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Chapter 1

Introduction

With the technical development of computers, the influence of mathematical mod-
eling and simulation on research is increasing significantly. Instead of developing
expensive and time consuming prototypes, mathematical models are derived and
simulated on computers. Most of the (physical) problems can be described by
mathematical models using partial differential equations (PDEs) or integral equa-
tions (IEs). In particular, problems in the field of linear elasticity can be modeled
by an elliptic PDE, namely the Navier-Lamé equation. A common example in
linear elasticity that can be modeled with the Navier-Lamé equation is the Cook’s
membrane example. Cook’s membrane, which is illustrated in Figure 1.1, is fixed
on the left-hand side and exposed to a traction on the right-hand side.

[/

Fig. 1.1: Domain for the Cook’s membrane example (left) with expected displace-

ment (right).

In most cases the solution of the PDE cannot be calculated analytically and thus
numerical methods are needed to approximate the solution. There are a vari-
ety of methods for approximating solutions to PDEs including the Finite Element
Method (FEM), the Finite Difference Method (FDM) and the Boundary Ele-
ment Method (BEM). All methods have both advantages and disadvantages and
thus a method is chosen based on the need of the application. One of the main uses
of the BEM is to PDE models in linear elasticity, such as the Navier-Lamé equation.
The BEM differs significantly from the other methods, since the main idea of the
BEM is to transform the PDE into an equivalent boundary IE instead of discretizing
the PDE itself. Thus, only the boundary of the domain has to be discretized. This
can reduce the computational effort and consequentially the computational time,
particularly with complicated domains. Moreover, problems on unbounded domains
can be solved easily with the BEM, whereas several problems occur with the FEM
or the FDM. However, for transforming the PDE in an equivalent integral equation
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an analytical representation of a fundamental solution is required, but such a rep-
resentation is not always provided.

The BEM is a Galerkin method, meaning the boundary IE is multiplied with test
functions in a weak sense leading to the variational formulation. Discretizing this
variational formulation yields a system of linear equations with a large number of
degrees of freedom. The main computational effort arises from assembling this sys-
tem of linear equations.

Particularly for practical problems, the accuracy and the reliability of the results
are of fundamental importance for the calculations. In order to improve the accu-
racy of the numerical results there exist two main approaches. One is to refine the
discretization of the boundary, which leads to an A-method. The other is to increase
the polynomial degree of the numerical solution, which leads to a p-method. By
combining both approaches cleverly we obtain an hp-method, where the advan-
tages of both methods can be exploited. In general, the hp-method can achieve
exponential convergence rates for the error, whereas the h- and the p-method only
lead to algebraic convergence rates for the error. Figure 1.2 illustrates the estimated
error for the Cook’s membrane example.
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Fig. 1.2: Estimated error for the Cook’s membrane example using the different ap-

proaches for reducing the error.

We see that with the exponential convergence rate of the hp-method accurate results
can be achieved with a small number of degrees of freedom. On most computers, a
similar accuracy cannot be achieved with the A- or the p-method due to the limited
memory or at least long computational times are needed.

Goal of this Thesis

The goal of this thesis is to develop an efficient implementation of the hp-BEM for
the Navier-Lamé equation, so that practical, two-dimensional problems for linear



elasticity can be solved. For this purpose, we want to reduce the error close to
machine precision harnessing the exponential convergence rate of the hp-method.
Therefore, we derive analytical formulas for the assembly of the Galerkin matrix
that can be stably and efficiently calculated for high polynomial degrees. Moreover,
we want to take advantage of progress in computer hardware in order to perform the
calculations very efficiently. In particular, since most computers today are equipped
with multi-core processors we want to parallelize the routines.

Additionally, this thesis focuses on integrating all routines into the epsBEM frame-
work (see [10]), a software package for solving the Laplace equation with the hp-
BEM. Thus, the structure of the routines for solving the Laplace and the Navier-
Lamé equations must be similar, so that the user only has to adjust the main routines
for solving the Navier-Lamé equation. For this purpose, the core routines have to be
implemented in C, whereas the main routines have to be implemented in MATLAB.

Outline

This thesis is structured into of six main chapters. The first four chapters are devoted
to the theory of the hp-BEM for the Navier-Lamé equation, and the implementation
and the numerical results are presented in the last two chapters.

Chapter 2 gives an introduction to linear elasticity. We begin by giving the analyt-
ical background and introducing some basic notations. Subsequently, we derive the
Navier-Lamé equation and its weak formulation by referencing to a model example.
An introduction to the theory of the hp-BEM for the Navier-Lamé equation is given
in Chapter 3. In particular, we introduce the boundary integral operators and derive
the system of linear equations for different types of boundary conditions, namely
mixed, Dirichlet and Neumann boundary conditions.

