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Dictionary-based Online-adaptive Structure-preserving Model

Order Reduction for Parametric Hamiltonian Systems

R. Herkert1, B. Haasdonk1, and P. Buch�nk1

1Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Germany

Reduced Basis (RB) methods applied to a non-linear time-dependent system often lead to a reduced
basis, that is too large, such that no su�cient speed up can be realized compared to the high-order
simulation. In general, the development of online-e�cient RB methods for problems with slowly
decaying Kolmogorov-n-widths is still a strongly investigated topic. To address this problem, we
present symplectic dictionary-based online-adaptive methods for Hamiltonian systems. The idea is,
that the reduced basis is adapted during the time-stepping of the reduced simulation. Basis vectors,
that are no longer required to represent the current solution vector (because, they would have a zero
coe�cient) are removed from the basis and new basis vectors are added, that are necessary to get a
good approximation for the next time steps.
We focus on the symplectic model order reduction of parametric Hamiltonian systems

ẋ(t) =

(
0 I
−I 0

)
∇xH(x(t), µ) =

(
0 I
−I 0

)
L(µ)x(t) +

(
0 I
−I 0

)
fnl(x(t), µ). (1)

To compute a basis, a dictionary of snapshots DX = {x1, ..., xNX} is constructed and during the on-
line phase snapshots are selected from the dictionary. Then, the basis is computed from the selected
snapshots. With an o�ine-online splitting this basis computation can be performed highly e�ciently,
such that the online-run-time is just depending on the number of selected snapshots (see [2]). Like
this, we derive online-e�cient versions of both classical basis generation techniques like POD as well
as symplectic basis generation techniques, like the complex SVD-algorithm (see [1]).
In order to e�ciently treat non-linearities in the right-hand side of (1) in combination with the SDEIM-
algorithm (see [4]), a dictionary of non-linearity snapshotsDF = {fnl(x1), ..., fnl(xNF)} and a dictionary
of DEIM-indices DP = {i1, ..., iNP} is computed. With an o�ine-online splitting an online-e�cient ver-
sion of the classical SDEIM-algorithm is obtained.
The snapshots are selected according to their distances in the parameter-time-space P × [t0 te] to the
parameter-time-coordinates of the time steps computed next (see [3]). The presented methods are
tested on a linear and a non-linear wave-equation model. The in�uence of the basis changes on the
conservation of the Hamiltonian is studied.
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Structure-Preserving Model Reduction with Quadratic Manifolds

P. Oehme1

1University of Münster

The standard approaches to structure-preserving model order reduction nowadays make use of either
linear subspaces [1, 3] or more complex spaces learned by the use of machine learning means such
as autoencoders [5, 6]. The benefits of linear approximation are that these are simple to compute,
explainable, and may possess other qualities like offline-online decomposability. Complex learned
spaces require much more effort during computation, and usually lack the explainability attributed to
their linear counterparts; what they make up in however, is their approximative quality by being able
to model complex non-linear problems.
Lately, another method has been introduced: model order reduction with quadratic (and potentially
arbitrary polynomial) solution manifolds as a generalization of modal derivatives [2, 4]. The hope for
this procedure is to gain approximation quality in comparison to the linear subspace models while at
the same time keeping the computation time lower and the final manifolds more explainable than the
machine-learned results. As of right now these approaches lack a lot of the versatility of the previous
ideas such as error estimators, computational time comparisons, and the availability of additional
properties such as structure preservation during runtime. A first goal would hence be to achieve a
quadratic manifold method conserving the structure of the underlying problem as an extension of the
available methods.
This talk intends to give an introduction to data-driven quadratic manifold construction and the
possibility of preserving the structure of a port-Hamiltonian system along its trajectory, as well as a
few examples.
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Parametric reduced order modelling for a 2D wildland fire model
via the shifted POD based deep learning method

Shubhaditya Burela1 and Philipp Krah1,2
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Forecasting the spread of forest fires has become an important aspect of civil protection [2]. To predict
forest fires the wildland fire model [4] can be simulated over a range of different scenarios. To speed
up the numerical simulations model order reduction (MOR) is unavoidable. Unfortunately, classical
MOR techniques like proper orthogonal decomposition (POD) fail for the wildland fire model since
it features moving flame fronts that cannot be captured with a linear subspace. To circumvent this,
[1] proposes to use shifted proper orthogonal decomposition (sPOD). The sPOD [6, 5] decomposes
transport fields by shifting the data field in so-called co-moving frames, in which the traveling wave
is stationary and can be described with a few spatial basis functions, that are computed with help of
the POD. In this work, we use the sPOD together with neural networks and show that we are able to
learn the spread of forest fires. The low dimensional description of the wildland fire model is created
once using the snapshot data, that has been simulated for a representative set of input parameters.
Thereafter we train the neural networks to predict the wildland fire spread for any new parameter
set. The approach proposed here closely follows [3] where a deep learning framework is employed
to efficiently learn the nonlinear trial manifold from the snapshot data and subsequently predict the
solutions at new parameter values. The proposed method is tested on 1D and 2D wildland fire models
with varying burning rates and varying flame front shapes.
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A certified wavelet-based physics-informed neural network for
the solution of parameterized partial differential equations

Lewin Ernst∗ and Karsten Urban†
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ABSTRACT

Parameterized partial differential equations (PPDEs) arise to describe physical phenomena.
These equations often have to be solved either in a multi-query or in a real-time context for
different parameters resulting in the need for model order reduction. For transport- or wave-type
problems it has been proven that the Kolmogorov N -width decay is poor ([4], [3]), such that linear
model reduction techniques are bound to fail and nonlinear methods are needed. The recent
success in solving various PDEs with neural networks (NNs), particularly with physics-informed
NNs (PINNs) (see e.g. [5] [1]) suggests that they are a natural candidate for nonlinear model
order reduction (MOR) techniques, although an a-posteriori error control is at least not trivial.

