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Chapter 1

Introduction

1.1 Motivation

Ordinary differential equation systems (ODEs) are useful for modeling natural pro-

cesses for example chemical reactions, plant growth or in general a change of a

magnitude. Even though, the existence and uniqueness theory of those systems is

advanced, in many cases the analytical solution is not known. Due to that, numerical

methods for solving ordinary differential equation systems are very important. The

first method to solve initial value problems occurred in 1768 and was developed by

Leonard Euler. Euler’s main idea was to approximate the derivatives with a linear

term, the difference quotient. However, this method is not applicable to all ordinary

differential equation systems which is demonstrated by the following example:

Example 1.1.1 Consider the following problem

ẏ1(t) = −y1(t)

ẏ2(t) = −γy2(t) +
(γ − 1)y1(t) + γy21(t)

(1 + y1(t))2

y1(0) = 2

y2(0) = 1.5

(1.1)

with γ > 1. Figure 1.1 illustrates the behavior of the numerical solution calculated

by Euler’s Method (Forward Euler) with h = 0.0476 and γ = 40 and by Matlab’s

ode23s.

We notice, that the Forward Euler becomes instable, because the solution trajectory

begins to oscillate. The ordinary differential equation system (1.1) is an example for

a stiff ODE. One characteristic of those stiff problems is the existence of multiple

time-scales which means that some magnitudes change very fast and do not affect

the macroscopic behavior. Unfortunately, we can not exactly define the stiffness of

an ODE. Curtis and Hirschfeld described the stiffness of ODEs in [4] (1952) as

“Stiff equations are equations where certain implicit methods, in par-

ticular BDF1, perform better, usually tremendously better, than explicit

ones.”

1Backward Differentiation Formulas
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Figure 1.1: Plot of solutions for the problem (1.1) in Example 1.1.1 calculated with

Forward Euler (FE) and ode23s.

In contrast to this opinion, Lee and Gear presented in [27] an efficient explicit method

which is indeed able to deal with stiff systems.

1.2 Aim of this Thesis

The aim of this work is to discuss explicit methods for solving stiff ordinary dif-

ferential equation systems, especially projective integrators based on ideas of Lee

and Gear, cf. [27]. The focus is on the investigation of the theory and an efficient

implementation in Matlab and C++ of these methods. Furthermore, we compare

projective integrators with implicit methods, in particular with Backward Differen-

tiation Formula (BDF) integrators. Moreover, we use a model reduction technique

as provided by Lebiedz in [19] and integrate such a reduced system in order to decide

if it is worthwhile to integrate the full or the reduced system with regards to the

effort, runtime, integration steps and function evaluations.

1.3 Outline

The thesis is structured into five chapters.

A short overview of the existence and uniqueness theory of ordinary differential

equations and their singularly perturbed forms is given in Chapter 2. Moreover,

we explain the main idea of a model reduction software and introduce two models

as examples for stiff ODE systems. Especially, we take a look on one model called

Simplified Six Species Hydrogen Combustion mechanism which is a showpiece of a
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chemical multi-scale problem.

Chapter 3 deals with explicit integration methods solving stiff differential equation

systems providing the theory of projective integrators and their implementation in

Matlab. In particular, we explain their idea and give a detailed analysis of a Pro-

jective Forward Euler and a Projective Runge–Kutta Method. Further, we give a

detailed proof of the second-order accuracy of the Projective Runge–Kutta Method

based on ideas of Lee and Gear, cf. [26].

In Chapter 4, we discuss the numerical behavior of projective integrators and com-

pare them to implicit methods, i.e. to BDF integrators. Furthermore, we deal with

a model reduction tool and explain, how to represent a reduced model as an ODE

of lower dimension.

The conclusion involves a table listing advantages and disadvantages of projective

integrators compared to BDF integrators and some decision guidance in which cases

it would be beneficial to use either a projective or a BDF integrator.
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Chapter 2

Theory of Ordinary Differential

Equation Systems and Models

In order to discuss numerical methods for solving stiff ordinary differential equation

systems, we give a short overview of the existence and uniqueness theory of those.

Furthermore, a few ideas of the singular perturbation theory are collected to gain a

better understanding of fast and slow dynamics of multi-scale problems. Besides, the

main idea of a model reduction software is discussed in this chapter, too. Afterwards,

we take a look at two different nonlinear models, one well-known model called Davis–

Skodje model and one simplified realistic chemical kinetic model, called Simplified

Six Species Hydrogen Combustion mechanism.

2.1 Ordinary Differential Equation Systems

Ordinary differential equations are useful to describe time-dependent processes, e.g.

chemical kinetics, plant growth or market behavior.

Definition 2.1.1 (Ordinary Differential Equation System) Let Ω ⊂ R
n be

an open subset, f : Ω → R
n a vector-field and t ∈ I with an interval I ⊂ R. Then

ẏ(t) = f
(
y(t)

)
(2.1)

is an autonomous Ordinary Differential Equation (ODE) system. Futher-

more, if the vector-field f depends explicit on t, i.e.

ẏ(t) = f
(
t, y(t)

)

the system is said to be a nonautonomous ODE system.

In the following, we focus on autonomous systems, because any nonautonomous

system can be written as an autonomous system with y ∈ R
n+1 by defining yn+1 := t

and ẏn+1 = 1. A solution of (2.1) is a map

y : I → R
n

t 7→ y(t)

such that y satisfies (2.1) for all t ∈ I. Note, that the solution is a curve in R
n,

called trajectory.
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Definition 2.1.2 (Initial Value Problem) Let Ω ⊂ R
n be an open subset,

f : Ω → R
n a vector-field, t, t0 ∈ I ⊂ R and y0 ∈ Ω. Then

ẏ(t) = f
(
y(t)

)

y(t0) = y0

is said to be an Initial Value Problem (IVP).

Before establishing the existence-uniqueness theorem for nonlinear autonomous

ODE systems, we need more definitions.

Definition 2.1.3 (Lipschitz condition) Let Ω ⊂ R
n be an open subset. A func-

tion f : Ω → R
n is said to satisfy a Lipschitz condition, if

∃ K > 0 ∀ x, y ∈ Ω : ||f(x)− f(y)|| ≤ K ||x− y|| .

The function f is said to be locally Lipschitz, if

∀ x0 ∈ Ω ∃Nε(x0), K0 > 0 ∀x, y ∈ Nε(x0) : ||f(x)− f(y)|| ≤ K0 ||x− y|| .

where

Nε(x0) := {x ∈ R : ||x− x0|| < ε}.

Therefore, a function f is locally Lipschitz, if f satisfies a Lipschitz condition on

an ε-neighborhood of any point in Ω. The following result is useful to decide, if a

function is locally Lipschitz.

Lemma 2.1.4 Let Ω ⊂ R
n be an open subset and f : Ω → R

n. There it holds

f ∈ C1(Ω) ⇒ f is locally Lipschitz on Ω,

where

C1(Ω) := {f : f is continuously differentiable on Ω}.

Proof. cf. [24], p. 71.

Now, we are able to formulate the (local) existence and uniqueness theorem for

nonlinear systems.

Theorem 2.1.5 (Existence-Uniqueness Theorem) Let Ω ⊂ R
n be an open

subset, y0 ∈ Ω, t0 ∈ I ⊂ R and assume that f ∈ C1(Ω). Then, there exists an

a > 0 such that the IVP

ẏ(t) = f
(
y(t)

)
, t ∈ I

y(t0) = y0

has a unique solution on the interval [t0 − a, t0 + a].
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Proof. cf. [24], p. 74 ff.

In our test models, cf. Section 2.4 and 2.5, the right-hand side is always continuously

differentiable and based on the last theorem, a unique solution exists. Further, we

discuss numerical methods for solving stiff problems. Unfortunately, there does not

exist a unique definition of a stiff ODE, but as mentioned in the introduction, Curtis

and Hirschfeld describes the stiffness of ODEs in [4] (1952) as follows

“Stiff equations are equations where certain implicit methods, in par-

ticular BDF, perform better, usually tremendously better, than explicit

ones.”

and Hairer and Wanner mentioned in their first chapter in [9]

“Stiff equations are problems for which explicit methods don’t work.”

In fact, explicit methods work for stiff problems, but they become inefficient through

a tiny choice of the step size such that the method stays stable. Lee and Gear derived

in [27] an efficient explicit method for solving those stiff problems. We can describe

the behavior of a stiff system as follows.

Definition 2.1.6 (Stiff system) A system of ODEs

ẏ(t) = f(y(t))

is said to be stiff, if there exist both fast and slow dynamics, e.g. in chemical kine-

tics very fast reactions and slow reactions can occur within one dynamical system,

leading to a stiff ODE.

In many cases the macroscopic behavior of the solution trajectory is more of interest

than the microscopic one.

2.2 Singularly Perturbed Ordinary Differential

Equation Systems

Assuming the existence of a diffeomorphism transforming the ODE system into a

singularly perturbed form, the problem (2.1) can be rewritten (cf. [30]) in the

two following ways, on the one hand the fast system

ẏf = f1(yf, ys; ε) , yf(t) ∈ R
nf

ẏs = εf2(yf, ys; ε) , ys(t) ∈ R
ns
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where 0 < ε ≪ 1 is a measure of the separation of time scales and on the other

hand, with defining the slow time τ := εt, the slow system

ε
d

dτ
yf = f1(yf, ys; ε) , yf(τ) ∈ R

nf

d

dτ
ys = f2(yf, ys; ε) , ys(τ) ∈ R

ns.

We consider the limit ε → 0 and obtain two reduced systems. An nf-dimensional

reduced fast system

ẏf = f1(yf, ys; 0)

ẏs = 0
(2.2)

whereby ys is constant and in contrast to this, the differential-algebraic reduced slow

system with a decrease of dimension from ns + nf to ns is

0 = f1(yf, ys; 0)
d

dτ
ys = f2(yf, ys; 0).

(2.3)

Consider the reduced system (2.3). Then,

W0 := {(yf, ys) ∈ V ⊂ R
nf × R

ns : f1(yf, ys; 0) = 0} .

is called slow manifold. Assuming that all eigenvalues of the reduced system Jaco-

bian Dyff1 w.r.t. yf have negative real part, the implicit function theorem guarantees

the existence of a smooth function h(·) mapping from a compact domain K ⊂ R
nf

to R
ns, i.e.

h : K → R
ns

representing the slow manifold by

h(ys) = yf.

Thereby, the reduced slow system (2.3) can be written as

d

dτ
ys = f2(h(yf), ys; 0).

Note that W0 is locally invariant.

Fenichels Geometric Singular Perturbation Theory [10, 11, 12, 13, 17] and some

additional assumptions (cf. [30], pp 18-19) leads to an existence theorem for locally

invariant manifolds Wε for perturbed systems, which are close to W0. This locally

invariant manifold Wε is called slow, if 0 < ε≪ 1.

2.3 Model Reduction Methods

In this section, we give a short overview of model reduction methods and focus on

a method which bases on ideas of Lebiedz, cf. [19]. A detailed discussion of those
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methods can be found in [30].

In general, model reduction methods for ODEs modeling chemical kinetics have

been developed in the last century. Many methods deal with the occurrence of a

Slow Invariant attracting Manifold (SIM) within the phase space which attracts

nearby trajectories and leads to a lower dimensionality. Based on the stiffness of

the high-dimensional dynamical system and consequently the existence of multiple

time scales, we assume that our systems have a singularly perturbed form.

Some model reduction techniques are listed in the following

• Quasi Steady–State Assumption (QSSA), cf. [3, 6, 23]

• Partial Equilibrium Assumption (PEA), cf. [18]

• Invariant Constrained equilibrium Edge PreImage Curve (ICE-PIC), cf. [33]

• Zero Derivative Principle (ZDP), cf. [1, 5]

Nevertheless, we focus on a different model reduction technique, a Trajectory-

Based Optimization Approach which is introduced by Lebiedz in [19]. The main

idea is to minimize occurring relaxing (chemical) forces along reaction trajectories.

Thus, an optimization problem wants to identify a SIM via minimization of an

objective function including information about the behavior of trajectories.

SIMs can be described as a solution of an initial value problem

ċ(t) = f(c(t)), c(t) ∈ R
n (2.4)

c(0) = c0. (2.5)

with an initial value c0 ∈ R
n. The general trajectory-based optimization approach is

formulated as

min
c

tf∫

0

Φ(c(t)) dt (2.6a)

subject to

ċ(t) = f(c(t)) (2.6b)

0 = g(c(0)) (2.6c)

cj(0) = c0j , j ∈ Ifixed (2.6d)

whereas c : [0, tf] → R
n denotes the state vector containing the concentration of

chemical species. Equation (2.6b) describes the system dynamics, e.g. chemical ki-

netics determined by the reaction mechanism. This dynamics enter the optimization

problem as an equality constraint. Additional constraints, e.g. chemical mass conser-

vation relations as a consequence from the law of mass conservation, are represented

by a function g ∈ C∞(Rn) in (2.6c). The index set Ifixed contains the indices of
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state variables, denoted as reaction progress variables, which parameterize the re-

duced model with fixed values at t = 0. Due to that, the other state variables cj ,

j 6∈ Ifixed represent the degrees of freedom. The solution of the optimization pro-

blem (2.6) represents a trajectory, which is in the best case close to a SIM and thus,

we gain a point near the attracting SIM while evaluating this solution at t = 0.