In Chapter 4 we explore the associated Legendre functions and related functions.
This chapter serves as a basis for developing an efficient implementation of the
hp-BEM. The approach for implementing the hp-BEM, that is investigated in this
thesis, is to take the Legendre polynomials and the Lobatto shape functions as
ansatz-functions. Using this approach, the analytical computation of the entries in
the Galerkin matrix can be reduced to evaluating integrals that are related to the
associated Legendre functions. Consequently, we investigate the efficient calculation
of these integrals, which is the basic requirement for the efficient implementation of
the hp-BEM.

In Chapter 5 we describe the realization of the hp-BEM using analytical formu-
las. We begin by introducing the basis for the ansatz- and test-space, which is the
main point for implementing an efficient hp-BEM, and by defining a parametriza-
tion of the boundary elements. The main part in this chapter is to derive analytical
formulas for calculating the Galerkin matrices of the boundary integrals operators
efficiently, using the special integrals related to the associated Legendre functions.
This chapter closes by introducing some error estimators for the Dirichlet, the Neu-
mann and the mixed problems that can be used for creating adaptive algorithms.
The implementation of the hp-version of the BEM is described in Chapter 6. Since
all routines for the implementation of the Ap-BEM have to be integrated into the
epsBEM framework, we first give an overview on this software package. Further-
more, we describe all routines that are implemented within the scope of this thesis.
In particular, we go into detail on the implementation of the functions introduced
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in Chapter 4 and on the routines to calculate the integral operators with the for-
mulas derived in Chapter 5. Additionally, we discuss the implementation of gliding
conditions, i.e. a special type of boundary conditions, so that we can solve a wider
range of practical problems in linear elasticity.

In the last chapter, we present the numerical results. We consider several standard
examples and verify the convergence rates and the efficiency and reliability of the
error estimator. This chapter closes with a discussion on practical examples of linear
elasticity.



Chapter 2

The Navier-Lamé Equation

2.1 Theoretical Background

In this section, we give the theory of Sobolev spaces and introduce some important
notations, that we need throughout this thesis, where we are guided by the work of
[16]. Note that we only give a summary of the theory without proving the results.
Throughout this section let  C R™ (n > 1) be a domain. Let CX(Q2) :=
{u e C>®() : w has compact support} and the Lebesgue space L? be defined as
usual with the L? scalar product

(f.9)i@) /f

and the induced norm || - || 2

Definition 2.1.1 We call u € L*(Q)) weakly differentiable if there exist functions
g1, 9n € L2(Q) so that

_Lu($)% (z) d:c:/ng(l’) ¢(z) dx

Vj=1,.,n and V¢ € C*(Q) and we call (gi, ..., g,)" the weak derivative of u. If
u is differentiable, the usual derivative and the weak derivative are the same a.e..

Therefore, we write Vu = (g1, ..., gn)? for the weak derivative.

Definition 2.1.2 (Sobolev spaces on domains) We define the Sobolev space
H°(Q) by the Lebesgue Space L*(f),

equipped with the usual L? norm. The Sobolev space H' () is given by
H'(Q) := {u € L*(Q) : u is weakly differentiable , Vu € L*()} .
A norm on H' is defined by
[l @) = llullZ2) + VUl 2
Moreover, we define the Sobolev space with positive integer order k by

H*(Q) := {u € L*(Q) : u is weakly differentiable , Vu € H*"'(Q)}.
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A norm on H*(Q) can be defined by
Hu”%ﬂc(g) = [JullF2() + Hvu”iﬂe—l(m-
A semi-norm on H*(Q) is given by
|U|Hk(Q) = ||Dk UHLQ(Q);
where D* denotes the k-th weak derivative.

Lemma 2.1.3 The Sobolev spaces H*(Q)), k € Ny, are Hilbert spaces with continu-
ous embedding H*(QY) C L*(I).

With the Riesz representation theorem we can define the dual space of the Sobolev

spaces as extensions of L?.

Definition 2.1.4 The dual space of the Sobolev space H*() is defined by the
Sobolev space H* (Q) of negative integer order k equipped with the usual operator

norm
[(u,v)|
|ull 7ok := sup ——=>—,
H=H®) veH(Q) ||U||Hk(sz)
where the duality brackets (-,-) := (-,-)g-rxmr() are the extended L* scalar
product.

We also need to define the Sobolev spaces with non-integer order on the boundary
I' := 09). Therefore, we introduce the Sobolev-Slobodeckij semi-norm for s € (0, 1)

by
, u(z) — u(y)[? 2
|u|57p = (/P g —|x e dsydsy | .

Definition 2.1.5 (Sobolev spaces on the boundary)

(i) Let s € (0,1). Then, the Sobolev space H*(I") is defined by

H¥I) :={ue L*(I) : |ul

Hs(I') < OO}

with the norm

[ ul ?{s(r) = HUH%%r) + [ul? .

