
 
 

 

 

Equity Premium Forecasts Tend to Perform Worse  

Against a Buy-and-Hold Benchmark 

 
 
 
 

Gunter Löffler* 
Ulm University 

gunter.loeffler@uni-ulm.de 
  
 
 

August 24, 2021 
 
 
 
 

Abstract 

The economic gains from using equity premium forecasts are usually assessed by 

comparing a forecast-based strategy to a strategy based on the trailing historical mean. 

Whether these economic gains are statistically significant remains mostly untested. This 

paper shows that a buy-and-hold benchmark can be much harder to beat than the historical-

mean benchmark and that the practice of not testing the statistical significance of economic 

gains can lead to questionable conclusions. The findings rest on an examination of many 

hypothetical sample periods and the replication of two widely cited papers (Rapach, 

Strauss, and Zhou 2010; Rapach, Ringgenberg, and Zhou 2016). 
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There is extensive academic research on the predictability of the equity premium. In 2008, 

Ivo Welch and Amit Goyal (2008) showed that a plethora of suggested prediction models 

did not reliably forecast the equity premium in an out-of-sample setting. Since then, the 

literature has proposed many new prediction models. Based on evaluation methods 

employed by Welch and Goyal (2008), researchers have concluded that the equity 

premium is predictable and that investors would have benefited from using the forecasts. 

To assess economic gains, the extant literature proceeds as follows: Follow an investment 

strategy that determines an optimal equity weight with the help of a forecast and compare 

the strategy’s performance to that of a strategy that optimizes based on the historical mean. 

The analysis is performed in a (pseudo) out-of-sample setting. With respect to data 

availability, the strategies could be implemented in real time. 

Based on an examination of a large number of different sample periods, the present paper 

first shows that the historical-mean benchmark is usually less stringent than a buy-and-

hold strategy, i.e., a 100% passive investment in the market index. I then replicate two 

widely cited post-2008 papers that predict the US equity premium. The economic gains 

reported by David E. Rapach, Jack K. Strauss, and Guofu Zhou (2010) more or less 

disappear when the buy-and-hold benchmark is used. Rapach, Matthew C. Ringgenberg, 

and Zhou (2016) is an example of a paper that reports performance advantages relative to 

the buy-and-benchmark but does not test their statistical significance. My replication 

shows that the performance advantages are insignificant, with p-values above 20%. 

The remainder of the paper is structured as follows. Section 1 introduces the out-of-sample 

methodology and discusses aspects relevant in benchmark choice. Section 2 compares 

benchmark performance for various sample periods. Section 3 presents the results of the 

replication exercise, and section 4 concludes the paper. 
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1. Assessing and testing the economic value of equity premium predictions  

The standard toolbox 

In equity premium prediction, researchers use models to forecast the excess return that an 

investment in the aggregate stock market offers relative to a risk-free investment. Consider 

a prediction model that is built and tested using data from 𝑡 = 1 to 𝑇, say January 1970 to 

December 2020. For an out-of-sample analysis, one would choose an evaluation period 

𝑡 = 𝑚 to 𝑇, say January 1990 to December 2020. For each month in this evaluation period, 

researchers would recursively generate forecasts using only information that is available 

at the time a forecast is made. 

Whether a forecast model is economically useful is usually examined by comparing the 

risk-adjusted performance of a forecast-based investment strategy to that of a benchmark. 

The common practice is to examine the utility of an investor with a mean–variance 

objective. John Y. Campbell and Samuel B. Thompson (2008) use the objective  

Eൣ𝑅൧ −
1

2
𝛾𝜎ଶ൫𝑅൯,  (1) 

where 𝑅 is the return of the strategy portfolio, and 𝛾 is the investor’s risk aversion. If an 

investor must decide how much to invest in equity (with return 𝑅) and how much to invest 

in the risk-free asset (with return 𝑅), the optimal solution for the equity weight is 

𝑤∗ =
1

 𝛾

E[𝑅] − 𝑅

𝜎ଶ(𝑅)
.  (2) 