Simultaneously, we reconstruct the full species composition from given values c0j ,

j ∈ Ifixed. This process is called species reconstruction.

We use the following relaxation criterion by choosing the objective function as fol-

lows

Φ(c(t)) = || Jf · f(c(t)) ||
2
2

with the system Jacobian Jf .

Several other relaxation criteria and a software package called MoRe developed by

Jochen Siehr have been tested over time, cf. [20, 21, 8, 7, 25, 31, 32, 30, 28, 29].

Using the software MoRe, especially a MoRe-Wrapper written by Marcel Rehberg,

enables the building of a reduced right-hand side and thereby, we are able to deal

with a reduced system.

2.4 Davis–Skodje Model

The Davis–Skodje model

ẏ1(t) = −y1(t)

ẏ2(t) = −γy2(t) +
(γ − 1)y1(t) + γy21(t)

(1 + y1(t))2

with y(t) ∈ R
2 is an example of a stiff ODE system where γ > 1 is a measure of

the spectral gap, i.e. γ is a measure for the stiffness of the system. The singularly

perturbed form is

ẏ1(t) = −y1(t)

εẏ2(t) = −y2(t) +
y1

1 + y1
−

εy1
(1 + y1)2

whereas ε := 1
γ
. This model is widely used for testing model reduction methods,

because the SIM is analytically computable through

Wε =

{

(y1, y2) ∈ R
2 : y2 =

y1
1 + y1

}

.

Thus, it holds ys = y1 and yf = y2. The equilibrium of the Davis–Skodje model

is the origin (0,0). Figure 2.1a and 2.1b depict the solution trajectories of various

initial values

y0 ∈

{(

0.2

1

)

,

(

0.3

1

)

, . . . ,

(

4

1

)

,

(

0.2

0.01

)

,

(

0.3

0.01

)

, . . . ,

(

4

0.01

)}



Section 2.5: Simplified Six Species Hydrogen Combustion Mechanism 11

0 1 2 3 4
0

0.5

1

(a) γ = 3.0

0 1 2 3 4
0

0.5

1

(b) γ = 15.0

Figure 2.1: Visualization of different solutions of the Davis–Skodje model for various

initial values.

for γ = 3.0 and γ = 15.0. As mentioned before, the stiffness of the system depends

on the value of γ. For a large value of γ, the SIM (magenta line) is more attractive

because of the larger time scale separation.

2.5 Simplified Six Species Hydrogen Combustion

Mechanism

The Simplified Six Species Hydrogen Combustion mechanism consists of five reactive

species (O, H2, H, OH, H2O) and inert nitrogen (N2). The combustion mechanism

depends on the temperature and we fix the temperature at T = 3000K. The non-

simplified mechanism was published by Lie et al. in [16] and was simplified by Ren

et al. in [33] for testing their model reduction method ICE-PIC. Table 2.1 contains

the specific six reactions of Arrhenius type for this mechanism whereas M represents

a third body with collision efficiencies as follows

M = cO + 2.5cH2
+ cH + cOH + 12cH2O + cN2

,

whereas cs is the concentration of species s. The element mass conservation relations

for this mechanism are

zH + 2zH2
+ zOH + 2zH2O = 12.3400566662 kg ·mol−1

zOH + zO + zH2O = 4.1100136712 kg ·mol−1

2zN2
= 65.8102672822 kg ·mol−1

whereas zs is the specific mole of species s, and based on values presented by Al-

Khateeb in [2]. The forward reaction rates are computable via the Arrhenius law

kf,i = AT b exp

(
Ea

TR

)

, i = 1, . . . , 6
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for each reaction i corresponding to the values in Table 2.1 and with the universal

gas constant

R = 8.3144727
J

mol K
.

Reaction A / (cm,mol,s) b Ea / kJ mol−1

O + H2 ⇋ H + OH 5.08·1004 2.7 26.317

H2 + OH ⇋ H2O + H 2.16·1008 1.5 14.351

O + H2O ⇋ 2OH 2.97·1006 2.0 56.066

H2 + M ⇋ 2H + M 4.58·1019 -1.4 436.726

O + H + M ⇋ OH + M 4.71·1018 -1.0 0.000

O + OH + M ⇋ H2O +M 3.80·1022 -2.0 0.000

Tab. 2.1: Simplified six species hydrogen combustion mechanism

The ODE system can be derived as proposed in [28] and we obtain the following

ordinary differential equation system

ρżO = − kf,1 cOcH2
+kr,1 cHcOH

− kf,3 cOcH2O +kr,3 c
2
OH

− kf,5 cOcHM +kr,5 cOHM

ρżH2
= − kf,1 cOcH2

+kr,1 cHcOH

− kf,2 cH2
cOH +kr,2 cH2OcH

− kf,4 cH2
M +kr,4 c

2
HM

ρżH = kf,1 cOcH2
−kr,1 cHcOH

+ kf,2 cH2
cOH −kr,2 cH2OcH

+ 2kf,4 cH2
M −2kr,4 c

2
HM

− kf,5 cHcOM +kr,5 cOHM

− kf,6 cHcOHM +kr,6 cH2OM

ρżOH = kf,1 cOcH2
−kr,1 cHcOH

− kf,2 cH2
cOH +kr,2 cH2OcH

+ 2kf,3 cH2OcO −2kr,3 c
2
OH

+ kf,5 cHcOM −kr,5 cOHM

− kf,6 cHcOHM +kr,6 cH2OM

ρżH2O = kf,2 cH2
cOH −kr,2 cH2OcH

− kf,3 cH2OcO −kr,3 c
2
OH

+ kf,6 cHcOHM −kr,6 cH2OM

ρżN2
= 0.

involving the concentrations cs and the corresponding specific moles zs by converting

them as follows

cs = ρzs
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with

ρ =
p

RT




∑

s∈{O,H2,H,OH,H2O,N2}

zs





−1

and p = 101325 Pa. Note, that the reverse rates kr,i, which depend on the tem-

perature, have to be computed for every reaction i as proposed in [28]. As long as

no diffeomorphism, which transforms the system above in a singularly perturbed

form, is known the choice of the reaction progress variable, i.e. the slow variable, is

arbitrairly. In our case, we choose zH2O.
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Chapter 3

Projective Integrators for Stiff

Ordinary Differential Equations

In this chapter, we introduce explicit methods for solving stiff ordinary differential

equation systems. The idea of projective integrators considered in this work was

published by Gear et al. in [14, 15, 27]. One aspect of developing those integrators

is their black-box use, independent of the choice of the inner integrator. For example,

the microscopic behavior can be described by a Monte Carlo simulation. However,

we are only interested in long term behavior, i.e. macroscopic behavior. Lee and

Gear motivated the integrators in [27] as follows

“If the stiff differential equations are not directly available, our formu-

lations and stability analysis are general enough to allow the combined

outer-inner projective integrators to be applied to black-box legacy codes

or perform a coarse-grained time integration of microscopic systems to

evolve macroscopic behavior, for example.”

projective step

damping steps

slow manifold

Figure 3.1: Idea of projective integrators.

The conventional Forward Euler Method and other conventional explicit methods are

inefficient for solving stiff initial value problems, because the stability depends on the

choice of the step size, i.e. the stiffer the system the smaller the step size. Therefore,

a long term behavior observation becomes very expensive, because we need a large

number of integration steps. The main difficulty is that the fast dynamics affect the

explicit method adversely. It would be beneficial if these fast dynamics were damped
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in every integration step and after this, a larger projective step can be performed.

The main idea of projective integrators, which are explicit methods exploiting the

multi-scale features of stiff systems, is straightforward. An inner integrator damps

the fast dynamics with a constant step size, which is small enough to guarantee

stability of the algorithm that means following stably the fast transients towards

the slow manifold. After a few damping steps a chord slope is determined based on

two previous calculated solution values which now describe the behavior of the slow

manifold. Using this chord slope, a large projective step can be performed.

Figure 3.1 shows the idea of damping and projective steps relative to a slow manifold.

The blue line represents the slow attracting manifold. The red dots results from

damping the fast dynamic. The black dashed arrow illustrates a projective step

using two previous calculated values.

Based on ideas of Lee and Gear in [27], in the following a (Tele-)Projective Forward

Euler Method (PFE) and a second-order accurate Projective Runge–Kutta Method

(PRK) are presented. Both algorithms are available in Matlab and the projective

Runge–Kutta Method is also implemented in C++.

3.1 Projective Forward Euler Method

Consider an initial value problem as defined in Section 2.1.2

ẏ(t) = f(y(t)) , t ∈ [t0, tf ]

y(t0) = y0

with y0 ∈ R
n. The Projective Forward Euler Method (PFE) extends the idea

of conventional Forward Euler.

(i) Choose a suitable inner integrator (e.g. conventional Forward Euler Method)

which is at least of first-order accuracy, a projective factor M , a number of

damping steps k and a step size h0 such that the inner integrator is stable.

Note that for the conventional Forward Euler Method the best choice of the

step size is

h0 :=
1

maxi |λi|

whereas λi are the eigenvalues of the system Jacobian ∂f/∂y.

(ii) Start from yn = y(tn). Perform k damping steps to obtain yn+1, . . . , yn+k.
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(iii) Perform one more damping step to obtain yn+k+1 and use this value to approx-

imate the chord slope

v′n+k+1,n+k =
yn+k+1 − yn+k

h0
.

(iv) Perform the projective step

yn+s = yn+k+1 +Mh0 v
′
n+k+1,n+k = yn+k+1 +M (yn+k+1 − yn+k) .

whereby s = k + 1 +M is the length of this PFE step. Note that the calculations

above are all vector operations which are cheap to compute. This method can

be applied efficiently to stiff systems having a clear time scale separation, i.e. the

eigenvalues of the system Jacobian ∂f/∂y are well clustered. The eigenvalues with

the most negative real parts correspond to the fast time scales and the eigenvalues

with real parts being relative close to the origin correspond to the slow ones. If

there exists a large gap between the clusters, projective integrators can be applied

to this stiff system. The length of the projective step depending on the choice of M

is strongly related to the size of this gap. If the time scales are not clearly separated,

telescopic projective, i.e. teleprojective integrators are efficient methods for carrying

out the time integration, cf. Section 3.2. Lee and Gear also introduced an on-the-fly

local error estimator for PFE in [26].

In order to discuss the errors within projective integrators only up to third-order,

we ignore terms of higher order. Hence, the error involves multiplies of h2y′′, h3y′′′

and h3Jy′′ where J is the system Jacobian and the prime represents differentiation

w.r.t. t. Consider a bounded number of steps (independent of h) such that the exact

time at which y′′′ and Jy′′ are evaluated does not matter. Let

ej(h) := yj − y(tj)

be the global error starting from a correct value y0, i.e. e0 = 0 and

dj(h) := yj+1 − y(tj+1)

be the local error starting from a correct value yj and performing one integration

step to yj+1. Define

Cj(h) :=

(

−
h2

2
y′′j ,−

h3

6
y′′′,−

h3

2
Jy′′
)

, Dj :=






ξj

γj

ηj




 , Ej :=






ψj

φj

θj






and the translation operator T

T (q) :=






1 0 0

−3q 1 0

0 0 1




 .
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Note that

Cn(h) = T (m− n)Cm(h)

holds for all m,n ∈ N. The following lemma presents a formula for the error coef-

ficients of the global error after one PFE step. Thus, the error can be computed

on-the-fly via recurrence formulas as presented in [26].

Lemma 3.1.1 (Global Error for a PFE Step) For one PFE step it holds

es(h) = Cs(h)Es +O(h4)

whereas

Es =






(M + 1)ψk+1 −Mψk +M(M + 1)

3M(M + 1)(ψk − ψk+1)−Mφk + (M + 1)φk+1 −M(M + 1)(2M + 1)

(M + 1)θk+1 −Mθk






Thus

ψs = (M + 1)ψk+1 −Mψk +M(M + 1)

φs = 3M(M + 1)(ψk − ψk+1)−Mφk + (M + 1)φk+1 −M(M + 1)(2M + 1)

θs = (M + 1)θk+1 −Mθk.