(ii)) For Iy C I'" and s € (0,1) we define

H(Io) ={u=n1lp : ue H(I')}
H*(Iy) == {u=1|p, : e HI), suppa C Ip}.
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Lemma 2.1.6
(i) H2(I') is a Hilbert space with continuous embedding Hz (I") C L*(I).
(i) Hz(I') is the trace space of HY(Q), i.e. H2(I') ={u=1|r : 7€ HY(Q)} .

Again, the Riesz representation theorem provides a definition of the dual spaces of

the Sobolev spaces with non-integer order.

Definition 2.1.7 For s € (0,1) we denote the dual space of H*(I") by H *(I")
equipped with the usual operator norm on H~*(I") that is given by

[{u, v)]

lullg-s(r) == sup ,
veHs(I) ||U| Hs(I)
where the duality brackets (-,-) := (-,-)m-s(r)xu+(r) are the extended L? scalar

product.

Finally, we introduce the piecewise Sobolev spaces for a given partition 7; of the
boundary I', i.e. VI, I, € Ty o [Ty N Iy| = 6ox|l7| and

FZUE.

IyeTy

Definition 2.1.8 For s > 0 the piecewise Sobolev space is defined by
H () = {4y € H™™MH(T) V|, € H(I0), VI € Th}

equipped with the norm

1

2

[, () = <Z ||1/J|§qs(pg)> :
IveTh

To simplify the notation we write || - ||5 instead of || - || gs(r), | - |s instead of | - |gs(r
and | - [|x instead of || - || gr(q). Moreover, we restrict to write (-, -) for the different
duality products that we defined above.

Since all functions that occur within this thesis are two dimensional functions wu :
R? — R? we write u € V meaning u; € V (i = 1,2) for all above defined function
spaces. The corresponding norms are given by

Il = N lly + llually-

2.2 Derivation of the Navier-Lamé Equation and the
Weak Formulation

In this section we give a short introduction the the Navier-Lamé equation. The most
important application of the Navier-Lamé equation is to linear elasticity. Therefore,
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we consider the mixed traction and displacement problem of homogeneous, isotropic
and linearly elastic bodies. For a given body that is exposed to both volume forces
and surface forces we want to calculate the displacement and the strain of the
displaced body. Additionally, the body is fixed at some parts of the surface, in
other words we prescribe the displacement to be zero, and at other parts of the
surface a traction is given. An example is illustrated Figure 2.1.

Fig. 2.1: Model of a bar that is fixed on left black shaded side. The bar is exposed
to volume forces such as gravity (red arrow) and the right blue shaded side

of the bar is exposed to a traction (blue arrow).

In many applications it is a good approximation to map the three-dimensional model
of the body to a two-dimensional model. Especially, in the case of plain stain or
plain stress reducing the dimension of the body is reasonable. In this work, we
consider the plain strain state and thus, we only deal with two-dimensional models.
Let Q C R? be a bounded domain with Lipschitz-boundary I" := 9 describing
the homogeneous, isotropic and linearly elastic body. Considering mixed traction
and displacement problems we divide the boundary I" into the Dirichlet boundary
I'p and the Neumann boundary I'y. On the Dirichlet boundary, which is a closed
subset of I with |I'p| > 0, the exact displacement up : I'p — R? up € C(I'p), of
the body is given, whereas on the Neumann boundary I'y := I'\I'p we prescribe
the traction by a function g : I'v — R?, g € L>(I'y). The volume forces that are
applied to the body can be described by a function f: Q — R2, f € C(Q).

The sought displacement field of the body is given by u : Q — R?, where we assume
u € C3HQ) NC(Q). Besides the visible displacement of the body, external forces
also result in inner strain and stress. Therefore, we define the strain tensor ¢ and
the stress tensor € of the displaced body. Assuming a homogeneous, isotropic and
linearly elastic material and small deformations, the strain and the stress tensors
are symmetric 2 x 2 matrices, i.e. o, ¢ € R2X2  Moreover, the strain tensor can

symm*

be approximated by the symmetric part of the gradient of the displacement field u,
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which reads
c(w) ~ % (Vu+ (Vu)T).
In linear elasticity, strain and stress are linearly related, i.e. Hook’s law holds:
o(u) =2pe(u) + Adiv(u) I,

where I € R**? denotes the identity matrix and )\, € R are the Lamé constants.
The Lamé constants are dependent on the parameters of material E, which is called
the modulus of elasticity, and v, which is called the Poisson’s ratio. For homoge-
neous, isotropic and linearly elastic materials there holds £ > 0 and v € (0, %) In
the plain strain state, to which we refer in this work, the Lamé constants and the
parameters of material are related as follows:

Ev FE

A= aroao2y ™ AT Ay

This relationship and the ranges of v and E imply that > 0 and A > —% L

In the state of equilibrium all forces add up to zero. Thus, we obtain

f+dive=0

g-n=4g,

where n denotes the outer unit normal vector. Putting all results together we can
formulate the mixed traction and displacement problem:

For given volume forces f € C (Q), traction g € L>(I'y) and displacement
up € C(I'p), find u € C*(Q) NC(R) such that

—divo(u) = f in
U =up on I'p (2.1)
ou)-n=g on I'y,

with o(u) =2 pe(u) + Adiv(u) L.

