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Abstract

Recent studies suggest that the correlation of stock returns increases with
decreasing geographical distance. However, there is some debate on the ap-
propriate methodology for measuring the effects of distance on correlation.
We modify a regression approach suggested in the literature and complement
it with an approach from spatial statistics, the mark correlation function. For
the stocks contained in the S&P 500 that we examine, both approaches lead
to similar results. Contrary to previous studies we find that beyond 50 miles
geographical proximity is irrelevant for stock return correlations. For dis-
tances below 50 miles, we can show that the magnitude of local correlations
varies with investor sentiment.
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1. Introduction

Several studies have documented that investment decisions are affected
by geographical location within a country. Both institutional investors (e.g.
Coval and Moskowitz, 2001) as well as retail investors (e.g. Grinblatt and
Keloharju, 2001; Huberman, 2001; Ivkovic and Weisbenner, 2005) allocate
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a disproportionately large fraction of their portfolios to firms that are close
to their offices or homes. Possible reasons for such investment patterns are
informational advantages and behavioral preferences for familiarity.1 The
latter can lead to locally correlated trading through the following channel:
local information or events – be they value-relevant or not – lead to corre-
lated trading activity of local investors; as investors focus on local stocks,
trading patterns in nearby-stocks will be correlated, too. Pirinsky and Wang
(2006) and Barker and Loughran (2007) test an implication of this conjecture
and conclude that the correlation of stock returns increases with decreasing
distance. Another possible explanation for locally correlated stock returns is
locally correlated fundamentals, but Pirinsky and Wang (2006) fail to find
support for this second explanation.

There is some debate on the appropriate methodology for measuring the
effect of distance on correlation. Barker and Loughran (2007), for example,
question the approach of Pirinsky and Wang (2006). One contribution of
our paper is therefore methodological. We modify the regression analysis
suggested by Barker and Loughran (2007) and complement it with an ap-
proach from spatial statistics, the mark correlation function. For the stocks
contained in the Standard and Poor’s 500 index (S&P 500) that we examine,
both approaches lead to similar results. Contrary to previous studies we find
that beyond 50 miles geographical proximity is irrelevant for stock return
correlations. We only document an increase in correlations if headquarters
are less than 50 miles apart.

In a second contribution to the literature we study the time-series be-
havior of local correlations. This is made possible by the mark correlation
approach, which only needs one cross-section of returns to generate estimates
of geographical correlation. We find that the magnitude of local correlation
varies with a proxy of investor sentiment suggested by Baker and Wurgler
(2007). The finding supports the behavioral-based explanation for local cor-
relation.

The remainder of the paper is organized as follows. Section 2 describes
the data, Section 3 the methodology. Empirical results on local correlation
are reported in Section 4. Section 5 concludes.

1For experimental evidence on the role of familiarity, see Heath and Tversky (1991).
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2. Data

Our analysis is based on firms listed on the S&P 500 on August 15th
2005.2 Monthly stock returns are obtained from the Center for Research in
Security Prices (CRSP). Address information (state, city and five digit zip
code) for the location of headquarters along with the Standard Industrial
Classification (SIC) code are from the annual COMPUSTAT Database. In-
formation on population numbers is taken from US Census Bureau (2009),
which derive from the census 2000.

We analyze monthly stock returns for the period 01/2000 - 12/2008 for
firms with headquarters located in the USA.3 We do include delisting returns
(e.g. the delisting return for Lehman Brothers Holdings Inc. in September
2008 is -99.68%). One could be concerned that such extreme observations
might have a strong influence on the results. In a sensitivity analysis, we
remove firms that get delisted and re-run the analyses. This has virtually no
effect on the findings reported in the paper.

We demand a minimum of 60 monthly stock returns. This reduces the
S&P 500 sample to a total of 484 firms or 116886 = 484(484-1)/2 firm pairs
(due to symmetry reasons each pair only needs to be considered once).