Proof. We prove this lemma with ideas and results from [26]. The global and local

error can be represented by

ej(h) = Cj(h)Ej +O(h4) and dj(h) = Cj+1(h)Dj +O(h4)

and the error amplifier of the conventional Forward Euler Method is (I+hJ), because

en+1(h) = yn+1 − y(tn+1) = yn + hf(tn, yn)− y(tn)− hy′(tn) +O(h2)

= yn − y(tn) + h (f(ty, yn)− f(ty, y(tn))) +O(h2)
Mean value theorem

= en + h(fy(tn, ξn)
︸ ︷︷ ︸

=J

(yn − y(tn))) +O(h2)

= en + hJen +O(h2) = (I + hJ)en +O(h2).

Further, there it holds

en+1(h) = (I + hJ)en(h) + dn(h) +O(h4) = (I + hJ)Cn(h)En + Cn+1(h)Dn +O(h4)

= (I + hJ)Cn+1(h)T (1)En + Cn+1(h)Dn +O(h4)

= Cn+1(h)T (1)En + hJCn+1(h)T (1)En + Cn+1(h)Dn +O(h4)

= Cn+1(h)






ψn

−3ψn + φn

θn




 + hJCn+1(h)






ψn

−3ψn + φn

θn




+ Cn+1(h)






ξn

γn

ηn




+O(h4)
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= ψn

(

−
h2

2
y′′n+1

)

+ (−3ψn + φn)

(

−
h3

6
y′′′
)

+ θn

(

−
h3

2
Jy′′
)

+ψn

(

−
h3

2
Jy′′n+1

)

+ (−3ψn + φn)

(

−
h4

6
Jy′′′

)

+ θn

(

−
h4

2
J2y′′

)

︸ ︷︷ ︸

O(h4)

+ξn

(

−
h2

2
y′′n+1

)

+ γn

(

−
h3

6
y′′′
)

+ ηn

(

−
h3

2
Jy′′
)

+O(h4)

= Cn+1(h)






ψn + ξn

−3ψn + φn + γn

θn + ψn + ηn




+O(h4).

Therefore, this leads to

ψn+1 = ψn + ξn

φn+1 = −3ψn + φn + γn

θn+1 = θn + ψn + ηn.

Assuming that the local error coefficient are constant, i.e. ξn = ξ, γn = γ and ηn = η

for n = 1, . . . , k, the global error coefficient can be rewritten to

ψn+1 = nξ

φn+1 = −3
n(n− 1)

2
ξ + nγ

θn+1 =
n(n− 1)

2
ξ + nη.

For a projective step from {tk, tk+1} to ts, there it holds

es(h) = (M + 1)ek+1(h) +Mek(h) + dPFEk (h) +O(h4)

involving the local error for the extrapolation

dPFEk (h) = Ck+1(h)






M(M + 1)

M(M2 − 1)

0




 .

We prove the representation of this extrapolation error. Assuming y(tk) = yk and
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y(tk+1) = yk+1 and using Taylor expansion yields

ys − y(ts) = yk+1 +M(yk+1 − yk)− y(tk+1 +Mh)

= yk+1 +M(yk+1 − yk)

−

(

y(tk+1) +Mhy′(tk+1) +
M2h2

2
y′′(tk+1) +

M3h3

6
y′′′(tk+1) +O(h4)

)

= M(y(tk+1 − y(tk+1 − h))

−Mhy′(tk+1)−
M2h2

2
y′′(tk+1)−

M3h3

6
y′′′(tk+1) +O(h4)

= M

[

y(tk+1)−

(

y(tk+1)− hy′(tk+1) +
h2

2
y′′(tk+1)−

h3

6
y′′′(tk+1) +O(h4)

)]

−Mhy′(tk+1)−
M2h2

2
y′′(tk+1)−

M3h3

6
y′′′(tk+1) +O(h4)

= −
h2

2
M(M + 1)y′′(tk+1)−

h3

6
M(M2 − 1)y′′′(tk+1) +O(h4).

Finally, we obtain

es(h) = Cs(h)Es +O(h4)

= (M + 1)Ck+1(h)Ek+1 −MCk(h)Ek + Ck+1(h)






M(M + 1)

M(M2 − 1)

0




+O(h4)

= (M + 1)Cs(h)T (M)Ek+1 −MCs(h)T (M + 1)Ek + Cs(h)T (M)






M(M + 1)

M(M2 − 1)

0




+O(h4)

= Cs(h)




T (M)




(M + 1)Ek+1 +






M(M + 1)

M(M2 − 1)

0









−MT (M + 1)Ek




+O(h4)

and this leads to

Es = T (M)




(M + 1)Ek+1 +






M(M + 1)

M(M2 − 1)

0









−MT (M + 1)Ek

=






1 0 0

−3M 1 0

0 0 1









(M + 1)






ψk+1

φk+1

θk+1




+






M(M + 1)

M(M2 − 1)

0











−M






1 0 0

−3(M + 1) 1 0

0 0 1











ψk

φk

θk





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=






1 0 0

−3M 1 0

0 0 1











(M + 1)ψk+1 +M(M + 1)

(M + 1)φk+1 +M(M2 − 1)

(M + 1)θk+1




−






Mψk

−3(M + 1)Mψk +Mφk

Mθk






=






(M + 1)ψk+1 −Mψk +M(M + 1)

3M(M + 1)(ψk − ψk+1)−Mφk + (M + 1)φk+1 −M(M + 1)(2M + 1)

(M + 1)θk+1 −Mθk




 .

Thus, we obtain

ψs = (M + 1)ψk+1 −Mψk +M(M + 1)

φs = 3M(M + 1)(ψk − ψk+1)−Mφk + (M + 1)φk+1 −M(M + 1)(2M + 1)

θs = (M + 1)θk+1 −Mθk.

3.2 Teleprojective Forward Euler Method

As Gear and Lee presented in [27], the projective integration process can be iterated

by using the outer integrator as an inner integrator within yet another outer integra-

tor. This can be repeated as many times as desired. Figure 3.2 shows an illustration

of an Teleprojective Forward Euler with k = 3 damping steps, the projective factor

M = 6 and overall 2 layers, that generates a telescopic PFE step of 100h0 at layer

2.

One PFE step at layer 2 or first inner step for the next layer with step size 100h0.

10h0

4 PFE step at layer 1

1 PFE step at layer 2

Figure 3.2: PFE with 2 layers, k = 3 and M = 6.

The stability and accuracy of those (tele-)projective integrators depend on a suitable

choice of the parameters k,M, h0 and the maximal number of layers L for each stiff

system. Approximating the direction of the projective step by chord slopes simplifies
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Tab. 3.1: Critical values for [0,1]-stable PFE.

k M0 (PFE with L = 1) M∞ (Telescopic PFE with L > 1)

1 4.8284 2

2 8.4435 3

3 12.0446 6.6560

4 15.6411 8.3172

5 19.2357 12.2147

the study of stability and additionally, the properties of the outer integrator can be

analyzed independently of the choice of the inner integrator, cf. [15]. We assume for

simplicity that at each layer q, i.e. q denotes the current layer, the parameters k and

M are constant and that all eigenvalues are close to the real axis. This allows us to

consider stability only along the real axis and infer instability in its neighborhood

by continuity. The choice of h0 has to satisfy

|ρ(h0λ)| < 1

for all eigenvalues λ of the system Jacobian ∂f/∂y and ρ(h0λ) is the error amplifier

of the innermost integrator. The linear stability polynomial for one PFE step using

only one layer (L = 1) is given by Equation (6) in [27], i.e.

σ1(ρ) = ρk+1 +M(ρk+1 − ρk) = ((M + 1)ρ−M)ρk.

For PFE with L > 1 layers, the stability polynomial is

σj+1(ρ) = ((M + 1)σj(ρ)−M)σk
j (ρ)

for j = 1, . . . , L − 1, cf. Equation (7) in in [27]. The stability region for given pa-

rameters k and M can be obtained by plotting |σ(ρ)| = 1. If this region includes all

ρ ∈ [0, 1], the integrator is said to be [0, 1]-stable. Note that the stability analysis

in [27] is sufficient for parabolic problems and for real values of ρ. The major ad-

vantage of [0,1]-stable integrators is that no clear time scale separation is required.

Lee and Gear provided values of M depending on the number of damping steps to

obtain a [0,1]-stable integrator, cf. Table 3.1 and [27]. For 0 ≤ M < M0 the PFE

with L = 1 layer is [0,1]-stable and for 0 ≤ M < M∞ the PFE with L > 1 layers

is [0,1]-stable being completely independent of the number of layers. A detailed

analysis of the [0,1]-stability of the Teleprojective Forward Euler Method is given

in [15]. The implementation of a Teleprojective Forward Euler Method in Matlab

is listed in Listing 3.1 using a function innerInt() which is listed in Listing 3.2

representing the inner integrator.
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Listing 3.1: pfe.m

1 function [T,Y] = pfe(f,tstart ,tend ,y0,M,h0,nk,L)

2

3 %set problem parameters

4 nofelem = ceil(tend/((M+nk+1)^L*h0)) +1;

5 dim = max(size(y0 ,1),size(y0 ,2));

6 nearEquilibrium = false;

7 tol = 10e-17;

8

9 %allocate memory and set initial values

10 Y = zeros(nofelem ,dim);

11 if (size(y0 ,1) ~= 1)

12 Y(1,:) = y0 ’;

13 else

14 Y(1,:) = y0;

15 end

16 T = zeros(1,nofelem);

17 T(1) = tstart;

18

19 %allocate step

20 step = zeros(nk+2,dim);

21

22 for j=1:nofelem -1

23 %check if current point is near equilibrium

24 if (~ nearEquilibrium)

25 step(1,:) = Y(j,:);

26 t = T(j);

27

28 %perform nk+1 damping steps

29 for i = 1:nk+1

30 [t,step(i+1,:)] = innerInt(f,t,step(i,:),M,h0,nk,L-1);

31 end

32

33 %perform a projective step using chord slope

34 T(j+1) = t + M*(M+nk+1)^(L-1)*h0;

35 Y(j+1,:) = (1+M)*step(end ,:) - M*step(end -1,:);

36 if( norm(abs(Y(j+1,:)-Y(j,:))) < tol )

37 nearEquilibrium = true;

38 end

39

40 else

41 Y(j+1,:) = Y(j,:);
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42 T(j+1) = T(j) + (nk+1+M)^L*h0;

43 end

44 end

Line 1: Calling the function pfe() with the following parame-

ters:

f - function handle, i.e. the right-hand side of the

ODE system.

tstart,tend - time interval [tstart,tstart] in

which the integration will be performed.

y0 - initial value.

M - projective factor.

h0 - innermost step size h0.

nk - number of damping steps k.

L - number of layers L.

Line 3-20: Set initial value and allocate memory for speed up.

Line 24,36-38: If the current point is close to the equilibrium, we do

not continue calculating new values.

Line 29-31: Performing k+1 damping steps using an inner integrator

innerInt().

Line 35: Performing one projective step

yn+s = yn+k+1 +M(yn+k+1 − yn+k)

whereas s = k + 1 +M .

Listing 3.2: innerInt.m

1 function [t,y] = innerInt (f,t0,y0,M,h0,nk,q)

2

3 if (q == 0)

4 %innermost layer: performing conventional forward euler

5 y = y0 + h0*f(t0,y0)’;

6 t = t0 + h0;

7 elseif (q > 0)

8 y = y0; t = t0;

9
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10 %perform nk damping steps

11 y_nk = y;

12 for i = 1:nk

13 [t, y_nk] = innerInt(f,t,y_nk ,M,h0,nk,q-1);

14 end

15 %calculate y(t_{nk +1})

16 [t, y_nkp1] = innerInt (f,t,y_nk ,M,h0,nk,q-1);

17

18 %perform a projective step using chord slope

19 t = t + M*(nk+1+M)^(q-1)*h0;

20 y = y_nkp1 + M*( y_nkp1 - y_nk);

21 end

Line 1: Calling the function innerInt() with the following pa-

rameters:

f,y0,M,h0,nk - same as in pfe().

t0 - start time.

q - current layer.

Line 11-16: Performing k + 1 damping steps.

Line 19-20: Performing a projective step. Hence, the overall step

size of one step at current layer q is

(k + 1 +M)qh0.

Similar to the error analysis for the PFE with L = 1, we give an analogical result

for L > 1. Before, we take a look at the local error at layer q + 1. There it holds

Cq+1
1 (sh) = Cq

s (h)R(s)

whereas the superscript q resp. q+1 corresponds to the current layer and the scaling

operator R defined as

R(s) :=






s2 0 0

0 s3 0

0 0 s3




 .
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Lemma 3.2.1 (Global Error for a PFE Step on Layer L > 1) Assume that

at each layer the local error coefficients are constant, i.e. ξqn = ξq, γqn = γq and

ηqn = ηq for all q = 0, 1, . . . , L and n = 1, . . . , k. Then the following formulas for

computing the error coefficients at each layer q = 0, 1, . . . , L hold

ψq
0 = φq

0 = θq0 = 0

and

ψq
n+1 = ψq

n + ξq

φq
n+1 = −3ψq

n + φq
n + γq

θqn+1 = θqn + ψq
n + ηq

ψq
s = (M + 1)ψq

k+1 −Mψq
k +M(M + 1)

φq
s = 3M(M + 1)(ψq

k − ψq
k+1)−Mφq

k + (M + 1)φq
k+1 −M(M + 1)(2M + 1)

θqs = (M + 1)θqk+1 −Mθqk.