The goal of our approach is to construct PINNs along with a computable upper bound of the
error, which is particularly relevant for model reduction of PPDEs. To this end, we suggest
to use a weighted sum of expansion coefficients of the residual in terms of an adaptive wavelet
expansion both for the loss function and an error bound, [2].

This approach is shown for the linear transport equation using an optimally stable ultra-weak
formulation. Numerical examples show a very good quantitative effectivity of the wavelet-based
error bound.
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N -widths of the linear transport equation linked with the
smoothness of boundary values
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It is well-known that the decay of the Kolmogorov N -width, given by O(N−1/2), is slow for transport
and wave phenomena with discontinuous initial values [3, 4]. However, when considering smooth
boundary values this behaviour changes.
We analysed the N -width of the solution manifold of the linear transport equation

∂tΦ+ v ∂xΦ = 0, Φ(0, ·) = f,

where v is the velocity and Φ the transported quantity. We considered the boundary value f to be
p-times weak differentiable, i.e. f ∈ Hp.
The N -width for the class Hp of p-times weak differentiable functions was already investigated by
Kolmogoroff and Pinkus [1, 2] and is approximately O(N−p). Since the solution manifold is a subset
of Hp, the result by Pinkus can be used as an upper bound. But how sharp is this upper bound?
We proved that the N -width for the transport problem can be bounded by O(N−p−1/2).
We were also able to prove that O(N−p−1/2) is the exact Kolmogorov N -width for some specific
boundary functions f ∈ Hp. This tells us that approximating the solution manifold M ⊂ Hp for the
transport problem is nearly as hard as approximating all of Hp.
For f ∈ H∞, we get an exponential decay.
Finally, we made some numerical experiments where we defined some p-times differentiable ramps that
approximate the Heaviside function and observed the same decay. This is particular interesting, since
in practice the error decay can be accelerated by first smoothing the initial values.
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E�ects of Compression on Reduced Bases for Turbulent Flows

O. Tugluk1

1METU/Ankara

Recent advances in machine learning (ML), speci�cally deep neural nets (DNN), have resulted in
unprecedented leaps in certain areas of research, such as natural language processing, image processing,
and robotics to name a few. ML is, without a doubt, the fastest growing and the most prevalent arti�cial
intelligence (AI) technique in use today.
Increased use of machine learning tools, while ever expanding, found comparatively little use in compu-
tational �uid dynamics (CFD), especially in turbulent �ows. Underlying reasons for this are twofold,
traditionally data for computationally complex turbulent �ows is scarce, and size of the input to the
machine learning model (the so- called feature vector) is very large when compared to more classical
problems tackled with machine learning. In addition, when neural network (NN) based ML is used
in a straightforward manner, i.e. continuously mapping the input �ow �eld to a �nal �ow state, the
complexity of the underlying neural network (number of arti�cial neurons) can easily become unten-
able. Further complicating the situation is the so-called curse of dimensionality, which means the
data required to train a ML model increases with increasing feature vector size. This increase in data
requirement also adversely a�ects the training time for the ML model. How, then, can we overcome
these obstacles and bene�t from the ever-expanding machine learning research?
In this talk I will outline my approach to tackle the curse of dimensionality while building reduced order
models for pipe �ow. My approach leverages versatility and power of reduced basis methods; while
aiming to further reduce model order by employing analysis preserving data compression techniques
[1].
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Data-driven non-intrusive reduced-order modeling for plasma
turbulence via Operator Inference
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Turbulence simulations play a crucial role in the plasma physics community as they give insight into the
underlying nonlinear dynamics. However, these simulations are computationally expensive. Reduced-
order models provide a computationally cheaper alternative to the high-fidelity model exploiting the
fact that in most physics and engineering problems, the dominant dynamics live on low-dimensional
manifolds.
We focus on the Hasegawa-Wakatani equations, a plasma model describing two-dimensional drift-wave
turbulence, and approximate it with a reduced order model learned via Operator Inference. Operator
Inference is a data-driven non-intrusive model reduction method that learns low-dimensional reduced
models with polynomial nonlinearities from trajectories of high-dimensional high-fidelity simulations.
In addition, it can handle arbitrary nonlinearities by employing lifting transformations that map the
given states into states with polynomial nonlinearities. In the present work, we perform one of the first
systematic reduced-order modeling studies in plasma physics to ascertain whether Operator Inference
can provide accurate and predictive reduced models for the Hasagawa-Wakatani system.



