆µ

B(απ−1)

)2

+ σ2 f2−2f1+f0
2B3(απ−1)(απ−2)(απ−3)

...

Y 2
t+1Y

2
t+1+m −

(
∆µ

B(απ−1)

)2

+ σ2 fm+1−2fm+fm−1

2B3(απ−1)(απ−2)(απ−3)


.

(85)
In this case, the sample moment function of the return process is

gN,m(Y, θ) =



1
N−m

∑N−m
t=1 h̃V ar(Y

(m)
t , θ)

1
N−m

∑N−m
t=1 h̃0(Y

(m)
t , θ)

1
N−m

∑N−m
t=1 h̃1(Y

(m)
t , θ)

...
1

N−m
∑N−m

t=1 h̃m(Y
(m)
t , θ)

 (86)

=



1
N−m

∑N−m
t=1

(
Y 2
t+1 + µ∆

B(απ−1)

)
1

N−m
∑N−m

t=1

(
Y 4
t+1 − 3

(
∆µ

B(απ−1)

)2

+ 3σ2 (1−B∆)3−απ−1−∆B(απ−3)
B3(απ−1)(απ−2)(απ−3)

)
1

N−m
∑N−m

t=1

(
Y 2
t+1Y

2
t+2 −

(
∆µ

B(απ−1)

)2

+ σ2 f2−2f1+f0
2B3(απ−1)(απ−2)(απ−3)

)
...

1
N−m

∑N−m
t=1

(
Y 2
t+1Y

2
t+1+m −

(
∆µ

B(απ−1)

)2

+ σ2 fm+1−2fm+fm−1

2B3(απ−1)(απ−2)(απ−3)

)


,

and θ0 can be estimated by minimizing the objective function

θ̂∗N,m0 = argmin gN,m(Y, θ)′AN,mgN,m(Y, θ) (87)

where AN,m is a positive definite matrix to weight the m+ 2 different moments collected
in gN,m(Y, θ).

The consistency of the estimator (87) is shown in [48, Theorem 3.2], and as before
we need to show that the moment function h̃(Y, θ) satisfies a central limit theorem.

Theorem 6.10. Let Λ be a real valued Lévy basis with generating quadruple (γ, 0, ν, π),
Assumptions (H) be satisfied such that

∫
|x|>1
|x|4+δ ν(dx) < ∞, for some δ > 0, and let

Assumption 6.1 hold with απ−1 > (1+ 1
δ
)(6+2δ

δ
). Let (Yt)t∈R be the resulting return process

of a supOU SV model, then

WΣ =
∑
l∈Z

Cov(h̃(Y0, θ0), h̃(Yl, θ0)
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(i, j, k) A(i, j, k)
{i 6= j 6= k} 0

{i 6= j} ∧ {j = k} 4
∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

∫ s
j∆

E[XtXsXu]dudsdt

{i = j = k} 12
∫ (i+1)∆

i∆

∫ (i+1)∆

i∆

∫ s
i∆

E[XtXsXu]dudsdt

Table 3: Explicit closed formula for the summand A(i, j, k) for (i, j, k) ∈ Z3.

{l ≥ 1}
Cov(Y 2

1 , Y
2
l+1) =

−σ2(fl+1−2fl+fl−1)

2B3(απ−1)(απ−2)(απ−3)

{l ≥ p} ∧ {2l − 2p+ q ≥ 2}
K(p, l, l + q) =

−sσ3(2g2l−2p+q−1−g2l−2p+q−2+g2l−2p+q+2−2g2l−2p+q+1)

6B4(απ−1)(απ−2)(απ−3)(απ−4)

{l ≥ 0} ∧ {2l + q ≥ 2}
K(0, l, l + q) =

−sσ3(2g2l+q−1−g2l+q−2+g2l+q+2−2g2l+q+1)

6B4(απ−1)(απ−2)(απ−3)(απ−4)

{l ≥ 0} ∧ {2l + q + p ≥ 3}
K(0, p, l, l + q) = − (η−3)σ4(−2h2l+q+p+3h2l+q+p−1−3h2l+q+p−2+h2l+q+p−3+h2l+q+p+3−3h2l+q+p+2+3h2l+q+p+1)

12B5(απ−1)(απ−2)(απ−3)(απ−4)(απ−5)

Table 4: Explicit closed formula for the summands (88),(89) and (90), where p ≥ q, fk =
(1−B∆k)3−απ , gk = (1−B∆k)4−απ , hk = (1−B∆k)5−απ and µ = E[L1], σ2 = V ar[L1],
s = σ−3E[(L1 − µ)3] and η = σ−4E[(L1 − µ)4].

is finite, positive semidefinite and as N →∞
√
NgN,m(Y, θ0)

d−→ N (0,WΣ).