(3.1)

With these values, the local error coefficients on the next layer can be computed via

ξq+1 =
ψq
s

s2
, γq+1 =

φq
s

s3
, ηq+1 =

θqs
s3
.

Proof. The identities in (3.1) can be derived immediately from Lemma 3.1.1. More-

over, it holds






ξq+1

γq+1

ηq+1




 = R−1(s)Eq

s =






1
s2

0 0

0 1
s3

0

0 0 1
s3











ψq
s

φq
s

θqs




 .

Note that if the innermost integrator is Forward Euler, then it holds ξ0j = 1, γ0j = −2

and η0j = 0.

3.3 Projective Runge–Kutta Method

The previously presented algorithms are only of first-order accuracy. Analogical to

the conventional trapezoidal method for ODEs, Lee and Gear derived a second-order

accurate projective integrator in [27]. The main idea is to perform a predictor-

corrector pattern. One step at the outermost layer L with step size H of the Projec-

tive Runge–Kutta Method (PRK) using PFE as an inner integrator can be performed

as follows

(i) Start from yn = y(tn). Perform k + 1 damping steps using an inner integrator

with step size h = H/s to obtain yn+k and yn+k+1.
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(ii) Perform one projective step to gain a predicted value

yPn+s = yn+k+1 +M(yn+k+1 − yn+k).

(iii) Start from yPn+s and perform k1+1 damping steps to gain yPn+s+k1
and yPn+s+k1+1.

(iv) Perform a corrector step via

yn+s = yn+k+1 +M
(

α(yn+k+1 − yn+k) + (1− α)(yPn+k1+1 − yPn+k1
)
)

with s = M + k + 1, a weighted average of chord slopes using a real scalar α and

k and k1 being the number of damping steps starting from yn resp. yPn+s. M is the

projective multiplier, cf. the previous sections. Note that we always choose k1 = k

in our implementation.

Figure 3.3 illustrates one PRK step. The red dashed arrow shows a projective step.

Additionally, after this projective step more damping steps are performed to gain

information about the future behavior of the solution trajectory. Hence, a PRK step

(green line) can be performed with these values (green dots). The blue dots depict

the start points and the red dots the solutions points after a damping step (black

dashed arrow).

One step of Projective Runge–Kutta.

PFE

PRK

PFE layer

PRK layer

Figure 3.3: PRK as an outer integrator for PFE with k = 2 damping steps.

Such predictor-corrector patterns are useful to estimate an error because we can

make a difference between the predicted and corrected value. The stability polyno-

mial is given by

σPRK(ρ) = ρk+1 +M
(
α(ρk+1 + ρk) + (1− α)(ρk1+1 − ρk1)σPFE(ρ)

)

as provided in [27], Equation (12). Note that σPFE(ρ) is the stability polynomial

of the PFE Method. Lee and Gear provide values of M depending on the number
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of damping steps to obtain a [0,1]-stable PRK integrator with Forward Euler as an

inner integrator, cf. Table 3.2. This means at q = 1 we perform PRK and at q = 0

we perform the conventional Forward Euler. Thus, if we choose M < M0, we obtain

a [0,1]-stable PRK Method.

We give a detailed proof based on ideas of Lee and Gear as presented in [26] of the

following result that guarantees the second-order accuracy depending on the choice

of α.

Tab. 3.2: Critical values for [0,1]-stable PRK with L = 1.

k 1 2 3 4 5

M0 7.7958 14.1501 20.4726 26.7848 33.0924

Lemma 3.3.1 (General Choice of α) Consider a PRK integrator at the layer q

with step size H and let h = H/s be the step size of the damping steps performed by

a PFE at layer q − 1 and choose

α =
−ψq−1

k+1 −M(ψq−1
k1+1 − ψq−1

k1
) +M(M + 1 + 2k1)

M(ψq−1
k+1 − ψq−1

k − ψq−1
k1+1 + ψq−1

k1
+ 2(M + 1 + k1))

.

Then, the outer PRK integrator is of second-order accuracy.

Proof. By recalling the definitions of Eq
s , D

q
s and Cs in Section 3.1, we get

Dq
P (H) = Cs(h)E

q−1
s .

Furthermore, after k1 damping steps with step size h at layer q − 1, we obtain for

the local error starting from a correct value yPs

eq−1
k1

(h) = Cs+k1(h)E
q−1
k1

+O(h4).

Thus, the error starting from a correct value yn is

ys+k1 − y(ts+k1) = (I + hk1J)D
q
P (H) + eq−1

k1
(h) +O(h4)
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because

ys+k1 − y(ts+k1) = eq−1
s+k1

(h) +O(h4)

= (I + hJ)k1eq−1
s (h) +

k1∑

i=1

dq−1
s+k1−i(h)

︸ ︷︷ ︸

=e
q−1

k1
(h)

+O(h4)

=

(
k1∑

k=0

(
k1
k

)

hkIk1−kJk

)

eq−1
s (h) + eq−1

k1
(h) +O(h4)

= (I + k1hJ)D
q
P (H) + eq−1

k1
(h) +O(h4).

Note that the last equality holds, because terms of order 4 or higher are ignored.

Analogically, we get by substituting k1 with k1 + 1

ys+k1+1 − y(ts+k1+1) = (I + h(k1 + 1)J)Dq
P (H) + eq−1

k1+1(h) +O(h4).

Now, we take a look at the formula of PRK and note that

y(ts) = y(tk+1) +M (α(y(tk+1)− y(tk))

+(1− α)(y(ts+k1+1)− y(ts+k1))
)

− dPRK
s (h, α) +O(h4), (3.2)

whereas the PRK discretization error dPRK
s (h, α) is given by

dPRK
s (h, α) = Cs(h)






2Mα(M + k1 + 1)−M(M + 2k1 + 1)

3Mα(k1 −M)(M + k1 + 1) +M(M2 − 3k1(k1 + 1)− 1)

0




 .

We verify this representation by using the Taylor expansions of the following terms

y(tk+1) = y(ts −Mh)

y(tk) = y(ts − (M + 1)h)

y(ts+k1+1) = y(ts + (k1 + 1)h)

y(ts+k1) = y(ts + k1h).
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Equation (3.2) and the Taylor expansions of these terms lead to

dPRK
s (h, α) = y(tk+1)− y(tk) +M

(

α(y(tk+1)− y(tk)) + (1− α)(y(ts+k1+1)− y(ts+k1))
)

= y(ts)−Mhy′(ts) +
M2h2

2
y′′(ts)−

M3h3

6
y′′′(ts)− y(ts)

+αM

(

y(ts)−Mhy′(ts) +
M2h2

2
y′′(ts)−

M3h3

6
y′′′(ts)

)

−αM

(

y(ts)− (M + 1)hy′(ts) +
(M + 1)2h2

2
y′′(ts)−

(M + 1)3h3

6
y′′′(ts)

)

+(1− α)M

(

y(ts) + (k1 + 1)hy′(ts) +
(k1 + 1)2h2

2
y′′(ts) +

(k1 + 1)3h3

6
y′′′(ts)

)

−(1− α)M

(

y(ts) + k1hy
′(ts) +

k21h
2

2
y′′(ts) +

k31h
3

6
y′′′(ts)

)

+O(h4)

= hy′(ts)
(

−M − αM2 + αM2 + αM + k1M

+M − αk1M − αM − k1M + αk1M
)

−
h2

2
y′′(ts)

(

−αM3 −M2 + αM3 + 2αM2 + αM

− (1− α)(M(k21 + 2k1 + 1)−Mk21)
)

−
h3

6
y′′(ts)

(

−αM4 +M3 − αM(M3 + 3M2 + 3M + 1)

− (1− α)(M(k31 + 3k21 + 3k1 + 1)−Mk31)
)

+O(h4)

= −
h2

2
y′′(ts)

(

−M(M + 2k1 + 1) + 2αM(M + k1 + 1)
)

−
h3

6
y′′′(ts)

(

3αM(−M2 −M + k21 + k1) +M(M2 − 3k21 − 3k1 − 1)
)

+O(h4)

= Cs(h)






2Mα(M + k1 + 1)−M(M + 2k1 + 1)

3Mα(k1 −M)(M + k1 + 1) +M(M2 − 3k1(k1 + 1)− 1)

0




+O(h4).

Note, that terms of higher order than 3 are ignored. Besides, it holds

eq−1
s (h) = ys − y(ts)

= eq−1
k+1(h) +M

(

α(eq−1
k+1(h)− eq−1

k (h))

+ (1− α)(eq−1
s+k1+1(h)− eq−1

s+k1
(h))

)

+ dPRK
s (h, α) +O(h4). (3.3)

Thus, we only have to find representations for eq−1
k+1(h), e

q−1
k (h), eq−1

s+k1+1(h) and
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eq−1
s+k1+1(h) to get a formula for the error of one PRK step. There it holds

eq−1
k+1(h) = Ck+1(h)E

q−1
k+1 +O(h4) = Cs(h)T (M)Eq−1

k+1 +O(h4)

= Cs(h)






ψq−1
k+1

φq−1
k+1 − 3Mψq−1

k+1

θq−1
k+1




+O(h4),

eq−1
k (h) = Ck(h)E

q−1
k +O(h4) = Cs(h)T (M + 1)Eq−1

k +O(h4)

= Cs(h)






ψq−1
k

φq−1
k − 3(M + 1)ψq−1

k

θq−1
k




 +O(h4)

together with

eq−1
s+k1

(h) = ys+k1 − y(ts+k1)

= (I + hk1J)D
q
P (H) + eq−1

k1
(h) +O(h4)

= (I + hk1J)Cs(h)E
q−1
s + Cs+k1(h)E

q−1
k1

+O(h4)

= Cs(h)E
q−1
s + hk1JCs(h)E

q−1
s + Cs(h)T (−k1)E

q−1
k1

+O(h4)

= Cs(h)E
q−1
s + Cs(h)






0

0

k1ψs




 + Cs(h)T (−k1)E

q−1
k1

+O(h4)

= Cs(h)











ψq−1
s

φq−1
s

θq−1
s + k1ψ

q−1
s




+






1 0 0

3k1 1 0

0 0 1











ψq−1
k1

φq−1
k1

θq−1
k1









 +O(h4)

= Cs(h)






ψq−1
s + ψq−1

k1

φq−1
s + φq−1

k1
+ 3k1ψ

q−1
k1

θq−1
s + θq−1

k1
+ k1ψ

q−1
s




 +O(h4)

and with an analogical result

eq−1
s+k1+1(h) = Cs(h)






ψq−1
s + ψq−1

k1+1

φq−1
s + φq−1

k1+1 + 3(k1 + 1)ψq−1
k1+1

θq−1
s + θq−1

k1+1 + (k1 + 1)ψq−1
s




+O(h4).

Again, note that terms of higher order than 3 are ignored. Now, we are able to

determine the local error coefficients of one PRK step with step size H at layer q by

using equation (3.3) through

C1(H)






ξPRK

γPRK

ηPRK




 = eq−1

s (h).
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This leads to

ξPRK = ψq−1
k+1 + αM(ψq−1

k+1 − ψq−1
k ) + (1− α)M(ψq−1

k1+1 − ψq−1
k1

)

+2αM(M + k1 + 1)−M(M + 2k1 + 1)

γPRK = φq−1
k+1 − 3Mψq−1

k+1 + αM(φq−1
k+1 − φq−1

k − 3Mψq−1
k+1 + 3(M + 1)ψq−1

k )

+(1− α)M(φq−1
k1+1 − φq−1

k1
+ 3(k1 + 1)ψq−1

k1+1 − 3k1ψ
q−1
k1

)

+3αM(k1 −M)(M + k1 + 1) +M(M2 − 3k1(k1 + 1)− 1)

ηPRK = θq−1
k+1 + αM(θq−1

k+1 − θq−1
k ) + (1− α)M(θq−1

k1+1 − θq−1
k1

+ ψq−1
s ).

To gain a second-order accurate integrator, we have to choose an α such that the

second error coefficient ξPRK vanishes. Rewrite the PRK discretization error to

dPRK
s (h, α) = Cs(h)D

PRK

(

αM

1

)

+O(h4)

with

DPRK =






2(M + 1 + k1) −M(M + 1 + 2k1)

3(k1 −M)(M + 1 + k1) M(M2 − 3k1(k1 + 1)− 1)

0 0




 .