A reduced order model for segregated fluid-structure interaction
solvers based on a ALE approach
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Interactions between fluid and moving (deforming) structures are essential in many fields, such as
aerospace, civil, and mechanical engineering, and numerical simulation has been one of the few available
methods for studying this problem [1]. In civil engineering, wind-induced vibrations can cause the
collapse of the construction, being the most studied example the Tacoma Narrows Bridge, which
collapsed under 64 [km/h] wind conditions on November 7, 1940. To illustrate and understand this type
of bluff body dynamics problem, the flow past a moving cylinder has received continued attention in
the past few decades as a benchmark problem in fluid dynamics that serves to models such engineering
applications [3]. The resolution to the above modeling problem is given by numerically solving the
Navier-Stokes equations, which is computationally expensive (for data storage, data handling, and
processor costs), even when implemented on modern advanced computing platforms. Therefore, it can
be a significant challenge to deal with several situations such as fluid-structure interaction problems.
Given this difficulty, we pay significant attention to reducing both storage and processing costs of
non-linear state solutions by using reduced-order models.
This talk discusses the potentiality of reduced-order models in flow-induced vibration. The originality
of this work is the study of the flow past an oscillating cylinder in finite volume methods (FVM) using
a segregated approach based on a PIMPLE algorithm with dynamic mesh capability. We generate
modes using the proper orthogonal decomposition (POD) technique. The full-order model (FOM) is
the flow around a cylinder that can move in the vertical direction. We verify our results by comparing
the velocities, pressure, and grid motion given by the FOM and the reduced-order model (ROM).
Additionally, a deep analysis is done by comparing both the phase portraits and forces given by the
high-fidelity problem with those given by the reduced-order model’s using the open source libraries
OpenFOAM [2] and ITHACA-FV [4]
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The aim of this work is to present a model reduction technique in the framework of optimal con-
trol problems for partial differential equations [2]. We combine two approaches used for reducing
the computational cost of the mathematical numerical models: domain-decomposition (DD) meth-
ods and reduced-order modelling (ROM). In particular, we consider an optimisation-based domain-
decomposition algorithm for the parameter-dependent stationary incompressible Navier-Stokes equa-
tions [5].
Firstly, the problem is described on the subdomains coupled at the interface and solved through an
optimal control problem, which leads to the complete separation of the subdomain problems in the
DD method. On top of that, a reduced model for the obtained optimal-control problem is built;
the procedure is based on the Proper Orthogonal Decomposition technique and a further Galerkin
projection [3].
The presented methodology is tested on two fluid dynamics benchmarks: the stationary backward-
facing step and lid-driven cavity flow. The numerical tests show a significant reduction of the compu-
tational costs in terms of both the problem dimensions and the number of optimisation iterations in
the domain-decomposition algorithm.
The aforementioned techniques could be promising in the context of more complex time–dependent
problems and, more importantly, multi–physics problems, where either pre-existing solvers can be
used on each subcomponent or we do not have direct access to the codes. In particular, in future, we
are planning to extend the methodology presented in this paper to the nonstationary fluid–dynamics
problems and, eventually, to Fluid–Structure interaction problems [4]. Moreover, this approach can
be applied also to more complicated problems, where different types of numerical models are used in
different subdomains [1].
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Dictionary-based model reduction for state estimation
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We consider the problem of state estimation from m linear measurements, where the state u to re-
cover is an element of the manifold M of solutions of a parameter-dependent equation. The state is
estimated using a prior knowledge on M coming from model order reduction. Variational approaches
based on linear approximation of M, such as PBDW [3], yields a recovery error limited by the Kol-
mogorov m-width of M. To overcome this issue, piecewise-affine approximations [2] of M have also be
considered, that consist in using a library of linear spaces among which one is selected by minimizing
some distance to M. In this paper, we propose a state estimation method relying on dictionary-based
model reduction, where a space is selected from a library generated by a dictionary of snapshots, using
a distance to the manifold. The selection is performed among a set of candidate spaces obtained from
the path of a ℓ1-regularized least-squares problem. Then, in the framework of parameter-dependent
operator equations (or PDEs) with affine parameterizations, we provide an efficient offline-online de-
composition based on randomized linear algebra [1], that ensures efficient and stable computations
while preserving theoretical guarantees.
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Figure 1: Dictionary-based state estimation applied to the thermal block problem parameterized by the thermal
conductivity of the different subdomains (left). Sensors are located on a grid of m = 64 points. On the right,
we compare our approach to the classical PBDW (red) using the best truncated POD modes as background
space, on a test set of 500 snapshots. We distinguish the (randomized) residual-based (blue) and best (cyan)
model selection of the regularization parameter.
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Reduced Basis based Hierarchical Multiobjective Parameter
Optimization
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In many applications there is not only one optimization goal of interest, but instead there are given
k ∈ N contradicting objective functions Ji (i ∈ N≤k), which should be met optimally at the same
time. For example, one can be interested in finding a good compromise between reaching several heat
distributions yid (i ∈ N≤k−1), while heating with the minimal cost necessary. This can be modeled by
an Multiobjective Parameter Optimization Problem (MPOP) of the following form

min
(y,µ)∈V×Pad

J(µ) =


1
2

∥∥y(µ)− y1d
∥∥2
H

...
1
2

∥∥y(µ)− yk−1
d

∥∥2
H

ν1
∥∥µ∥∥

1
+ ν2

2

∥∥µ∥∥2
2

 , (MPOP)

where the state y(µ) = y ∈ V solves the parametrized PDE

A(µ)y = f(µ) in V ′. (PDE(µ))

