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Chapter 1

Introduction

1.1 Motivation

Ordinary differential equation systems (ODEs) are useful for modeling natural pro-
cesses for example chemical reactions, plant growth or in general a change of a
magnitude. Even though, the existence and uniqueness theory of those systems is
advanced, in many cases the analytical solution is not known. Due to that, numerical
methods for solving ordinary differential equation systems are very important. The
first method to solve initial value problems occurred in 1768 and was developed by
Leonard Euler. Euler’s main idea was to approximate the derivatives with a linear
term, the difference quotient. However, this method is not applicable to all ordinary

differential equation systems which is demonstrated by the following example:

Example 1.1.1 Consider the following problem

v1(t) = =y (t)
(v = D (t) + 793 (2)

Y2(t) = —yy2(t) + 1+ ()2 (1.1)
y1(0) =2
y2(0) =15

with v > 1. Figure [T illustrates the behavior of the numerical solution calculated
by Euler’s Method (Forward Euler) with A = 0.0476 and v = 40 and by MATLAB’s
0de23s.

We notice, that the Forward Euler becomes instable, because the solution trajectory
begins to oscillate. The ordinary differential equation system (L)) is an example for
a stiff ODE. One characteristic of those stiff problems is the existence of multiple
time-scales which means that some magnitudes change very fast and do not affect
the macroscopic behavior. Unfortunately, we can not exactly define the stiffness of
an ODE. Curtis and Hirschfeld described the stiffness of ODEs in [4] (1952) as

“Stiff equations are equations where certain implicit methods, in par-
ticular BDFH, perform better, usually tremendously better, than explicit

ones.”

1Backward Differentiation Formulas
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Figure 1.1: Plot of solutions for the problem (L)) in Example [LT.] calculated with
Forward Euler (FE) and ode23s.

In contrast to this opinion, Lee and Gear presented in [27] an efficient explicit method

which is indeed able to deal with stiff systems.

1.2 Aim of this Thesis

The aim of this work is to discuss explicit methods for solving stiff ordinary dif-
ferential equation systems, especially projective integrators based on ideas of Lee
and Gear, cf. [27]. The focus is on the investigation of the theory and an efficient
implementation in MATLAB and C++ of these methods. Furthermore, we compare
projective integrators with implicit methods, in particular with Backward Differen-
tiation Formula (BDF) integrators. Moreover, we use a model reduction technique
as provided by Lebiedz in [19] and integrate such a reduced system in order to decide
if it is worthwhile to integrate the full or the reduced system with regards to the

effort, runtime, integration steps and function evaluations.

1.3 Outline

The thesis is structured into five chapters.

A short overview of the existence and uniqueness theory of ordinary differential
equations and their singularly perturbed forms is given in Chapter 2. Moreover,
we explain the main idea of a model reduction software and introduce two models
as examples for stiff ODE systems. Especially, we take a look on one model called

Simplified Six Species Hydrogen Combustion mechanism which is a showpiece of a
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chemical multi-scale problem.

Chapter 3 deals with explicit integration methods solving stiff differential equation
systems providing the theory of projective integrators and their implementation in
MATLAB. In particular, we explain their idea and give a detailed analysis of a Pro-
jective Forward Euler and a Projective Runge-Kutta Method. Further, we give a
detailed proof of the second-order accuracy of the Projective Runge-Kutta Method
based on ideas of Lee and Gear, cf. [26].

In Chapter 4, we discuss the numerical behavior of projective integrators and com-
pare them to implicit methods, i.e. to BDF integrators. Furthermore, we deal with
a model reduction tool and explain, how to represent a reduced model as an ODE

of lower dimension.

The conclusion involves a table listing advantages and disadvantages of projective
integrators compared to BDF integrators and some decision guidance in which cases

it would be beneficial to use either a projective or a BDF integrator.
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Chapter 2
Theory of Ordinary Differential
Equation Systems and Models

In order to discuss numerical methods for solving stiff ordinary differential equation
systems, we give a short overview of the existence and uniqueness theory of those.
Furthermore, a few ideas of the singular perturbation theory are collected to gain a
better understanding of fast and slow dynamics of multi-scale problems. Besides, the
main idea of a model reduction software is discussed in this chapter, too. Afterwards,
we take a look at two different nonlinear models, one well-known model called Davis—
Skodje model and one simplified realistic chemical kinetic model, called Simplified

Six Species Hydrogen Combustion mechanism.

2.1 Ordinary Differential Equation Systems

Ordinary differential equations are useful to describe time-dependent processes, e.g.

chemical kinetics, plant growth or market behavior.

Definition 2.1.1 (Ordinary Differential Equation System) Let Q@ C R"™ be
an open subset, f: Q) — R" a vector-field and t € I with an interval I C R. Then

y(t) = f(y(t)) (2.1)

is an autonomous Ordinary Differential Equation (ODE) system. Futher-

more, if the vector-field f depends explicit on t, i.e.

y(t) = f(t.y(t)
the system is said to be a nonautonomous ODE system.

In the following, we focus on autonomous systems, because any nonautonomous
system can be written as an autonomous system with y € R"*! by defining 9,41 :=t

and ¢,+1 = 1. A solution of (2.])) is a map
y:I — R"
t o= y(t)

such that y satisfies (ZI) for all ¢ € I. Note, that the solution is a curve in R™,

called trajectory.
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Definition 2.1.2 (Initial Value Problem) Let 2 C R™ be an open subset,
f:Q — R"™ a vector-field, t,ty € I C R and yo € ). Then

gty = fy®)
y(to) = o
is said to be an Initial Value Problem (IVP).

Before establishing the existence-uniqueness theorem for nonlinear autonomous

ODE systems, we need more definitions.

Definition 2.1.3 (Lipschitz condition) Let €2 C R" be an open subset. A func-
tion f : Q) — R" is said to satisfy a Lipschitz condition, if

K >0Va,ye: ||f@)— f)ll < Kz —yll.
The function f is said to be locally Lipschitz, if
Vg € IN(x0), Ko > 0V, y € Ne(o) = [[f(z) = f(W)|] < Ko llz —yl]

where
N.(zo) :={x € R: ||z — xo|| < &}

Therefore, a function f is locally Lipschitz, if f satisfies a Lipschitz condition on
an e-neighborhood of any point in 2. The following result is useful to decide, if a

function is locally Lipschitz.
Lemma 2.1.4 Let Q C R" be an open subset and f : ) — R"™. There it holds
fec(Q) = f s locally Lipschitz on €,

where

CHQ) := {f : f is continuously differentiable on 2}.
Proof. cf. [24], p. 71. O

Now, we are able to formulate the (local) existence and uniqueness theorem for

nonlinear systems.

Theorem 2.1.5 (Existence-Uniqueness Theorem) Let @ C R™ be an open
subset, yo € Q, to € I C R and assume that f € C'(Q). Then, there exists an
a > 0 such that the IVP

has a unique solution on the interval [ty — a,ty + a].
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Proof. cf. [24], p. 74 ff. O

In our test models, cf. Section 2.4land 2.5] the right-hand side is always continuously
differentiable and based on the last theorem, a unique solution exists. Further, we
discuss numerical methods for solving stiff problems. Unfortunately, there does not
exist a unique definition of a stiff ODE, but as mentioned in the introduction, Curtis
and Hirschfeld describes the stiffness of ODEs in [4] (1952) as follows

“Stiff equations are equations where certain implicit methods, in par-
ticular BDF, perform better, usually tremendously better, than explicit

ones.”
and Hairer and Wanner mentioned in their first chapter in [9)]
“Stiff equations are problems for which explicit methods don’t work.”

In fact, explicit methods work for stiff problems, but they become inefficient through
a tiny choice of the step size such that the method stays stable. Lee and Gear derived
in [27] an efficient explicit method for solving those stiff problems. We can describe

the behavior of a stiff system as follows.

Definition 2.1.6 (Stiff system) A system of ODEs

is said to be stiff, if there exist both fast and slow dynamics, e.g. in chemical kine-

tics very fast reactions and slow reactions can occur within one dynamical system,
leading to a stiff ODE.

In many cases the macroscopic behavior of the solution trajectory is more of interest

than the microscopic one.

2.2 Singularly Perturbed Ordinary Differential

Equation Systems

Assuming the existence of a diffeomorphism transforming the ODE system into a
singularly perturbed form, the problem (21I) can be rewritten (cf. [30]) in the

two following ways, on the one hand the fast system

v = filynyse) Lye(t) € R™
ys - €f2(yfays;5) 7ys(t)€Rns
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where 0 < € < 1 is a measure of the separation of time scales and on the other

hand, with defining the slow time 7 := et, the slow system

d

Eﬂyf = fl (yfv Ys; 5) 7yf(7—) € R™
d
Y = fo(ye ys;e) L ys(T) € R™,

We consider the limit ¢ — 0 and obtain two reduced systems. An ng-dimensional
reduced fast system
g = filyrys0)
s = 0

whereby 1 is constant and in contrast to this, the differential-algebraic reduced slow

(2.2)

system with a decrease of dimension from ng + n¢ to ng is

0 = fi(yss0)
dTys 2 Yf, Us; .

Consider the reduced system (Z.3]). Then,
Wo = {(yr,ys) € VCR"™ x R™ : fi(ys,ys;0) =0} .

is called slow manifold. Assuming that all eigenvalues of the reduced system Jaco-
bian Dy, fi w.r.t. ys have negative real part, the implicit function theorem guarantees
the existence of a smooth function A(-) mapping from a compact domain K C R™
to R™, i.e.

h: K - R™

representing the slow manifold by

h(ys) = Yr.

Thereby, the reduced slow system (2.3) can be written as

o= Do), ::0).

Note that W is locally invariant.
Fenichels Geometric Singular Perturbation Theory [10) 11} 12, 13, 17] and some

additional assumptions (cf. [30], pp 18-19) leads to an existence theorem for locally
invariant manifolds W. for perturbed systems, which are close to W,. This locally
invariant manifold W. is called slow, if 0 < ¢ < 1.

2.3 Model Reduction Methods

In this section, we give a short overview of model reduction methods and focus on
a method which bases on ideas of Lebiedz, cf. [19]. A detailed discussion of those
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methods can be found in [30].

In general, model reduction methods for ODEs modeling chemical kinetics have
been developed in the last century. Many methods deal with the occurrence of a
Slow Invariant attracting Manifold (SIM) within the phase space which attracts
nearby trajectories and leads to a lower dimensionality. Based on the stiffness of
the high-dimensional dynamical system and consequently the existence of multiple
time scales, we assume that our systems have a singularly perturbed form.

Some model reduction techniques are listed in the following
e Quasi Steady—State Assumption (QSSA), cf. [3] 6] 23]
e Partial Equilibrium Assumption (PEA), cf. [1§]
e Invariant Constrained equilibrium Edge Prelmage Curve (ICE-PIC), cf. [33]
e Zero Derivative Principle (ZDP), cf. [1, 5]

Nevertheless, we focus on a different model reduction technique, a Trajectory-
Based Optimization Approach which is introduced by Lebiedz in [19]. The main
idea is to minimize occurring relaxing (chemical) forces along reaction trajectories.
Thus, an optimization problem wants to identify a SIM via minimization of an
objective function including information about the behavior of trajectories.