Similar to that, rewrite the remaining error part as follows

eq−1
k+1(h) +M

(
α(eq−1

k+1(h)− eq−1
k (h)) + (1− α)(eq−1

s+k1+1(h)− eq−1
s+k1

(h))
)

= Cs(h)E
PRK

(

αM

1

)

+O(h4)

with

EPRK =








ψq−1
k+1 − ψq−1

k − ψq−1
k1+1 + ψq−1

k1
, ψq−1

k+1 +M(ψq−1
k1+1 − ψq−1

k1
)

φq−1
k+1 − φq−1

k − 3Mψq−1
k+1 + 3(M + 1)ψq−1

k φq−1
k+1 − 3Mψq−1

k+1 +M
(
φq−1
k1+1 − φq−1

k1

−φq−1
k1+1 + φq−1

k1
− 3(k1 + 1)ψq−1

k1+1 − 3k1ψ
q−1
k1

, +3(k1 + 1)ψq−1
k1+1 − 3k1ψ

q−1
k1

)

θq−1
k+1 − θq−1

k − θq−1
k1+1 + θq−1

k1
− ψq−1

s , θq−1
k+1 +M(θq−1

k1+1 − θq−1
k1

+ ψq−1
s )







.

This allows us to write the error compactly as

eq−1
s (h) = Cs(h)(E

PRK +DPRK)

(

αM

1

)

+O(h4).

In order to get second-order accuracy, we take a look at the following linear equation

system

Cs(h)(E
PRK +DPRK)

(

αM

1

)

!
= −ξPRKH

2

2
y′′s − γPRKH

3

6
y′′′ − ηPRKH

3

2
Jy′′

and choose α such that ξPRK vanishes. By defining





a11 a12

a21 a22

a31 a32




 := EPRK +DPRK,
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it holds

αMa11 + a12
!
= 0 ⇔ α =

−a12
Ma11

.

Finally, we obtain

α =
−ψq−1

k+1 −M(ψq−1
k1+1 − ψq−1

k1
) +M(M + 1 + 2k1)

M(ψq−1
k+1 − ψq−1

k − ψq−1
k1+1 + ψq−1

k1
+ 2(M + 1 + k1))

and the third order coefficients

γPRK =
1

s3

(
−a21
a11

a21 + a22

)

, ηPRK =
1

s3

(
−a21
a11

a31 + a32

)

.

Lemma 3.3.2 (Special Choice of α) Consider a PRK integrator at the layer q

and let k1 = k, ξq−1
n = ξq−1, γq−1

n = γq−1 and ηq−1
n = ηq−1 for n = 1, . . . , k. Then it

holds

α =
−(M + k + 1)ξq−1 +M(M + 1 + 2k)

2M(M + 1 + k)
.

Proof. The requirements lead to

ψq−1
k1

= ψq−1
k , ψq−1

k1+1 = ψq−1
k+1

and

ψq−1
k+1 = (k + 1)ξq−1.

Then, it holds

α =
Mkξq−1 − (M + 1)(k + 1)ξq−1 +M(M + 1 + 2k)

2M(M + 1 + k)

=
−(M + k + 1)ξq−1 +M(M + 1 + 2k)

2M(M + 1 + k)
.

The implementation of a Projective Runge–Kutta Method in Matlab is listed in

Listing 3.3 using a function innerInt() which is already listed in Listing 3.2 rep-

resenting the inner PFE integrator and a function getAlpha() which is listed in

Listing 3.4 calculating the real scalar α as proposed in Lemma 3.3.2. Additionally,

we implemented a PRK integrator in C++, cf. appendix: Section C and D.

Listing 3.3: prk.m

1 function [T,Y] = prk(f,tstart ,tend ,y0,M,h0,nk,L)

2

3 %set problem parameters

4 alpha = getAlpha(M,nk,L);
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5 nofelem = ceil(tend/((M+nk+1)^L*h0)) +1;

6 dim = max(size(y0 ,1),size(y0 ,2));

7 nearEquilibrium = false;

8 tol = 10e-17;

9

10 %allocate memory and set initial values

11 Y = zeros(nofelem ,dim);

12 if (size(y0 ,1) ~= 1)

13 Y(1,:) = y0 ’;

14 else

15 Y(1,:) = y0;

16 end

17 T = zeros(1,nofelem);

18 T(1) = tstart;

19

20 %allocate step

21 step = zeros(nk+2,dim);

22 step_pred = zeros(nk+2,dim);

23

24 for j=1:nofelem -1

25 if (~ nearEquilibrium)

26

27 %-- predictor step --%

28 t = T(j);

29 step(1,:) = Y(j,:);

30

31 %perform nk+1 damping steps

32 for i = 1:nk+1

33 [t,step(i+1,:)] = innerInt(f,t,step(i,:),M,h0,nk,L

-1);

34 end

35

36 %perform a projective step using chord slope

37 t = t + M*(M+nk+1)^(L-1)*h0;

38 T(j+1) = t;

39 step_pred(1,:) = (1+M)*step(end ,:) - M*step(end -1,:);

40

41 %perform nk+1 damping steps starting from y_s

42 for i = 1:nk+1

43 [t,step_pred(i+1,:)] = innerInt (f,t,step_pred(i,:),M

,h0,nk,L-1);

44 end
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45

46 %-- corrector step --%

47 Y(j+1,:) = (1+M*alpha) *step(end ,:)- M*alpha*step(end

-1,:) +...

48 (1-alpha)*M*step_pred(end ,:) - ...

49 (1-alpha) * M*step_pred(end -1,:);

50 if( norm(abs(Y(j+1,:)-Y(j,:))) < tol )

51 nearEquilibrium = true;

52 end

53 else

54 Y(j+1,:) = Y(j,:);

55 T(j+1) = T(j) + (nk+1+M)^L*h0;

56 end

57 end

Line 1: Calling the function prk() with the same parameters as

in function pfe(), cf. Section 3.1.

Line 4: Calculate α to guarantee a second-order accuracy as

proved in Lemma 3.3.2.

Line 25,53-56: If the current point is close to the equilibrium, we do

not continue calculating new values.

Line 31-34: Performing k+1 damping steps using an inner integrator

innerInt() to obtain yn+k+1 and yn+k.

Line 37-39: Performing one projective step to obtain a predicted

value

yPn+s = yn+k+1 +M(yn+k+1 − yn+k)

whereas s = k + 1 +M .

Line 42-44: Performing another k + 1 damping steps starting from

yPn+s to gain yPn+s+k+1 and y
P
n+s+k.

Line 37-39: Performing a corrector step with a weighted average of

chord slopes

yn+s = yn+k+1+M
(

α(yn+k+1 − yn+k) + (1− α)(yPn+k1+1 − yPn+k1
)
)

.

Listing 3.4: getAlpha.m

1 function alpha = getAlpha(M,k,L)

2

3 s = M + k + 1;

4 xsi = 1; %xsi_0 if forward euler is used at innermost layer
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5

6 for i = 1:L

7 xsi = xsi/s + M*(M+1)/s^2;

8 end

9

10 alpha = ((-M-k-1)*xsi + M*(M+1+2*k))/(2*M*s);



Chapter 4

Numerical Results and

Comparison to Other Methods

In this chapter, we give an overview of several tests and analyze the numerical be-

havior of the algorithms which are presented in Chapter 3. Furthermore, we compare

the projective integrators with a BDF integrator implemented by Dominik Skanda,

cf. [29], and in addition, we compare these methods with a BDF integrator for the

corresponding reduced model applying a model reduction technique as discussed

in Section 2.3 by using the software MoRe by Jochen Siehr, cf. [28]. All tests are

performed on an Apple MacBook Pro with the following specifications:

Kernel: Intel Core 2 Duo, 2.26 GHz

RAM: 4GB DDR3 RAM, 1067 MHz

OS: Mac OS X 10.6.8, Build 10K549

Matlab: Version 7.9.0 (R2009b)

g++: Version 4.7.1.

4.1 Projective Forward Euler vs. Projective

Runge–Kutta

In this section, we compare the PFE Method with the PRK Method. In order to

look at the error between a true or correct solution and the solution calculated by

PFE or PRK, i.e.

∣
∣
∣
∣ycor(tk)− yPFEk

∣
∣
∣
∣ and

∣
∣
∣
∣ycor(tk)− yPRK

k

∣
∣
∣
∣ ,

we assume that the result of Matlab’s ode23s using the smallest possible tolerance

is the correct solution to have a reference. We consider the Davis–Skodje model, cf.

Section 2.4, i.e.

ẏ1(t) = −y1(t)

ẏ2(t) = −γy2(t) +
(γ − 1)y1(t) + γy21(t)

(1 + y1(t))2

with γ ∈ {3.0, 15.0}, t ∈ [0, 10] and the following test setups involving various initial

values and parameters M and k for the integrators:
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Tab. 4.1: Test cases comparing PFE with PRK.

Test case 1 M = 6, k = 3 and y0 = (4, 4)T

Test case 2 M = 8, k = 3 and y0 = (4, 4)T

Test case 3 M = 8, k = 4 and y0 = (4, 4)T

Test case 4 M = 12, k = 4 and y0 = (4, 4)T

Test case 5 M = 6, k = 3 and y0 = (3, 0.2)T

Test case 6 M = 8, k = 3 and y0 = (3, 0.2)T

Test case 7 M = 8, k = 4 and y0 = (3, 0.2)T

Test case 8 M = 12, k = 4 and y0 = (3, 0.2)T .

Besides, we choose L = 2 and h0 = 0.001 for every test case. Figure 4.1a and 4.1b

depict the solution trajectories in test case 1 for γ = 3 resp. γ = 15. Note that the

SIM is represented by the magenta line. The corresponding error plots are depicted

in Figure 4.2a and 4.2b. In the same way, the plots of the remaining test cases

are listed in the appendix, cf. Section A. It is obvious, that the error of the PRK

Method is always smaller than the error of the PFE, cf. for example Figure 4.2a

and 4.2b. Furthermore, in general choosing more damping steps does not lead to a

higher accuracy, cf. Figure 4.4, but it allows us to choose a larger projective step

which ends up in a better performance, because we need fewer integration steps.

Both algorithms react very sensitive on the choice of the parameters M , L, k and

h0. For example Figure 4.3 shows, that forM = 12 and k = 4 the PFE begins to os-

cillate and enters negative values, which are prohibited if we consider concentrations

of chemical species, while the PRK Method still fits the solution trajectories almost

perfect. This demonstrates, that in this case the PFE is not [0,1]-stable anymore,

cf. Table 3.1 listing critical values for [0,1]-stable PFE integrators.
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Figure 4.1: Plots of the solutions in test case 1.

Table 4.2 provides the runtime for each test case. It is remarkable and expectable

that the runtime of PRK, due to the predictor-corrector schema, is slightly higher

than the runtime of PFE. The runtime of ode23s is very large, because we calculate
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Figure 4.2: Error plots of test case 1.

the solution with the smallest possible tolerance by using the same time discretiza-

tion as PRK or PFE. According to all mentioned facts, it is worthwhile to perform

an integration via PRK, because we gain a better accuracy, although we have more

function evaluation and thus, a little higher runtime.
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Figure 4.3: Plots of the solutions for γ = 15.0 in test case 4.

Tab. 4.2: Runtime for every test case using the Matlab routines pfe(), prk() and

ode23s().

Test case γ pfe() prk() ode23s()

1 15.0 0.1447s 0.2600s 51.4742s
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3.0 0.1435s 0.2597s 29.6462s

2 15.0 0.1094s 0.1870s 51.7240s

3.0 0.1086s 0.1866s 29.7160s

3 15.0 0.1349s 0.2774s 51.3672s

3.0 0.1369s 0.2388s 29.7111s

4 15.0 0.0890s 0.1453s 51.5495s

3.0 0.0883s 0.1466s 29.3708s

5 15.0 0.1451s 0.2603s 43.7229s

3.0 0.1443s 0.2625s 26.5912s

6 15.0 0.1081s 0.1864s 43.2031s

3.0 0.1089s 0.1859s 26.6114s

7 15.0 0.1348s 0.2379s 42.8709s

3.0 0.1348s 0.2388s 26.3386s

8 15.0 0.0876s 0.1504s 43.4573s

3.0 0.0855s 0.1449s 26.3494s
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Figure 4.4: Test case 2 vs. 3, γ = 15: More damping steps do not yield to a higher

accuracy.
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4.2 Projective Runge–Kutta vs. Backward Differ-

entiation Formulas

In this section, we consider the Simplified Six Species Hydrogen Combustion mecha-

nism, cf. Section 2.5, and compare the PRK Method with BDF Methods integrating

on the one hand the full system and on the other hand the corresponding reduced

system. We provide a C++ implementation of a projective Runge–Kutta integrator

to compare this method with a BDF integrator implemented by Dominik Skanda

in C++. Additionally, we compare those methods with an integration using a model

reduction technique based on ideas of Lebiedz [19] while making use of the software

MoRe by Jochen Siehr. In order to use Skandas BDF integrator, we are forced to

build a right-hand side using the open source automatic differential package CppAD.