In the setting above, V,H are Hilbert spaces in the usual setting and Pad ⊂ Rn is a compact set of
admissible parameters. In contrast to single objective optimization the objective function is vector-
valued J : Pad → Rk,which results in the Pareto optimality concept [1]. The goal is to numerically
approximate the set of all optimal compromises, the so-called Pareto set. For such problems the com-
putational effort can be challenging due to (1) the presence of many objectives and the uncountableness
of the Pareto set and due to (2) the presence of PDE constraints, which make the objective function
evaluation expensive. To overcome these two challenges, we use two reduction techniques, which are
(i) Hierarchical Multiobjective Optimization, which aims at a efficient description of the Pareto set,
and (ii) Reduced Order Modelling (ROM) techniques, to speed up the PDE solves. To be precise,
we are using the Reduced Basis (RB) method as a tool for reduced order modelling in combination
with hierarchical variants of Continuation methods (CM) and Weighted sum methods (WSM) for the
multiobjective optimization to obtain an approximation Jr of the objective. Those variants aim at
computing the boundary of the Pareto (critical) set by considering subsets of the objective functions
and are based on a theoretical description of the hierarchical structure of the Pareto (critical) set ([2]).
This has the advantage that objective components can be neglected for the computation of certain
Pareto critical points and that the Pareto (critical) set is described completely by a smaller amount of
points needed. Further, we consider how the inexactness due to the RB approximation in the objective
translates into an error in the Pareto (critical) set.
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In this talk, we introduce a new method to jointly reduce the dimension of the parameter and the data
space of high-dimensional Bayesian inverse problems. Recent dimension reduction methods commonly focus
on the parameter space, yet many geophysical applications equally necessitate dimension reduction in the
data space, which is done in practice through an independent upstream procedure. A recent work [1] con-
siders dimension reduction for both data and parameters albeit treating the two spaces separately. However,
choosing a low-dimensional informed parameter subspace influences which data subspace is informative and
vice versa. We thus propose a coupled dimension reduction method based on the gradient of the generalised
forward operator that maps between the parameter and data spaces. Our method computes in an offline
phase a projector for a ridge approximation of the likelihood function to accelerate online multi-query pos-
terior evaluations. We also show how our method can aid experimental design by localising effective sensor
placements. Numerical experiments on a 2D shallow water model illustrate the benefits of our proposed
method.
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Abstract: 

In this talk, we study large-scale linear fractional stochastic systems representing, 

e.g., spatially discretized stochastic partial differential equations (SPDEs) driven by 

fractional Brownian motion (fBm) with Hurst parameter $ H>1/2 $. Such equations 

are more realistic in modeling real-world phenomena in comparison to frameworks 

not capturing memory effects. To the best of our knowledge, dimension reduction 

schemes for such settings have not been studied so far. 

    

In this presentation, we investigate empirical reduced order methods that are either 

based on snapshots (e.g. proper orthogonal decomposition) or on approximated 

Gramians. In each case, dominant subspaces are learned from data. Such model 

reduction techniques are introduced and analyzed for stochastic systems with 

fractional noise and later applied to spatially discretized SPDEs driven by fBm in 

order to reduce the computational cost arising from both the high dimension of the 

considered stochastic system and a large number of required Monte Carlo runs. 
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In this talk, we generate reduced basis functions defined in space that can be combined with time step-
ping schemes within model order reduction methods. We propose for the first time an embarrassingly
parallel reduced basis construction in time [5]. Moreover, we especially target time-dependent partial
differential equations (PDEs) with coefficients that are rough in both space and time.
In detail, we perform several simulations of the PDE for few time steps in parallel, starting at different,
randomly drawn start points, prescribing random initial conditions. Applying a singular value decom-
position to a subset of the so obtained snapshots yields the reduced basis. This facilitates constructing
the reduced basis functions parallel in time. To select start time points for the temporally local PDE
simulations, we suggest using a data-dependent probability distribution. To this end, we represent the
time-dependent data functions of the PDE as matrices, where each column of a matrix corresponds to
one time point in the grid of the time discretization. Subsequently, we employ column subset selection
techniques from randomized numerical linear algebra [3] such as leverage score sampling.
Each local in time simulation of the PDE with random initial conditions approximates a local approx-
imation space in one time point that is optimal in the sense of Kolmogorov (cf., e.g., [1, 4]). These
optimal local approximation spaces are spanned by the left singular vectors of a compact transfer
operator that maps arbitrary initial conditions to the solution of the PDE in a later point of time. By
solving the PDE locally in time with random initial conditions, we construct local ansatz spaces in
time that converge provably at a quasi-optimal rate and allow for local error control (cf. [2]).
Numerical experiments demonstrate that the proposed method can outperform existing methods like
the proper orthogonal decomposition even in a sequential setting and is well capable of approximating
advection-dominated problems.
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Reduced order modelling of solidification problems
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Reduced order models (ROMs) are a powerful tool to predict the state of a system within split seconds
and hence are a popular choice to build digital twins that rely on numerical simulations [2]. However,
advection driven problems are known to be difficult to model using a ROM, because they don’t have
a low rank representation in general [1].
My work investigates how this challenge transfers to the context of solidification problems and tries
to answer when and to what extend ROMs work well. In solidification problems, a solidification
front progresses through the domain with the advected enthalpy. Since the solid allows for only
little movement, the convection only happens in the liquid part of the domain and thus the velocity
field travels through the domain. Early investigations have uncovered large differences between alloy
solidifications and pure metal solidifications in terms of the decay of the Kolmogorov N−width. Alloys
consist of several metals that might have different melting points which causes the alloy to solidify over
a large temperature range. The part of the domain with partially solidified material (’mushy zone’)
features growing crystals within a liquid that allows for some movement. It is suspected, that this
diffuse interface improves the N − width.
To further investigate this, reduced spaces for 1D step functions that move in time have been studied.
The results show that not only the PDE itself, but the smoothness of the solution is crucial for the
decay of the Kolmogorov N − width and thus the quality of a reduced space representation.
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Nonlinear model order reduction for parametrized
transport-dominated PDEs using registration-based methods
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Institute for Analysis and Numerics, University of Münster