In order to determine the optimal investment for time 𝑡 as part of an out-of-sample analysis, 

researchers choose a plausible value for 𝛾, use a forecast 𝑅௧
 as an estimate for E[𝑅] − 𝑅, 

and estimate 𝜎ଶ(𝑅) with data prior to 𝑡. The underlying one-period optimization model is 
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silent on how to deal with a risk-free rate that varies over time. Researchers usually 

estimate the variance with excess returns.1 

The average utility level from using forecasts of approach 𝑖 can be estimated by replacing 

the moments in (1) with their sample counterparts 

𝑢 =  
1

𝑇 − 𝑚 + 1
 𝑅௧

்

௧ୀ

 −  
1
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𝛾

1

𝑇 − 𝑚
 ൬𝑅௧ −
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𝑇 − 𝑚 + 1
 𝑅௧

்

௧ୀ
൰

ଶ்

௧ୀ

 .  (3) 

The usual benchmark is based on the trailing mean computed with returns from the sample 

that was used to produce the forecasts of approach 𝑖. In the application of (2), this trailing 

mean is used as an estimate for 𝐸(𝑅) − 𝑅; other assumptions do not differ from the 

calculations for forecast approach 𝑖. The utility gain or certainty equivalent return (CER) 

is then 

Δ𝑢 = 𝑢௦௧ ௦ௗ − 𝑢௦௧  ௦ௗ.  (4) 

Usually, Δ𝑢 is expressed on a per annum basis. With a monthly return frequency, for 

example, one would multiply Δ𝑢 by 12. The utility gain can then be interpreted as the 

annual management fee an investor would be willing to pay for getting access to the 

forecast approach. 

 

The buy-and-hold benchmark and Sharpe ratio analysis 

A less frequently used benchmark is the buy-and-hold strategy, which has a constant equity 

weight of one. A utility-based comparison puts the buy-and-hold strategy on a 

disadvantage because it may be too aggressive or too conservative for the risk aversion 

considered in the analysis. This can be addressed with the analysis of Sharpe ratios. Fixed-

weight strategies that differ only in their fixed weight have the same Sharpe ratio. 

                                                 
1 For a regression-based forecast, one could also use the predictive variance (cf. Shmuel Kandel and Robert 
F. Stambaugh, 1996) or the residual variance of the forecast regression. Given that the R² of predictive 
regressions is typically small, the choice may not matter much in practice.  
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Effectively, comparing an optimizing strategy with the buy-and-hold portfolio therefore 

does not assume that investors are fully invested in equity; it assumes that they allocate a 

constant fraction of their wealth to equity and the remainder to the risk-free asset. On the 

other hand, Sharpe ratios are also an appropriate criterion for strategies that optimize 

according to (1) because mean-variance optimization with a risk-free asset results in a 

maximization of the Sharpe ratio. 

 

Statistical significance of economic gains  

As noted by Michael W. McCracken and Giorgio Valente (2018), researchers usually do 

not test the statistical significance of economic performance advantages. There are several 

approaches for statistical tests of utility gains. The first test I perform is the one suggested 

by Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal (2009, footnote 18), which uses 

the delta method to derive the distribution of Δ𝑢. The second test builds on realized 

utilities. Let 𝑉௧ be an estimate of realized equity volatility in period [𝑡 − 1, 𝑡]. Realized 

utility is then 

𝑢௧ = 𝑅௧ −  
1

2
𝛾 𝑤௧

ଶ 𝑉௧
ଶ, (5) 

where 𝑤௧ denotes the equity weight chosen with approach i. Overall utility can be 

estimated as the mean of period-by-period realized utilities: 

𝑢 =
1

𝑇 − 𝑚 + 1
 𝑢௧ .

்

௧ୀ

 (6) 

Because equation (5) provides a time series of utilities, a straightforward procedure is to 

conduct a t-test on the time series of utility differences. The inspection of realized utilities 

was proposed by Wessel Marquering and Marno Verbeek (2004), and a corresponding test 

was used by Thomas Dangl and Michael Halling (2012). I will use the sum of squared 

daily market returns as an estimate of 𝑉௧
ଶ. 
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For the purpose of this paper, I choose these two tests rather than the ones suggested by 

McCracken and Valente (2018) because the latter do not allow for recursive detrending of 

predictors, which is applied in one of the papers that I replicate (Rapach, Ringgenberg, 

and Zhou, 2016). To test the statistical significance of Sharpe ratio differences, I use the 

procedure of J. D. Jobson and Bob M. Korkie (1981) and Christoph Memmel (2003). 