Listing 4.1 shows the building of such a right-hand side.

Listing 4.1: Building a right-hand side using CppAD

1 // -------- build RHS for BDF integrator ---------- //

2 vector < CppAD::AD<double > > z(nspec);

3 CppAD:: Independent(z);

4

5 vector < CppAD::AD<double > > c(nspec);

6 vector < CppAD::AD<double > > zdot(nspec);

7

8 //convert z_s to c_s

9 CppAD::AD<double > sum = 0.0;

10 for(int i = 0; i < nspec; ++i) {

11 sum += z[i];

12 }

13 CppAD::AD<double > rho = 101325.0/(8.314472*3000*sum);

14 for(int i = 0; i < nspec; ++i) {

15 c[i] = rho*z[i];

16 }

17

18 // ODE system

19 CppAD::AD<double > M = (1.0*c[0]+2.5*c[1]+1.0*

20 c[2]+1.0*c[3]+12.0*c[4]+1.0* c[5]);

21 CppAD::AD<double > q1 = kf[0]*c[0]*c[1]- kr[0]*c[2]*c[3];

22 CppAD::AD<double > q2 = kf[1]*c[1]*c[3]- kr[1]*c[2]*c[4];

23 CppAD::AD<double > q3 = kf[2]*c[0]*c[4]- kr[2]*c[3]*c[3];

24 CppAD::AD<double > q4 = (kf[3]*c[1] - kr[3]*c[2]*c[2])*M;

25 CppAD::AD<double > q5 = (kf[4]*c[0]*c[2]- kr[4]*c[3] )*M;

26 CppAD::AD<double > q6 = (kf[5]*c[2]*c[3]- kr[5]*c[4] )*M;

27
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28 CppAD::AD<double > fac = 1.0/rho;

29 zdot[ 0] = (-q1 -q3 -q5 )*fac;

30 zdot[ 1] = (-q1 -q2 - q4 )*fac;

31 zdot[ 2] = ( q1 +q2 +2*q4 -q5 -q6 )*fac;

32 zdot[ 3] = ( q1 -q2 +2*q3 +q5 -q6 )*fac;

33 zdot[ 4] = ( q2 - q3 +q6 )*fac;

34 zdot[ 5] = 0;

35

36 CppAD::ADFun <double > RHS(z, zdot);

In the next step, we build a right-hand side which uses a model reduction method.

The software MoRe provides a suitable MoRe-Wrapper, developed by Marcel Rehberg,

such that we only call the following function

cppadMore(0,xTemp,yTemp)

which represents the map h in Section 2.2. Thus, there it holds yTemp = h(xTemp).

This leads to a reduced right-hand side as listed in Listing 4.2.

Listing 4.2: Building a reduced right-hand side using CppAD

1 /* -------- build RHS for BDF integrator

2 using model reduction ---------- */

3 vector < CppAD::AD<double > > z_more (1);

4

5 z_more [0] = y0(5);

6 CppAD:: Independent(z_more);

7

8 vector < CppAD::AD<double > > xTemp(1);

9 vector < CppAD::AD<double > > yTemp(5);

10

11 xTemp[0]=z_more [0];

12 cppadMore(0,xTemp ,yTemp);

13

14 // calculate constants

15 CppAD::AD<double > sum_more = z_more [0];

16 for(int i = 0; i < 5; ++i) {

17 sum_more += yTemp[i];

18 }

19

20 // convert z_s to c_s

21 CppAD::AD<double > rho_m = 101325.0/(8.314472*3000*sum_more );

22 vector <CppAD::AD<double > > c_m(nspec);

23 c_m[0] = rho_m*yTemp[0]; c_m[1] = rho_m*yTemp[1];

24 c_m[2] = rho_m*yTemp[2]; c_m[3] = rho_m*yTemp[3];
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25 c_m[4] = rho_m*xTemp[0]; c_m[5] = rho_m*yTemp[4];

26

27 // ODE system

28 vector <CppAD::AD<double > > zdot_more(1);

29 CppAD::AD<double > M_m = (1.0*c_m [0]+2.5* c_m [1]+1.0* c_m[2]

30 +1.0*c_m [3]+12.0*c_m [4]+1.0* c_m [5]);

31 CppAD::AD<double > q2_m = kf[1]*c_m [1]*c_m[3] - kr[1]*c_m [2]*

c_m[4];

32 CppAD::AD<double > q3_m = kf[2]*c_m [0]*c_m[4] - kr[2]*c_m [3]*

c_m[3];

33 CppAD::AD<double > q6_m = (kf[5]*c_m[2]*c_m[3] - kr[5]*c_m[4]

)*M_m;

34 CppAD::AD<double > fac_m = 1.0/rho_m;

35 zdot_more[ 0] = ( q2_m - q3_m + q6_m )*fac_m;

36

37 CppAD::ADFun <double > RHS_MORE (z_more , zdot_more);

We consider the following test cases

Tab. 4.3: Test cases comparing PRK with BDF.

Test case Initial Value

1 y0 = (0.34563, 2.02816, 1.51936, 0.76437, 3.00000, 32.90513)T

2 y0 = (0.75000, 0.99002, 4.00000, 0.36001, 3.00000, 32.90513)T

3 y0 = (1.03189, 2.02541, 3.21111, 1.07811, 2.00000, 32.90513)T

4 y0 = (1.50000, 2.86502, 2.00000, 0.61001, 2.00000, 32.90513)T

5 y0 = (2.03867, 1.79891, 5.67089, 1.07133, 1.00000, 32.90513)T

6 y0 = (3.00000, 3.11502, 4.00000, 0.11001, 1.00000, 32.90513)T

7 y0 = (3.19024, 1.12902, 8.91224, 0.66976, 0.25000, 32.90513)T

8 y0 = (3.50000, 3.49002, 4.50000, 0.36001, 0.25000, 32.90513)T

involving initial values in the near-field (case 1,3,5,7) and far-field (case 2,4,6,8)

relative to the equilibrium and to the one dimensional SIM. The initial values in

test cases 1,3,5 and 7 are calculated a priori via MoRe and all initial values satisfy

the mass conservation relation, cf. Section 2.5. Table 4.4 lists various integrators we

deal with by comparing PRK with BDF.

Tab. 4.4: Used integrators comparing PRK with BDF.

PRK BDF BDF<MoRe>

PRK(6,3,3) BDF(10−1) BDF<MoRe>(10−1)

PRK(6,4,3) BDF(10−3) BDF<MoRe>(10−3)

PRK(6,3,4) BDF(10−5) BDF<MoRe>(10−5)
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PRK(6,4,4) BDF(10−7) BDF<MoRe>(10−7)

PRK(8,4,3) BDF(10−9) BDF<MoRe>(10−9)

PRK(8,4,4)

PRK(8,4,5)

PRK(8,5,5)

Note that we use the syntax PRK(M,k,L), BDF(tolerance) and

BDF<MoRe>(tolerance). Besides, we choose t ∈ [0, 2.5] and h0 = 0.00000001.

Figure 4.5 shows the solution trajectories calculated by PRK(6,3,3) and BDF(10−7)
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Figure 4.5: Plots of the solutions using PRK(6,3,3) and BDF(10−7) in test case 6.

using the progress variable zH2O. We notice, that the PRK trajectory fits the BDF

solution pretty well. In contrast to this, Figure 4.6 depicts the solution trajectories

of of PRK(8,4,4) and BDF(10−7). Besides, we note that a suitable choice of the

parameters M , k and L is very important to map the solution trajectory slightly

perfect, while keeping in mind to choose them in a way, that does not end up in

instability.

In the following, we take a look at the errors of each method, i.e.

∣
∣
∣
∣zcor(tk)− zPRK

k

∣
∣
∣
∣ ,

∣
∣
∣
∣zcor(tk)− zBDF

k

∣
∣
∣
∣ and

∣
∣
∣
∣zcor(tk)− zBDF<MoRe>

k

∣
∣
∣
∣ .

Again, we calculate a true or correct solution via Matlab’s ode23s using the

smallest possible tolerance. We are only interested in the specific moles of the

progress variable so that we evaluate those errors only for zH2O. Figure 4.8 and
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4.7 depict the error evolution using the following integrators for test case 5 resp.

6: PRK(6,3,3), PRK(8,4,4), BDF(10−7), BDF(10−9), BDF<MoRe>(10−3) and

BDF<MoRe>(10−5). At the beginning, the errors of the projective integrators

are significant higher than those of the BDF integrators, because projective integra-

tors need at least a few steps to damp the fast dynamics. But we notice, over the

course of time, those errors become smaller than that ones occurring by performing

a BDF integration. Obviously, the error of reducing the model only to one species is

depicted clearly. It does not matter whether choosing a smaller tolerance or not, we

always obtain an error of about 10−4. Those trends of error evolution are observable

for all test cases. The entire error plots of all test cases are listed in the appendix,

cf. Section B.

Table 4.5 lists the effort of function evaluations and runtime for test case 1, 2, 7 and

8 and each integrator. The effort for each integrator in the other test cases is listed

in Table B.2. Although we need more function evaluations by using PRK, we often

need fewer runtime, because we are not forced to evaluate the right-hand side with

CppAD. This is a huge advantage of projective integrators. We only need an efficient

vector handling. In our case, we use the C++-Library FLENS by Michael Lehn et al.,

cf. [22]. Additionally, we notice that if we start the integration apart of the SIM,

the BDF integration of the full system needs more function evaluations than the

reduced one, cf. Figure 4.9 and 4.10. The number of steps and function evaluations

integrating the reduced model in test case 1 resp. 7 is equal to the number of inte-

gration steps of the reduced model in test case 2 resp. 8. This is obvious, because

we start from the same initial value z0H2O
= 3.0 resp. z0H2O

= 0.25. Choosing a

smaller tolerance for the BDF integrators naturally leads to more integration steps,

cf. Figure 4.11. Nevertheless, the integration of a full system starting from a point

in the far-field needs overall more steps than integrating the reduced system, cf.

Figure 4.11 and 4.12. Moreover, we notice that the runtime of integrating a reduced

system is always a little bit higher than integrating the full system. In fact, the

model reduction technique is not worth it considering a ODE system involving only

six species, but the number of integration steps and function evaluations is almost

always less such that if the function evaluation is very expensive, this may be a good

way in order to integrate a high-dimensional system.

Tab. 4.5: Effort of several integrators for test case 1,2,7 and 8.

Test case Integrator Time Integration Steps F-Evals

1 PRK(6,3,3) 0.150629s 250000 99968

PRK(6,4,3) 0.206526s 187829 144500

PRK(6,3,4) 0.056418s 25001 39424

PRK(6,4,4) 0.092976s 17076 67500
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PRK(8,4,3) 0.128372s 113792 89000

PRK(8,4,4) 0.049617s 8754 36250

PRK(8,4,5) 0.121431s 674 87500

PRK(8,5,5) 0.104718s 465 77760

BDF(10−1) 0.217126s 9 54

BDF(10−3) 0.220425s 18 112

BDF(10−5) 0.220265s 26 156

BDF(10−7) 0.222221s 33 198

BDF(10−9) 0.222720s 101 546

BDF<MoRe>(10−1) 0.340569s 9 52

BDF<MoRe>(10−3) 0.357300s 18 96

BDF<MoRe>(10−5) 0.384890s 27 160

BDF<MoRe>(10−7) 0.406148s 39 218

BDF<MoRe>(10−9) 0.503730s 105 500

2 PRK(6,3,3) 0.16768s 250000 108928

PRK(6,4,3) 0.227961s 187829 159750

PRK(6,3,4) 0.063001s 25001 44032

PRK(6,4,4) 0.107439s 17076 77500

PRK(8,4,3) 0.138569s 113792 96750

PRK(8,4,4) 0.053056s 8754 38750

PRK(8,4,5) 0.077521s 674 56250

PRK(8,5,5) 0.104728s 465 77760

BDF(10−1) 0.222621s 10 152

BDF(10−3) 0.222831s 48 362

BDF(10−5) 0.225845s 67 470

BDF(10−7) 0.223214s 92 574

BDF(10−9) 0.229765s 248 1350

BDF<MoRe>(10−1) 0.344359s 9 52

BDF<MoRe>(10−3) 0.359549s 12 96

BDF<MoRe>(10−5) 0.387263s 27 160

BDF<MoRe>(10−7) 0.402807s 39 218

BDF<MoRe>(10−9) 0.521398s 105 500

7 PRK(6,3,3) 0.175368s 250000 115712

PRK(6,4,3) 0.243891s 187829 171000

PRK(6,3,4) 0.067883s 25001 47616

PRK(6,4,4) 0.109522s 17076 80000

PRK(8,4,3) 0.149097s 113792 104250

PRK(8,4,4) 0.059949s 8754 43750

PRK(8,4,5) 0.112015s 674 81250

PRK(8,5,5) 0.125351s 465 93312
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BDF(10−1) 0.230762s 14 121