Proof. Proceeding as in Theorem 6.2, it can be shown that h̃(Yt, θ0) is a θ-weakly de-
pendent process with zero mean, by using Lemma 5.2 and Proposition 3.15. Given the

θ-coefficients (41) , we have θh̃(r) = CD∗
δ

3+δ

(
−∆µ(1−B∆(r−m−1))1−απ

B(απ−1)

) δ
6+2δ

, where απ−1 >

(1+ 1
δ
)(6+2δ

δ
) by assumption. Then applying [20, Theorem 1] and the Cramer-Wold device

the result follows.

Remark 6.11. We observe that,

E[Y 2
1 ] = E[V1] = − ∆µ

B(α− 1)
:= C∗,

V ar[Y 2
1 ] = 3V ar(V1) + 2E(V1)2 = −3σ2 (1−B∆)3−απ − 1−∆B(απ − 3)

B3(απ − 1)(απ − 2)(απ − 3)

+2
(
− ∆µ

B(απ − 1)

)2

:= D∗(0),

and

Cov(Y 2
1 , Y

2
1+k) = Cov(V1, V1+k) = −σ2 fk+1 − 2fk + fk−1

2B3(α− 1)(α− 2)(α− 3)
:= D∗(k),
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where V is the integrated process as defined in (60) and C∗ and D∗(k) are defined in
Remark 5.7. Thus, the coefficients of the matrix Cov(h̃(Y0, θ0), h̃(Yl, θ0) for l ∈ Z and
p, q ∈ {0, . . . ,m} are

Cov(h̃V ar(Y
(m)

0 , θ0), h̃V ar(Y
(m)
l , θ0) = D∗(l), (88)

Cov(h̃V ar(Y
(m)

0 , θ0), h̃p(Y
(m)
l , θ0)) = K(0, l, l + p) + A(0, l, l + p) + C∗(D∗(l) +D∗(l + p)),

(89)

Cov(h̃p(Y
(m)

0 , θ0), h̃q(Y
(m)
l , θ0)) = K(0, p, l, l + q) + A(0, p, l, l + q) (90)

+C∗(K(0, p, l) +K(0, p, l + q) +K(p, l, l + q) +K(0, l, l + q))

+C∗2(D∗(l+q−p)+D∗(l−p)+D∗(l+q)+D∗(l))+D∗(l)D∗(l+q−p)+D∗(l+q)D∗(l−p),

where A(i, j, k) and A(i, j, k, l) are defined in Table 3 and Table 1, respectively, and
K(i, j, k) and K(i, j, k, l) in (72) and (73). In Table 4, the explicit expressions of the
summands in (88), (89) and (90) can be found for a selection of indices l, p, q. The re-
maining cases can be easily derived by using the calculations in Table 2.

Remark 6.12. Note that if all the moments of the underlying Lévy process exist than the
asymptotic result of Theorem 6.10 holds assuming that απ > 3.

Additional assumptions have to be made before showing the asymptotic normality of
the GMM estimator (87):

Assumption 6.13. The parameter vector θ0 is identifiable, i.e. E[h̃(Y, θ)] = 0 for all Y
if and only if θ = θ0.

Assumption 6.14. The matrix WΣ is positive definite.

Regarding Assumption 6.13, it has been shown in [48, Corollary 3.6] that identifia-
bility holds if the number of lags m in the definition of the moment function is infinity,
the so called asymptotic identifiability. In practice, we always work with a finite number
of lags. Although proving identifiability rigorously seems to be out of reach, the asymp-
totic identifiability suggests that Assumption 6.13 should be satisfied if m is sufficiently
large. It will be interesting to analyze how this affects the precision of our estimator in a
simulation study. This is, however, beyond the scope of the present paper.