SIMs can be described as a solution of an initial value problem

¢ty = fle(t), c(t) eR” (2.4)
c(0) = . (2.5)

with an initial value ¢ € R". The general trajectory-based optimization approach is

formulated as .
f

min / B(c(t) dt (2.6a)

c
0

subject to
() = flelt) (2.6D)
0 = g(c(0)) (2.6¢)
¢(0) = ¢, J € ITiea (2.6d)

whereas ¢ : [0,t] — R™ denotes the state vector containing the concentration of
chemical species. Equation (2.6D]) describes the system dynamics, e.g. chemical ki-
netics determined by the reaction mechanism. This dynamics enter the optimization
problem as an equality constraint. Additional constraints, e.g. chemical mass conser-
vation relations as a consequence from the law of mass conservation, are represented
by a function g € C*°(R") in ([Z.6d). The index set Iggeq contains the indices of
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state variables, denoted as reaction progress variables, which parameterize the re-
duced model with fixed values at ¢ = 0. Due to that, the other state variables c;,
J & Igxeqa Tepresent the degrees of freedom. The solution of the optimization pro-
blem (2.0 represents a trajectory, which is in the best case close to a SIM and thus,
we gain a point near the attracting SIM while evaluating this solution at ¢ = 0.
Simultaneously, we reconstruct the full species composition from given values c?,
7 € Igixea- This process is called species reconstruction.

We use the following relaxation criterion by choosing the objective function as fol-

lows

®(c(t) = || J5 - flet) [[;
with the system Jacobian Jy.
Several other relaxation criteria and a software package called MoRe developed by
Jochen Siehr have been tested over time, cf. [20) 211, 8, [7, 25, BT, 32, B0, 28] 29].
Using the software MoRe, especially a MoRe-Wrapper written by Marcel Rehberg,
enables the building of a reduced right-hand side and thereby, we are able to deal

with a reduced system.

2.4 Davis—Skodje Model
The Davis—Skodje model

n(t) = —un@)

in(l) = —(t) + Q=D+ ()

(1+y1(t))?

with y(t) € R? is an example of a stiff ODE system where v > 1 is a measure of

the spectral gap, i.e. v is a measure for the stiffness of the system. The singularly

perturbed form is

n(t) = —un()

. 13
cia(t) = —ult) + —2 o

L+y (L+y)?

whereas ¢ := This model is widely used for testing model reduction methods,

1
>
because the SIM is analytically computable through

n
We = , ER? : yp = )
{<y1 2 277 + % }

Thus, it holds ys = y; and yf = yo. The equilibrium of the Davis—Skodje model
is the origin (0,0). Figure 2.Tal and R.TH depict the solution trajectories of various

initial values

oo {(3)-(7) ) o) ) o)
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1 1
0.5 = 0.5
% 1 2 3 4 % 1 2 3 4
(a) y=3.0 (b) v =15.0

Figure 2.1: Visualization of different solutions of the Davis—Skodje model for various

initial values.

for v = 3.0 and v = 15.0. As mentioned before, the stiffness of the system depends
on the value of 7. For a large value of ~, the SIM (magenta line) is more attractive

because of the larger time scale separation.

2.5 Simplified Six Species Hydrogen Combustion

Mechanism

The Simplified Six Species Hydrogen Combustion mechanism consists of five reactive
species (O, Ho, H, OH, H,0) and inert nitrogen (N3). The combustion mechanism
depends on the temperature and we fix the temperature at 7' = 3000K. The non-
simplified mechanism was published by Lie et al. in [16] and was simplified by Ren
et al. in [33] for testing their model reduction method ICE-PIC. Table [Z1] contains
the specific six reactions of Arrhenius type for this mechanism whereas M represents

a third body with collision efficiencies as follows
M = co + 2.5CH2 + ¢y + com + 120H20 + CNo

whereas ¢, is the concentration of species s. The element mass conservation relations

for this mechanism are

2 + 220, + 2on + 22,0 = 12.3400566662 kg - mol !
Zon + 20 + zm,0 = 4.1100136712 kg - mol ™!
22v, = 65.8102672822 kg - mol ™!

whereas zg is the specific mole of species s, and based on values presented by Al-

Khateeb in [2]. The forward reaction rates are computable via the Arrhenius law

E,
kf’i:ATbeXp(T—R)’ 221776
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for each reaction ¢ corresponding to the values in Table 2.1 and with the universal

gas constant

J

R= 8.3144727m01 K
Reaction A/ (emymols) b E, /kJmol™!
O+H, = H+ OH 5.08-10% 2.7 26.317
H, + OH = H,0O+H  216-10% 1.5 14.351
O+ H,O = 20H 2.97-10% 2.0 56.066
Ho+M = 2H+ M 4.58-101° -1.4 436.726
O+H+M = OH+M 4.71-1018 -1.0 0.000
O+0OH+M = H,O+M 3.80-10%2 -2.0 0.000

Tab. 2.1: Simplified six species hydrogen combustion mechanism

The ODE system can be derived as proposed in [28] and we obtain the following

ordinary differential equation system

pzo

PRH,

Pz

PZOH

PZHQO

pZNQ

+
0.

k?f,1 CoCH,
kf,s COCH,0
kf,5 cocuM
k?f,1 CoCH,
k?f,Q CH,COH
kf74 CH2 M
/ff,1 COCH,
kf,z CH,CoH
2kf74 CH, M
kjf75 CHC()M
kf,ﬁ cuconM
/ff,1 COCH,
k?f,Q CH,COH
2kt 3 cr,0C0
kf75 CHCOM
kf,ﬁ cuconM
k?f,Q CH,COH
ke 3 cr,0c0
kf,ﬁ cuconM

+ky 1 cucon
+kr,3 CQOH
+kr,5 COHM
+ky 1 cucon
+kr 2 cr,0CH
+kr,4 CI%IM
_kr,l CHCOH
—kr,2 CH,0CH
—2k3r74 C%{M
+k3r75 COHM
+kr,6 CHQOM
_kr,l CHCoH
+kr2 cr,0CH
—2k3r73 CQOH
_kr,fi conM
+kr,6 CHQOM
_kr,Z CH,O0CH

2
—ke3 Con
— ]i]r,(g CH50 M

involving the concentrations ¢y and the corresponding specific moles z, by converting

them as follows

Cs = PZs
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with
-1

P
T RT SE{O,HQ,H,%'I,HQO,NQ}zs
and p = 101325 Pa. Note, that the reverse rates k,;, which depend on the tem-
perature, have to be computed for every reaction i as proposed in [2§]. As long as
no diffeomorphism, which transforms the system above in a singularly perturbed
form, is known the choice of the reaction progress variable, i.e. the slow variable, is

arbitrairly. In our case, we choose zy,0.
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Chapter 3
Projective Integrators for Stiff

Ordinary Differential Equations

In this chapter, we introduce explicit methods for solving stiff ordinary differential
equation systems. The idea of projective integrators considered in this work was
published by Gear et al. in [14, 15, 27]. One aspect of developing those integrators
is their black-box use, independent of the choice of the inner integrator. For example,
the microscopic behavior can be described by a Monte Carlo simulation. However,
we are only interested in long term behavior, i.e. macroscopic behavior. Lee and

Gear motivated the integrators in [27] as follows

“If the stiff differential equations are not directly available, our formu-
lations and stability analysis are general enough to allow the combined
outer-inner projective integrators to be applied to black-box legacy codes
or perform a coarse-grained time integration of microscopic systems to

evolve macroscopic behavior, for example.”

projective step

1
{ damping steps

slow manifold

Figure 3.1: Idea of projective integrators.

The conventional Forward Euler Method and other conventional explicit methods are
inefficient for solving stiff initial value problems, because the stability depends on the
choice of the step size, i.e. the stiffer the system the smaller the step size. Therefore,
a long term behavior observation becomes very expensive, because we need a large
number of integration steps. The main difficulty is that the fast dynamics affect the

explicit method adversely. It would be beneficial if these fast dynamics were damped
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in every integration step and after this, a larger projective step can be performed.

The main idea of projective integrators, which are explicit methods exploiting the
multi-scale features of stiff systems, is straightforward. An inner integrator damps
the fast dynamics with a constant step size, which is small enough to guarantee
stability of the algorithm that means following stably the fast transients towards
the slow manifold. After a few damping steps a chord slope is determined based on
two previous calculated solution values which now describe the behavior of the slow

manifold. Using this chord slope, a large projective step can be performed.

Figure[3.Ilshows the idea of damping and projective steps relative to a slow manifold.
The blue line represents the slow attracting manifold. The red dots results from
damping the fast dynamic. The black dashed arrow illustrates a projective step

using two previous calculated values.

Based on ideas of Lee and Gear in [27], in the following a (Tele-)Projective Forward
Euler Method (PFE) and a second-order accurate Projective Runge-Kutta Method
(PRK) are presented. Both algorithms are available in MATLAB and the projective

Runge-Kutta Method is also implemented in C++.

3.1 Projective Forward Euler Method

Consider an initial value problem as defined in Section [2.1.2]

yt) = fly(t)) ,te€[to,ty]
y(to) = o

with yo € R". The Projective Forward Euler Method (PFE) extends the idea

of conventional Forward Euler.

(i) Choose a suitable inner integrator (e.g. conventional Forward Euler Method)
which is at least of first-order accuracy, a projective factor M, a number of
damping steps k and a step size hy such that the inner integrator is stable.
Note that for the conventional Forward Euler Method the best choice of the
step size is

1

max; |\

h() =
whereas \; are the eigenvalues of the system Jacobian df/0y.

(ii) Start from y,, = y(¢,). Perform k& damping steps to obtain y,1, .., Ynik-
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(iii) Perform one more damping step to obtain y,, .1 and use this value to approx-

imate the chord slope

/ _ Yntk+1l — Yntk
Uptktintk — h .
0

(iv) Perform the projective step
Ynts = Ynthir + Mho Uy gt = Ynikar + M (Ynikss — Ynik) -

whereby s = k 4+ 1 + M is the length of this PFE step. Note that the calculations
above are all vector operations which are cheap to compute. This method can
be applied efficiently to stiff systems having a clear time scale separation, i.e. the
eigenvalues of the system Jacobian df /0y are well clustered. The eigenvalues with
the most negative real parts correspond to the fast time scales and the eigenvalues
with real parts being relative close to the origin correspond to the slow ones. If
there exists a large gap between the clusters, projective integrators can be applied
to this stiff system. The length of the projective step depending on the choice of M
is strongly related to the size of this gap. If the time scales are not clearly separated,
telescopic projective, i.e. teleprojective integrators are efficient methods for carrying
out the time integration, cf. Section 3.2l Lee and Gear also introduced an on-the-fly

local error estimator for PFE in [26].

In order to discuss the errors within projective integrators only up to third-order,
we ignore terms of higher order. Hence, the error involves multiplies of h%y”, h3y"
and h®.Jy"” where J is the system Jacobian and the prime represents differentiation
w.r.t. t. Consider a bounded number of steps (independent of k) such that the exact

time at which y” and Jy” are evaluated does not matter. Let

ej(h) == y; —y(t;)

be the global error starting from a correct value yg, i.e. ¢g = 0 and

di(h) == yjs1 — y(tj+1)

be the local error starting from a correct value y; and performing one integration

step to y;j11. Define
h2 h3 B3 & V;
/" n "
Cj<h) = (_7%‘7 _gy ,—?Jy ) ,Dj = V; WORES };
1j 0;
and the translation operator 7'
1 00
T(q)=|-3¢ 1 0
0 01
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Note that
Crn(h) =T(m —n)Cp(h)

holds for all m,n € N. The following lemma presents a formula for the error coef-
ficients of the global error after one PFE step. Thus, the error can be computed

on-the-fly via recurrence formulas as presented in [26].
Lemma 3.1.1 (Global Error for a PFE Step) For one PFE step it holds
es(h) = Cs(h)Es + O(h?)

whereas

(M + 1)1 — My + M(M +1)
Ey = | 8M(M 1 1)t — r) — Moy + (M + Vs — M(M + 120 1 1)
(M + 1>9k+1 — M6,

Thus
vy = (M + 1D)pgpr — My + M(M + 1)

G5 = 3M(M + 1)ty — Yus1) — My, + (M + 1)1 — M(M + 1)(2M + 1)
93 - (M + 1)9k+1 - M@k

Proof. We prove this lemma with ideas and results from [26]. The global and local

error can be represented by
ej(h) = C;(E; +O(hY)  and  d;(h) = Cjya(h)D; + O(h*)
and the error amplifier of the conventional Forward Euler Method is (/+h.J), because

ent1(h) = Ynt1 — Y(ny1) = Yo + Af(tn, yn) — y(tn) — hy'(t,) + O(h2
= Yn = y(ta) + 1 (fty, yn) = f(ty,y(ta))) + O(h?)
Mean Valu:e theorem e, + h(fy(tn, gn)<yn . y(tn>>> + O(h2>
——

=J
= en + hJe, + O(h*) = (I + hJ)e, + O(h?).