Since (2.1) does not always have a solution u € C*(Q) N C(£2) we consider the weak
formulation of the problem, where the solution u is supposed to be in H'(Q). To
this end, we define two trace operators in order to be able to formulate the boundary

conditions for the weak formulation.

Definition 2.2.1

(i) The trace operator vy, is defined by

You(x) := lim u(T) a.e. on I’ (2.2)

Q>z—zxel’
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(ii) The co-normal derivative v, is given by

nu(z) = lm o (u(@))n a.e. on I' (2.3)

O>3z—zel’
where n denotes the outer normal vector of x.

A detailed analysis of the trace operators can be found in [16], e.g. it is shown that
these operators are well defined and can be extended to H*(Q):

Y1t Hl (Q) — H™
Now we can state the weak formulation of (2.1):

For given volume forces f € H~Y(), traction ¢ € H~2(I'y) and displacement
up € H2(I'p), find u € H'(Q) such that

—divo(u) = f in Q
Yol = Up on I'p (2.4)
MU =g on Iy.

Note that (2.4) holds in a weak sense.



Chapter 3
The hp-BEM for the Navier-Lamé

Equation

In this chapter we give an introduction to the hp-BEM for the Navier-Lamé equation.
As the basic theory is well known and a detailed analysis is given in [16], [14] and
[15] we just give a summary of the main results.

Besides the mixed traction and displacement problem, that we investigate in the
first section, we also consider two special cases in this chapter, namely the Dirichlet
problem and the Neumann problem.

3.1 Mixed Traction and Displacement Problem

Throughout this section, we consider the weak formulation of the mixed traction
and displacement problem (2.4). We assume 2 C R? to be a bounded domain
with Lipschitz boundary I' := 0€2. The boundary is divided into the Neumann and
the Dirichlet boundaries, i.e. I' = I'p U Iy with [I'p N I'y| = 0 and |[I'p| > 0.
Furthermore, we ignore volume forces, i.e. f = 0. First, we state the representation
formula, which is also called the Somigliana identity.

Theorem 3.1.1 Let u € H'(Q) with —divo(u) = 0 (in a weak sense). Then, there
holds for all x € Q)

u(z) = / Uz, y) 1ruly) ds, — / ey U (2, 9)] ouy) dsy, (3.1)

where the Kelvin matriz U(x,y) is the fundamental solution of (2.4) and the
trace operator i, with respect to y is applied to the columns of U, i.e.
Y[ U2, y), U (2, y)] = (11,0 (2, y),11,U%(z,y)]. The Kelvin-matriz has the fol-
lowing representation regarding the Lamé parameters \,u € R

A+ 3u < At p (x—y>($—y)T)7

S e 3.2
A (A + 2p) A+ 3 |z — y|? (3:2)

Ulz,y) =

where I € R?*2 denotes the identity matrix.

Additionally, it can be shown that the traction T'(z,y) := 71,U(x,y) of the Kelvin
matrix has the following representation formula

b (z—y)nly) po (z—y)"ty)
2r(A+2p) |z —yl? 2r(A+2p) |z —yl?
Atp (z—y)ny)

+7T<)‘+2/~L) ]:c—y!‘* (.’L’—y)(l’—y) )

IxI

T(z,y)
(3.3)
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where n(y) denotes the outer unit normal vector and ¢(y) denotes the unit tangential
vector with respect to y € I'. Moreover, the cross product for matrices is defined as
the cross product of the rows and the columns which yields

0 1
I><I—<_1 0).

The representation formula (3.1) motivates the definition of the following boundary
integral operators.

Definition 3.1.2 Let © € R2\I", ¢ € H~2(I') and ¢ € Hz(I'). Then, the single
layer potential V is given by

V() = / U, ) oly) ds, (3.4)
r
and the double layer potential K reads

Rifa) = [ bnyUe i) ds, (3.5)

One can show that both V : H=2(I") — HY(Q) and K : H2(I") — H'(Q) are linear
and bounded operators. Plugging in the single and the double layer potential, the
representation formula now reads

u(z) = Vyu(z) — Kvyou(z), Vo e Q. (3.6)

Thus, using (3.6) we can calculate the solution w for all € Q if we know the
Cauchy-data (you,y1u) on the boundary I'. Since the Neumann data ~;u is only
given on the Neumann boundary and the Dirichlet data ~yu is only given on the
Dirichlet boundary, we have to compute the missing Cauchy-data.