In this contribution, we describe a new approach for model order reduction of parametrized transport-
dominated or hyperbolic partial differential equations (PDEs) [3]. These kinds of equations typically
exhibit slowly decaying Kolmogorov N -widths of the corresponding solution manifolds due to sharp
moving fronts or interacting discontinuous shocks, see for instance [5, 2]. Therefore, purely linear
methods are not well-suited to obtain accurate reduced order models in these scenarios.
To tackle such problems, we propose an algorithm based on ideas from computational anatomy and
image registration, see [1, 4]. In the geodesic shooting method, diffeomorphisms ϕv : Ω → Ω over
some set Ω ⊂ Rd are encoded via corresponding vector fields v : Ω → Rd by the exponential map,
i.e. exp(v) = ϕv. On the other hand, the diffeomorphism group G acts on functions u : Ω → R by
composition, i.e. ϕ · u := u ◦ ϕ. Using such diffeomorphic transformations, we register space-time
solution snapshots uµ for a set of parameters µ ∈ P of the parametrized PDE onto a common (space-
time) reference snapshot uref. To obtain a reduced order model, we apply linear model order reduction
methods, such as the proper orthogonal decomposition, in the Hilbert space V of vector fields, see [6].
Hereby, we extract a reduced space VN ⊂ V of vector fields, which, in turn, defines a subset GVN

⊂ G
of the diffeomorphism group via the exponential map, i.e. GVN

= exp(VN ). During the online phase,
elements ϕN ∈ GVN

can act on the reference snapshot uref to approximate snapshots for previously
unseen parameter values. In other words, for a parameter µ ∈ P, we determine a reduced vector
field ṽµ ∈ VN , such that uµ ≈ uref ◦ exp(ṽµ). Different numerical experiments show the potential of the
proposed method.
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In the numerical treatment of convection-dominated problems one needs to pay particular attention to
the stability of the discretization. One stable approach is the enrichment of the test space by so-called
supremizers leading to a nonsymmetric Petrov-Galerkin scheme. These supremizers are, however,
expensive to compute since the (approximate) solving of PDEs is required. In the context of model
order reduction this also poses an additional challenge since both a reduced trial and test space need
to be constructed simultaneously while preserving the stability in the reduced problem (c.f. [2]).
We adapt the construction introduced by Brunken et al in [1] and also recently employed in [3]. There
it is proposed to choose a test space first and then subsequently determine a corresponding trial space.
This idea is computationally less complex and leads to optimally stable schemes. For parametrized
problems we employ standard projection based techniques on the test space and again determine a
corresponding (reduced) trial space afterwards which leads to an optimally stable reduced scheme.
We show that the approach also allows the construction of local reduced spaces which is particulary
desirable in the case of spatially strongly varying data functions. First numerical experiments with
parametrized convection-diffusion-reaction problems as well as pure transport problems show the ad-
vantages and challenges of the proposed approach. A thorough analysis of the discrete system reveals
the saddle point structure of the problem and gives a guideline for efficient solving.
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A reduced basis method for contact problems formulated with
Nitsche’s method
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We develop an efficient reduced basis method for the contact problem with friction formulated with
Nitsche’s method under the small deformation assumption. The key idea ensuring the computational
efficiency of the method is to treat the nonlinearity resulting from the contact conditions by means of
the Empirical Interpolation Method. The proposed method is applied to the Hertz contact problem
between two half-disks with parameter-dependent radius. We also highlight the benefits of the present
approach with respect to the mixed (primal-dual) formulation.

Keywords — model reduction, variational inequalities, reduced basis method, contact problems, Nitsche’s
method, Tresca friction, Coulomb friction.
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Simulations of complex dynamical systems using the Finite Element Method (FEM) can become com-
putationally very expensive since large systems of equations have to be solved for multiple instances
in time or frequency. To reduce the required e�ort, projection-based Model Order Reduction (MOR)
methods can be used. These project the full solution into a lower-dimensional subspace and by this
aim to reduce the computational e�ort required to solve the system while providing an accurate ap-
proximation of the full solution. [1]
A limitation of these methods occurs when parametric models are considered. In applications such as
optimization or uncertainty quanti�cation, one is interested in having a reduced model that can be
evaluated with little computational e�ort and provides accurate results for a large range of parameters.
Parametric Model Order Reduction (pMOR) methods are able to retain these parametric dependen-
cies in the reduced model. Many of those methods require an a�ne representation of the parametric
dependency though, which is di�cult to realize for e.g. geometric parameters. [1]
One pMOR approach that is not limited to a�ne parametric dependencies is pMOR by matrix interpo-
lation [2]. In this method, a generalized coordinate system is constructed from reduced bases collected
over a set of samples, into which all reduced systems are transformed. In this coordinate system, the
reduced operators can be interpolated to obtain the solution for queried parameter points with little
computational e�ort. However, there are still some unanswered questions in this work�ow:

� Depending on the reduced bases collected in the samples, a transformation to the generalized
coordinate system may not be possible for some samples or basis vectors. For this purpose, a
measure of incosistency is needed to assess whether this problem occurs.

� Once the reduced operators have been transformed into the generalized coordinate system, any
interpolation or regression method can be used to predict the reduced operators for queried
parameter points. Which methods are best suited for this task has not yet been studied in detail.

� Finally, any MOR method can be used to generate the required database of reduced operators.
The properties of the MOR method used will also a�ect the work�ow and accuracy of pMOR by
matrix interpolation. Investigating these e�ects is another open task to be explored.