For each firm pair we compute the distance between headquarter locations
based on the geographical coordinates of the five digit zip code. Applying
the correction for the curvature of the earth, the distance d(i, j) between two
firms i and j is given by

d(i, j) = ρ arccos(cos(lati) cos(latj) cos(longi − longj) + sin(lati) sin(latj)),

where ρ is the earth radius (ρ = 3959.871 miles) and (lati, longi) denote
the geographical coordinates, i.e. the latitude and longitude in radian (e.g.
Zwillinger, 1995). Geographical coordinates for US zip codes can be obtained
from US Census Bureau (2009). Figure 1 shows the distribution of distances
between firm pairs in our sample. The graph displays the proportion of firms
within a certain distance class. The maximum distance is 2714.6 miles with
a mean of 1059.1 miles.

2We chose this date to make our results comparable to those of Barker and Loughran
(2007).

3We check the robustness of our results for the periods 01/2000 - 12/2004 (the sample
used by Barker and Loughran, 2007) and 01/2005 - 12/2008.
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Figure 1: Sample characteristics. Proportion of firm pairs at a given distance (measured
in 100 miles).

The analysis of comovements of stock returns is based on the analysis of
residual stock returns in order to control for the possibility that geographical
clustering of firms with similar characteristics leads to higher correlations
of nearby firms. Residual returns are obtained from a five-factor regression
with excess return being the dependent variable:

Rj,t − RFt = aj + bj(RMt − RFt) + sjSMBt + hjHMLt

+ mjMOMt + cj(RIj,t − RMt) + εj,t (1)

Here, Rj,t is the stock return for firm j in month t and RFt denotes the
risk-free return in month t. Based on the results of Fama and French (1993)
we control for common variation in stock returns by including the market
excess return RMt −RFt, the return of small minus big stocks (SMBt), and
the return of high book-to-market minus low book-to-market stocks (HMLt)
in the set of independent variables.4 Following Carhart (1997) we also add
a momentum factor (MOMt). In order to control for industrial clustering,
we include the difference between the mean industry return and the market
return RIj,t − RMt. Here, RIj,t denotes the mean industry return at time t

for industry class of firm j. We consider the 48 industry classes as defined in
Fama and French (1997), which are based on the four digit SIC code. The

4We use the data provided by Kenneth French (see French, 2009).
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corresponding monthly industry returns are taken from Kenneth French’s
data library (see French, 2009), who computes the mean industry return
over all stocks traded on the AMEX, NYSE and NASDAQ. Regression (1)
is run for each firm separately.

3. Methodology

We introduce a new approach for the analysis of spatial stock market
correlations: the mark correlation function. The analysis is complemented
by a dummy regression approach.

The main difference between the mark correlation function and a regres-
sion analysis relates to the order in which the data is analyzed. Our data
consists of a number of measurement locations (locations of firms’ headquar-
ters) and a number of measurement times (months). Computing the mark
correlation function, we get a functional correlation estimate for each month
which is then averaged over time. In the regression approach, we first average
over time by computing the time series correlation for each pair individually.
Then we average over space by analyzing the drivers of these correlations.

3.1. Mark Correlation Function

We introduce a method from spatial statistics that is based on the so-
called mark correlation function for marked point processes (e.g. Cressie,
1993; Stoyan and Stoyan, 1994; Illian et al., 2008). In order to analyze the
spatial correlations of stock returns, we consider the locations of firm head-
quarters as points Xi on the (spherical) surface of the earth and their residual
stock returns as marks Ri of these points. The sequence (X1, R1), (X2, R2), . . .
is then a marked point process on the sphere Sρ ⊂ R

3, where Sρ has its mid-
point at the origin and radius ρ = 3959.871 miles. The point process is
assumed to be isotropic, which means that its distribution is invariant with
respect to arbitrary rotations of the (spherical) coordinate system. Further,
the marked point process is called independently marked (or independently
labeled) if the marks R1, R2, . . . are independent and identically distributed
random variables, which are independent of the sequence X1, X2, . . .

