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High dimensional data arise in various areas of scientific computing. Parametric PDEs, molecu-
lar simulations, and classification are examples among many others [2–4]. For this reason, low-rank
tensor approaches gained intensive attention of researchers in recent years. These methods allow
to store the data implicitly and perform arithmetic operations on them with a reasonable com-
plexity avoiding the curse of dimensionality. Most of the research focused on the establishment of
representation formats and their corresponding arithmetic operations that reduce the floating point
operations complexity [1,3,5]. However, few work considered efficient parallel algorithms for tensor
computations.

In this work, we present communication-avoiding algorithms for tensors represented in tensor
train (TT) format. Left and right orthogonalization procedures play an important role in most
computations with TT tensors, e.g., during the projection step in the Alternating Least Squares
method, rounding of formal structures, etc. We analyze data distribution and communication cost
of the orthogonalization and rounding procedures. Due to the sequential scheme of TT tensors
with respect to the modes, the performance of parallel algorithms becomes quickly communication
bounded when increasing the number of modes, d. To tackle this issue, we use a mixed representation
TT-Tucker to which it was pointed out in the literature [5] and introduce a communication-avoiding
orthogonalization and rounding corresponding procedures.

A factor of d in terms of number of messages is saved with respect to the TT variant. Numerical
experiments on large number of processes demonstrate the scalability of the proposed methods.
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