Further, there it holds

)

enir(h) = (I+hd)en(h) +dn(h) + OhY) = (I + hJ)Co(R)Ey + Coir(R) Dy + O(hY)

= [+ hJ) Copr(MT (V) E, + Coya(h) Dy + O(hY)
= Cor(WT(W)E, + hJChyr(W)T(1)E, 4 Cpir(R)D, + O(h*)
Un, (I &n
= n+1 —31% + ¢n + hJCnJrl(h') _31/}11 + ¢n + Cn+1<h) Tn
On T
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h2 h3 h3
= wn (_Eyg-i-l) + (—3% + (bn) <_€y///) + en (_Ejy”)

h3 KA B
"—wn (_7Jy;;+1) + (—31/}11 + (bn) (—gJy"’) + Gn (—7J2y//)

o)
h? h? h?
v (<t )+ (o) e () o
2 6 2
Yn + &n
Therefore, this leads to
wn—i—l = ¢n + gn
¢n+1 = _3wn + (bn + Tn

en—f—l = 0n+,¢)n+77n

Assuming that the local error coefficient are constant, i.e. £, =&, v, =vand n, =n

forn =1,...,k, the global error coefficient can be rewritten to
wn-i—l = ng
n(n—1
Pnt1 = —3%5 +ny
n(n—1
Ont1 %f + nn.

For a projective step from {tg,t;41} to ts, there it holds

es(h) = (M + Depsa(h) + Mey(h) + di"(h) + O(*)

involving the local error for the extrapolation

M(M + 1)
dP(h) = Cuna () | M(02 - 1)
0

We prove the representation of this extrapolation error. Assuming y(¢;) = yx and
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Y(tes1) = Ykt

Ys — y<t8)

and using Taylor expansion yields

ka1 + M(Yrr1 — yr) — y(tesa + Mh)
Yrar + M (Yrr1 — yn)

M2h2 M3h3
— () + 2 ) + 2 ) + 2

M(y(tpsr — y(tesr — h))

W@m+OW0

M?h? M3h?
—Mhy' (tgg1) — 5 Y (te1) — 5 y" (trs1) + O(hY)
/ h2 " h3 " 4
M \y(ter1) — { y(tesr) — By (L) + 2V (ths1) — oY (tis1) + O(R7)
M?h? M3h3
—Mhy' (tgg1) — Y (te1) — 5 y" (trs1) + O(RY)
h? h3

o MO + 1)y () = 5 M(M? = 1)y (t41) + O(R).

Finally, we obtain

es(h) =

and this leads to

Co(h) B, + O(h*)
M(M +1)
(M + 1)Chy1(h)Epyr — MCy(Rh)Ey + Caq(R) | M(M? — 1) | + O(h*)
0
M(M +1)
(M + 1)Cy(R)T(M)Eyy1 — MOy (R)T(M + 1)E + Co(h)T(M) | M(M? —1) | +O(h*)
0
M(M +1)
Cs(h) [ T(M) | (M + 1)Epq+ | M(M?> =1) | | = MT(M + 1)Ey, | + O(h)
0
M(M +1)
T(M) [ (M +1)Ep+ | M(M? 1) | | = MT(M +1)E}
0
1 00 Vrt1 M(M +1)
—3M 1 0| | (M+1)| ¢y | + | M(M? =1)
0 01 011 0

1 0 0\ [
M| =3(M+1) 1 0| | e
0 0 1) \6,
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1 0 0 (M + 1)7wbk+1 + M(M + 1) My,
= | =3M 1 0| | (M+1D)pss +MM?—1)| — | =3(M + 1) My, + M,
0 01 (M 4 1)0k 41 Mo,

(M + 1)Ypq1 — Mipy + M(M + 1)
= | 3M(M + 1)(¥r — Y1) — Moy + (M + 1)ppy1 — M(M +1)(2M + 1)
(M -+ 1)‘9k+1 — M6,

Thus, we obtain

s = (M4 1)tps — My + M(M +1)
¢s = 3M(M +1)(Yr — Y1) — Moy + (M + 1)1 — M(M +1)(2M + 1)
95 - (M + 1)‘9k+1 - M@k

3.2 Teleprojective Forward Euler Method

As Gear and Lee presented in [27], the projective integration process can be iterated
by using the outer integrator as an inner integrator within yet another outer integra-
tor. This can be repeated as many times as desired. Figure shows an illustration
of an Teleprojective Forward Euler with £ = 3 damping steps, the projective factor
M = 6 and overall 2 layers, that generates a telescopic PFE step of 100k, at layer
2.

One PFE step at layer 2 or first inner step for the next layer with step size 100h,.

10hg 1 PFE step at layer
¢ 1 1 S 2 S e
| | | |
| | | |
| | | |
| | |
| | | |
00006 — — >booee — — >boooe — — >deoee — — >4 4 PFE step at layer 1

Figure 3.2: PFE with 2 layers, £ =3 and M = 6.

The stability and accuracy of those (tele-)projective integrators depend on a suitable
choice of the parameters k, M, hy and the maximal number of layers L for each stiff

system. Approximating the direction of the projective step by chord slopes simplifies
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Tab. 3.1: Critical values for [0,1]-stable PFE.

k|| My (PFE with L =1) | M, (Telescopic PFE with L > 1)
1 4.8284 2

2 8.4435 3

3 12.0446 6.6560

4 15.6411 8.3172

5 19.2357 12.2147

the study of stability and additionally, the properties of the outer integrator can be
analyzed independently of the choice of the inner integrator, cf. [I5]. We assume for
simplicity that at each layer ¢, i.e. ¢ denotes the current layer, the parameters k and
M are constant and that all eigenvalues are close to the real axis. This allows us to
consider stability only along the real axis and infer instability in its neighborhood

by continuity. The choice of hy has to satisfy
p(ho)| < 1

for all eigenvalues A of the system Jacobian 0f /0y and p(hg)) is the error amplifier
of the innermost integrator. The linear stability polynomial for one PFE step using

only one layer (L = 1) is given by Equation (6) in [27], i.e.
ai(p) = p" + M(p* = p*) = (M +1)p — M)p".
For PFE with L > 1 layers, the stability polynomial is

gj41(p) = (M +1)o;(p) — M)o(p)

for j =1,...,L — 1, cf. Equation (7) in in [27]. The stability region for given pa-
rameters k and M can be obtained by plotting |o(p)| = 1. If this region includes all
p € [0, 1], the integrator is said to be [0, 1]-stable. Note that the stability analysis
in [27] is sufficient for parabolic problems and for real values of p. The major ad-
vantage of [0,1]-stable integrators is that no clear time scale separation is required.
Lee and Gear provided values of M depending on the number of damping steps to
obtain a [0,1]-stable integrator, cf. Table Bl and [27]. For 0 < M < M, the PFE
with L = 1 layer is [0,1]-stable and for 0 < M < M, the PFE with L > 1 layers
is [0,1]-stable being completely independent of the number of layers. A detailed
analysis of the [0,1]-stability of the Teleprojective Forward Euler Method is given
n [I5]. The implementation of a Teleprojective Forward Euler Method in MATLAB
is listed in Listing B.1] using a function innerInt() which is listed in Listing

representing the inner integrator.
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Listing 3.1: pfe.m

function [T,Y] = pfe(f,tstart,tend,y0,M,h0,nk,L)

%set problem parameters

nofelem = ceil(tend/((M+nk+1) "L*h0)) +1;
dim = max(size(y0,1),size(y0,2));
nearEquilibrium = false;

tol = 10e-17;

hallocate memory and set initial values
Y = zeros(nofelem,dim) ;
if (size(y0,1) ~= 1)

Y(1,:) yO’;

else
Y(1,:)

yO;
end
T = zeros(1l,nofelem);

T(1) = tstart;

hallocate step

step = zeros(nk+2,dim);

for j=l:nofelem-1
%check if current point is near equilibrium
if ("nearEquilibrium)
step(1,:) = Y(j,:);
t = T(j);

%perform nk+1l damping steps
for i = 1:nk+1

[t,step(i+1,:)] = innerInt(f,t,step(i,:),M,h0,nk,L-1);
end
%perform projective step using chord slope

a
T(j+1) = t + M*x(M+nk+1) " (L-1)*hO0;

Y(j+1,:) = (1+M)*step(end,:) - M*step(end-1,:);

if( norm(abs(Y(j+1,:)-Y(j,:))) < tol )
nearEquilibrium = true;

end

else

Y(j+1,:) = Y(,:);
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T(j+1) = T(j) + (nk+1+M) "LxhO;
end

end

Line 1: Calling the function pfe() with the following parame-

ters:

f - function handle, i.e. the right-hand side of the
ODE system.

tstart,tend - time interval [tstart,tstart] in

which the integration will be performed.
yO - initial value.

M - projective factor.

hO - innermost step size hyg.

nk - number of damping steps k.

L - number of layers L.

Line 3-20: Set initial value and allocate memory for speed up.
Line 24,36-38: If the current point is close to the equilibrium, we do
not continue calculating new values.

Line 29-31: Performing k+1 damping steps using an inner integrator
innerInt().

Line 35: Performing one projective step

Yn+s = Yntkt1 + M (Yntkt1 — Yntk)

whereas s =k + 1+ M.

Listing 3.2: innerInt.m

function [t,y] = innerInt(f,t0,y0,M,h0,nk,q)

if (q == 0)
%innermost layer: performing conventional forward euler
y = yO + hOxf(t0,y0)’;
t = t0 + hO;
elseif (q > 0)
y = y0; t = t0;
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end

%perform nk damping steps
y-nk = y;
for i = 1:nk
[t, y_nk] = innerInt(f,t,y_nk,M,h0,nk,q-1);
end
%hcalculate y(t_{nk+1})
[t, y_nkpl] = innerInt(f,t,y_nk,M,h0,nk,q-1);

%perform a projective step using chord slope
t =t + Mx(nk+1+M)~(q-1)*hO0;
y = y_nkpl + Mx(y_nkpl - y_nk);

Line 1: Calling the function innerInt() with the following pa-

rameters:
f,y0,M,h0,nk - same as in pfe().
t0 - start time.

q - current layer.

Line 11-16: Performing k + 1 damping steps.
Line 19-20: Performing a projective step. Hence, the overall step

size of one step at current layer ¢ is

(k+ 1+ M)Th.

Similar to the error analysis for the PFE with L = 1, we give an analogical result

for L > 1. Before, we take a look at the local error at layer ¢ + 1. There it holds

Cf(sh) = CI(h)R(s)

whereas the superscript ¢ resp. ¢+ 1 corresponds to the current layer and the scaling

operator R defined as

20 0
R(s):=10 s 0
0 0 s
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Lemma 3.2.1 (Global Error for a PFE Step on Layer L > 1) Assume that
at each layer the local error coefficients are constant, i.e. {1 = &9, v = ~7 and
nd =n? forallq=20,1,....,L and n = 1,..., k. Then the following formulas for
computing the error coefficients at each layer ¢ =0,1,..., L hold

and

Yho = YL+
(7114_1 == —31/1%+¢%+’Yq
Oner = On+ui 40

vio= (M + 1), — Mg+ MM +1)
91 = BM(M +1)(dy — dyyy) — Mg+ (M + 1)y — M(M +1)(2M +1)
01 = (M+1)6%,, — M.