BDF(10−3) 0.230521s 30 232

BDF(10−5) 0.229540s 41 284

BDF(10−7) 0.230606s 56 394

BDF(10−9) 0.234747s 162 980

BDF<MoRe>(10−1) 0.388919s 15 124

BDF<MoRe>(10−3) 0.418198s 35 193

BDF<MoRe>(10−5) 0.450390s 52 289

BDF<MoRe>(10−7) 0.485036s 69 369

BDF<MoRe>(10−9) 0.709923s 192 955

8 PRK(6,3,3) 0.171794s 250000 113280

PRK(6,4,3) 0.238962s 187829 167000

PRK(6,3,4) 0.066588s 25001 46592

PRK(6,4,4) 0.112892s 17076 82500

PRK(8,4,3) 0.148919s 113792 104000

PRK(8,4,4) 0.056964s 8754 41250

PRK(8,4,5) 0.077379s 674 56250

PRK(8,5,5) 0.105041s 465 77760

BDF(10−1) 0.229202s 23 190

BDF(10−3) 0.226813s 51 338

BDF(10−5) 0.228253s 76 476

BDF(10−7) 0.228742s 108 633

BDF(10−9) 0.237838s 296 1654

BDF<MoRe>(10−1) 0.390162s 15 124

BDF<MoRe>(10−3) 0.413756s 35 193

BDF<MoRe>(10−5) 0.453405s 52 289

BDF<MoRe>(10−7) 0.481376s 69 369

BDF<MoRe>(10−9) 0.718570s 192 955
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Figure 4.6: Plots of the solutions using PRK(8,4,4) and BDF(10−7) in test case 6.
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Figure 4.8: Plots of the errors using various integrators for test case 6.
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Figure 4.10: Tolerance vs. function evaluations of the BDF integrator for test case

7 and 8.
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Figure 4.11: Tolerance vs. number of BDF integration steps for test case 1 and 2.
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Figure 4.12: Tolerance vs. number of BDF integration steps for test case 7 and 8.
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Chapter 5

Conclusion

We give a short overview of the theory of ODE systems and two models in the second

chapter as an example of multi-scale problems. Moreover, we treat the theory of

projective integrators and give a detailed proof of the second-order accuracy of the

Projective Runge–Kutta Method based on ideas of Lee and Gear in [26]. Further,

we implement these algorithms in Matlab and C++ to compare them with existing

integrators, especially with the BDF integrator written by Skanda. Furthermore, we

compare projective integrators which integrate the full system with a BDF integrator

dealing with a reduced model using the software MoRe by Siehr. In general, there is

no best choice. The following table illustrates the advantages and disadvantages of

the mentioned integration methods:

PFE PRK BDF

explicit + + –

high-order accuracy – o ++

fast + + o

simplicity of the implementation + + –

stability o o ++

In other words, by choosing a BDF integrator, we achieve a high-order accuracy and

we can always apply this method to all problems. However, we have to solve a non-

linear equation system in every step. This might need a lot of runtime. To avoid

this curse of implicit methods, we can choose an explicit integrator as presented

previously. Those explicit methods can be applied to legacy codes without the

knowledge of the right-hand side explicitly. This occurs, if the microscopic behavior

is represented by a simulation, e.g. a Monte-Carlo simulation. The implementation

of projective integrators as against the implementation of implicit methods does not

need a non-linear equation solver or methods to compute an approximation of the

system Jacobian. Indeed, we only need an efficient vector arithmetic. Nevertheless,

we still have to choose the parameters in a suitable way such that the method

becomes stable.
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Appendix A

Plots of the Test Cases Comparing

PFE with PRK

The following table contains the number of each figure belonging to different test

cases by comparing PFE with PRK:

Tab. A.1: Overview of the corresponding plots of each test case comparing PFE

with PRK.

Test Case γ Plot of Solutions Error Plots

1 3.0 4.1a 4.2a

15.0 4.1b 4.2b

2 3.0 A.1a A.2a

15.0 A.1b A.2b

3 3.0 A.3a A.4a

15.0 A.3b A.4b

4 3.0 A.5a A.6a

15.0 4.3 A.6b

5 3.0 A.7a A.8a

15.0 A.7b A.8b

6 3.0 A.9a A.10a

15.0 A.9b A.10b

7 3.0 A.11a A.12a

15.0 A.11b A.12b

8 3.0 A.13a A.14a

15.0 A.13b A.14b



56 Appendix A: Plots of the Test Cases Comparing PFE with PRK

0 1 2 3 4
0

1

2

3

4

y
1

y 2

 

 

ode23s
PFE
PRK

(a) γ = 3.0

0 1 2 3 4
−1

0

1

2

3

4

y
1

y 2

 

 

ode23s
PFE
PRK

(b) γ = 15.0

Figure A.1: Plots of the solutions in test case 2.
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Figure A.2: Error plots of test case 2.
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Figure A.3: Plots of the solutions in test case 3.
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Figure A.4: Error plots of test case 3.
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Figure A.5: Plots of the solutions in test case 4
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Figure A.6: Error plots of test case 4.
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Figure A.7: Plots of the solutions in test case 5.
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Figure A.8: Error plots of test case 5.
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Figure A.9: Plots of the solutions in test case 6.
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Figure A.10: Error plots of test case 6.
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Figure A.11: Plots of the solutions in test case 7.
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Figure A.12: Error plots of test case 7.
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Figure A.13: Plots of the solutions in test case 8.
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Figure A.14: Error plots of test case 8.



Appendix B

Plots and Effort of the Test Cases

Comparing PRK with BDF

The following table contains the number of each figure belonging to various error

plots of different test cases by comparing PRK with BDF.

Tab. B.1: Overview of the corresponding plots of each test case comparing PRK

with BDF.

Test Case Plot of

Various Errors PRK Errors BDF Errors BDF<MoRe> Errors

1 B.1 B.2 B.3 B.4

2 B.5 B.6 B.7 B.8

3 B.9 B.10 B.11 B.12

4 B.13 B.14 B.15 B.16

5 4.7 B.17 B.18 B.19

6 4.8 B.20 B.21 B.22

7 B.23 B.24 B.25 B.26

8 B.27 B.28 B.29 B.30

Additionally, the runtime, the number of function evaluations and integration steps

of each method for the remaining test cases which are not mentioned in Section 4.2,

are listed in the following table:

Tab. B.2: Effort of several integrators for test case 3,4,5 and 6.

Test case Integrator Time Integration Steps F-Evals

3 PRK(6,3,3) 0.163998s 250000 108288

PRK(6,4,3) 0.229790s 187829 161500

PRK(6,3,4) 0.063208s 25001 44032

PRK(6,4,4) 0.102904s 17076 75000

PRK(8,4,3) 0.148372s 113792 92012

PRK(8,4,4) 0.059291s 8754 42500

PRK(8,4,5) 0.103825s 674 75000

PRK(8,5,5) 0.104696s 465 77760

BDF(10−1) 0.225583s 12 80
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BDF(10−3) 0.228274s 27 203

BDF(10−5) 0.229791s 40 273

BDF(10−7) 0.229404s 53 325

BDF(10−9) 0.230496s 131 745

BDF<MoRe>(10−1) 0.353549s 13 78

BDF<MoRe>(10−3) 0.419275s 30 194

BDF<MoRe>(10−5) 0.437174s 43 264

BDF<MoRe>(10−7) 0.466395s 59 342

BDF<MoRe>(10−9) 0.625311s 157 768

4 PRK(6,3,3) 0.166701s 250000 108800

PRK(6,4,3) 0.233252s 187829 162250

PRK(6,3,4) 0.063111s 25001 44032

PRK(6,4,4) 0.104498s 17076 75000

PRK(8,4,3) 0.137363s 113792 96000

PRK(8,4,4) 0.053253s 8754 38750

PRK(8,4,5) 0.069358s 674 50000

PRK(8,5,5) 0.125257s 465 93312

BDF(10−1) 0.224013s 20 151

BDF(10−3) 0.224627s 48 317

BDF(10−5) 0.223927s 68 445

BDF(10−7) 0.226419s 101 587

BDF(10−9) 0.229799s 253 1397

BDF<MoRe>(10−1) 0.364595s 13 78

BDF<MoRe>(10−3) 0.414015s 30 194

BDF<MoRe>(10−5) 0.431396s 43 264

BDF<MoRe>(10−7) 0.467953s 59 342

BDF<MoRe>(10−9) 0.626288s 157 768

5 PRK(6,3,3) 0.171182s 250000 111360

PRK(6,4,3) 0.235033s 187829 166000

PRK(6,3,4) 0.065821s 25001 46080

PRK(6,4,4) 0.106241s 17076 77500

PRK(8,4,3) 0.143065s 113792 100250

PRK(8,4,4) 0.061662s 8754 45000

PRK(8,4,5) 0.077508s 674 56250

PRK(8,5,5) 0.104307s 465 77760

BDF(10−1) 0.232661s 14 94

BDF(10−3) 0.231824s 28 195

BDF(10−5) 0.233146s 40 265

BDF(10−7) 0.232608s 56 349

BDF(10−9) 0.236824s 151 949
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BDF<MoRe>(10−1) 0.368798s 13 87

BDF<MoRe>(10−3) 0.445305s 35 246

BDF<MoRe>(10−5) 0.459096s 50 304

BDF<MoRe>(10−7) 0.487362s 67 365

BDF<MoRe>(10−9) 0.652954s 168 809

6 PRK(6,3,3) 0.177366s 250000 117504

PRK(6,4,3) 0.235281s 187829 165750

PRK(6,3,4) 0.064396s 25001 45056

PRK(6,4,4) 0.106607s 17076 77500

PRK(8,4,3) 0.151894s 113792 106000

PRK(8,4,4) 0.054663s 8754 40000

PRK(8,4,5) 0.103510s 674 75000

PRK(8,5,5) 0.104791s 465 77760

BDF(10−1) 0.225459s 22 175

BDF(10−3) 0.226155s 50 341

BDF(10−5) 0.226669s 73 495

BDF(10−7) 0.227646s 102 628

BDF(10−9) 0.233788s 307 1660

BDF<MoRe>(10−1) 0.361559 13 87

BDF<MoRe>(10−3) 0.437788s 35 246

BDF<MoRe>(10−5) 0.455527s 50 304

BDF<MoRe>(10−7) 0.480850s 67 365

BDF<MoRe>(10−9) 0.647777s 168 809
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Figure B.1: Plots of the errors using various integrators for test case 1.
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Figure B.2: Plots of the errors using PRK integrators for test case 1.
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Figure B.3: Plots of the errors using BDF integrators for test case 1.
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Figure B.4: Plots of the errors using BDF<MoRe> integrators for test case 1.
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Figure B.5: Plots of the errors using various integrators for test case 2.
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Figure B.6: Plots of the errors using PRK integrators for test case 2.
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Figure B.7: Plots of the errors using BDF integrators for test case 2.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
110

−8

10
−6

10
−4

10
−2

10
0

Time

E
rr

or

 

 

BDF<MoRe>(10−1)

BDF<MoRe>(10−3)

BDF<MoRe>(10−5)

BDF<MoRe>(10−7)

BDF<MoRe>(10−9)

Figure B.8: Plots of the errors using BDF<MoRe> integrators for test case 2.
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Figure B.9: Plots of the errors using various integrators for test case 3.
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Figure B.10: Plots of the errors using PRK integrators for test case 3.
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Figure B.11: Plots of the errors using BDF integrators for test case 3.
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Figure B.12: Plots of the errors using BDF<MoRe> integrators for test case 3.