Our study includes only firms with headquarters located within the USA.
Consequently, we can consider the sequence (X1, R1), (X2, R2), . . . as the re-
striction of a (more comprehensive) marked point process on Sρ to the terri-
tory of the USA.
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The mark correlation function κ(r) of the marked point process quanti-
fies the stochastic correlation of marks of points that are located at a given
distance r > 0. Heuristically speaking, positive values of κ(r) indicate that
pairs of points with distance r have similar marks, while negative values of
κ(r) indicate different marks. In case of independent marking, it can be
shown that κ(r) ≡ 0 holds for any r > 0. The mark correlation function of
(X1, R1), (X2, R2), . . . can therefore be interpreted as a quantitative charac-
teristic of the spatial interaction between the marks Ri of the points Xi.

A more formal definition of the mark correlation function can be found
e.g. in Illian et al. (2008), where numerous applications of this point process
characteristic are discussed. Further examples of statistical correlation anal-
ysis for spatial marked point patterns are investigated in Eckel et al. (2008),
where the temporal trend of the geographical correlations of the purchasing
power in Baden-Württemberg, Germany, is analyzed, and in Mattfeldt et
al. (2009), who present a spatial correlation analysis of labeling patterns for
mammary carcinoma cell nuclei.

For any r ∈ (0, rmax), where rmax is a suitably chosen maximum distance,
a statistical estimator κ̂(r) for κ(r) is given by

κ̂(r) =

∑

Xi,Xj∈W,i6=j

kh(r − |Xi − Xj |)(Ri − µ̂)(Rj − µ̂)

∑

Xi,Xj∈W,i6=j

kh(r − |Xi − Xj |)

/
σ̂2 , (2)

where |Xi − Xj | is the spherical distance of Xi and Xj , while kh is the
Epanechnikov kernel with bandwidth h = 20 miles, and W denotes the sam-
pling window (in our case, the territory of the USA). Furthermore,

µ̂ =
1

#{n : Xi ∈ W}

∑

Xi∈W

Ri

and

σ̂2 =
1

#{i : Xi ∈ W} − 1

∑

Xi∈W

(Ri − µ̂)2

are estimators for the mean and variance of the marks, respectively. The
estimator κ̂(r) given in formula (2) has been implemented using the Java-
based GeoStoch library, which has been developed during the last 10 years
at Ulm University (Mayer et al., 2004).

6



For the definition and estimation of the mark correlation function it is
convenient to consider so-called simple point patterns only, i.e. there is at
most one mark Ri at any location Xi, which means that Ri = Rj if Xi = Xj .
Thus, we aggregate the residual returns of firms with the same zip code to
a single value, where we use the mean residual return as joint mark. This
leaves us with 355 locations, i.e. 355 points Xi in the point pattern.

Given the estimates κ̂(1)(r), . . . , κ̂(T )(r) for a total of T months, the mark
correlation at a distance r is measured by κ(r) =

(
κ̂(1)(r) + . . . + κ̂(T )(r))

/
T

and an approximate (pointwise) 95% confidence interval is given by
(
κ(r) − z0.975SE(κ(r)), κ(r) + z0.975SE(κ(r))

)
,

where

SE(κ(r)) =

√√√√ 1

T (T − 1)

T∑

t=1

(
κ̂(t)(r) − κ(r))2 , (3)

and z0.975 denotes the 0.975 quantile of the standard normal distribution.5

3.2. Regression Model

We complement the mark correlation approach by analyzing the effect of
distances between headquarter locations on the correlation of stock returns by
means of a least squares (OLS) regression. Pairwise correlation is regressed on
a set of dummy variables that capture the distance between two headquarter
locations. For this purpose we define distance classes and set the respective
dummy to one if the distance between two firms belongs to a certain distance
class, i.e. for some d < d′ we put

D
d,d′

i,j =

{
1 if d miles ≤ distance between firms i and j < d′ miles,

0 else.
(4)

The empirical correlation of residual returns for firms i and j is given by

CORRi,j =

∑Ni,j

t=1 (ε̂i,t − ¯̂εi)(ε̂j,t − ¯̂εj)√∑Ni,j

t=1 (ε̂i,t − ¯̂εi)2
∑Ni,j

t=1 (ε̂j,t − ¯̂εj)2

, (5)