 

Benchmark choice—a discussion 

Having introduced the methodology, it is worth looking at aspects that are relevant when 

choosing a benchmark for equity premium forecasts. The optimizing historical-mean 

benchmark uses the same framework as the forecast-based strategy. One would therefore 

expect that performance differences can more easily be attributed to the quality of the 

studied equity forecast. However, confounding factors can still be at work. Given that 

papers in the predictability literature usually constrain the equity weights to some interval 

(e.g., 0% to 150%), an upward-biased equity premium forecast will bring the forecast-

based optimized strategy closer to a fixed-weight strategy because it will more frequently 

make the upper allocation constraint binding. If a fixed-weight strategy happens to perform 

well with the data used in a study, a bias in equity premium forecasts could result in the 

forecast-based strategy outperforming the historical-mean benchmark.2 Another possible 

confounder is variance. If the variance estimate used for determining optimal weights in 

(2) is not the best available estimator, a forecast that negatively correlates with errors in 

the variance estimates will lead to better performance because it neutralizes errors in the 

variance estimate.  

                                                 
2 To illustrate the possible magnitude of this confounding factor, I analyzed a hypothetical forecast for the 
data and setting used in Rapach, Ringgenberg, and Zhou (2016). A biased monthly forecast, constructed as 
a constant c plus the historical mean, leads to a utility gain of 1.39% relative to the historical-mean 
benchmark whenever c is 0.81% per month or higher. 
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The buy-and-hold strategy is easy to implement. It is also naïve in the sense that it does 

not optimize. However, given the mixed evidence on the performance of optimized 

portfolios,3 it is possible that a naïve strategy could be superior to optimized portfolios. A 

rational investor should consider a buy-and-hold strategy as an option if the data show 

sufficiently strong evidence that its risk-adjusted performance is better than that of the 

optimizing strategy the investor planned to pursue.  

Still, the buy-and-hold benchmark can be viewed as ad hoc. Investors questioning the 

empirical robustness of optimizing strategies could also consider other strategies. If 

performance is compared using Sharpe ratios, however, the buy-and-hold strategy loses 

some of this arbitrariness because it will lead to the same Sharpe ratio as other fixed-weight 

allocation strategies. 

In addition, the optimizing strategies studied in the literature also have an ad-hoc 

component in that they usually constrain the equity weights to some interval. Campbell 

and Thompson (2008, p.1525) motivate this constraint by mentioning that it makes 

allocations realistic. With the same motivation, however, and supported by the fairly 

narrow allocation bands of large investment vehicles, one could also constrain the equity 

weight to between 40% to 100% or to between 50% to 75%.4 Viewed in this light, a fixed-

weight allocation strategy is a limiting case of the optimizing benchmark, which arises 

when the chosen range of admissible equity weights shrinks to zero. The practical 

                                                 
3 Cf. DeMiguel, Garlappi, and Uppal (2009). 
4 One of the largest US balanced mutual funds (American Balanced Fund) describes its policy in its 
prospectus as follows: “Normally the fund will maintain at least 50% of the value of its assets in common 
stocks and at least 25% of the value of its assets in debt securities, including money market securities.” In 
the period from 2003 to 2020, the actual equity weight at reporting dates lay in an even narrower interval, 
between 55% and 74%. See Internet Appendix Figure B4 for details and sources. The prospectus of another 
large US balanced fund (Vanguard Wellington Fund) describes an equity target range that is narrower still: 
“The Fund invests 60% to 70% of its assets in dividend-paying and, to a lesser extent, non-dividend-paying 
common stocks of established large companies.” 
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difference remains, of course, which could mean that the buy-and-hold benchmark will set 

the bar too low because it does not optimize or take risk aversion into account. This 

constitutes a strong argument against the sole use of the buy-and-hold benchmark, but it 

does not invalidate its use as an additional benchmark. If a forecast model does not cross 

a bar that is too low, the economic significance of performance gains becomes doubtful. 

Another aspect one could consider is the viability of strategy choices from the perspective 

of investors. If investors contemplate a fixed-weight strategy, it would not be obvious to 

them which weight they should choose. However, the same holds for the optimizing 

strategy because without some information collection and analysis investors would rarely 

know what their risk aversion 𝛾 is, how to best estimate the return variance, and how to 

best estimate the unconditional mean return. In such a situation, many investors are likely 

to turn to financial advisers. The fact that fixed-weight allocations are frequently 

recommended suggests that they are a realistic alternative to optimizing benchmarks.5 

A study of actual portfolio policies is also likely to lead to different conclusions regarding 

which benchmark is more relevant. For investors who use optimization to determine their 

investment strategy, the optimizing benchmark appears suitable. For institutional investors 

with a fixed-allocation benchmark, the buy-and-hold strategy could appear to be a sensible 

choice, particularly when the performance comparison is based on Sharpe ratios.  

