

On Space-Time Approaches in Reduced Basis Methods

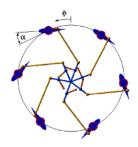
Time-Periodic Problems

Kristina Steih
Institute for Numerical Mathematics

Joint work with: Karsten Urban, Ulm University

Optimization of a ship propeller

- parameter studies
- long simulation times
- ⇒ Model reduction in parameter space



Challenges for Reduced Basis Methods

- ► Time-periodic problem
- ► Parameter-dependent domain
- ► Time-dependent parameter function
- Nonlinearities

- Itommeuner

•

[CTU]

[CTU]

C. Canuto, T. Tonn and K. Urban. A-posteriori error analysis of the RBM for non-affine parameterized nonlinear PDE's. SIAM J. Numer. Anal. 2009.

Mathematical Problem Formulation

Parameter-dependent time-periodic problem

Let $V \hookrightarrow H \hookrightarrow V'$ a Gelfand triple, $\mu \in \mathcal{D} \subset \mathbb{R}^p$, $\mathcal{A}(t;\mu) : V \to V'$.

$$J(u(\mu)) = \int_0^T \ell(u(\mu); \mu) dt,$$

 $u_t + \mathcal{A}(t;\mu)u = q(t;\mu)$ on Ω ,

$$u(0) = u(T)$$
 in H ,

$$u(t,x;\mu) = h_D(x;\mu)$$
 on Γ_D , $\frac{\partial}{\partial n} u(t,x;\mu) = h_N(x;\mu)$ on Γ_N .

Example:

$$\mathbf{V} = H^1_{(\Omega)}(\Omega) \quad \hookrightarrow \quad \mathbf{H} := L_2(\Omega) \quad \hookrightarrow \quad \mathbf{V}' := H^{-1}(\Omega).$$

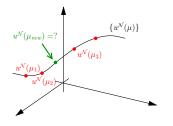
Introduction to RBM

Space-Time in RBN

Why Space-Time

Adaptive Space-Time Methods

The idea behind RBM



Assumption:

- ▶ High-dimensional discretization space X^N (FEM, FV, wavelets,...)
- $u^{\mathcal{N}}(\mu)$ smooth in μ
- ▶ Low-dimensional solution space $\mathcal{M}^{\mathcal{N}} = \{u^{\mathcal{N}}(\mu) : \mu \in \mathcal{D}\}$

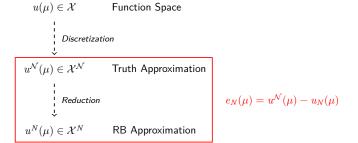
Procedure: Approximation of $\mathcal{M}^{\mathcal{N}}$

- 1. Basis construction: N solutions $u^{\mathcal{N}}(\mu_1), \ldots, u^{\mathcal{N}}(\mu_N)$, $N \ll \mathcal{N}$.
- 2. Projection: Compute $u(\mu_{new})$ on $\mathcal{X}^N := \operatorname{span}\{u^{\mathcal{N}}(\mu_1), \dots, u^{\mathcal{N}}(\mu_N)\}.$

Application:

- Many-query context (e.g. optimization)
- Real-time applications

Reliable and efficient error bounds



Error Bound

$$||u^{\mathcal{N}}(\mu) - u_N(\mu)|| \le \Delta_N(\mu)$$

- rigorous: strict upper bound
- ▶ **efficient**: N-independent • sharp: $\eta(\mu) := \frac{\Delta_N(\mu)}{\|e_N(\mu)\|} \approx 1$
- Offline Phase: Parameter choice for basis construction
- Online Phase: Verification of reduced solutions

Space-Time in RBM

Why Space-Time

Adaptive Space-Time Methods

Standard Approaches

Initial Value Problems

► Method of lines + time-stepping schemes (implicit Euler/Crank-Nicolson)

For
$$\{t_k\}_{k=1,\dots,K}$$
, find $u^k(\mu)=u(t_k;\mu)\in V$ with $u^0(\mu)=u_0(\mu)$ and
$$\langle u^k,v\rangle+\Delta t\,a(t_k,u^k,v;\mu)=\langle u^{k-1},v\rangle+\Delta t\,q(t_k,v;\mu)\qquad\forall\,v\in V.$$

Note:

A Crank-Nicolson time-stepping scheme can be formulated as a space-time problem for the special choice by choosing a finite tensorized basis with

- piecewise linear trial functions in time,
- piecewise constant test functions in time.