70 Appendix B: Plots and Effort of the Test Cases Comparing PRK with BDF

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
110

−20

10
−15

10
−10

10
−5

10
0

Time

E
rr

or

 

 

PRK(6,3,3)
PRK(8,4,4)

BDF(10−7)

BDF(10−9)

BDF<MoRe>(10−3)

BDF<MoRe>(10−5)

Figure B.13: Plots of the errors using various integrators for test case 4.
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Figure B.14: Plots of the errors using PRK integrators for test case 4.
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Figure B.15: Plots of the errors using BDF integrators for test case 4.
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Figure B.16: Plots of the errors using BDF<MoRe> integrators for test case 4.
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Figure B.17: Plots of the errors using PRK integrators for test case 5.
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Figure B.18: Plots of the errors using BDF integrators for test case 5.
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Figure B.19: Plots of the errors using BDF<MoRe> integrators for test case 5.
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Figure B.20: Plots of the errors using PRK integrators for test case 6.
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Figure B.21: Plots of the errors using BDF integrators for test case 6.
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Figure B.22: Plots of the errors using BDF<MoRe> integrators for test case 6.
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Figure B.23: Plots of the errors using various integrators for test case 7.
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Figure B.24: Plots of the errors using PRK integrators for test case 7.
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Figure B.25: Plots of the errors using BDF integrators for test case 7.
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Figure B.26: Plots of the errors using BDF<MoRe> integrators for test case 7.
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Figure B.27: Plots of the errors using various integrators for test case 8.
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Figure B.28: Plots of the errors using PRK integrators for test case 8.
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Figure B.29: Plots of the errors using BDF integrators for test case 8.
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Figure B.30: Plots of the errors using BDF<MoRe> integrators for test case 8.
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File prk integrator.hpp

Listing C.1: The file prk integrator.cpp

1 #ifndef __PRK_INTEGRATOR_HPP__

2 #define __PRK_INTEGRATOR_HPP__

3

4 #include <iostream >

5 #include <iomanip >

6 #include <vector >

7 #include <string >

8 #include <math.h>

9 #include <fstream >

10 #include <assert.h>

11 #include <flens/flens.cxx>

12

13 using namespace flens;

14

15 class PRK_Integrator {

16

17 typedef flens::DenseVector <Array <double > > Vector;

18 typedef flens::DenseVector <Array <double > >::IndexType

IndexType;

19 typedef flens::GeMatrix <FullStorage <double , ColMajor > >

GeMatrix ;

20 const Underscore <IndexType > _;

21

22 public:

23 PRK_Integrator(void (*f)(double t, Vector x, Vector kf,

Vector kr, Vector &fx),double tstart ,double tend ,

unsigned int M,double h,unsigned int k,unsigned int L

,unsigned int dim, unsigned int type , std::string

_prefix);

24 ~PRK_Integrator();

25 void getSettings();

26 bool resetIntegration();

27 bool setInitialValue(Vector y0);
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28 bool setFunction(Vector kf, Vector kr);

29 bool performIntegration();

30 bool getSolution(Vector &_t);

31 void printStatistics();

32

33 private:

34 unsigned int M,k,L,dim , sizeV , type , fevals;

35 double alpha ,tstart ,tend ,h,tol;

36 Vector y0,kf,kr;

37 GeMatrix result;

38 Vector time;

39 std::string prefix = "";

40 void (*f)(double t, Vector x, Vector kf, Vector kr,

Vector &fx);

41 double getAlpha ();

42 bool innerIntegrator(double t0,Vector y0,unsigned int q,

double &t, Vector::View y);

43 bool writeToFile();

44 double norm2(Vector x);

45 };

46

47 #endif
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File prk integrator.cpp

Listing D.1: The file prk integrator.cpp

1 #include <prk_integrator.hpp >

2

3 // constructor

4 PRK_Integrator:: PRK_Integrator(void (*_f)(double t, Vector x

, Vector kf, Vector kr, Vector &fx), double _tstart ,

double _tend , unsigned int _M, double _h, unsigned int _k

,unsigned int _L, unsigned int _dim , unsigned int _type ,

std::string _prefix) {

5 //set parameters

6 f = _f;

7 tstart = _tstart;

8 tend = _tend;

9 M = _M;

10 h = _h;

11 k = _k;

12 L = _L;

13 dim = _dim;

14 type = _type;

15 tol = 1e-16;

16 prefix = _prefix;

17 alpha = getAlpha ();

18 y0.resize(dim);

19 kf.resize(dim);

20 kr.resize(dim);

21 // calculate number of steps

22 sizeV = (unsigned int) (tend/(pow(M+k+1,L)*h) + 1);

23 fevals = 0;

24 // allocate memory for result and time

25 result.resize(dim,sizeV);

26 time.resize(sizeV);

27 };

28

29 // destructor
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30 PRK_Integrator::~ PRK_Integrator() {};

31

32 bool PRK_Integrator:: setFunction(Vector _kf , Vector _kr) {

33 kf = _kf;

34 kr = _kr;

35 return true;

36 };

37

38 bool PRK_Integrator:: setInitialValue(Vector _y0) {

39 y0 = _y0;

40 return true;

41 };

42

43 void PRK_Integrator:: getSettings() {

44 std::cout << "Settings : " << std::endl;

45 if (type == 0) {

46 std::cout << "\ttype of integration =

teleprojective forward euler (tpfe)" << std::

endl;

47 } else {

48 std::cout << "\ttype of integration = projective

runge kutta (prk)" << std::endl;

49 }

50 std::cout << "\tt in ["<<tstart <<","<<tend <<"] " <<

std::endl;

51 std::cout << "\tM = " << M << std::endl;

52 std::cout << "\tk = " << k << std::endl;

53 std::cout << "\tL = " << L << std::endl;

54 std::cout << "\th = " << h << std::endl;

55 std::cout << "\talpha = " << std:: setprecision( 20 )

<< alpha << std::endl;

56 std::cout << "\ty0 = [";

57 for (unsigned int i = 1; i < dim; ++i) {

58 std::cout << y0(i) << " ";

59 }

60 std::cout << y0(dim) << "]" << std::endl << std::

endl;

61 };

62

63 bool PRK_Integrator:: resetIntegration() {

64 result.resize(0,0);

65 y0.resize (0);
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66 return true;

67 };

68

69 bool PRK_Integrator:: performIntegration() {

70 bool isNearEquilibrium = false;

71 result(_(1,dim) ,1) = y0;

72 double told = tstart , tnew;

73

74 /* perform teleprojective forward euler integration */

75 if (type == 0) {

76 for (unsigned int i = 1; i <= sizeV -1; ++i) {

77 innerIntegrator(told ,result(_(1,dim),i),L,tnew ,

result(_(1,dim),i+1));

78 told = tnew;

79 time(i+1) = tnew;

80 }

81 /* perform projective runge kutta integration */

82 } else {

83 for (unsigned int i = 1; i <= sizeV -1; ++i) {

84 if (! isNearEquilibrium) {

85 //set initial value

86 GeMatrix step(dim ,k+2);

87 step(_(1,dim) ,1) = result(_(1,dim),i);

88 told = time(i);

89 for (unsigned int i = 1; i <= k+1; ++i) {

90 innerIntegrator(told , step(_(1,dim),i),

L-1, tnew , step(_(1,dim),i+1));

91 told = tnew;

92 }

93 /* set new time */

94 double t = told + M*pow(k+1+ M,L-1)*h;

95 time(i+1) = t;

96

97 /* set initial value for y_{s} */

98 GeMatrix step_pred(dim ,k+2);

99 Vector yk = step(_(1,dim),k+1), ykp1 = step(

_(1,dim),k+2);

100 blas::scal((int)M*( -1.0),yk); // = -M*y_{k}

101 blas::scal(M+1,ykp1); // (M+1)*y_{k+1}

102 step_pred(_(1,dim) ,1) = yk + ykp1; // y = y_

{k+1} + M*( y_{k+1} - y_{k} )

103 /* perform k+1 daming steps */
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104 told = t;

105 for (unsigned int i = 1; i <= k+1; ++i) {

106 innerIntegrator(told , step_pred(_(1,dim)

,i), L-1, tnew , step_pred(_(1,dim),i

+1));

107 told = tnew;

108 }

109

110 /* calculate a correted y_s */

111 blas::scal((1+alpha*(int)M),step(_(1,dim),k

+2)); // (1+ alpha*M)*y_{k

+1}

112 blas::scal((int)M*( -1.0)*alpha ,step(_(1,dim)

,k+1)); // -alpha*M*y_k

113 blas::scal((int)M*( -1.0)*(1-alpha),step_pred

(_(1,dim),k+1)); // -(1-alpha)*M*y_{n+

k}

114 blas::scal((int)M*(1-alpha),step_pred(_(1,

dim),k+2)); // (1-alpha)*M*y_{n

+k+1}

115 result(_(1,dim),i+1) = step(_(1,dim),k+1) +

step(_(1,dim),k+2) + step_pred(_(1,dim),k

+1) + step_pred(_(1,dim),k+2);

116

117 /* check if result is close to equilibrium

*/

118 Vector err(dim);

119 err = result(_(1,dim),i+1) - result(_(1,dim)

,i);

120 if ( norm2(err) < tol ) {

121 isNearEquilibrium = true;

122 }

123 } else {

124 //case: near equilibirum: do not calculate

new values

125 result(_(1,dim),i+1) = result(_(1,dim),i);

126 time(i+1) = time(i) + pow(k+1+M,L)*h;

127 }//end nearEquilibirum

128 }

129 }//end performing runge kutta

130 return true;

131 };
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132

133 bool PRK_Integrator:: getSolution(Vector &_t) {

134 _t = time;

135

136 // print solution vector

137 std::cout << "result_cpp = [" << std::endl;

138 for( unsigned int i = 1; i <= sizeV; ++i) {

139 for (unsigned l = 1; l <= dim; ++l) {

140 std::cout << std::setw( 30 ) << std::

setprecision( 20 ) << result(l,i) << " ";

141 }

142 std::cout << ";" << std::endl;

143 }

144 std::cout << "];" << std::endl;

145 std::cout << "t = [" << std:: setprecision( 5 ) << time

<< "];" << std::endl;

146

147 // write also to file

148 writeToFile();

149

150 return true;

151 };

152 void PRK_Integrator:: printStatistics() {

153 std::cout << std::endl << "INTEGRATION STATISTIC:" <<

std::endl;

154 std::cout << "STEPS: " << sizeV << std::endl;

155 std::cout << "F-EVAL: " << fevals << std::endl;

156 };

157

158 // calculate alpha , such that the algorithm is 2nd order

159 double PRK_Integrator:: getAlpha () {

160 int s = (int) M + k + 1;

161 // xsi_0 if forward euler is used at innermost layer

162 double xsi = 1.0;

163 for (unsigned int i = 1; i <= L; ++i) {

164 xsi = xsi/((double) s) + M*(M+1)/(( double)(s*s));

165 }

166 // casting to integer , because dealing with -M

167 return ((-(int)M*(int)k-(int)M-1)*xsi + M*(M+1+2*k))/((

double)(2*M*s));

168 };

169
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170 bool PRK_Integrator:: innerIntegrator(double t0,Vector y0,

unsigned int q, double &t, Vector::View y) {

171

172 /* innermost layer: perform forward euler step */

173 if ( q == 0 ) {

174 /* evaluate function f */

175 Vector fx(dim);

176 f(t0,y0,kf,kr,fx);

177 fevals++;

178 /* calculate new value */

179 blas::scal(h,fx); // h*fx

180 y = y0 + fx;

181 t = t0 + h;

182 /* higer layer: perform a projective forward euler step

depending on M, q, k */

183 } else {

184 /* set initial value */

185 GeMatrix step(dim ,k+2);

186 step(_(1,dim) ,1) = y0;

187 /* perform k+1 damping steps */

188 double told = t0, tnew;

189 for (unsigned int i = 1; i <= k+1; ++i) {

190 innerIntegrator(told , step(_(1,dim),i), q-1,

tnew , step(_(1,dim),i+1));

191 told = tnew;

192 }

193 /* calculate y */

194 t = told + M*pow(k+1+M,q-1)*h;

195 blas::scal((int)M*( -1.0),step(_(1,dim),k+1)); // = -

M*y_{k}

196 blas::scal(M+1,step(_(1,dim),k+2)); // (M+1)*y_{k+1}

197 y = step(_(1,dim),k+2) + step(_(1,dim),k+1); // y =

y_{k+1} + M*( y_{k+1} - y_{k} )

198 }

199

200 return true;

201 };

202

203 bool PRK_Integrator:: writeToFile() {

204 std::fstream file , file_time;

205 file.open(prefix+"result.dat", std::ios::out);

206 for( unsigned int i = 1; i <= sizeV; ++i) {
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207 for (unsigned l = 1; l <= dim; ++l) {

208 file << std::setw( 30 ) << std:: setprecision( 20

) << result(l,i) << " ";

209 }

210 file << std::endl;

211 }

212 file.close();

213 file_time.open(prefix+"time.dat", std::ios::out);

214 file_time << std::setw( 30 ) << std:: setprecision( 20 )

<< time;

215 file_time.close();

216

217 std::cout << "Wrote data to file result.dat and time.dat

." << std::endl;

218 return true;

219 };

220

221 double PRK_Integrator::norm2(Vector x) {

222 double norm = 0.0;

223 for(int i = 1; i <= x.length(); ++i) {

224 norm += x(i)*x(i);

225 }

226 norm = sqrt(norm);

227 return norm;

228 };
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