In the following we derive a system of boundary integral equations that we use to
compute the missing data. We first establish some analytical results.

Lemma 3.1.3 Let V : H 2(I') — H'(Q) be the single layer potential and K -
H:(I') — HY(Q) be the double layer potential. Moreover, let x € I', o be the inner
angle at © and B(z, ) be the € ball around x. Then, there holds

(i) %V : H2(I') — Hz(I') defines a linear and bounded operator. For ¢ €
L*>(I") there holds

oV o(z) = / Uz, ) é(y) ds,. (3.7)

(ii) nV : H2(I') — H~2(I') defines a linear and bounded operator. For ¢ €
H~2(I") there holds

1Vo(z) = lim U )] 6y) ds, + o). (3.8)

€20 JP\B(z,¢)
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(111) ’yo[? : H%(F) — H%(F) defines a linear and bounded operator. Fori € H%(F)

we have to following formula

WKu() = (~1+ 5= ) (@) + lim ol @) ey) s, (39

27 e=0 J M\ B(a.)

(iv) mK : H2(I') — H~2(I") defines a linear and bounded operator-.

Note that the integrals in (i7) and (i7i) exist and that @ = 7w holds if x € " has a

normal vector. Lemma 3.1.3 motivates the following definition.

Definition 3.1.4 Let x € I', ¢ € H_%(F) and ¢ € H%(F). Then, we define the

following integral operators:

(i) The single layer operator V : H=2(I") — Hz(I") is given by

vmw>¢p@wwwwy (3.10)

ii) The double layer operator K : H2(I') — H3(I') is given b
34 g 24

Ky(z) = lim (11U, )] ¥(y) dsy. (3.11)

€20 J\B(z.e)
(iii) The adjoint operator K': H™2(I") — H~2(I) is given by

K'¢(z) = lim [1,.U (2, y)] ¢(y) dsy. (3.12)

€20 J\B(a,e)
(iv) The hypersingular operator W : Hz(I") — H~2(I) is given by

Wip(z) == —y Kip(x). (3.13)

The properties of the integral operators can be summarized by the following lemma.

Lemma 3.1.5
(i) The operators V, K, K' and W are linear and bounded.

(ii) The single layer operator V is symmetric with respect to the duality product,

(61, Vo) = (¢, V1) V1,0 € H2(I).
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(i1i) With appropriate scaling of the domain Q) the single layer operator is H3-
elliptic, in other words 35 >0 and ¢ > 0:

(6,V30) 2 clll’y  Voe H (D),
where Vs is given by

Vao(z) = / Us(z,y) $(y) dsy.

A +3u
A (N + 2p)

Us(,y) = Adp (@—y)(z—y) )

1 — |1 —
(oglﬁ(:r y)| S —

(iv) The hypersingular operator is H%-semi—elliptz'c, t.e. 3¢ > 0:
(W) > cluli Vo e B (D).
(v) K’ is the adjoint of K with respect to the duality product, i.e
(K'o,0) = (0, K¢) YoeH (D), e HHI).  (314)
(vi) Let L denote the arc length derivative. Then, there holds ¥ 1,15 € H2(I)

d
(Wb ) = (V' ey, ) (3.15)
with
V() = / U*(2,9) 8(y) ds,

and

U*(Ly):_u(AﬂLu) (10g|x_y|1_ (z —y)(z —y) )

7 (A + 211 v — P

Note that we do not amplify the choice of the scaling factor [ in (ii7), as the single
layer operator is elliptic in the examples considered in the subsequent chapters. We
refer to [16] for a detailed description of how to construct an appropriate £.

In order to get a method for computing the missing Cauchy data we apply the
trace operators 7y and v, to the representation formula (3.6) which yields for x € I’

« .
ue) = [ Ule.g)nute)ds, - (-1 5-) aou(e) - limy U (2, )] 20uly) ds,
T 2w e—0 I'\B(z,e)

and

. % ~
yu(z) = lim V1,2U (2, y)] muly) dsy + —y1u(z) — y1,.Kyou(z).
e—0 I'\B(z,¢) 2w
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Assuming that = has a normal vector, i.e. a = 7, and plugging in the boundary
integral operators we write shorter

1
You\ _ (31— K % YoU
(mu) o ( %% %I + K’ nu) (3.16)

This system is called the Caldéron-system and can be used to compute the missing
Cauchy-data. We choose an arbitrary extension up € H2(I') and g € H 2(I') of
the given data up € Hz(I'p) and g € H~2(Iy). Then, the missing Cauchy-data is

given by
<UN> . (70’&) (u D>
ap ’ Y1 U g ’