M. Grepl and A.T. Patera. A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations. M2AN, 2005.

B. Haasdonk and M. Ohlberger. Reduced Basis Method for Finite Volume Approximations of Parameterized Linear Evolution Equations. M2AN, 2008.

Standard Approaches

Initial Value Problems

▶ Method of lines + time-stepping schemes (implicit Euler/Crank-Nicolson)

For $\{t_k\}_{k=1,...,K}$, find $u^k(\mu) = u(t_k; \mu) \in V$ with $u^0(\mu) = u_0(\mu)$ and

$$\langle u^k, v \rangle + \Delta t \, a(t_k, u^k, v; \mu) = \langle u^{k-1}, v \rangle + \Delta t \, g(t_k, v; \mu) \qquad \forall \, v \in V.$$

Periodic Problems

 $\blacktriangleright \ \ \text{Method of lines} + \text{time-stepping} + \textbf{fixed-point iterations} \colon u^0(\mu) = u^K(\mu)$

Note:

Consequently, such a solution of a periodic problem requires

- an a-priori unknown number of repetitions of an initial value problem.

Usually, these approaches only yield a spatial reduced basis $V^N \subset V^{\mathcal{N}_x}$ and thus also require time-stepping methods in the online phase.

RB Error Bounds in time-stepping approaches

Time-discrete error bound for periodic problems

The reduction error for a reduced basis based on an implicit Euler scheme can be bounded as follows:

$$\|e_N(\mu)\|_{\mathcal{Y}} \approx \left(\Delta t \sum_{k=1}^K \|e_N^k(\mu)\|_V^2\right)^{\frac{1}{2}} \leq \left(\frac{\Delta t}{\alpha^2(\mu)} \sum_{k=1}^K \|r_N^k(\cdot;\mu)\|_{V'}^2\right)^{\frac{1}{2}} =: \Delta_N^{\mathsf{FP},\mathcal{Y}}(\mu),$$

where

- $ightharpoonup r_N^k(\mu): V o \mathbb{R}$ is the residual at time step t_k
- $ightharpoonup \alpha(\mu)$ is the coercivity constant of $a(t,\cdot,\cdot;\mu)$
- $\mathcal{Y} := L_2(0, T; V)$

Here:

- ▶ Calculation of $||r_N^k(\cdot;\mu)||_{V'}$
 - using Riesz representors $\hat{r}_N^k(\mu) \in V$
 - offline-online decomposition

Space-Time Formulation

Notation:

$$\mathcal{Y} := L_2(0, T; V),$$

 $\mathcal{X}^{per} := L_2(0, T; V) \cap H^1_{ner}(0, T; V') := \{u \in L_2(0, T; V): u_t \in L_2(0, T; V'), \ u(0) = u(T) \text{ in } H\}$

Well-posedness

Let A(t) be uniformly bounded and coercive. Then the problem

$$\text{Find } u(\mu) \in \mathcal{X}^{per}: \int_0^T \langle u_t, v \rangle dt + \int_0^T a(t, u, v; \mu) dt = \int_0^T g(t, v; \mu) dt \quad \forall \, v \in \mathcal{Y}.$$

$$=:b(u,v;\mu) \qquad :=f(v;\mu)$$

is well-posed.

Proof: Babuška-Aziz, cf. [Schwab/Stevenson 2009].

C. Schwab and R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Mathematics of Computation, 2009.

Space-Time RB Error Bound

Error bounds for a periodic space-time problem

The reduction error for a space-time reduced basis can be bounded as follows:

$$||e_N(\mu)||_{\mathcal{Y}} \leq \frac{||r_N(\cdot;\mu)||_{\mathcal{Y}'}}{\alpha(\mu)} =: \Delta_N^{\mathsf{ST},\mathcal{Y}}(\mu),$$
$$||e_N(\mu)||_{\mathcal{X}} \leq \frac{||r_N(\cdot;\mu)||_{\mathcal{Y}'}}{\beta(\mu)} =: \Delta_N^{\mathsf{ST},\mathcal{X}}(\mu),$$

where

- ▶ $r_N(\mu): \mathcal{Y} \to \mathbb{R}$ is the space-time residual,
- $\blacktriangleright \beta(\mu) = \inf_{0 \neq u \in \mathcal{X}^{per}} \sup_{0 \neq v \in \mathcal{V}} \frac{|b(u,v;\mu)|}{||u||_{v=v=||v||_{\mathcal{X}}}}$ is the inf-sup constant of $b(\cdot,\cdot;\mu)$.