(3.1)

With these values, the local error coefficients on the next layer can be computed via
§q+1 — ﬁ q+1 _ ﬂ g+l _ @
82 Y ’7 83 Y 83 °

Proof. The identities in ([B.I]) can be derived immediately from Lemma BTl More-

over, it holds

gt = 0 0\ fvi
Y =R )EI=10 & 0|9t
nitl 0 0 & 01

O

Note that if the innermost integrator is Forward Euler, then it holds ) = 1, 9 = —2
and 79 = 0.

3.3 Projective Runge—Kutta Method

The previously presented algorithms are only of first-order accuracy. Analogical to
the conventional trapezoidal method for ODEs, Lee and Gear derived a second-order
accurate projective integrator in [27]. The main idea is to perform a predictor-
corrector pattern. One step at the outermost layer L with step size H of the Projec-
tive Runge—Kutta Method (PRK) using PFE as an inner integrator can be performed

as follows

(i) Start from y,, = y(t,). Perform k + 1 damping steps using an inner integrator

with step size h = H/s to obtain vy, and ¥, 4xi1.
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(ii) Perform one projective step to gain a predicted value
Ynss = Ynthit + M Ynihi1 = Ynir)-

(iii) Start from gy, and perform ky+1 damping steps to gainy, ., and y5, . 1.

(iv) Perform a corrector step via
Ynts = Yntht1 T M (a(yn—i—k—i—l — Yntk) + (1 = a)(yr];-kl—i—l - yrl;—kl) )

with s = M + k 4+ 1, a weighted average of chord slopes using a real scalar a and
k and k; being the number of damping steps starting from y,, resp. y2 ;. M is the
projective multiplier, cf. the previous sections. Note that we always choose k; = k

in our implementation.

Figure illustrates one PRK step. The red dashed arrow shows a projective step.
Additionally, after this projective step more damping steps are performed to gain
information about the future behavior of the solution trajectory. Hence, a PRK step
(green line) can be performed with these values (green dots). The blue dots depict
the start points and the red dots the solutions points after a damping step (black

dashed arrow).

One step of Projective Runge-Kutta.

——————
- -

-——-—

-

——— >0— — — >0— — — > = —— 0= — — >O— — — >

Figure 3.3: PRK as an outer integrator for PFE with £ = 2 damping steps.

Such predictor-corrector patterns are useful to estimate an error because we can
make a difference between the predicted and corrected value. The stability polyno-

mial is given by

k1+1 _

apric(p) = P+ M (a(p" +p") + (1= ) (p P )oers(p))

as provided in [27], Equation (12). Note that oppg(p) is the stability polynomial
of the PFE Method. Lee and Gear provide values of M depending on the number

PRK layer

PFE layer
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of damping steps to obtain a [0,1]-stable PRK integrator with Forward Euler as an
inner integrator, cf. Table 3.2l This means at ¢ = 1 we perform PRK and at ¢ =0
we perform the conventional Forward Euler. Thus, if we choose M < M,, we obtain
a [0,1]-stable PRK Method.

We give a detailed proof based on ideas of Lee and Gear as presented in [20] of the
following result that guarantees the second-order accuracy depending on the choice

of a.

Tab. 3.2: Critical values for [0,1]-stable PRK with L = 1.

k 1 2 3 4 )
My | 7.7958 14.1501 20.4726 26.7848 33.0924

Lemma 3.3.1 (General Choice of «) Consider a PRK integrator at the layer q
with step size H and let h = H/s be the step size of the damping steps performed by
a PFE at layer ¢ — 1 and choose

U = M - ) + MM 1 2k)
M = = T 2AM A+ 1+ )

Then, the outer PRK integrator is of second-order accuracy.

Proof. By recalling the definitions of E?, D? and C; in Section Bl we get
D%L(H) = C,(h)ET.

Furthermore, after k; damping steps with step size h at layer ¢ — 1, we obtain for

the local error starting from a correct value y?
-1 ~1
chy (h) = Cspu (M EL " + O(hY).
Thus, the error starting from a correct value vy, is

Yot — Y(tsrn) = (I + hkiJ)DL(H) + €l (h) + O(h*)
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because

Ys+ky — y(ts-i-kl) = 62;1191(h) + O(h4)

= (I +hJ)et™Y( +st+,ﬁ J(h) +O(h*)

=ef ()

k1
= (Z (’2) hklklka) e (h) + ¢ (h) + O(hY)
k=0

= (I +khJ)DL(H) + €l (h) + O(hY).

Note that the last equality holds, because terms of order 4 or higher are ignored.
Analogically, we get by substituting & with ky + 1

Ysphit1 — Y(tsrme1) = (I +h(k +1)J)DL(H) + eifil(h) + O(hY).
Now, we take a look at the formula of PRK and note that

Yt = yltkn) + M (aly(tis) — y(t)
H(1 = @) ltars ) — () ) — (R 0) + OO, (32)

whereas the PRK discretization error dX % (h, a) is given by

di™(h, ) = Cs(h) | 3Ma(ky — M)(M + ky + 1) + M(M? — 3ky(ky +1) — 1)
0

We verify this representation by using the Taylor expansions of the following terms

ts + (k1 + 1)h)

) (

y(te) = ylts - (M+1)h)
) (
) (s + k1h).
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Equation (3.2)) and the Taylor expansions of these terms lead to

A" (hya) = yltew) —y(te) + M (a(y(tkﬂ) —y(te) + (L= ) (y(tosrir1) — Y(tsrr)) )
M0 e - M)~ e

M2 2 M3 3
radt (e = Mhy/() + 25 (0) - 0w

= y(ts) — Mhy'(ts) +

—adi (yle) - (0 + iy 0 + L ey - BT )

(kl + 1) h y"(ts) + (kl + 1) h y///(ts>)

1—a)M
+(1— ) 5 G

y(ts) + (ky + Dhy'(ts) +

—(1—a)M (y(ts) + kihy'(ts) + kzhzy”(ts) + k%hgy”’(ts)) + O(hY)

— hy'(t,) (—M —aM?® +aM? +aM + kM

Y M — ok M — aM — ki M + ak1M>

—?y”(ts) (—on?’ — M? 4+ aM?® + 2aM? + aM

— (1= a)(M(K} + 2k, +1) - MK}))
—= /(%) (—aM4 + M — aM(M? + 3M> + 3M + 1)
— (1= a)(M(K} + 3K} + 3k, +1) = ME}) ) + O(k")
- ) (—M(M 42k + 1)+ 2aM(M + Ky + 1) )
y"(t,) <3aM(—M2 S MR 4 k) + M(M? — 3k — 3k — 1) ) + oY

2Ma(M 4+ ki +1) = M(M + 2k, + 1)
= Cs(h) | 3Ma(ky — M)(M + ky + 1) + M(M? — 3k (ks + 1) = 1) | + O(R?).
0

Note, that terms of higher order than 3 are ignored. Besides, it holds

A R) = g, - ylty)
= () + M (alef(h) — et (R)

(1= )€k () — €131, (1)) + A"k, 0) + OGY). (3.3)

Thus, we only have to find representations for ef ;(h), ef '(h), egjr,lﬂ +1(h) and



Section 3.3: Projective Runge—Kutta Method 31

gjrk +1(h) to get a formula for the error of one PRK step. There it holds

eii(h) = Crp(WEL + O(h') = Co(h)T(M)EL) + O(h*)
Ui
- Cs(h) ¢k+1 3M7vbk+1 +C)(hél)a
0
el (h) = Cp(W)ET'+O(hY) = Cy(h)T(M +1)E" + O(hY)
q—1
k
= Cy(h) [ ¢ =3(M + )P " | + O(R?)
!

together with

631,11 (h) = Ystry — Y(losr,)
= (I + hkJ)D%(H) + el (h) + O(h*)
= (I + hkyJ)Cs(R)ET™ + Coppy (W ELT + O(R*)
= Cy(h)BI™ + by JC,(h)ES™" + Cy(W)T(—k1)E{ + O(h*)

0
= CyWET +Cy(h) | 0 | +Cy(h)T(—k)E] " + O(h*)
k1s
it 100\ [uf!
= Cy(h) Pa! + 3k 1 o el | +ORY
091 + kypd~! 0 0 1) \¢g+

O
= Cy(h) [ ¢t + 07 + 3kt | + O(hY)
0271 +02:1 + klwgfl

and with an analogical result

R
g—l—llﬂ—i—l(h) = CS<h) (bq ! + ¢k1+1 + 3(k1 + 1)% +1 + O(h4)'
N S (I W

Again, note that terms of higher order than 3 are ignored. Now, we are able to
determine the local error coefficients of one PRK step with step size H at layer ¢ by
using equation (3.3]) through

gPRK

Ci(H) | APRE | = et 1(n).

PRK
U
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This leads to

fPRK = ¢k+1 + OZM<¢/§+1 gil) +(1—a)M (¢k1+1 wal)
+2aM (M +ky+1) — M(M + 2k1 +1)

AR = ¢k+1 3M¢k+1 +0‘M(¢k+1 - 3M¢k+1 +3(M + 1)y )
_'_(]‘ - O[) <¢k1+1 (bk‘l + 3<k1 + )wkl-i-l - 3]{;11/}]91 )
+3aM(ky — M)(M + ki + 1) + M(M? — 3ki (ks + 1) — 1)

T = G+ aM O — 0 + (1 —a) MO — 05+l

To gain a second-order accurate integrator, we have to choose an « such that the

SPRK

second error coefficient vanishes. Rewrite the PRK discretization error to

dPRE (1 o) = Oy (h) DPRE <O‘iw> +O(hY)

with
2M + 1+ ky) —M(M +1+ 2k)
DPRK _ 3(ky — M)(M + 1+ k) M(M2_3]€1<]€1+1)_1>
0 0

Similar to that, rewrite the remaining error part as follows
efn(h) + M (alef 1 (h) = el (h) + (1 = a) (el 41 (h) — el (R)))

— (O,(h)EPRK <O‘i” ) Lo

with
1/’k+1 wk1+1 d’kl ) d’k+1 + M(¢k1+1 Q/qul)
1 1 ~1
EPRK _ ¢k+1 O o 3M¢k+1 + 3(M + 1) » O — 3M¢k+1 (‘%H ¢i1
elqwi - eq - 0q1+1 + eq - wij ng& + M(HZ il 9131_1 + @Z)gil)

This allows us to write the error compactly as
M
e (h) = Cy(h)(EPRX + DPRE) (O‘l ) + 0.