Finally, we recall that in our set-up µ > 0, σ2 > 0, απ > 2 and B < 0 and the
parameter space Θ is large enough to contain the true parameter vector.

Theorem 6.15. Let Λ be a real valued Lévy basis with generating quadruple (γ, 0, ν, π),
Assumptions (H) be satisfied such that

∫
|x|>1
|x|4+δ ν(dx) < ∞, for some δ > 0, and let

Assumption 6.1 hold with απ − 1 > (1 + 1
δ
)(6+2δ

δ
). If, moreover, Assumptions 6.6, 6.7,

6.13 and 6.14 hold, then as N goes to infinity

√
N(θ̂∗N,m0 − θ0)

d−→ N (0,MWΣM
′)

where M = E[G∗′0 AG
∗
0]−1G∗′0 A, G∗0 = E[∂h̃(Yt,θ)

∂θ′
]θ=θ0, and WΣ =

∑
l∈Z Cov(h̃(Y0, θ0), h̃(Yl, θ0).
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Proof. We check that Assumptions 1.1-1.9 in [41] hold. Assumptions 1.1-1.7 follow by
Assumptions 6.6, 6.7 and 6.13 and by construction of the moment function. The line of
the proof, in this case, is exactly the same as in Theorem 6.9. The matrix

∂h̃(Yt, θ)

∂θ′

is equal to
∆

B(απ−1)
0 − ∆µ

B(απ−1)2
− ∆µ
B2(απ−1)

− 6∆2µ
B2(απ−1)2

3f1−1−∆B(απ−3)
B3(απ−1)(απ−2)(απ−3

a(∆, µ, σ2, απ, B) b(∆, µ, σ2, απ, B)

. . . . . . . . . . . .

− 2∆2µ
B2(απ−1)2

fm+1−2fm−fm−1

2B3(απ−1)(απ−2)(απ−3)
c(∆, µ, σ2, απ, B) d(∆, µ, σ2, απ, B)


where

– a(∆, µ, σ2, απ, B) = 6∆2µ2

B2(απ−1)3
+ 3 σ2

B3

(απ−2)(απ−3)+(απ−1)(απ−2)+(απ−1)(απ−2)
(απ−1)2(απ−2)2(απ−3)2

−3σ2

B3 f1l1 + 3σ2∆((απ−1)+(απ−2))
B2(απ−1)2(απ−2)2

;

– b(∆, µ, σ2, απ, B) = 6∆2µ2

B3(απ−1)2
+ 3σ2

(απ−1)(απ−2)(απ−3)

(
(απ−3)(2∆+∆r1)

B3 − 3f1−1
B4

)
;

– c(∆, µ, σ2, απ, B) = 2∆2µ2

B2(απ−1)3
− σ2

2B3 (fm+1lm+1 − 2fmlm + fm−1lm−1);

– d(∆, µ, σ2, απ, B) = 2∆2µ2

B3(απ−1)2
+ σ2

2B3(απ−1)(απ−2)
(rm+1∆(m+ 1)− 2rm∆m

+rm−1∆(m− 1))− 3σ2

2B4(απ−1)(απ−2)(απ−3)
(fm+1 − 2fm + fm−1);

with

– rk := (1−B∆k)2−απ , fk := (1−B∆k)3−απ ,

– lk = ln(1−B∆k)(απ−1)(απ−2)(απ−3)+(απ−2)(απ−3)+(απ−1)(απ−3)+(απ−1)(απ−2)
(απ−1)2(απ−2)2(απ−3)2)

,

for k ∈ {1, . . . ,m + 1}. Therefore, ∂h̃(Yt,θ)
∂θ′

does not depend on Yt and, as in the proof of
Theorem 6.9, the continuous mapping theorem can be applied to show that Assumption
1.8 in [41] holds. Assumption 1.9 follows by the proof of Theorem 6.10. Then, because of
Assumption 6.14, the normality of the GMM estimator follows from the same steps as in
the proof of [41, Theorem 1.2].

In [48, Section 4] a simulation study on the estimators (79) and (87) looks at their
finite sample performances (Theorem 6.9 and 6.15 are applicable to the set-up of the
study). The analysis performed shows results in line with asymptotic normality derived
theoretically in this paper. To obtain reliable estimation of supOU processes and supOU
SV model, a substantial amount of data is needed.
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