Space-Time RB Error Bound

Error bounds for a periodic space-time problem

The reduction error for a space-time reduced basis can be bounded as follows:

$$||e_N(\mu)||_{\mathcal{Y}} \leq \frac{||r_N(\cdot;\mu)||_{\mathcal{Y}'}}{\alpha(\mu)} =: \Delta_N^{\mathsf{ST},\mathcal{Y}}(\mu),$$
$$||e_N(\mu)||_{\mathcal{X}} \leq \frac{||r_N(\cdot;\mu)||_{\mathcal{Y}'}}{\beta(\mu)} =: \Delta_N^{\mathsf{ST},\mathcal{X}}(\mu),$$

where

- $ightharpoonup r_N(\mu): \mathcal{Y}
 ightarrow \mathbb{R}$ is the space-time residual,
- $\beta(\mu) = \inf_{0 \neq u \in \mathcal{X}^{per}} \sup_{0 \neq v \in \mathcal{Y}} \frac{|b(u,v;\mu)|}{\|u\|_{\mathcal{X}^{per}} \|v\|_{\mathcal{Y}}}$ is the inf-sup constant of $b(\cdot,\cdot;\mu)$.
- ▶ Calculation of $||r_N(\cdot; \mu)||_{\mathcal{V}'}$:
 - using Riesz representors $\hat{r}_N(\mu) \in \mathcal{Y}$
 - offline-online decomposition
- ▶ Both $\alpha(\mu)$ and $\beta(\mu)$ are usually replaced by efficient (i.e. \mathcal{N} -independent) lower bounds $\alpha_{\mathsf{LB}}(\mu)$, $\beta_{\mathsf{LB}}(\mu)$.

K. Steih and K. Urban. Space-Time Reduced Basis Methods for Time-Periodic Partial Differential Equations. Proc. MATHMOD, 2012.

Short comparison

Space-Time	Fixed-Point Iterations
Solution procedure offline:	Solution procedure offline:
► Periodic basis functions ► 1 large system $(\mathcal{O}(\mathcal{N}_t \mathcal{N}_x))$	 Time-stepping with unknown number of iterations M
3 , (, , , , , , , , , , , , , , , , ,	Many small systems ($MK\mathcal{O}(\mathcal{N}_x)$)
Basis construction:	Basis construction:
Space-time basis functions	Spatial basis functions (POD)
Space-time offline quantities	Spatial offline quantities
ightarrow high memory requirements	ightarrow low memory requirements
► Time-dependent operators: ✓	► Time-dependent operators: ?
Solution procedure online:	Solution procedure online:
▶ 1 reduced system $(\mathcal{O}(N_{ST}))$	▶ MK reduced systems (à $\mathcal{O}(N_{FP})$)

Why Space-Time?

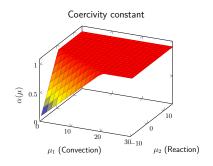
Model Problem

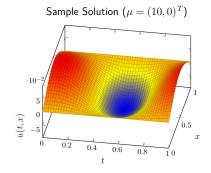
Convection-Diffusion-Reaction Example

$$u_t - u_{xx} + \mu_1(\frac{1}{2} - x)u_x + \mu_2 u = \cos(2\pi t)$$
 on $\Omega = (0, 1),$
$$u(t, 0) = u(t, 1) = 0,$$

$$u(0, x) = u(T, x),$$
 $(T = 1).$

Parameter Domain: $\mu \in \mathcal{D} := [0, 30] \times [-9, 15]$.





Why Space-Time? - Effective error bounds

Space-Time inf-sup constant $\beta(\mu)$

Consider **non-coercive initial-value** systems.

- lacktriangle Case 1: Diffusion-Convection ($\mu_2=0$) system asymptotically stable
- ▶ Case 2: Diffusion-Reaction ($\mu_1 = 0$) system asymptotically unstable

K. Urban and A.T. Patera *An improved error bound for RB approximation of linear parabolic systems. Submitted to Math. Comp.*, 2012.

Why Space-Time? – Effective error bounds

Space-Time inf-sup constant $\beta(\mu)$

Consider non-coercive initial-value systems.