In this contribution, inconsistency measures, MOR methods and interpolation/regression methods for
pMOR by Matrix Interpolation are compared to investigate the above questions.
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Non-intrusive model reduction has been developed to become a promising solution to system dynamics
forecasting, especially in cases where data are collected from experimental campaigns or proprietary
software simulations.
In this work, we present a method for non-intrusive model reduction, applied to fluid dynamics and
fluid-structure interaction systems. The approach is based on the a priori known sparsity of the
full-order system operators (e.g. of the discretized Navier-Stokes equations), which is dictated by
grid adjacency information. In order to enforce this type of sparsity, we solve a “local", regularized
least-squares problem for each degree of freedom on a grid, considering only the training data from
adjacent nodes, thus making computation and storage of the inferred full-order operators feasible.
After constructing the non-intrusive, sparse full-order model, the Proper Orthogonal Decomposition
is used for its projection to a reduced dimension subspace. This approach differs from methods where
data are first projected to a low-dimensional manifold [1, 2], since here the inference problem is solved
for the original, full-order system.
We consider two applications in the context of incompressible fluid dynamics and fluid-structure inter-
actions. The first corresponds to the construction of a quadratic, reduced order model for the flowfield
prediction over a cylinder at a range of low Reynolds numbers. Increasing complexity, we examine a
two-way coupled fluid-structure interaction benchmark; a purely data-driven, coupled fluid/structure
model is constructed for the Hron-Turek fluid-structure interaction application [3]. Results considering
the accuracy and predictive capabilities of the inferred reduced models (e.g. Figure 1) are analytically
discussed.

(a) ROM with 50 and 5 DOFs for flow and structure
response

(b) CFD-FSI solution

Figure 1: Contour plots for the Hron-Turek benchmark velocity along x at the end of testing time.
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Hermite kernel surrogates for the value function of high-dimensional
nonlinear optimal control problems
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Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically
suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based
approximation method for the value-function based on [3] for optimal control problems of the form

min
u∈U∞

J(u) = min
u∈U∞

∫ ∞

0
r(x(s)) + u(s)⊤Ru(s) ds

subject to ẋ(s) = f(x(s)) + g(x(s))u(s) and x(0) = x0 ∈ RN ,

which partially mitigates the dimensionality problem. The data comes from open-loop control sys-
tems, which are solved via the first-order necessary conditions of the problem, called the Pontryagin’s
maximum principle. In this, the most informative initial states for the open-loop process are chosen
using a greedy selection strategy [2]. Furthermore, the approximation method is based on a greedy
Hermite-interpolation scheme, and incorporates context-knowledge by its structure. Especially the
value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed
as a correction of a linearized model. The algorithm is proposed in a matrix-free way, which circumvents
the large-matrix-problem for multivariate Hermite interpolation. For finite time horizons, convergence
of the corresponding scheme is proven for both the value-function and the surrogate as well as for the
optimal vs. the surrogate controlled dynamical system. Experiments support the effectiveness of the
scheme, using among others a new academic toy model with an explicit given value function. Another
model problem (details in [1]) describes a gripper that has gripped a soft tissue, for example a fruit or
piece of meat, and brings it optimally to a prescribed target position while avoiding an obstacle.

u(s)
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Model Reduction on Polynomially Embedded Manifolds
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For advection-dominated or wave-like problems, the decay of the Kolmogorov n-widths is expected to be
slow, see e.g., [4, 5]. Thus, linear-subspace reduced order models (ROMs) of low dimension might yield
inaccurate results. Recent advances in projection-based model reduction utilize autoencoders to build
a nonlinear embedding from reduced-order space to full-order space. Those methods can achieve good
accuracy for ROMs of low dimension, but the online evaluation (without employing hyper-reduction)
scales with the size of the full-order models (FOMs). In this talk we consider ROMs constructed via
polynomially embeddings. This bridges the aforementioned approaches in terms that we can achieve
higher accuracy than the linear-subspace ROMs and the online evaluation of the ROM is independent
of the size of the FOM.
Recent works in the direction of polynomially, especially quadratically, embedded manifolds consider
intrusive model reduction with the projection matrix being the POD basis matrix [1], as well as
non-intrusive model reduction with the projection matrix being either the POD basis matrix [3] or
the state-dependent Jacobian matrix of the embedding [2]. Here, we compare intrusive reduced order
models in terms of accuracy and computational cost with respect to the choice of the projection matrix.
Additionally, we propose an algorithm to select the most significant basis from the polynomial library,
so the reduced polynomial model obtained by the truncated library has a less computational cost and
similar accuracy than those obtained from the entire library.
In the numerical example, we consider a linear transport equation (known to have slowly decaying
Kolmogorov n-widths) and compare the polynomially embedded approach to linear-subspace model
reduction with respect to accuracy and computational cost. Furthermore, we provide a thorough
numerical comparison for the different choices of the projection matrix.
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A Multi-Fidelity Ensemble Kalman Filter with Adaptive
Reduced-Order Models
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The use of model order reduction techniques in combination with ensemble-based methods for estimat-
ing the state of systems described by nonlinear partial differential equations has been of great interest in
recent years in the data assimilation community. Methods such as the multi-fidelity ensemble Kalman
filter (MFEnKF) [2] and the multi-level ensemble Kalman filter (MLEnKF) [1] have been developed
and implemented in several papers and are recognized as state-of-the-art techniques. However, the
construction of low-fidelity models in the offline stage, prior to solving the data assimilation problem,
leads these methods into a trade-off between the accuracy and computational cost of the approximate
models. In our work, we investigate the use of adaptive reduced-basis techniques in which the ap-
proximation space is modified (but not retrained) online based on the information extracted from the
full-order solutions. This has the potential to simultaneously ensure good accuracy and low cost for
the employed models and thus improve the performance of the multi-fidelity/multi-level methods.
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Randomized Residual-Based Error Estimators for Parametrized
Equations
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Note that my talk isn’t about my own research, it is entirely based on [2].