It can be proven that uy € fI%(FN) and gp € H*%(FD). Thus, we can reformulate

(3.16) to
A (ZZ) _ (% - A) @D) on Iy x I'p, (3.17)

-K V
- )
denotes the Caldéron-projector. To proceed to the equivalent variational formulation

we define V := H2(I'y) x H 2(I'p) and its dual space V* := Hz(I'p) x H™2(Iy)
using the duality product

(9D, ¥n), (N, ¥D))vexv = (YD, ép)rp + (N, ON) 1y

Here, (-,-)ry and (-,-)r, denote the extended L? scalar product on I'y and I'p,
respectively. One can show that the Coldéron-projector defines a linear and bounded
operator A : V — V*. Moreover, we define the continuous bilinear form a on V x V

by

where

a((un,9p), (¢n,¥p)) = (A(un, gp), (on, ¥D))vexv- (3.18)

The variational formulation that is equivalent to (3.17) reads:

Find (un, gp) € V such that ¥V (¢n,1¥p) € V there holds

o (v, 0), 0w 0)) = (5= 4) (@09 O Vpl (31)

In order to be able to make a statement concerning the existence and the uniqueness

of a solution we cite the following lemma from [16].

Lemma 3.1.6 (Lax-Milgram) Let X be a Hilbert space, X* be the dual space of
X and let A: X — X* be bounded and X -elliptic. Then, there holds

VieX" JueX: Au=f.
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Theorem 3.1.7 (Existence of a unique solution) The integral formulation of
the mized traction and displacement problem (3.17) and the equivalent variational

formulation (3.19), respectively, have an unique solution.

Proof. Due to the previous results and the Lax-Milgram lemma it remains to show
that the operator A is V-elliptic. Using the H _%—ellipticity of V, the H 2-semi-
ellipticity of W and the continuity of both operators one can show that

| (un, gp) 1% = (Vgp, gp)rp + (Wun, un)ry

defines a norm on V that is equivalent to the usual product norm || - ||y,. Moreover,
let (un,gp) € V, then there holds

<—Ku]v + VgD,gD>pD + <WUN + K/gD,uN>pN
<VgDng>FD + <WUN7UN>FN

<A (UN79D)7 (uNagD»V*xV =
= [[(un, gp)II3 = ¢ll(un, g0)3,

which proofs the V-ellipticity of A. n

In order to solve the variational formulation (3.19) numerically, we prescribe that
Q) C R? is a polygonal Lipschitz domain with the boundary I" := 9. Note that if
is not a polygonal domain we have to approximate it by a polygonal domain which
leads to an approximation error. However, this case is not considered in this work.
Let 7, be a triangulation of the boundary I" with

Nel
Tn = {n =conv{Ay, By}, £ =1,..;Na: I'=|J I}, TN Dl = 60m| | } :
(=1

where h := max{|[}| : 1 < ¢ < Ng}. Note that we call the elements of 7, boundary
elements. In order to be able to solve the mixed problem with different boundary
conditions, we define the triangulations 7}, p of the Dirichlet and 7; n of the Neu-
mann boundaries, where we assume 7, = T, p U T, n. Note that this definition
implies that for all I, € T, we get either Iy € T, p or I, € Tj, y. Furthermore, we
denote by Ng p and N, n the number of boundary elements on the Dirichlet and
the Neumann boundaries, respectively.

In order to get a discrete problem, we approximate the infinite-dimensional space
V = H:(I'v) x H2(I'p) by an appropriate finite-dimensional space V, :=
SY(Tan,p1) X S°(Th.p,po) where py € NéVd’D, p1 € NNav  S1(T, n p1) contains
piecewise polynomial, globally continuous functions, i.e.

St (77L,N,p1) = {1/121 € C(I'y) : wzl|['€ € Pp1,£7£ =1, -~-7Nel,N}-

and S° (Ty,.p,po) contains piecewise polynomial, globally discontinuous functions,
ie.

SO (E,D?Z)O) = {gbzo € LQ(FD) : ZO‘FZ € ]Ppo,wf = 17 "-7Nel,D} .
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Note that we obtain a conforming method for solving the discrete problem, since
there holds V, C V. The discrete problem reads

Find (uMh,gD,h) € V, such that V(qu,h, 77Z)D,h) € V), there holds

a((unp, 9p.n), (ONR VD)) = ((% — A) (Tp, ), (DN hs UDR))vexv- (3.20)

To make a statement concerning the solvability of the discrete problem, we cite the

following lemma from [16].