- ▶ Case 1: Diffusion-Convection ($\mu_2 = 0$) system asymptotically stable
- lacktriangle Case 2: Diffusion-Reaction ($\mu_1=0$) system asymptotically unstable

Standard Crank-Nicolson error bound contains

- stability constant $\rho_N(t^k,\mu)$ (energy estimates),
- with long-term behaviour $e^{-\mu_i T}$, i = 1, 2.
- \Rightarrow **exponentially growing** error bounds.

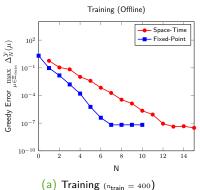
Space-time inf-sup constant:

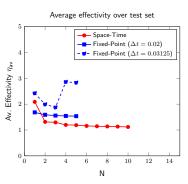
- ► Case 1: long-term behaviour $(\mu_1 T)^{-1}$
- ► Case 2: long-term behaviour $e^{-\mu_2 T}$
- ⇒ reflects true system behaviour.

K. Urban and A.T. Patera An improved error bound for RB approximation of linear parabolic systems. Submitted to Math. Comp., 2012.

Why Space-Time? – Effective error bounds

$$||r_N(\cdot;\mu)||_{\mathcal{Y}'} \leftrightarrow \left(\sum_{k=1}^K ||r_N^k(\cdot;\mu)||_{V'}^2\right)^{1/2}$$



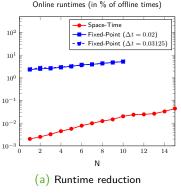


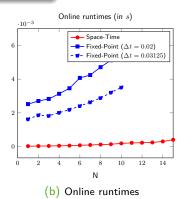
(b) Average Effectivity (n_{test} = 225)

$$\eta_{\mathsf{av}} := rac{1}{n_{\mathsf{test}}} \sum_{\mu \in \Xi_{\mathsf{test}}} rac{\Delta_N^{\mathcal{Y}}(\mu)}{\|e_N(\mu)\|}$$

Why Space-Time? - Online speed-up

$$\mathcal{O}(N_{\mathsf{ST}}) \leftrightarrow \mathit{MK}\,\mathcal{O}(N_{\mathsf{FP}})$$





Implementations:

Space-Time: LAWA

► Fixed-Point Iterations: rb00mit/libmesh

	lime Iruth (in s)
Space-Time	0.8965
Fixed-Point ($\Delta t = 0.02$)	0.1076
Fixed-Point ($\Delta t = 0.03125$)	0.0662

LAWA: Library for Adaptive Wavelet Algorithms, lawa.sourceforge.net, 2001

libmesh: Kirg, Stogner and Carey, A C++ Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations, Eng. with Comp., 2006

Adaptive Space-Time Methods

Adaptive Space-Time Methods

Initial Value Problems:

- "Right" choice of space-time basis leads to Crank-Nicolson scheme.
- ► Calculations decouple.

Periodic Problems:

- Crank-Nicolson scheme has to be combined with fixed-point iterations.
- Calculations do not decouple.

Idea

Adaptive space-time algorithm.

Wavelets:

Variational formulation equivalent to bi-infinite matrix-vector problem:

$$b(u, v; \mu) = f(v; \mu), \quad u \in \mathcal{X}, v \in \mathcal{Y} \iff \mathbf{B}\mathbf{u} = \mathbf{f}, \quad u, f \in \ell_2$$

C. Schwab and R. Stevenson. *Space-time adaptive wavelet methods for parabolic evolution problems.* Mathematics of Computation, 2009.

[YPU]

Conclusion

Space-Time methods can lead to

- inf-sup constants that reflect the true behaviour of the underlying systems,
- more effective error bounds,
- ▶ faster reduced models.

The drawback of the additional dimension can be circumvented:

- ▶ Initial value problems: specific basis yields Crank-Nicolson scheme.
- Periodic problems: adaptive space-time methods.

M. Yano, A.T. Patera and K. Urban *A Space-Time Certified RBM for Burgers' Equation.*Submitted to Math. Models and Methods in Appl. Sc., 2012.

M. Yano. A Space-Time Petrov-Galerkin Certified RBM – Application to the Boussinesq Equation. Submitted to SIAM J. Sc. Comp. , 2012.

Conclusion

Space-Time methods can lead to

- ▶ inf-sup constants that reflect the true behaviour of the underlying systems,
- more effective error bounds,
- faster reduced models.

The drawback of the additional dimension can be circumvented:

- ▶ Initial value problems: specific basis yields Crank-Nicolson scheme. [YPU]
- Periodic problems: adaptive space-time methods.