In [2], an a posteriori error estimator for the approximation error between the full order model (FOM)
and the reduced order model (ROM) is proposed. It is based on the residual, but in contrast to the
classical approach it isn’t reliant on stability constants (coercivity or inf-sup) and instead makes use
of a randomized approach.

The error in the desired norm is approximated using Gaussian random vectors, where the covariance
is chosen according to the norm. This approximation can then be rewritten in terms of the residual
and solutions to dual problems which have these random vectors as their right-hand side. The method
is inspired by a similar approach for ordinary differential equations from [1].

To solve these dual problems in an online efficient manner, a reduced dual space is constructed using a
specialized greedy algorithm. The dimension of this reduced dual space is independent of the dimen-
sion of the ROM, but it grows with the desired effectivity of the estimator and with the prescribed
probability of actually achieving that effectivity.
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Development of a Software Library for Space-Time Variational
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The research group around Karsten Urban has been working on space-time variational formulations
(mainly for partial di�erential equations) and accompanying model order reduction over the last decade.
This resulted in several publications, including [1, 2, 3, 4, 5], among others. Up to this point the results
of these works have been mostly based on separate implementations, partially in di�erent programming
languages.
Since early 2022 there has been a collaborative software development project between Ulm University
(under the direction of Karsten Urban) and Ruhr West University of Applied Sciences (under the
direction of Jürgen Vorloeper). The goal of this project is to unite already existing (and future) space-
time and variational formulation related research work with its implementations in a joint software
library in the programming language Python.
We want to present the concept of this project, what we have achieved so far and what we have planned
in the future.
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Model Order Reduction as an Enabler for Digital Twins of

Manufacturing Equipment
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The term Digital Twin is one of the most hyped buzzwords in the last few years in several application
contexts, e.g., the industry 4.0. Until now, there is no universally accepted de�nition but all de�nitions
of Digital Twins encapsulate the idea of a physical entity being replicated in a digital model and the
presence of some form of interaction between the physical an the digital twin (see e.g., [1]). Typically,
data from the real entity is captured and used to improve the quality of the digital model. The Digital
Twin, on the other hand, is used to make predictions about the future which in�uence the control of
the physical twin. Typically, Digital Twins contain various sub-models which describe various aspects
of the real counterpart.

Parametrized partial di�erential equations (PPDEs) are one class of models that can be used to model
a physical entity or process. These partial di�erential equations need to be constantly solved through-
out the life cycle of a Digital Twin. Therefore, we are in a multi-query setting. Furthermore, the
solving of the partial di�erential equations should, ideally, be possible in real time.

Model Order Reduction (MOR) is one tool that can be used to tackle the challenges described in the
last paragraph. The idea of using MOR for Digital Twins is not new and can for example be found
in [2]. In their publication, the authors describe a methodology for creating a Digital Twin of a single
airplane. In this talk, we want to extend this methodology to a manufacturing setting with multiple
machines and products that interact which each other. Furthermore, we want to elaborate which kind
of PPDEs might be useful in this context, how they can be reduced, and in which areas the MOR
approach still lacks practicality.
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Symplectic Exponential Runge-Kutta-Methods for Solving Large

Nonlinear Hamiltonian Systems

Till Peters
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(Germany)

We study sti� Hamiltonian systems of the form

y′(t) = My(t) + f(y(t)), y(t0) = y0, t ∈ [t0, T ] (1)

with a Hamiltonian matrix M ∈ R2d×2d and a suitable function f : R2d → R2d. Here M is called

Hamiltonian if M ful�lls (JM)T = JM with the matrix J =
[

0d Id
−Id 0d

]
. Moreover, M forms the main

part of the sti�ness in system (1) by having only eigenvalues on the imaginary axis with large magni-
tude.

Exponential integrators are known to be useful for integrating sti� systems (1). These integrate the
linear part of the di�erential equation exactly which can help to weaken the sti�ness of the di�erential
equation. Symplectic methods are suitable for integrating Hamiltonian systems because they preserve
the symplectic �ow of the system and provide good long-term results (see also [1]). Combining these
two aspects, Mei und Wu show in [2] starting from symplectic Runge-Kutta-Methods how to generate
symplectic exponential Runge-Kutta-Methods. For large dimensions d, the evaluation of the action of a
matrix exponential on a vector is costly. A standard approach to reduce these costs is the use of Krylov
subspace methods to approximate the matrix-vector-products of the form eMb with M ∈ R2d×2d and
b ∈ R2d. We investigate di�erent Krylov subspace methods such as the standard Arnoldi method or
di�erent symplectic methods like the symplectic Lanczos method. Furthermore, we compare resulting
approximative integrators in terms of accuracy in the matrix exponential approximation, accuracy in
solving the system and preservation of the Hamiltonian structure.
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On exponential integrators for large-scale Hamiltonian systems
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Hamiltonian systems are differential equations that exhibit a particular structure. This structure leads
to geometric attributes e.g. energy conservation or symplectic flow maps. Such systems come along
in physical problems like Maxwell’s equations, molecular dynamics or wave equations. Simulating and
analyzing these systems lead to differential equations of a high dimension that are computationally
expensive to solve. We consider large and sparse Hamiltonian systems

ẏ(t) = J∇H(y(t)), y(0) = y0, J =

[
0n In
−In 0n

]
, (1)

where H : R2n → R is a C2-function and 0n, In are the zero and identity matrix of order n. A natural
approach is to consider Krylov subspace based methods to approximate the solution of the orginal
system by one of smaller dimension. In this work, only structure preserving approximation methods
and a structure preserving integrator are considered in order to let the smaller systems and their
solution of the differential equation inherit the relevant geometric properties of the original system.
We recapitulate existing methods of this type and compare these with respect to the error in the energy
conservation and the global error. We suggest to use such a method in the combination with model
order reduction techniques for the studies of Hamiltonian systems to reduce the computational effort.