5Formula (3) is based on the assumption that the estimated values κ̂
(1)(r), . . . , κ̂(T )(r)

are independently sampled, which we test with Fisher’s g-test (see Brockwell and Davis,
1991). The null hypothesis of Gaussian white noise is not rejected (at a significance level
of 5%) for all but one distance.
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where ε̂i,t denotes the residual return of firm i at time t and ¯̂εi is the mean
residual return of firm i. Further, Ni,j is the number of available pairwise
observations for firms i and j. To obtain a valid estimate for the empirical
correlation, we demand a minimum of 60 pairwise observations. The general
regression model has the form

CORRi,j = α + β⊤Di,j + ui,j, (6)

where u denotes the error term, D is a vector of dummy distance variables,
α denotes the regression constant, and β⊤ = (β1, . . . , βl) is the transposed
vector of respective coefficients, with l being the number of distance classes
considered. One might be concerned about the appropriateness of linear
regression because the dependent variable, being a correlation coefficient, is
bounded between -1 and 1. However, since we examine the correlation of
residual returns, which are typically small, the majority of observations in
our sample do not come close to the bounds. The minimum (maximum)
correlation computed for residual returns from 01/2000 - 12/2008 is -0.69
(0.92). The rather large maximum value is computed for the pair Fannie
Mae and Freddie Mac and is an outlier, since the 1% and 99% percentiles
amount to -0.29 and 0.31, respectively.

By construction the observations in our sample are not independent. Each
firm contributes to multiple observations because we consider pairwise corre-
lations. Consequently, the OLS standard errors are biased downward, which
leads to inflated t-statistics for α̂ and β̂. Following Barker and Loughran
(2007) we address this problem by estimating the standard errors through a
bootstrap simulation. More precisely, we generate 1000 bootstrap samples
by drawing with replacement from the original data and then run an OLS
regression for each bootstrap sample. This results in 1000 bootstrap coef-
ficient estimates α̂(i) and β̂(i) (i = 1, . . . , 1000). The standard error of the

k-th component of the OLS sample estimate β̂ (or α̂) is set to the bootstrap
standard error

SE∗(β̂k) =

√√√√ 1

999

1000∑

n=1

(
β̂

(n)
k −

1

1000

1000∑

m=1

β̂
(m)
k

)2
, (7)

and an approximate 95% confidence interval is given by

(
β̂k − z0.975SE∗(β̂k), β̂k + z0.975SE∗(β̂k)

)
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(e.g. Sprent and Smeeton, 1994).
An open question in the bootstrap simulation is the resampling technique.

Barker and Loughran (2007) suggest to randomly draw firms with replace-
ment from the set of all firms and then construct the bootstrap sample by
selecting pairwise combinations of the randomly drawn firms from the orig-
inal sample (pairwise combinations for the same firm are omitted). In our
application the number of firms to be drawn is 484. We will refer to this
resampling approach as firm-by-firm resampling.

Alternatively and in the style of the block bootstrap discussed in Efron
and Tibshirani (1993), one could draw observations from blocks with corre-
lated observations. We suggest to define block i to be the set of all observa-
tions in which firm i is one of the two firms whose correlation is the dependent
variable. The number of blocks is then equal to the number of firms. The
bootstrap sample is constructed by drawing such blocks with replacement.
We will refer to this approach as blockwise resampling.

A bootstrap sample constructed by blockwise resampling always includes
observations for all firms from the original sample. With firm-by-firm re-
sampling, firms that were not drawn do not appear in a particular bootstrap
sample. This implies a smaller variation for blockwise bootstrap samples
and we therefore expect smaller standard errors for the coefficient estimates
using this technique. However, since the dependence structure in our sample
is rather complicated it is not obvious from the literature which approach is
superior. We therefore consider both approaches for the bootstrap simula-
tion.

4. Empirical Results

We first present results of the spatial correlation analysis for the period
01/2000 - 12/2008. Section 4.2 reports results for the analysis on subsam-
ples, splitting the data with regard to time and population size. Section 4.3
analyzes the link between local correlations and investor sentiment.