Another question could also be asked: Which benchmark comes closest to the position of 

the average investor? Average portfolio weights will be equal to the market weights, which 

change from day to day with price fluctuations and security issuance. Hence, average 

                                                 
5 An example of a fixed-weight allocation recommendation is the “Select a plan and stick with it” 
recommendation given by Charles Schwab; see  
https://www.schwabmoneywise.com/public/moneywise/essentials/finding_the_right_asset_allocation 
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weights will not be constant, but they may be better approximated by a fixed-allocation 

strategy than by a strategy whose weights fluctuate more widely.6  

To conclude, there appear to be valid arguments for both benchmarks, and it seems 

reasonable to use both.  

 

2. Attractiveness of the buy-and-hold benchmark 

For typical parameter choices and a wide range of different sample periods, this section 

examines how the buy-and-hold strategy fares compared to the commonly used benchmark 

that optimizes the equity weight based on the trailing historical mean. Following many 

other papers, my analysis employs the data set compiled and provided by Amit Goyal,7 

from which I take the equity index data for the S&P 500 as well as the risk-free rate.  

To determine optimal equity weights with equation (2), I use the assumptions from 

Campbell and Thompson (2008): I set the risk aversion 𝛾 to 3, estimate the variance of 

excess returns with five years of monthly data, and constrain the optimal portfolio weights 

to between 0 and 1.5. 

I consider all 50-year samples that can be constructed with data from 1926:01 to 2020:12. 

In each sample, I let the out-of-sample period start 20 years after the sample begins so that 

the out-of-sample period has a length of 30 years. The trailing mean that is used for 

optimizing weights is the trailing mean from the respective sample. This corresponds to 

the usual practice in the literature: A study using a predictor that is available only, for 

example, from 1965 on would estimate the historical mean return with data starting in 

1965, even though a larger return history is available. 

                                                 
6 The weights of the optimizing historical-mean benchmark in the out-of-sample periods of the two studies 
that I replicate fluctuate between 0.70 and 1.50 (Rapach, Strauss, and Zhou, 2010) and 0.36 and 1.50 
(Rapach, Ringgenberg, and Zhou, 2016). See Internet Appendix Figure B5 for details. 
7 http://www.hec.unil.ch/agoyal/. Details on the data are given in Welch and Goyal (2008). 
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Figure 1 shows the utility gains as well as the Sharpe ratio gains that investors would have 

achieved if they had followed the buy-and-hold-strategy instead of the strategy that 

optimizes the equity weight with equation (2). In 84.1% of all samples, the buy-and-hold 

strategy leads to a utility gain; in 92.2% of all samples, it leads to a higher Sharpe ratio. 

Importantly, the empirical attractiveness of the buy-and-hold strategy is not only evident 

ex post with today’s knowledge. Much of the evidence presented in Figure 1 would have 

been available by the year 2008, when the publication of Welch and Goyal (2008) sparked 

a wave of new prediction models. 

 [Insert Figure 1 here] 

To assess the stability of results, I consider several variations. With a risk aversion 𝛾 of 

five, the buy-and-hold portfolio continues to lead to a better performance in more than 

three quarters of all samples. The same holds if the initial estimation period in the 50-year 

samples is set to 30 years instead of 20 years, or if the variance used to determine optimal 

weights is taken to be constant.8  The latter variation is not common in the predictability 

literature but it is worthwhile exploring because the variance might act as a confounder in 

the comparison between the buy-and-hold strategy and optimizing strategies. Detailed 

results for the three variations are presented in the Internet Appendix, Figures B1 to B3.  

 

3. Impact of benchmark choice on published results 

This section illustrates the consequences of benchmark choice for two papers, which I 

select as follows. To identify the sample of papers from which I choose, I consider papers 

that—according to the Social Science Citation Index—cite Campbell and Thompson 

(2008), the seminal paper on the out-of-sample testing approach used in the literature. 