Lemma 3.1.8 (Céa) Let X be a Hilbert space, a : X x X — R a continuous and
X -elliptic bilinear form and f € X' a continuous linear form. Moreover, let X; C
X be a finite-dimensional test- and ansatz-space. Then, the discrete variational

formulation
a(up,vp) = f(op) Vo, € Xy,
has a unique solution u, € X5, and uy is the best approximation in the sense that
lu—upllx < ¢ inf |u—wvplx.
’UhEXh
In particular, the Galerkin orthogonality holds, i.e.

<U—Uh,Uh>X =0 Vo, € X,.

The fact that the Caldéron-projector A is V-elliptic and continuous implies the

continuity and the ellipticity of the bilinear form a and thus, we can apply the Céa

lemma to (3.20). Hence, (3.20) is well defined and the solution (un , gp s) converges

quasi-optimal to the exact solution.

To solve (3.20) we choose a basis (0;);=1,..dimy, of V. and we write (uyp, gpn) =
fznivh Ok, o, € R. Testing (3.20) with the basis functions ©; and plugging in

the representation of (unp, gp.n) yields

dim Vj,

S ara(0,0;) = <(% - A) (@0, 9), O )vexy Vj=1 . dimVy.  (3.21)
k=1
In order to write (3.21) shorter, we define the Galerkin matrix A := (a; %) k=1, dimV,
by

ajr=a(00;),
the mass matrix M = (m;x);k=1,..dimv, DY
My = <@j, Ok )y xv,

the coefficient vector x := (ax)r=1.. dimy, and the coefficient vector b :=
(b)j=1...dimy, of (Wp,g). Finally, the discrete problem is given by the system of
linear equations

Ax = <%M—A)b.
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Describing the Galerkin matrix more closely we denote by (®;);=1, . dim s9(7;) the
basis of S%(T,po) and by (¥;);—1, _dimsi(7,p) the basis of S*(Ts,p1). Then, the
Galerkin matrix of the single layer operator is defined by V := (V; ); j=1.... dim s°(7;, p)

with V; ; := (V®;, ®;), the Galerkin matrix of the double layer operator is defined by
K = (K”)Z;lj:;lng;((%ﬁ)l) with K; ; := (KV;, ®;) and the Galerkin matrix of the
hypersingular operator is given W := (W; ;); j=1,...dim 51(7,,p) With W ; == (W, ;).

Then, there holds
-K V
A= (W KT) |

Note that we used the fact that K’ the adjoint of K which yields that the Galerkin

matrix of K’ is the transposed Galerkin matrix of the double layer operator.

In the end of this section we give an important result concerning the a priori error

analysis for the mixed traction and displacement problem.

Theorem 3.1.9 Let (¢, ¢) € V be the solution of (3.19). Moreover, let Ty, be a
triangulation of I' with h := max{|[| : I, € Tn} and (Y8, $7°) € Vi = SY(Th, p1) X
S%(Tn,po) denote the unique solution of the discrete problem (3.20) with polynomial
degrees py € Ny and p1 € N on the mesh Ty,. Prescribing the reqularity of the exact
solution (¢, ¢) € H, ,(I'y) x H,(I'p) for s,t > 0, there holds

1) = @ S o)

W ) o (3.22)
S (hmm{t—i,p1+§} HwHHf,w(FN) +hm1n{s+§vpo+§} H(b‘

H;w(FD)) :
Proof. See [15], page 174. O

(3.22) shows that if the exact solution is smooth, the convergence rate of the error
is only bounded by the polynomial degree of the discrete solution and if the exact
solution is not smooth, e.g. in the neighborhood of a singularity, small polyno-
mial degrees suffice to obtain the maximal convergence rate. This motivates the
implementation of an hAp-method. The idea of the hp-method is that we increase
the polynomial degree on the boundary elements, on which the exact solution is
smooth, and refine the boundary mesh near a singularity of the exact solution in or-
der to obtain the maximal convergence rate. Thereby, we implement both geometric
and adaptive Ap-methods. Implementing a geometric hp-method, we know a priori
where the singularity of the exact solution is and thus, we prescribe a geometric
hp-refinement, i.e. we refine the boundary near the singularity and choose p = 0
on the smallest element and increase the polynomial degree on the bigger elements.
Implementing an adaptive Ap-method we control the hp-refinement by an appro-
priate error estimator. The numerical results in Chapter 7 show an exponential
convergence rate for both the geometric and the adaptive hp-methods. Note that
the exponential convergence is not yet proven theoretically for adaptive hp-methods,
whereas in [17] there is a proof for the geometric Ap-method.