In order to get second-order accuracy, we take a look at the following linear equation

system

aM\ H? H? H?
Cs<h)<EPRK + DPRK) ( ) ) - _prKTy;/ o ”YPRKFZJW . 77PRK7JZJ”

and choose o such that ¢PRK vanishes. By defining
air a2
oy g | := EPRK 4 DPRE

asy  asg



Section 3.3: Projective Runge—Kutta Method

33

it holds

—ai2

!
OéMan—l-algiO = o = .
MCL11

Finally, we obtain

¢k+1 (@Z)klﬂ @Z)ql_l) + M(M + 1+ 2k,)

(wk-i-l wk1+1 1/’13;1 +2(M + 1+ kp))
and the third order coefficients
1 [ —a 1 [ —a
FPRE = 3 < 2y + a22) ) o = =3 < Zaz + CL32) :
S a1 S a1

O

Lemma 3.3.2 (Special Choice of «) Consider a PRK integrator at the layer q
and let ky =k, £ = 71 07l = n07b gnd ni=t = 0! forn=1,... k. Then it

holds
—(M +k+ 1)+ M(M + 1+ 2k)

M (M + 1+ k)

Proof. The requirements lead to

qg—1 _ ,q—1
i =9 i = i

and
wkdrl (k+1)e
Then, it holds

MEETY — (M + 1) (k+ 1)+ M(M + 1+ 2k)
2M (M + 1+ k)
—(M +k+ 1)+ M(M + 1+ 2k)
2M (M + 1+ k) '

0

The implementation of a Projective Runge-Kutta Method in MATLAB is listed in
Listing [3.3] using a function innerInt() which is already listed in Listing rep-
resenting the inner PFE integrator and a function getAlpha() which is listed in
Listing [3.4] calculating the real scalar o as proposed in Lemma Additionally,
we implemented a PRK integrator in C++, cf. appendix: Section [Cl and

Listing 3.3: prk.m

function [T,Y] = prk(f,tstart,tend,y0,M,h0,nk,L)

hset problem parameters
alpha = getAlpha(M,nk,L);
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44

nofelem = ceil(tend/((M+nk+1) "L*h0)) +1;
dim = max(size(y0,1),size(y0,2));
nearEquilibrium = false;

tol = 10e-17;

%hallocate memory and set initial values

Y = zeros(nofelem,dim) ;

if (size(y0,1) ~= 1)
Y(1,:) = y0’;

else

Y(1,:) = yO;

T = zeros(1,nofelem);
T(1) = tstart;

%hallocate step
step = zeros(nk+2,dim);

step_pred = zeros(nk+2,dim);

for j=l:nofelem-1

if ("nearEquilibrium)

%-—- predictor step --%
t = T(j);
step(1,:) = Y(j,:);

%perform nk+1 damping steps
for 1 = 1:nk+1
[t,step(i+1,:)] = innerInt(f,t,step(i,:),M,h0,nk,L
-1);

end

%perform a projective step using chord slope

t = t + Mx(M+nk+1) " (L-1)*h0;

T(j+1) = t;

step_pred(1,:) = (1+M)*step(end,:) - M*step(end-1,:);

%perform nk+1 damping steps starting from y_s
for i = 1:nk+1
[t,step_pred(i+1,:)] = innerInt(f,t,step_pred(i,:), M
,hO,nk,L-1);

end
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else

%—-—- corrector step --%
Y(j+1,:) = (1+M*alpha) *step(end,:)- M*alpha*step(end
-1,:) +...

Y(j+1,:) = Y(j,:);
T(j+1) = T(j) + (nk+1+M) "Lx*hO;

(1-alpha)*M*step_pred(end,:) -
(1-alpha) * Mx*step_pred(end-1,:);
if ( norm(abs(Y(j+1,:)-Y(j,:))) < tol )
nearEquilibrium = true;

end

end
end
Line 1: Calling the function prk() with the same parameters as
in function pfe(), cf. Section Bl
Line 4: Calculate a to guarantee a second-order accuracy as

proved in Lemma [3.3.2)

Line 25,53-56: If the current point is close to the equilibrium, we do

not continue calculating new values.

Line 31-34: Performing k+1 damping steps using an inner integrator

innerInt () to obtain y, k1 and Yy, k.

Line 37-39: Performing one projective step to obtain a predicted

value

yrl;s = Yntktrl + M(Yntkt1 = Yntk)

whereas s =k + 1+ M.

Line 42-44: Performing another k 4+ 1 damping steps starting from

P : P P
Ynts L0 gAIN Yy oypq and Yoy

Line 37-39: Performing a corrector step with a weighted average of

chord slopes

Ynts = Ynths1+M (a(yn—i—k—i—l — Ynsk) + (1 — a)(?/r];klﬂ - yfﬂq)) .

Listing 3.4: getAlpha.m

function

alpha = getAlpha(M,k,L)

s =M+ k + 1;

xsi = 1;

%xsi_0 if forward euler is used at innermost layer
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for 1 =
xsi

end

alpha =

1:L
= xsi/s + Mx(M+1)/s"2;

((-M-k-1)*xsi + M*(M+1+2xk))/(2*Mx*xs) ;




Chapter 4
Numerical Results and
Comparison to Other Methods

In this chapter, we give an overview of several tests and analyze the numerical be-
havior of the algorithms which are presented in Chapter[3l Furthermore, we compare
the projective integrators with a BDF integrator implemented by Dominik Skanda,
cf. [29], and in addition, we compare these methods with a BDF integrator for the
corresponding reduced model applying a model reduction technique as discussed
in Section 2.3 by using the software MoRe by Jochen Siehr, cf. [2§]. All tests are
performed on an Apple MacBook Pro with the following specifications:

Kernel: Intel Core 2 Duo, 2.26 GHz
RAM: 4GB DDR3 RAM, 1067 MHz
OS: Mac OS X 10.6.8, Build 10K549
MATLAB: Version 7.9.0 (R2009b)
g++:  Version 4.7.1.

4.1 Projective Forward Euler vs. Projective

Runge—Kutta

In this section, we compare the PFE Method with the PRK Method. In order to
look at the error between a true or correct solution and the solution calculated by

PFE or PRK, i.e.

)

Hycor(tk> _ y,ljFEH and Hyc"r(tk) - CUISRK

we assume that the result of MATLAB’s ode23s using the smallest possible tolerance

is the correct solution to have a reference. We consider the Davis—Skodje model, cf.
Section 2.4] i.e.
n@) = —un()

ga(t) = —ypa(t) + (v = D) + i)

(1+w:(t))?

with v € {3.0,15.0}, t € [0, 10] and the following test setups involving various initial

values and parameters M and k for the integrators:
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Tab. 4.1: Test cases comparing PFE with PRK.

Test case 1 | M =6, k=3 and yo = (4, 4)
Test case 2| M =8, k=3 and yo = (4, 4)T
Test case 3| M =8, k=4 and y, = (4, 4)
Test case 4 | M =12, k=4 and yo = (4, 4)7

Test case 5| M =6, k =3 and yo = (3, 0.2)7
Test case 6 | M =8, k=3 and yo = (3, 0.2)7
Test case 7| M =8, k=4 and yo = (3, 0.2)7
Test case 8 | M =12, k =4 and yo = (3, 0.2)7.

Besides, we choose L = 2 and hg = 0.001 for every test case. Figure fIal and 410
depict the solution trajectories in test case 1 for v = 3 resp. v = 15. Note that the

SIM is represented by the magenta line. The corresponding error plots are depicted

in Figure [4.2al and [4.2bl In the same way, the plots of the remaining test cases
are listed in the appendix, cf. Section [Al It is obvious, that the error of the PRK
Method is always smaller than the error of the PFE, cf. for example Figure [4.2a]
and [£.20 Furthermore, in general choosing more damping steps does not lead to a
higher accuracy, cf. Figure [£4] but it allows us to choose a larger projective step
which ends up in a better performance, because we need fewer integration steps.
Both algorithms react very sensitive on the choice of the parameters M, L, k and
hg. For example Figure [£.3]shows, that for M = 12 and k& = 4 the PFE begins to os-
cillate and enters negative values, which are prohibited if we consider concentrations
of chemical species, while the PRK Method still fits the solution trajectories almost
perfect. This demonstrates, that in this case the PFE is not [0,1]-stable anymore,
cf. Table Bl listing critical values for [0,1]-stable PFE integrators.

4r 4r
—ode23s —ode23s
~PFE ~PFE
3| —PRK 3l|—PRK
N2 N2
1 1r
0 1 2 3 4 0 1 2 3 4
Y1 Y1

Figure 4.1: Plots of the solutions in test case 1.

Table provides the runtime for each test case. It is remarkable and expectable
that the runtime of PRK, due to the predictor-corrector schema, is slightly higher

than the runtime of PFE. The runtime of ode23s is very large, because we calculate
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Error
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—€MpRK

Time t

(b) v =15.0

Figure 4.2: Error plots of test case 1.

the solution with the smallest possible tolerance by using the same time discretiza-

tion as PRK or PFE. According to all mentioned facts, it is worthwhile to perform

an integration via PRK, because we gain a better accuracy, although we have more

function evaluation and thus, a little higher runtime.

Figure 4.3: Plots of the solutions for v = 15.0 in test case 4.

Tab. 4.2: Runtime for every test case using the MATLAB routines pfe (), prk() and

0de23s().

Test case

pfe ()

prk()

0de23s()

1

15.0

0.1447s

0.2600s

51.4742s
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3.0 || 0.1435s 0.2597s  29.6462s
2 15.0 || 0.1094s 0.1870s  51.7240s
3.0 || 0.1086s 0.1866s  29.7160s
3 15.0 || 0.1349s 0.2774s  51.3672s
3.0 || 0.1369s 0.2388s  29.7111s
4 15.0 || 0.0890s 0.1453s  51.5495s
3.0 || 0.0883s 0.1466s  29.3708s
5 15.0 || 0.1451s 0.2603s  43.7229s
3.0 || 0.1443s 0.2625s  26.5912s
6 15.0 || 0.1081s 0.1864s  43.2031s
3.0 || 0.1089s 0.1859s  26.6114s
7 15.0 || 0.1348s 0.2379s  42.8709s
3.0 || 0.1348s 0.2388s  26.3386s
8 15.0 || 0.0876s 0.1504s  43.4573s
3.0 || 0.0855s 0.1449s  26.3494s

Error

10° 10
Time

Figure 4.4: Test case 2 vs. 3, v = 15: More damping steps do not yield to a higher

accuracy.
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4.2 Projective Runge—Kutta vs. Backward Differ-

entiation Formulas

In this section, we consider the Simplified Six Species Hydrogen Combustion mecha-
nism, cf. Section 2.5 and compare the PRK Method with BDF Methods integrating
on the one hand the full system and on the other hand the corresponding reduced
system. We provide a C++ implementation of a projective Runge-Kutta integrator
to compare this method with a BDF' integrator implemented by Dominik Skanda
in C++. Additionally, we compare those methods with an integration using a model
reduction technique based on ideas of Lebiedz [19] while making use of the software
MoRe by Jochen Siehr. In order to use Skandas BDF integrator, we are forced to
build a right-hand side using the open source automatic differential package CppAD.
Listing [4.1] shows the building of such a right-hand side.