Then, I rank these papers according to their own citations, again using information from 

                                                 
8 I set the variance to 0.1875%, corresponding to an annual volatility of 15%. 



11 
 

the Social Science Citation Index. I first select the mostly highly cited paper, which is 

Rapach, Strauss, and Zhou (2010). I then go down the list of citation-ranked papers until I 

find a paper that shows results for the buy-and-hold benchmark, which leads me to Rapach, 

Ringgenberg, and Zhou (2016). 

In my replication analysis, I rely not only on the descriptions in the papers but also on code 

made available by the authors. Some implementation details that may be helpful for 

readers doing a replication of their own are listed in Internet Appendix A. 

 

Replication of Rapach, Strauss, and Zhou (2010) 

Rapach, Strauss, and Zhou (2010) predict quarterly excess returns of the S&P 500. Their 

sample period is 1947:1 to 2005:4, and the out-of-sample period starts in 1965:1. For 15 

predictors—also examined in Welch and Goyal (2008)—Rapach, Strauss, and Zhou 

(2010) run individual predictive regressions. The forecasts from these individual 

regressions do not improve out-of-sample accuracy in terms of mean-squared prediction 

error, but combinations do. The most accurate combination forecast is the arithmetic mean 

of the 15 individual forecasts. In terms of utility gains, the best-performing model is the 

one that combines the individual forecasts based on their trailing, discounted mean square 

prediction error (DMSPE), using a discount factor 𝜃 of 0.9. Therefore, I replicate the 

analysis for the mean combination forecast as well as for the DMSPE (𝜃=0.9) combination 

forecast. 

Table 1 shows the results. The values obtained through the replication do not exactly 

match, but they are quite close. One reason for this could be differences in the data. Like 

Rapach, Strauss, and Zhou (2010), I am using data provided by Amit Goyal, but the 2019 

version of the file I am using contains differences to previous versions.  
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[Insert Table 1 here] 

Different from Rapach, Strauss, and Zhou (2010), I also test the statistical significance of 

the economic gains. With the optimized benchmark used in the original paper, the majority 

of p-values are below 5%; none of the p-values are above 10%. When I then use the 

alternative buy-and-hold benchmark, economic gains drop substantially, and they are no 

longer significant, with the majority of p-values above 85%. Utility gains decline from 

2.39% and 2.64% to –0.14% and 0.11%; Sharpe ratio differences decline from 0.090 and 

0.102 to 0.002 and 0.014.9 

The results therefore indicate that the buy-and-hold benchmark can be much more difficult 

to beat than the optimizing strategy that the literature favors as a benchmark. 

 

Replication of Rapach, Ringgenberg, and Zhou (2016) 

Rapach, Ringgenberg, and Zhou (2016) predict excess returns on the S&P 500 with a short 

interest index (SII), which has been made available by the researchers. For the replication 

of the out-of-sample analysis, one only needs to implement a recursive detrending of short 

interest activity, as described in the original paper. The sample period starts in 1973:01; 

the out-of-sample period extends from 1990:01 to 2014:12. For the replication, I use my 

own code but follow the code published by the authors; I also take the return data from the 

file made available by the authors.10 To display the authors’ results for differences in 

economic gains with high precision, I take values saved in the authors’ result file. 

Table 2 presents the results for one-month ahead forecasts; results for other horizons are 

summarized below. The replication is exact. With the benchmark that optimizes with the 

                                                 
9 As in the sensitivity analysis for Figure 1, I also consider the following variations: (i) set 𝛾 to 5 instead of 
3, and (ii) determine optimal weights with a constant variance corresponding to an annual volatility of 15%. 
None of these changes leads to an economic gain relative to the buy-and-hold strategy that is significant on 
a level of 10%. 
10 http://apps.olin.wustl.edu/faculty/zhou/Returns_econ_tech_data_programs.zip 
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trailing historical mean, each performance metric is significant at a level better than 5%. 

With the buy-and-hold benchmark, none of the performance metrics are significant at a 

level better than 20%.11  

[Insert Table 2 here] 

The replication thus illustrates the possible consequences of not conducting statistical tests 

of economic gains. Rapach, Ringgenberg, and Zhou (2016, p. 58) offer the following 

conclusion regarding the buy-and-hold benchmark: “(…) a buy-and-hold portfolio that 

passively holds the market portfolio produces CER gains well below those of SII, so that 

SII also easily outperforms a buy-and-hold strategy.”  