4.1. Correlation of residual returns – January 2000 to December 2008

The results from the analysis using the mark correlation function are pre-
sented graphically as the mark correlation function provides quasi-continuous
values. The estimated spatial correlations for a distance up to 500 miles along
with the pointwise 95% confidence interval are shown in Figure 2. The mean

9



0 50 100 150 200 250 300 350 400 450 500
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Distance

M
ar

k 
C

or
re

la
tio

n

Figure 2: Residual correlation. Correlation of residual returns (01/2000 - 12/2008) for
a distance up to 500 miles from the mark correlation function. Dashed lines show the
pointwise 95% confidence interval.

mark correlation function κ̄(r) fluctuates around zero, with the zero line be-
ing included in the confidence interval almost everywhere for distances larger
than 50 miles. It is only for distances up to 50 miles that the results suggest
a statistically significant positive residual correlation.

We investigate this finding further by the following two specifications of
the dummy regression model (equation 6):

CORRi,j = α +

10∑

k=1

βkD
50(k−1),50k

i,j + ui,j. (8)

CORRi,j = α +

10∑

k=1

βkD
10(k−1),10k

i,j + ui,j. (9)

The first specification considers 10 distance classes, each capturing a distance
of 50 miles, and a reference class for all distances exceeding 500 miles. The
second specification takes a closer look on short distances, considering 10
smaller distance classes, each for a distance of 10 miles, and a reference class
for all distances exceeding 100 miles.

Regression results are presented in Table 1. We report coefficient esti-
mates from an OLS regression on the original sample6 and t-statistics that

6The means of the bootstrap coefficient estimates are almost identical for the two
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(a) Mark correlation function
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(b) Regression analysis

Figure 3: Residual correlation. Correlation of residual returns (01/2000 - 12/2008)
with pointwise 95% confidence intervals for a distance up to 100 miles using the mark
correlation function (Subfigure (a)) and regression analysis (Subfigure (b)). Dotted and
dashed lines in Subfigure (b) are pointwise 95% confidence intervals resulting from firm-
by-firm and blockwise resampling, respectively.

are based on bootstrap standard errors. We use the firm-by-firm as well
as the blockwise resampling technique. The latter results in smaller stan-
dard errors, which can be ascribed to the smaller variation in the blockwise
resampling samples.

Figure 3 provides a graphical comparison of results for distances up to
100 miles. Subfigures (a) and (b) show the estimated mark correlation and
results for the second regression specification (equation 9), respectively. The
illustration of results from the regression analysis derives from a linear inter-
polation of the estimated coefficients. Both graphs show a similar pattern
for spatial correlations: an approximately constant level of correlation up to
a distance of 30 to 40 miles and a sharp decline thereafter. Moreover, both
approaches suggest a rather small residual correlation for nearby firms. The
mean mark correlation for firms located in the same zip code is approximately
0.008; the coefficient of D0,10 implies an average increase of correlation by
0.009 as compared to the reference class.

The results differ somewhat in terms of statistical significance for very
nearby firms. Confidence intervals are narrower in the mark correlation ap-
proach. In the regression approach, the dummy variable for distances be-

techniques and very close to the values obtained from the OLS regression.
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Specification 1 Specification 2
D0,50 0.0073 D0,10 0.0093

(1.709)[2.633] (1.411)[2.261]
D50,100 -0.0035 D10,20 0.0067

(-0.754)[-1.247] (0.734)[1.176]
D100,150 0.0086 D20,30 0.0033

(1.422)[2.459] (0.439)[0.721]
D150,200 0.0011 D30,40 0.0085

(0.250)[0.416] (0.940)[1.444]
D200,250 0.003 D40,50 0.0007

(0.638)[1.073] (0.078)[0.141]
D250,300 0.0035 D50,60 -0.0116

(0.861)[1.566] (-1.194)[-2.043]
D300,350 0.0009 D60,70 0.0094

(0.236)[0.389] (0.671)[1.182]
D350,400 0.0052 D70,80 0.0047

(1.136)[1.819] (0.469)[0.844]
D400,450 0.0043 D80,90 -0.0057

(0.925)[1.518] (-0.563)[-0.885]
D450,500 -0.0004 D90,100 -0.0081

(-0.096)[-0.163] (-0.871)[-1.541]
Constant 0.0036 Constant 0.0042

(3.164)[5.064] (3.881)[6.209]
Firm Pairs (116301)[117066] Firm Pairs (116301)[117066]
Adj. R2 (0.0005)[0.0003] Adj. R2 (0.0005)[0.0003]