H2 Optimal Model Order Reduction on Arbitrary Domains
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The optimal H2 approximation has been widely used for the development of efficient model order
reduction algorithms. Well known examples are IRKA [2] and MIRIAm [1] respectively adopted in
continuous and discrete time state-space systems. The idea is that given a SISO full order model with
transfer function G, we want to find a reduced order model Ĝr such that

‖G− Ĝr‖H2 = min
dim(Gr)=r

‖G−Gr‖H2 . (1)

This minimization process leads to the H2 optimal interpolation conditions

G
(
−λ̂∗j

)
= Ĝr

(
−λ̂∗j

)
, G′

(
−λ̂∗j

)
= Ĝ′r

(
−λ̂∗j

)
(Continuous time),

G

(
1

λ̂∗j

)
= Ĝr

(
1

λ̂∗j

)
, G′

(
1

λ̂∗j

)
= Ĝ′r

(
1

λ̂∗j

)
(Discrete time).

(2)

These results rely on the definition of a norm on a Hardy space. Referring to the cases in (2), these
are spaces of functions analytic in the right half complex plane C+ and the outside of the closed unit
disk D+, respectively.
In our work, we consider the Galerkin projection of a parametrized linear PDE in the weak form into
a large finite dimensional subspace (see also [3]). In more detail, we look at equations of the form

(A1 + pA2)x(p) = B,

y(p) = Cx(p),
(3)

where A1,A2 ∈ Cn×n, B,C> ∈ Cn×1 and (A1 + pA2) is invertible for every p ∈ C. The rational
function y(p) = C(A1 + pA2)

−1B resembles the structure of a transfer function. However, y can
be analytic in sets that differ from C+ and D+. Hence, we propose a framework to derive first order
interpolation conditions for H2 optimality in an arbitrary set A. The theoretical background relies
on conformal maps and generalizes Hardy spaces to functions that are analytic in A. The objective
is to eventually develop algorithms that can be used to find a reduced order rational function ŷ that
satisfies the H2 optimality conditions in A.
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Space-time goal-oriented error control for incremental proper
orthogonal decomposition based reduced order modeling with
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In this presentation, we apply the dual-weighted residual (DWR) method [1, 2] to obtain a certified
incremental proper orthogonal decomposition based reduced order model [4]. For the full order model,
we utilize a tensor-product space-time discretization [6]. The first novelty of our work is the application
of this space-time discretization to the reduced order model. Further, we introduce a novel approach
that marries the space-time reduced order model and an incremental proper orthogonal decomposition
(POD) [3, 5] based basis generation with a goal-oriented error control based on DWR estimates. We
aim to solve the reduced system without any prior knowledge or exploration of the solution manifold
such that no offline phase is required. Instead, we solve from the beginning on the reduced order model
and –if necessary– update the reduced basis on-the-fly during the simulation with high fidelity finite
element solutions by means of the incremental POD. For this purpose, we estimate the error in the
cost functional and update the reduced basis if the estimate exceeds a given threshold. This allows an
adaptive enrichment of the reduced basis in case of unforeseen changes in the solution behavior which
is of high interest in engineering applications. Therefore, we are able to reduce the full-order solves to
a minimum, which is demonstrated on numerical tests for the heat and wave equation. Additionally,
since we rely on the DWR method, our approach is versatile and it is possible to apply this method
to nonlinear or multiphysics problems where no error bounds are known. We conclude the talk with
recent developments and preliminary extensions of our presented framework.
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Space-time Variational Methods for Control Constrained Parabolic
Optimal Control Problems
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Optimal Control Problems with PDE constraints are not only highly relevant for a wide range of
applications but also an interesting ongoing subject in research of numerical methods. In this talk we
want to discuss problems of the form:

min
y×u∈Y×U

J(y, u) =
1

2
∥y − yd∥L2(I×Ω) +

λ

2
∥u∥L2(I×Ω)

s.t:
By = Fu+ c ∈ Y ′ (1)
ua ≤ u ≤ ub a.e.in I × Ω, (2)

where the constraint (1) is a parabolic time dependent PDE. We will also consider additional con-
straints of the control (2). Usually these type of problems are solved using time stepping schemes to
solve the constraining PDE and the arising adjoint equation. But lately approaches using simultaneous
space-time discretizations are investigated for these problems.

For parabolic PDEs it is known that these approaches can have significant advantages w.r.t. Model Or-
der Reduction (MOR), which motivates the application of these methods to optimal control problems.
In this talk we will discuss the application of a space-time variational formulation for the optimal con-
trol problem. We will discuss the approach in the infinite dimensional setting using Bochner-Lebesgue
spaces and derive the optimality system in this setting. We show the application of a second order
semi-smooth Newton method to solve the optimization problem and propose a discretization with a
tensor type approach in space and time.

The talk concludes with a presentation of the implementation of the ideas mentioned above and some
numerical examples. In an outlook we will discuss the possibility of MOR for this approach but also
which challenges might occur when we want to apply these techniques in the context of optimal control
problems.