Terms such as “easily” can be used with different meanings, and the precise conclusions 

one should draw from statistical tests are not always obvious. Even so, it seems likely that 

p-values above 20% would not lead every reader to agree with the conclusion that the buy-

and-hold strategy is “easily” outperformed. 

A possible argument against the usefulness of statistical tests is that their power could be 

low. As evident from Table 2, however, the tests used here do lead to rejections of the null 

for a different, but weaker benchmark; as shown above, the same is true for the replication 

of Rapach, Strauss, and Zhou (2010). Power could be an issue, but its relevance is not 

obvious. The failure to reject the null that the outperformance relative to the buy-and-hold 

portfolio is zero cannot simply be explained by stating that the tests are incapable of 

identifying performance differences in such situations. 

Rapach, Ringgenberg, and Zhou (2016) also present results for three-month, six-month, 

and 12-month ahead forecasts. The results do not lead to a change of conclusions. The 

                                                 
11 Again I also consider the following variations: (i) set 𝛾 to 5 instead of 3, and (ii) determine optimal weights 
with a constant variance corresponding to an annual volatility of 15%. None of these changes leads to an 
economic gain relative to the buy-and-hold strategy that is significant on a level of 10%. 
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economic gains relative to the buy-and-hold benchmark are never significant at a level 

better than 10%. Detailed results are presented in the Internet Appendix, Table B1. 

 

Assessing hindsight bias 

The relevance of the presented results could be questioned by pointing out that it will 

almost always be possible to find a benchmark that turned out to be more stringent than 

the one favored in some paper. The analysis of Figure 1 mitigates such concerns because 

the stringency of the buy-and-hold benchmark was visible at the time the two papers were 

written. Additional analysis shows that the performance advantage of the buy-and-hold 

strategy would also have been visible to the imaginary investors of the out-of-sample 

exercises in the two replicated papers. In the first ten years of the out-of-sample periods, 

the buy-and-hold portfolio already leads to higher utilities and higher Sharpe ratios than 

the strategy optimizing with the historical mean, and these patterns continue until the end 

of the out-of-sample periods. Detailed results are shown in the Internet Appendix (Figure 

B6). 

 

4. Concluding remarks 

Welch and Goyal (2008) have cast doubt on the robustness of equity premium prediction 

models published before 2008. In this paper, I examined two highly cited papers that were 

published after 2008. The results suggest that the benchmark favored in the literature, 

which is based on the historical mean computed with the data used for the prediction 

model, is not particularly stringent. When the buy-and-hold strategy is used as a 

benchmark, utility and Sharpe ratio gains drop by sizeable amounts, and the statistical 

significance of the performance advantages disappears. The results also illustrate that a 

common practice in the predictability literature should be examined. Researchers usually 
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do not test whether economic gains from following a forecast are statistically significantly 

different from zero. As it turns out, even gains that appear large may not withstand tests 

that have been suggested in the literature. 
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Table 1: Revisiting the performance of combination forecasts of the US equity 

premium from Rapach, Strauss, and Zhou (2010). 

 

The results are based on a replication of the analysis of Rapach, Strauss, and Zhou (2010). The 

mean combination forecast is the arithmetic average of 15 bivariate forecast models. The DMSPE 

combines forecasts from the same 15 models using discounted prediction error weights. Utility 

gains Δ𝑢 indicate the per annum gain of a mean-variance investor who switches from a benchmark 

strategy to one that optimizes the S&P 500 weight based on the combination forecast; Sharpe ratio 

differences are determined for the same set of strategies and benchmarks. Benchmarks are based 

on (i) the trailing mean computed from the model sample beginning in 1947 (as in the original 

paper) and (ii) a buy-and-hold strategy. P-values are two-sided. The out-of-sample period in the 

paper and the replication is 1965:1 to 2005:4. 

 

Interpretation: Benchmark choice matters for Rapach, Strauss, and Zhou (2010). Utility gains 

reported in the original paper more or less disappear if the benchmark is taken to be the buy-and-

hold portfolio. 