Table 1: Regression results. Dependent variable is the pairwise correlation of residual
stock returns. t-statistics are computed based on the firm-by-firm (in parentheses) and
blockwise (in square brackets) resampling techniques. Specification 1 (Specification 2)
includes dummy variables for 10 equidistant distance classes with a reference class for
distances larger that 500 miles (100 miles). Adjusted R2 and firm pairs are averages from
1000 bootstrap simulations.
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tween 0 and 50 miles is significant on the 10% (firm-by-firm resampling)
and 1% (blockwise resampling) levels. For the mark correlation approach
the 95% confidence interval excludes the zero line for distances up to ap-
proximately 30 miles (see Figure 3); additional computations show that the
average correlation between 0 and 50 miles is significant at the 1% level. The
marginal significance in firm-by-firm resampling should give rise to some cau-
tion. Nevertheless, it seems an apt summary to say that there is evidence for
stock market correlation being higher for firms that are less than 50 miles
apart. The economic significance, however, appears to be very limited, if not
negligible. What makes typical retail portfolios risky is unlikely to be the
distance effect documented here. It is the low degree of diversification (many
investors hold less than three stocks7) and, if portfolios are local, the local
clustering of firm characteristics. When we remove the industry indices from
our factor model, the residual return correlation in the distance class 0 to 50
miles increases from 0.007 to 0.03. While industry clustering has a strong
effect on local correlations, the effect of distance per se is much smaller.

Moving on to larger distances, there is no consistent evidence for differ-
ences in stock market correlations once the distance is larger than 50 miles.
Within the regression approach, firm-by-firm resampling does not lead to
coefficients that are significant at a level of 5% or better; with blockwise
resampling, there is one significant dummy (100 to 150 miles). The mark
correlation function, finally, exhibits only a few isolated cases where the dis-
tance is significant at the 5% level.

Our results therefore do not support the findings by Barker and Loughran
(2007), who conclude that geographical proximity is an important factor
explaining monthly return correlations. In particular, these authors report
an increase in correlation of returns by 12 basis points for each reduction in
distance by 100 miles.

Barker and Loughran (2007) regress pairwise correlations of stock returns
on distance as well as a set of control variables. To capture industry effects,
for example, these authors include the industry correlation as an explanatory
variable; to capture differences in systematic risk, they include the differences
of the Fama-French 3-factor betas.

To ensure that our different finding does not arise from differences in

7In the sample of Barber and Odean (2000), for example, the mean household holds
4.3 stocks.
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Industry Correlation 0.3300 (14.776)
In Same Industry -0.0215 (-1.630)
Information Technology 0.0820 (4.046)
2000 miles apart -0.1681 (-2.613)
Distance < 2000 -0.0024 (-4.850)
Distance > 2000 0.0054 (2.025)
Const. 0.0694 (5.543)
Firm Pairs 116294
Adj. R2 0.2084

Table 2: Replication of the regression approach of Barker and Loughran (2007).
Dependent variable is the pairwise correlation of stock returns. t-statistics are in paren-
theses. Adjusted R2 and firm pairs are averages from 1000 bootstrap simulations. The
definition of variables and the bootstrap (firm-by-firm resampling) follows Barker and
Loughran (2007, Model 2 in Table 3).

samples, but only from differences in methodologies, we estimate Barker and
Loughran’s Model 2 using our data set. In this model, correlation coeffi-
cients of stock returns are regressed on correlation of industry returns and
two dummy variables indicating whether two firms operate in the same in-
dustry or belong to the information technology sector. The distance effect
is captured by a dummy variable set to one if two firms are 2000 miles or
further apart along with two variables measuring the distance between firms
(in 100 miles). The first one measures distances up to a distance of 2000
miles and the second one those beyond 2000 miles.8

Results reported in Table 2 imply a conclusion similar to that of Barker
and Loughran (2007). We find the variable of interest (Distance < 2000)
having the right sign and being highly statistically significant. This suggests
that for each decrease in distance by 100 miles the correlation of returns
(even after controlling for industry correlation) increases significantly. The
difference between the results of Barker and Loughran and the ones presented
above are therefore due to methodology.