Listing 4.1: Building a right-hand side using CppAD

[/ =-======= build RHS for BDF integrator ---------- //
vector< CppAD::AD<double> > z (nspec);
CppAD::Independent(z);

vector< CppAD::AD<double> > c(nspec);
vector< CppAD::AD<double> > zdot(nspec);

//convert z_s to c_s
CppAD::AD<double> sum = 0.0;
for(int i = 0; i < nspec; ++i) {

sum += z[i];

}
CppAD::AD<double> rho = 101325.0/(8.314472%3000*sum) ;
for(int i = 0; i < nspec; ++i) {
c[i] = rhoxz[i];
}

// ODE system

CppAD::AD<double> M = (1.0*c[0]+2.5xc[1]+1.0%*
c[2]+1.0%c[3]+12.0*xc[4]+1.0xc[5]);
kf [0]*c[0]*c[1]- kr[0]*c[2]*c[3];
kf [1]*c[1]1*c[3]- kr[1]l*xc[2]*c[4];
kf [2]*c[0]*c[4]- kr[2]*c[3]*c[3];

CppAD::AD<double> g1
CppAD::AD<double> g2
CppAD::AD<double> q3

CppAD::AD<double> g4 = (kf[3]*c[1] - kr[3]*xc[2]1*c[2])*M;
CppAD::AD<double> g5 = (kf[4]*c[0]*c[2]- kr[4]*c[3] ) *xM;
CppAD::AD<double> g6 = (kf[6]*c[2]*c[3]- kr [5]x*c[4] ) *xM;
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CppAD::AD<double> fac = 1.0/rho;

zdot[ 0] = (-q1 -q3 -g5 )*xfac;
zdot[ 1] = (-q1 -q2 - q4 )xfac;
zdot[ 2] = ( ql1 +qg2 +2*xq4 -9qb5 -qg6 )*fac;
zdot[ 3] = ( g1 -gq2 +2%qg3 +95 -q6 )*fac;
zdot[ 4] = ( q2 - q3 +q6 )*fac;

zdot[ 5] = 0;

CppAD:: ADFun<double> RHS(z, zdot);

In the next step, we build a right-hand side which uses a model reduction method.
The software MoRe provides a suitable MoRe-Wrapper, developed by Marcel Rehberg,

such that we only call the following function
cppadMore (0,xTemp, yTemp)

which represents the map h in Section Thus, there it holds yTemp = h(xTemp).
This leads to a reduced right-hand side as listed in Listing

Listing 4.2: Building a reduced right-hand side using CppAD

[k—mmmmm = build RHS for BDF integrator
using model reduction  ---------- x/
vector< CppAD::AD<double> > z_more (1) ;

z_more [0] = y0(5);
CppAD::Independent(z_more) ;

vector< CppAD::AD<double> > xTemp (1) ;
vector< CppAD::AD<double> > yTemp (5);

xTemp [0]=z_more [0];
cppadMore(0,xTemp ,yTemp) ;

//calculate constants
CppAD::AD<double> sum_more = z_more [0];
for(int i = 0; 1 < 5; ++i) {

sum_more += yTempl[i];

//convert z_s to c_s
CppAD::AD<double> rho_m = 101325.0/(8.314472%3000*sum_more) ;
vector <CppAD::AD<double> > c_m(nspec);

c_m[0]
c_m[2] = rho_mx*xyTemp[2]; c_m([3]

rho_m*yTemp [0]; c_m[1] rho_m*yTemp [1];

rho_m*yTemp [3];
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c_m[4] = rho_m*xTemp[0]; c_m[5] = rho_m*yTemp [4];

// ODE system
vector <CppAD::AD<double> > zdot_more(l);

CppAD::AD<double> gq2_m = kf[1]*c_m[1]*c_m[3]

c_m[4];
CppAD::AD<double> g3_m = kf[2]*c_m[0]*c_m[4]
c_m[3];
CppAD::AD<double> g6_m = (kf[5]*c_m[2]*c_m[3]
)*M_m;

CppAD::AD<double> fac_m = 1.0/rho_m;
zdot_more[ 0] = ( q2_m - g3_m + g6_m )*fac_m;

CppAD:: ADFun<double> RHS_MORE (z_more, zdot_more);

CppAD::AD<double> M_m = (1.0*c_m[0]+2.5%xc_m[1]+1.0*xc_m[2]
+1.0*xc_m[3]+12.0*%c_m[4]+1.0*%xc_m[5]);
- kr[1]*xc_m[2]*

- kr[2]*c_m[3]%*

- kr[5]*c_m[4]

We consider the following test cases

Tab. 4.3: Test cases comparing PRK with BDF.

Test case Initial Value
1 yo = (0.34563, 2.02816, 1.51936, 0.76437, 3.00000, 32.90513)T
2 Yo = (0.75000, 0.99002, 4.00000, 0.36001, 3.00000, 32.90513)%
3 yo = (1.03189, 2.02541, 3.21111, 1.07811, 2.00000, 32.90513)7
4 yo = (1.50000, 2.86502, 2.00000, 0.61001, 2.00000, 32.90513)7
5 Yo = (2.03867, 1.79891, 5.67089, 1.07133, 1.00000, 32.90513)T
6 Yo = (3.00000, 3.11502, 4.00000, 0.11001, 1.00000, 32.90513)T
7 Yo = (3.19024, 1.12902, 8.91224, 0.66976, 0.25000, 32.90513)7
8 Yo = (3.50000, 3.49002, 4.50000, 0.36001, 0.25000, 32.90513)7

involving initial values in the near-field (case 1,3,5,7) and far-field (case 2,4,6,8)

relative to the equilibrium and to the one dimensional SIM. The initial values in

test cases 1,3,5 and 7 are calculated a priori via MoRe and all initial values satisfy

the mass conservation relation, cf. Section Table .4 lists various integrators we

deal with by comparing PRK with BDF.

Tab. 4.4: Used integrators comparing PRK with BDF.

PRK
PRK(6,3,3)
PRK(6,4,3)
PRK(6,3,4)

BDF BDF<MoRe>

BDF<MoRe>(1071)

BDF<MoRe>(103)
BDF<MoRe>(10-5)
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PRK(6,4,4) | BDF(10~7) | BDF<MoRe>(10~")
PRK(8,4,3) | BDF(10) | BDF<MoRe>(10~9)
PRK(8,4,4)
PRK(8,4,5)
PRK(8,5,5)

Note that we use the syntax PRK(M,k,L), BDF(tolerance) and
BDF<MoRe>(tolerance). Besides, we choose t € [0,2.5] and hy = 0.00000001.

Figure L5 shows the solution trajectories calculated by PRK(6,3,3) and BDF(10™7)

3 4 6
2 o3 4
1 2 2
1
O0 7 2 4 0 7 2 4 00 . 2 4
H_0 H.0 H,0
2 2 2
15 32.9051
o1 329051 ~PRK(6,3,3)
0.5 32.9051 Equilibirum
Oojm 32.90510242~4
H,0 H,0

Figure 4.5: Plots of the solutions using PRK(6,3,3) and BDF(1077) in test case 6.

using the progress variable zy,0. We notice, that the PRK trajectory fits the BDF
solution pretty well. In contrast to this, Figure depicts the solution trajectories
of of PRK(8,4,4) and BDF(10~7). Besides, we note that a suitable choice of the
parameters M, k and L is very important to map the solution trajectory slightly
perfect, while keeping in mind to choose them in a way, that does not end up in

instability.

In the following, we take a look at the errors of each method, i.e.

H2C0r<tk) _ Z};RK

‘ ‘Zcor (tk) . ZEDF‘ ‘ and ‘ ‘Zcor (tk:> _ Z]]?DF<M0R€> ‘ ‘
, .

Again, we calculate a true or correct solution via MATLAB’s ode23s using the
smallest possible tolerance. We are only interested in the specific moles of the

progress variable so that we evaluate those errors only for zp,o. Figure 4.8 and
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[4.7] depict the error evolution using the following integrators for test case 5 resp.
6: PRK(6,3,3), PRK(8,4,4), BDF(10~7), BDF(10~?), BDF<MoRe>(1073) and
BDF<MoRe>(107°). At the beginning, the errors of the projective integrators
are significant higher than those of the BDF integrators, because projective integra-
tors need at least a few steps to damp the fast dynamics. But we notice, over the
course of time, those errors become smaller than that ones occurring by performing
a BDF integration. Obviously, the error of reducing the model only to one species is
depicted clearly. It does not matter whether choosing a smaller tolerance or not, we
always obtain an error of about 10~*. Those trends of error evolution are observable
for all test cases. The entire error plots of all test cases are listed in the appendix,

cf. Section [Bl

Table lists the effort of function evaluations and runtime for test case 1, 2, 7 and
8 and each integrator. The effort for each integrator in the other test cases is listed
in Table[B.2l Although we need more function evaluations by using PRK, we often
need fewer runtime, because we are not forced to evaluate the right-hand side with
CppAD. This is a huge advantage of projective integrators. We only need an efficient
vector handling. In our case, we use the C++-Library FLENS by Michael Lehn et al.,
cf. [22]. Additionally, we notice that if we start the integration apart of the SIM,
the BDF integration of the full system needs more function evaluations than the
reduced one, cf. Figure and The number of steps and function evaluations
integrating the reduced model in test case 1 resp. 7 is equal to the number of inte-
gration steps of the reduced model in test case 2 resp. 8. This is obvious, because
we start from the same initial value z{,, = 3.0 resp. zf,o = 0.25. Choosing a
smaller tolerance for the BDF integrators naturally leads to more integration steps,
cf. Figure .11l Nevertheless, the integration of a full system starting from a point
in the far-field needs overall more steps than integrating the reduced system, cf.
Figure 411l and [£.12 Moreover, we notice that the runtime of integrating a reduced
system is always a little bit higher than integrating the full system. In fact, the
model reduction technique is not worth it considering a ODE system involving only
six species, but the number of integration steps and function evaluations is almost
always less such that if the function evaluation is very expensive, this may be a good

way in order to integrate a high-dimensional system.

Tab. 4.5: Effort of several integrators for test case 1,2,7 and 8.

Test case Integrator Time Integration Steps | F-Evals
1 PRK(6,3,3) 0.150629s | 250000 99968

PRK(6,4,3) 0.206526s | 187829 144500
PRK(6,3,4) 0.056418s | 25001 39424
PRK(6,4,4) 0.092976s | 17076 67500
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PRK(8,4,3) 0.128372s | 113792 89000
PRK(8,4,4) 0.049617s | 8754 36250
PRK(8,4,5) 0.121431s | 674 87500
PRK(8,5,5) 0.104718s | 465 77760
BDF(10~!) 0.217126s | 9 54
BDF (1073 0.220425s | 18 112
BDF(10~°) 0.220265s | 26 156
BDF(10~7) 0.222221s | 33 198
BDF(10~9) 0.222720s | 101 546
BDF<MoRe>(10"1) || 0.340569s | 9 52
BDF<MoRe>(1073) || 0.357300s | 18 96
BDF<MoRe>(1075) || 0.384890s | 27 160
BDF<MoRe>(10"7) || 0.406148s | 39 218
BDF<MoRe>(1079) || 0.503730s | 105 500
PRK(6,3,3) 0.16768s | 250000 108928
PRK(6,4,3) 0.227961s | 187829 159750
PRK(6,3,4) 0.063001s | 25001 44032
PRK(6,4,4) 0.107439s | 17076 77500
PRK(8,4,3) 0.138569s | 113792 96750
PRK(8,4,4) 0.053056s | 8754 38750
PRK(8,4,5) 0.077521s | 674 56250
PRK(8,5,5) 0.104728s | 465 77760
BDF(10~!) 0.222621s | 10 152
BDF(103) 0.222831s | 48 362
BDF(10~°) 0.225845s | 67 470
BDF(10~7) 0.223214s | 92 574
BDF(10~9) 0.229765s | 248 1350
BDF<MoRe>(10"1) || 0.344359s | 9 52
BDF<MoRe>(1073) || 0.359549s | 12 96
BDF<MoRe>(1075) || 0.387263s | 27 160
BDF<MoRe>(10"7) || 0.402807s | 39 218
BDF<MoRe>(1079) || 0.521398s | 105 500
PRK(6,3,3) 0.175368s | 250000 115712
PRK(6,4,3) 0.243891s | 187829 171000
PRK(6,3,4) 0.067883s | 25001 47616
PRK(6,4,4) 0.109522s | 17076 80000
PRK(8,4,3) 0.149097s | 113792 104250
PRK(8,4,4) 0.059949s | 8754 43750
PRK(8,4,5) 0.112015s | 674 81250
PRK(8,5,5) 0.125351s | 465 93312
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BDF(1071) 0.230762s | 14 121
BDF(1073) 0.230521s | 30 232
BDF(10~?) 0.229540s | 41 284
BDF(10~7) 0.230606s | 56 394
BDF(10~?) 0.234747s | 162 980
BDF<MoRe>(1071) || 0.388919s | 15 124
BDF<MoRe>(1073) || 0.418198s | 35 193
BDF<MoRe>(1079) || 0.450390s | 52 289
BDF<MoRe>(10"7) || 0.485036s | 69 369
BDF<MoRe>(1079) || 0.709923s | 192 955
PRK(6,3,3) 0.171794s | 250000 113280
PRK(6,4,3) 0.238962s | 187829 167000
PRK(6,3,4) 0.066588s | 25001 46592
PRK(6,4,4) 0.112892s | 17076 82500
PRK(8,4,3) 0.148919s | 113792 104000
PRK(8,4,4) 0.056964s | 8754 41250
PRK(8,4,5) 0.077379s | 674 56250
PRK(8,5,5) 0.105041s | 465 77760
BDF(1071) 0.229202s | 23 190
BDF(1073) 0.226813s | 51 338
BDF(10~?) 0.228253s | 76 476
BDF(1077) 0.228742s | 108 633
BDF(10~?) 0.237838s | 296 1654
BDF<MoRe>(10"1) || 0.390162s | 15 124
BDF<MoRe>(1073) || 0.413756s | 35 193
BDF<MoRe>(1075) || 0.453405s | 52 289
BDF<MoRe>(10"7) || 0.481376s | 69 369
BDF<MoRe>(1079) || 0.718570s | 192 955