 

             Benchmark: Optimized with Trailing Mean  Buy-and-Hold 
 Original Paper Replication  Original Paper Replication 

Panel A: Results for mean combination forecast 

Utility Gain Δ𝑢 (in %) 2.34 2.39  - –0.14 

 p from delta method test - (0.012)  - (0.851) 

 p from t-test on realized Δ𝑢 - (0.046)  - (0.953) 

ΔSharpe Ratio  - 0.090  - 0.002 

 p from Jobson–Korkie test - (0.038)  - (0.967) 

Panel B: Results for DMSPE (𝜃 = 0.9) combination forecast 

Utility Gain Δ𝑢 (in %) 2.59 2.64  - 0.11 

 p from delta method - (0.022)  - (0.905) 

 p from t-test on realized Δ𝑢 - (0.090)  - (0.896) 

ΔSharpe Ratio  - 0.102  - 0.014 

 p from Jobson–Korkie test - (0.064)  - (0.791) 
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Table 2: Revisiting the performance of a forecast of the US equity premium from 

Rapach, Ringgenberg, and Zhou (2016). 

 

The results are based on a replication of the analysis performed in Rapach, Ringgenberg, and Zhou 

(2016). The forecast is a regression-based prediction with a short interest index. Utility gains Δ𝑢 

indicate the per annum gain of a mean-variance investor who switches from a benchmark strategy 

to one that optimizes the S&P 500 weight based on the combination forecast; Sharpe ratio 

differences are determined for the same set of strategies and benchmarks. Benchmarks are (i) the 

trailing mean computed from the model sample beginning in 1973 (as in the original paper) and 

(ii) a buy-and-hold strategy. P-values are two-sided. The out-of-sample period in the paper and the 

replication is 1990:01 to 2014:12. 

Interpretation: With the buy-and-hold benchmark, the economic gains from using the forecast 

model are not statistically significant. Testing the statistical significance of economic gains can 

cast a different light on the results. Performance differences that may appear large can lack 

statistical significance. 

 

 

Benchmark: Optimized with Trailing Mean  Buy-and-Hold 

 Original paper Replication  Original Paper Replication 

Utility Gain Δ𝑢 (in %) 4.17 4.17  2.46 2.46 

 p from delta method - (0.020)  - (0.235) 

 p from t-test on realized Δ𝑢 - (0.049)  - (0.257) 

ΔSharpe Ratio  0.270 0.270  0.150 0.150 

 p from Jobson–Korkie test - (0.023)  - (0.268) 

 

 
 

  



19 
 

Figure 1: Performance of the buy-and-hold strategy relative to an optimizing strategy 
based on the historical mean—for different 50-year sample periods. 
 
The graphs show economic gains when switching from a strategy that optimizes the S&P 500 
weight based on the trailing historical mean to the buy-and-hold strategy. Utility gains 𝚫𝒖 indicate 
the per annum gain of a mean-variance investor who switches from the optimizing strategy to the 
buy-and-hold strategy; Sharpe ratio differences are determined for the same switch. The analysis 
is conducted for different sample periods, each having a length of 50 years. The out-of-sample 
estimation period starts 20 years after the respective sample begins and lasts 30 years. The return 
frequency is monthly. Risk aversion is set to three, the variance of excess returns needed for the 
optimization is estimated with a five-year rolling window, and optimal equity weights are 
constrained to between 0% and 150%. 
 

Interpretation: In the majority of the considered samples, the buy-and-hold strategy would have 
led to a better risk-adjusted performance than the optimizing strategy. Note that the performance 
differences are not cumulative. Each column represents the result for one 50-year sample. 
 

Panel A: 𝚫u = Utility from buy and hold minus utility from optimizing strategy 

 
 

Panel B: 𝚫Sharpe ratio = Sharpe ratio of buy and hold minus Sharpe ratio of optimizing 

strategy 

 

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Jan-26 Jan-31 Jan-36 Jan-41 Jan-46 Jan-51 Jan-56 Jan-61 Jan-66

D
u 

(in
 %

)

Beginning of 50-year sample

Example: the sample begins in 1946, the out-of-sample period is 
1966 to 1996. Buying the market instead of optimizing with the 
trai l ing historical mean leads to a uti lity gain of 1.8% per year

-0.05

0.00

0.05

0.10

0.15

0.20

Jan-26 Jan-31 Jan-36 Jan-41 Jan-46 Jan-51 Jan-56 Jan-61 Jan-66

D
Sh

ar
pe

 R
at

io

Beginning of 50-year sample

Example: the sample begins in 1946, the out-of-sample period is 
1966 to 1996. Buying the market instead of optimizing with the 
trai ling historical mean leads to a higher Sharpe ratio. The 
difference is 0.09