We favor our approach because it appears that the Barker and Loughran
approach does not sufficiently control for correlation due to factors other

8Barker and Loughran (2007) also present results for a richer model including the
differences of the Fama-French 3-factor betas. These additional variables, however, have
no effect on the magnitude or significance of the distance coefficients.
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than distance. Consider, for example, three firms from the same industry,
two of them exhibiting average exposure to industry risk, and one a lower
exposure (e.g. because some operations belong to another industry). In the
Barker and Loughran model one would implicitly assume that the correlation
of these three firms is the same. In our model, differences will be captured
through the industry coefficient in the factor regression. Similarly, consider
two pairs of firms: the betas of the pair {firm 1, firm 2} are β1 = 0.5 and
β2 = 1, the betas of {firm 3, firm 4} are β3 = 1 and β4 = 1.5. The beta
difference used as an explanatory variable by Barker and Loughran (2007) is
the same for each pair (β2 − β1 = β4 − β3 = 0.5). However, ceteris paribus,
firms 3 and 4 should have a higher correlation than firms 1 and 2 because
the covariance that is due to common variation with the market return is
0.5V ar(RM) and 1.5V ar(RM) for pairs {firm 1, firm 2} and {firm 3, firm 4},
respectively.

4.2. Correlation of residual returns – Subsamples

Previous studies consider the size of headquarter cities (measured by the
population number) as a potential factor to influence the relation of distance
and stock return correlation. The findings are controversial. Pirinsky and
Wang (2006) report that correlation of stock returns is higher in larger cities.
Barker and Loughran (2007) draw the opposite conclusion from the obser-
vation that the difference in the populations of headquarter cities does not
explain correlations.9

We control for the size effect by splitting the sample with respect to pop-
ulation and analyzing each subsample separately. More precisely, we classify
cities as large if the population number exceeds 100000 inhabitants and as
small otherwise. Results from the analysis using the mark correlation func-
tion are presented in Figure 4 for each subsample. The results support the
findings of Pirinsky and Wang (2006). The correlation of residual stock re-
turns is higher for nearby firms located in large cities (Subfigure (a)) than for
nearby firms located in small cities (Subfigure (b)). The regression analysis
yields a coefficient of 0.012 with standard errors 0.007 (firm-by-firm resam-
pling) and 0.005 (blockwise resampling) for the dummy variable D0,50 in the

9The approach chosen by Barker and Loughran (2007) does not distinguish between
pairs of small cities and large cities. Consider firms located in two equally sized large and
two equally sized small cities. The difference in populations for the large and for the small
pair is zero and does not control for the difference between the pairs.
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Figure 4: Residual correlation (subsamples). Correlation of residual returns mea-
sured by the mark correlation function for firm pairs located in large cities (Subfigure (a))
and small cities (Subfigure (b)). A city is classified as large, if it has more than 100000
inhabitants. Pointwise 95% confidence intervals are shown as dashed lines.

large cities subsample. Whereas in the small cities subsample, the respective
coefficient is -0.003 with standard errors 0.007 (firm-by-firm resampling) and
0.004 (blockwise resampling). Furthermore, using the mark correlation func-
tion, we unexpectedly detect slight, but significant negative correlations for
firms located in large cities at a distance larger than 40 miles.

In Figure 5 we present estimates for the mark correlation for subsamples
after splitting the sample with respect to time. We consider a sample includ-
ing returns for the period 01/2000 - 12/2004 (this is the time span used by
Barker and Loughran (2007)) and a second sample for the period 01/2005
- 12/2008. For both subsamples the results are close to those of the entire
sample, with the significance of the proximity of headquarter locations being
more pronounced for the later period.