48 Chapter 4: Numerical Results and Comparison to Other Methods

3 4 6
2 o3 4 \
0 §: T
1 2 2
o0 2 4 1O 2 4 oO 2 4
240 240 24 0
2 2 2
1.5 32.9051
- 1 . 32.9051 —-—PRK(8,4,4)
o] z -7
N 05 ™ 32,9051 (10°7)
Equilibirum
Ooﬁ 32.90510242~4
ZH20 H.0

Figure 4.6: Plots of the solutions using PRK(8,4,4) and BDF(1077) in test case 6.
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Figure 4.7: Plots of the errors using various integrators for test case 5.
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Figure 4.11: Tolerance vs. number of BDF integration steps for test case 1 and 2.
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Figure 4.12: Tolerance vs. number of BDF integration steps for test case 7 and 8.



52

Chapter 4: Numerical Results and Comparison to Other Methods




Chapter 5

Conclusion

We give a short overview of the theory of ODE systems and two models in the second
chapter as an example of multi-scale problems. Moreover, we treat the theory of
projective integrators and give a detailed proof of the second-order accuracy of the
Projective Runge—Kutta Method based on ideas of Lee and Gear in [26]. Further,
we implement these algorithms in MATLAB and C++ to compare them with existing
integrators, especially with the BDF integrator written by Skanda. Furthermore, we
compare projective integrators which integrate the full system with a BDF integrator
dealing with a reduced model using the software MoRe by Siehr. In general, there is
no best choice. The following table illustrates the advantages and disadvantages of

the mentioned integration methods:

PFE | PRK | BDF

explicit + + -
high-order accuracy - 0 ++

fast + + 0

simplicity of the implementation | + + —
stability 0 0 ++

In other words, by choosing a BDF integrator, we achieve a high-order accuracy and
we can always apply this method to all problems. However, we have to solve a non-
linear equation system in every step. This might need a lot of runtime. To avoid
this curse of implicit methods, we can choose an explicit integrator as presented
previously. Those explicit methods can be applied to legacy codes without the
knowledge of the right-hand side explicitly. This occurs, if the microscopic behavior
is represented by a simulation, e.g. a Monte-Carlo simulation. The implementation
of projective integrators as against the implementation of implicit methods does not
need a non-linear equation solver or methods to compute an approximation of the
system Jacobian. Indeed, we only need an efficient vector arithmetic. Nevertheless,
we still have to choose the parameters in a suitable way such that the method

becomes stable.
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Appendix A

Plots of the Test Cases Comparing
PFE with PRK

The following table contains the number of each figure belonging to different test

cases by comparing PFE with PRK:

Tab. A.1: Overview of the corresponding plots of each test case comparing PFE
with PRK.

Test Case | 7y Plot of Solutions Error Plots

1 3.0 .Tal 4.2al
15.0 [4.10] [4.2D)
2 3.0 A Tal [A.24]
15.0 A1h [A.21)]
3 3.0 A 3al (A Zal
15.0 [A.4D]
4 3.0 [AGal

15.0

15.0

15.0

15.0

afa(ahalegslie]< =g =
:

15.0
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Figure A.1: Plots of the solutions in test case 2.
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Figure A.2: Error plots of test case 2.
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Figure A.3: Plots of the solutions in test case 3.
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Figure A.6: Error plots of test case 4.
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Figure A.12: Error plots of test case 7.
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Appendix B
Plots and Effort of the Test Cases
Comparing PRK with BDF

The following table contains the number of each figure belonging to various error

plots of different test cases by comparing PRK with BDF.

Tab. B.1: Overview of the corresponding plots of each test case comparing PRK
with BDF.

Test Case Plot of
Various Errors | PRK Errors | BDF Errors | BDF<MoRe> Errors
1 B.1] B.2 B.3] B.4
2 B.5] [B.6] B.7 B.8
3 B.9 B.10] B.11] B.12
4 B.13 B.14] B.15] B.16
5 4.7 B.17 B8 B.19
6 4y [B.20] B.21] B.22]
7 B.23 B.24] B.25] B.26
8 B.28] B.29] B.30

Additionally, the runtime, the number of function evaluations and integration steps
of each method for the remaining test cases which are not mentioned in Section [4.2]

are listed in the following table:

Tab. B.2: Effort of several integrators for test case 3,4,5 and 6.

Test case Integrator Time Integration Steps | F-Evals
3 PRK(6,3,3) 0.163998s | 250000 108288
PRK(6,4,3) 0.229790s | 187829 161500
PRK(6,3,4) 0.063208s | 25001 44032
PRK(6,4,4) 0.102904s | 17076 75000
PRK(8,4,3) 0.148372s | 113792 92012
PRK(8,4,4) 0.059291s | 8754 42500
PRK(8,4,5) 0.103825s | 674 75000
PRK(8,5,5) 0.104696s | 465 77760
BDF(1071) 0.225583s | 12 80
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BDF(10-3) 0.228274s | 27 203
BDF(10-5) 0.229791s | 40 273
BDF(10~7) 0.229404s | 53 325
BDF(10~9) 0.230496s | 131 745
BDF<MoRe>(10"1) || 0.353549s | 13 78
BDF<MoRe>(1073) || 0.419275s | 30 194
BDF<MoRe>(1075) || 0.437174s | 43 264
BDF<MoRe>(10"7) || 0.466395s | 59 342
BDF<MoRe>(10-9) || 0.625311s | 157 768
PRK(6,3,3) 0.166701s | 250000 108800
PRK(6,4,3) 0.233252s | 187829 162250
PRK(6,3,4) 0.063111s | 25001 44032
PRK(6,4,4) 0.104498s | 17076 75000
PRK(8,4,3) 0.137363s | 113792 96000
PRK(8,4,4) 0.053253s | 8754 38750
PRK(8,4,5) 0.069358s | 674 50000
PRK(8,5,5) 0.125257s | 465 93312
BDF(10~1) 0.224013s | 20 151
BDF(10-3) 0.224627s | 48 317
BDF(109) 0.223927s | 68 445
BDF(10~7) 0.226419s | 101 587
BDF(10~9) 0.229799s | 253 1397
BDF<MoRe>(10"1) || 0.364595s | 13 78
BDF<MoRe>(10-3) || 0.414015s | 30 194
BDF<MoRe>(1075) || 0.431396s | 43 264
BDF<MoRe>(10"7) || 0.467953s | 59 342
BDF<MoRe>(1079) || 0.626288s | 157 768
PRK(6,3,3) 0.171182s | 250000 111360
PRK(6,4,3) 0.235033s | 187829 166000
PRK(6,3,4) 0.065821s | 25001 46080
PRK(6,4,4) 0.106241s | 17076 77500
PRK(8,4,3) 0.143065s | 113792 100250
PRK(8,4,4) 0.061662s | 8754 45000
PRK(8,4,5) 0.077508s | 674 56250
PRK(8,5,5) 0.104307s | 465 77760
BDF(10~1) 0.232661s | 14 94
BDF(10-3) 0.231824s | 28 195
BDF(105) 0.233146s | 40 265
BDF(10~7) 0.232608s | 56 349
BDF(10~9) 0.236824s | 151 949
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BDF<MoRe>(10"1) || 0.368798s | 13 87
BDF<MoRe>(1073) || 0.445305s | 35 246
BDF<MoRe>(1075) || 0.459096s | 50 304
BDF<MoRe>(10"7) || 0.487362s | 67 365
BDF<MoRe>(10-9) || 0.652954s | 168 809
PRK(6,3,3) 0.177366s | 250000 117504
PRK(6,4,3) 0.235281s | 187829 165750
PRK(6,3,4) 0.064396s | 25001 45056
PRK(6,4,4) 0.106607s | 17076 77500
PRK(8,4,3) 0.151894s | 113792 106000
PRK(8,4,4) 0.054663s | 8754 40000
PRK(8,4,5) 0.103510s | 674 75000
PRK(8,5,5) 0.104791s | 465 77760
BDF(10~}) 0.225459s | 22 175
BDF(10-3) 0.226155s | 50 341
BDF(10~°) 0.226669s | 73 495
BDF(10~7) 0.227646s | 102 628
BDF(10~9) 0.233788s | 307 1660
BDF<MoRe>(10"1) || 0.361559 | 13 87
BDF<MoRe>(10-3) || 0.437788s | 35 246
BDF<MoRe>(1075) || 0.455527s | 50 304
BDF<MoRe>(10~7) || 0.480850s | 67 365
BDF<MoRe>(1079) || 0.647777s | 168 809
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Figure B.1: Plots of the errors using various integrators for test case 1.
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Figure B.2: Plots of the

errors using PRK integrators for test case 1.
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Figure B.4: Plots of the errors using BDF<MoRe> integrators for test case 1.
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Figure B.5: Plots of the errors using various integrators for test case 2.
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Figure B.6: Plots of the errors using PRK integrators for test case 2.
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Figure B.7: Plots of the errors using BDF integrators for test case 2.
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Figure B.8: Plots of the errors using BDF<MoRe> integrators for test case 2.



68 Appendix B: Plots and Effort of the Test Cases Comparing PRK with BDF

Error

—PRK(6,3,3)
PRK(8,4,4)
105!/~ BDF(107)
~——BDF(10%)
BDF<MoRe>(10"%)
~ BDF<MoRe>(10")
5 -4 -3 -2 -1 0 1

10 10 10 10 10 10 10
Time

1 0—20

Figure B.9: Plots of the errors using various integrators for test case 3.
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Figure B.10: Plots of the errors using PRK integrators for test case 3.
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Figure B.11: Plots of the errors using BDF integrators for test case 3.
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Figure B.12: Plots of the errors using BDF<MoRe> integrators for test case 3.
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Figure B.13: Plots of the errors using various integrators for test case 4.
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Figure B.14: Plots of the errors using PRK integrators for test case 4.
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Figure B.15: Plots of the errors using BDF integrators for test case 4.

107 /V\ 1
) T\

Error

—— BDF<MoRe>(10"})

BDF<MoRe>(10"%)
10 || BDF<MoRe>(10") .
——BDF<MoRe>(10"")
— BDF<MoRe>(10"%)
—5‘““““—4“”””—3“ ‘—2 HHH—1“””“0“””“1

10 10 10 10 10 10 10
Time

-10

10

Figure B.16: Plots of the errors using BDF<MoRe> integrators for test case 4.
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Figure B.18: Plots of the errors using BDF integrators for test case 5.
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Figure B.19: Plots of the errors using BDF<MoRe> integrators for test case 5.
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Figure B.20: Plots of the errors using PRK integrators for test case 6.
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Figure B.21: Plots of the errors using BDF integrators for test case 6.
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Figure B.22: Plots of the errors using BDF<MoRe> integrators for test case 6.
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Figure B.24: Plots of the errors using PRK integrators for test case 7.
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Figure B.25: Plots of the errors using BDF integrators for test case 7.
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Figure B.26: Plots of the errors using BDF<MoRe> integrators for test case 7.
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Figure B.29: Plots of the errors using BDF integrators for test case 8.