4.3. Residual correlations and sentiment over time

Extant papers favor the view that local information or local exchange gen-
erates locally correlated trading patterns because investors have a tendency
to hold local stocks (see Pirinsky and Wang, 2006; Barker and Loughran,
2007). This line of argument has not been subject to a rigorous test because
data on local events and their impact on trading behavior are difficult to col-
lect. Here, we suggest to examine a time-series implication of the argument.
If trading activity of locally focused investors is high, the impact of any local
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Figure 5: Residual correlation (subsamples). Correlation of residual returns mea-
sured by the mark correlation function for subsamples including returns from 01/2000
- 12/2004 (Subfigure (a)) and from 01/2005 - 12/2008 (Subfigure (b)). Pointwise 95%
confidence intervals are shown as dashed lines.

event on stock returns can be expected to be high, too. Since locally focused
investors are typically associated with people subject to behavioral biases,
we use a measure of investor sentiment to proxy their trading activity.

Our hypothesis is therefore that local correlations vary positively with
investor sentiment. To quantify the latter, we use the monthly investor sen-
timent index constructed by Baker and Wurgler (2007). It is available (on
Jeffrey Wurgler’s website (see Wurgler, 2009)) until December 2005, which
means that we can cover 60% of our 2000-2008 sample. To measure monthly
intensity of local correlations, we use the mark correlation approach. As
described in Section 3.1 it produces a time series of monthly geographical
correlations and is therefore well suited to study the time-series behavior of
correlations. What is left to determine is how to measure the magnitude of
local correlation effects. In Section 4.1 we have seen that correlations are
only significant if the distance between firm headquarters is smaller than
50 miles. We therefore suggest to examine the average correlation for all
distances smaller than 50 miles, quantified by κ̄

0,45
t = 1

10

∑9
i=0 κt(5i). This

variable is regressed on the contemporaneous sentiment index from Baker and
Wurgler (2007). To control for the possibility that sentiment is correlated
with general shifts in correlation, we also include the average correlation for
distances between 50 and 100 miles (κ̄50,100

t = 1
11

∑20
i=10 κt(5i)). Estimating

the regression with OLS leads to (t-statistics in parentheses):
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κ̄
0,45
t = 0.003 + 0.007 Sentiment + 0.001 κ̄

50,100
t

(1.56) (2.72) (0.01)

N = 72, Adj. R2 = 0.073, DW-statistic = 2.205

Local correlation does not vary with more distant correlations. It does,
however, vary significantly (p-value better than 1%) with sentiment. The
standard deviation of the sentiment index is 0.79. A two-standard deviation
move in sentiment therefore changes average correlation in the 0 to 50 miles
range by 0.55 percentage points. While this may appear small, it is just as
large as the average correlation in that range (0.56%). Thus, if investor sen-
timent is very high, local correlation can be expected to be larger than 1%.
If sentiment is very low, local correlation approaches zero. This result pro-
vides direct support to the behavioral-based explanation of local correlations
suggested in the literature.

5. Conclusion

We have analyzed spatial correlations of stock returns for firms included
in the S&P 500. We find that geographical distance does not influence stock
return correlations once the distance exceeds 50 miles, which contradicts
the results of Pirinsky and Wang (2006) and Barker and Loughran (2007).
We show that the difference in results is purely methodological, confirm-
ing that the choice of research methodology is crucial for examining the ef-
fects of distance on stock correlations. Barker and Loughran (2007) criticize
the methodology by Pirinsky and Wang (2006) and obtain different results
for large firms. We further modify the regression approach by Barker and
Loughran (2007) but also suggest an alternative approach from spatial statis-
tics, the mark correlation function. The analysis using the mark correlation
function leads to the same conclusions as our modified regression approach
and thus strengthens the confidence in the robustness of results.

An advantage of the mark correlation function is that it only needs one
cross-section of returns to generate estimates of geographical correlation. We
exploit this advantage to examine the time-series behavior of local correla-
tions. We document that the magnitude of local correlation varies with a
proxy of investor sentiment, supporting the notion that local correlation is
driven by behavioral biases.
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