Error

— BDF<MoRe>(10"})

BDF<MoRe>(10"%)
10° | BDF<MoRe>(10") .
—BDF<MoRe>(10"")
— BDF<MoRe>(10"%)
5‘ ““““—4“”””—3“ -2 HHH—l“HHHO “HHHl

10 10 10 10 10 10 10
Time

-10

10

Figure B.30: Plots of the errors using BDF<MoRe> integrators for test case 8.



Appendix C

File prk integrator.hpp

Listing C.1: The file prk_integrator.cpp

#ifndef
#define

#include
#include
#include
#include
#include
#include
#include

#include

typedef flens

const Underscore<IndexType>

_PRK_INTEGRATOR_HPP__
_PRK_INTEGRATOR_HPP__

<iostream>
<iomanip>
<vector>
<string>
<math.h>
<fstream>
<assert.h>

<flens/flens.cxx>

using namespace flens;

class PRK_Integrator {
typedef flens::DenseVector<Array<double>
typedef flens::DenseVector<Array<double>

IndexType;

GeMatrix;

-

public:
PRK_Integrator(void (xf)(double t, Vector
Vector kr, Vector &fx),double tstart,d

,unsigned int dim, unsigned int type,
_prefix);

“PRK_Integrator();

void getSettings();

bool resetIntegration();

bool setInitialValue(Vector yO0);

> Vector;

>::IndexType

::GeMatrix<FullStorage<double, ColMajor> >

x, Vector kf,
ouble tend,

unsigned int M,double h,unsigned int k,unsigned int L

std::string
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};

bool setFunction(Vector kf, Vector kr);
bool performIntegration();
bool getSolution(Vector &_t);

void printStatistics();

private:

unsigned int M,k,L,dim, sizeV, type, fevals;

double alpha,tstart,tend,h,tol;

Vector yO,kf,kr;

GeMatrix result;

Vector time;

std::string prefix = "";

void (xf) (double t, Vector x, Vector kf, Vector kr,

Vector &fx);

double getAlpha ();

bool innerIntegrator(double t0,Vector yO,unsigned int q,
double &t, Vector::View y);

bool writeToFile();

double mnorm2(Vector x);

#endif




Appendix D
File prk integrator.cpp

Listing D.1: The file prk_integrator.cpp

#include <prk_integrator.hpp>

//constructor

PRK_Integrator::PRK_Integrator(void (*_f) (double t, Vector x
, Vector kf, Vector kr, Vector &fx), double _tstart,
double _tend, unsigned int _M, double _h, unsigned int _k
,unsigned int

L, unsigned int _dim, unsigned int _type,

std::string _prefix) {

//set parameters

f = _f;

tstart = _tstart;
tend = _tend;

M = _M;

h = _h;

k = _k;

L = _L;

dim = _dim;

type = _type;

tol = 1le-16;
prefix = _prefix;

alpha = getAlpha ();

yO.resize (dim) ;

kf .resize(dim) ;

kr.resize(dim) ;

//calculate number of steps

sizeV = (unsigned int) (tend/(pow(M+k+1,L)*h) + 1);
fevals = 0;

//allocate memory for result and time
result.resize(dim,sizeV);

time.resize(sizeV);

};

//destructor
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PRK_Integrator:: PRK_Integrator () {};

bool PRK_Integrator::setFunction(Vector _kf, Vector _kr) {
kf = _kf;
kr = _kr;
return true;
T
bool PRK_Integrator::setInitialValue(Vector _y0) {
yo = _y0;
return true;
3
void PRK_Integrator::getSettings() {
std::cout << "Settings: " << std::endl;
if (type == 0) {
std::cout << "\ttype of integration =
teleprojective forward euler (tpfe)" << std::
endl;
} else {
std::cout << "\ttype of integration = projective
runge kutta (prk)" << std::endl;
}
std::cout << "\tt in ["<<tstart<<","<<tend<<"] " <<
std::endl;
std::cout << "\tM = " <K< M << std::endl;
std::cout << "\tk = " << k << std::endl;
std::cout << "\tL = " << L << std::endl;
std::cout << "\th = " << h << std::endl;

std::cout << "\talpha
<< alpha << std::emndl;

std::cout << "\ty0 = [";

for (unsigned int i = 1; i < dim; ++i) {
std::cout << yO(i) << " ",

}

" << std::setprecision( 20 )

std::cout << y0(dim) << "]" << std::endl << std::

endl;
};

bool PRK_Integrator::resetlntegration() {
result.resize (0,0);

yO.resize (0);
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return true;

};

bool PRK_Integrator::performIntegration() {
bool isNearEquilibrium = false;
result(_(1,dim) ,1) = yO;
double told = tstart, tnew;

/* perform teleprojective forward euler integration x*/
if (type == 0) A
for (unsigned int i = 1; i <= sizeV-1; ++i) {
innerIntegrator(told,result(_(1,dim),i),L, tnew,
result (_(1,dim),i+1));
told = tnew;

time(i+1) = tnew;
3
/* perform projective runge kutta integration x*/
} else {
for (unsigned int i = 1; i <= sizeV-1; ++i) {

if (!'isNearEquilibrium) {

//set initial value

GeMatrix step(dim,k+2);

step(_(1,dim) ,1) = result(_(1,dim),1i);

told = time(i);

for (unsigned int i = 1; i <= k+1; ++1i) {
innerIntegrator(told, step(_(1,dim),i),

L-1, tnew, step(_(1,dim),i+1));

told = tnew;

}

/* set new time */

double t = told + Mx*pow(k+1+ M,L-1)x*h;

time(i+1) = t;

/* set initial value for y_{s} */

GeMatrix step_pred(dim,k+2);

Vector yk = step(_(1,dim) ,k+1), ykpl = step(
_(1,dim) ,k+2);

blas::scal((int)M*(-1.0),yk); // = -M*xy_{k}

blas::scal (M+1,ykpl); // (M+1)*y_{k+1}

step_pred(_(1,dim) ,1) = yk + ykpl; // y = y_
{k+1} + M*x( y_{k+1} - y_{k} )

/* perform k+1 daming steps x*/
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};

told = t;
for (unsigned int i = 1; i <= k+1; ++1i) {
innerIntegrator(told, step_pred(_(1,dim)
,i), L-1, tnew, step_pred(_(1,dim),i
+1));
told = tnew;

/* calculate a correted y_s */
blas::scal((l+alpha*x(int)M),step(_(1,dim) ,k

+2)); // (1+alphax*xM)*y_{k
+1}

blas::scal((int)M*(-1.0)*alpha,step(_(1,dim)
,k+1) ) ; // -—alphax*xMx*xy_k

blas::scal((int)M*(-1.0)*(1-alpha),step_pred
(_(1,dim) ,k+1)); // -(1-alpha)*M*y_{n+
k}

blas::scal((int)M*(l1-alpha),step_pred(_(1,
dim) ,k+2)); // (l1-alpha)*M*xy_{n
+k+1}

result(_(1,dim) ,i+1) = step(_(1,dim) ,k+1) +
step(_(1,dim) ,k+2) + step_pred(_(1,dim) ,k
+1) + step_pred(_(1,dim) ,k+2);

/* check if result is close to equilibrium
*/
Vector err(dim);
err = result(_(1,dim) ,i+1) - result(_(1,dim)
1)
if ( norm2(err) < tol ) {
isNearEquilibrium = true;
}
} else {
//case: near equilibirum: do not calculate
new values
result(_(1,dim),i+1) = result(_(1,dim),i);
time(i+1) = time(i) + pow(k+1+M,L)x*h;
}//end nearEquilibirum
}
}//end performing runge kutta

return true;
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bool PRK_Integrator::getSolution(Vector &_t) {
_t = time;
//print solution vector
std::cout << "result_cpp = [" << std::endl;
for( unsigned int i = 1; i <= sizeV; ++1i) {
for (unsigned 1 = 1; 1 <= dim; ++1) {
std::cout << std::setw( 30 ) << std::
setprecision( 20 ) << result(l,i) << " ";

}
std::cout << ";" << std::endl;
}
std::cout << "J];" << std::endl;
std::cout << "t = [" << std::setprecision( 5 ) << time
<< "];" << std::endl;

//write also to file
writeToFile() ;

return true;
};
void PRK_Integrator::printStatistics() A
std::cout << std::endl << "INTEGRATION STATISTIC:" <<

std::endl;
std::cout << "STEPS: " << sgizeV << std::endl;
std::cout << "F-EVAL: " << fevals << std::endl;

};

//calculate alpha, such that the algorithm is 2nd order
double PRK_Integrator::getAlpha() {

int s = (int) M + k + 1;

// xsi_0 if forward euler is used at innermost layer

double xsi = 1.0;

for (unsigned int i = 1; i <= L; ++i) {

xsi = xsi/((double) s) + M*x(M+1)/((double) (s*xs));

}

//casting to integer, because dealing with -M

return ((=(int)M*(int)k-(int)M-1)*xsi + Mx(M+1+2x*xk)) / ((

double) (2%Mx*s)) ;
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bool PRK_Integrator::innerIntegrator(double t0,Vector yoO,
unsigned int q, double &t, Vector::View y) {

/* innermost layer: perform forward euler step */
if (q==0) {
/* evaluate function f x*/
Vector fx(dim) ;
f(t0,y0,kf ,kr,fx);
fevals++;
/* calculate new value */
blas::scal(h,fx); // hx*xfx
y = y0O + £fx;
t = t0 + h;
/* higer layer: perform a projective forward euler st
depending on M, q, k */
} else {
/* set initial value */
GeMatrix step(dim,k+2);
step(_(1,dim) ,1) = yO0;
/* perform k+1 damping steps */
double told = tO, tnew;
for (unsigned int i = 1; i <= k+1; ++i) {
innerIntegrator(told, step(_(1,dim),i), q-1,
tnew, step(_(1,dim),i+1));
told = tnew;
}
/* calculate y */
t = told + Mxpow(k+1+M,q-1) *h;
blas::scal((int)M*(-1.0),step(_(1,dim) ,k+1)); //
M*xy_{k}
blas::scal(M+1,step(_(1,dim) ,k+2)); // (M+1)x*y_{k
y = step(_(1,dim) ,k+2) + step(_(1,dim) ,k+1); // v
y_{k+1} + M*x( y_{k+1} - y_{k} )

return true;

};

bool PRK_Integrator::writeToFile() {
std::fstream file, file_time;
file.open(prefix+"result.dat", std::ios::out);

for( unsigned int i = 1; i <= sizeV; ++i) {

ep

+17}
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};

for (unsigned 1 = 1; 1 <= dim; ++1) {
file << std::setw( 30 ) << std::setprecision( 20
) << result(l,i) << " "

}
file << std::endl;
}
file.close();
file_time.open(prefix+"time.dat", std::ios::out);
file_time << std::setw( 30 ) << std::setprecision( 20 )

<< time;

file_time.close();

std::cout << "Wrote data to file result.dat and time.dat
." << std::endl;

return true;

double PRK_Integrator::norm2(Vector x) {

double norm = 0.0;

for(int i = 1; i <= x.length(); ++i) {
norm += x(i)*x(i);

}

norm = sqrt(norm);

return norm;
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