In addition to the hp-method, we also implement adaptive h- and uniform A- and
p-methods. Note that in [17] it is proven that the convergence rate of the uniform
p-method is twice as big compared to the convergence rate of the uniform hA-method.
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3.2 The Dirichlet Problem and Symm’s Integral
Equation

In this section we investigate the Dirichlet problem, which reads

(3.23)

—divo(u) =0 in Q2
YoU = Up on I

where up € H? (I") denotes the given Dirichlet data. In order to solve the Dirichlet
problem we compute the missing Neumann data ¢ € H ~3 (I") using the first equation
of the Caldéron-sytem, which is called Symm'’s integral equation and reads

Vo= (K + %I) up. (3.24)

Moreover, we consider Symm’s integral equation in a more general way, i.e. we solve
Vo= f (3.25)

for an arbitrary function f € Hz(I"). Defining the bilinear-form a on H~2(I") x
H=2(I') by

a(¢, w) = (Vo,w)
leads to the equivalent variational formulation:
a(¢,w) = (f,w) Ywe H 2(I). (3.26)

Since the single layer operator V' is H _%—elliptic, the lemma of Lax-Milgram implies
the existence of a unique solution.

With the triangulation 7, of I" and the polynomial degree p := py € Név ¢t we obtain
the discrete problem:

Find ¢} € S°(Ty, p), such that Vw! € S%(T,,p) there holds
a(dp,, wy) = (f,wy). (3.27)

Note that we can apply the Céa lemma since the single layer operator is H ~3-
elliptic and thus, (3.27) has a unique solution. Choosing a basis (®;);=1,....dim 59(7,p)
we can rewrite (3.27) to a system of linear equations. Therefore, we define the
coefficient vector x of ¢} with respect to basis ®; and the right-hand side b :=

.....

Vx = b,

where V denotes the Galerkin matrix of the single layer operator. In the spe-
cial case of the Dirichlet problem (3.24), we define the mass matrix M :=

(sz)z;l _______ 3 fﬂ?éf%ﬁ;) with M, ; = (¥;,®;) and assume up to be the coefficient
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vector of up j with respect to the basis ¥;. Using the Galerkin matrix of the double
layer operator we obtain the following system:

1
Vx = <K—|—§M) up.

Concerning the a priori error analysis we state a result that is proven in [15], page
161:

Theorem 3.2.1 (Dirichlet problem) Let T, be a triangulation of I' with h =
max{|[y| : I, € Tn}. Moreover, let s > 0 and ¢ € H*(I") be the exact solution of
the Dirichlet problem (3.24) and ¢}, € S°(Th,p) the solution of the discrete problem
with polynomial degree p € Ny on the discrete mesh Ty,. Then, there holds

1 min{s
16 = &hll 3y S BETET Nl (- (3.28)

3.3 The Neumann Problem and the Hypersingular
Integral Equation
In this section we solve the Neumann problem

{ —dive(u) =0 in (3.20)

vu=g onl.

We compute the missing Dirichlet data uw € H 2 (I") with the second equation of the
Caldéron system, namely the hypersingular integral equation, which reads

W = (% I— K’) g. (3.30)

Here, g € H™2(I") denotes the Neumann data. To solve (3.30) we consider the
variational formulation:

Findue H2(I):  (Wu,v) = <<% I— K’) g,v) YveHz2(I).  (3.31)

Since the hypersingular operator W is not H %-elliptic, we cannot apply Lemma
3.1.6 (Lax-Milgram) and thus, (3.31) does not have a unique solution. In order to
obtain a problem that has a unique solution we introduce some constraints in the
following.

We first consider the homogeneous integral equation , i.e. ¢ =0 in (3.30). Let

R := span{vy, vq, v3} (3.32)
with v; = (1,0)7, vy = (0,1)T and vz = (z9, —z1)?. Plugging in v, (k = 1,...,3)
into the second equation of the Caldéron-system (3.16) yields Wuv, = 0, where
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we use the fact that y,v, = 0 and o(vg) = 0. Thus, R is the solution space of the
homogeneous integral equation. Note that in linear elasticity, v, and v, correspond to
the translations of the body in x1- and zo-direction, respectively, and v3 corresponds
to the rotation of the body and consequentially, R is the set of all rigid body motions
in two dimensions. Thus, the solution of the non-homogeneous integral equation is
unique except for the rigid body {notions. In order to obtain a problem with a unique

solution, we define the space HA(I") := {v e Hz(I) : (v,w) =0, Yw € R} of all

H %(F )-functions that are orthogonal to the rigid body motions and consider the
variational formulation

Find u € HA(I):  (Wu,v) = <(— - K’) g0 Yee Hy(D).  (3.33)

1
Lemma 3.3.1 (i) The hypersingular operator W is HZ(I")-elliptic, i.e.

1
de>0: (Wo,v) > CHUH% Yo e HE (D).

(ii) Let g € H-2(I") be the given Neumann data. Then, for all v € R there holds

(vov, g) =0, (3.34)
which is a constraint to the Neumann data for the solvability of the problem.
Proof.
ad(i) See [16], page 158.

ad(ii) The second Betti formula which is proven in [16], page 18, reads

—/diva(u)Tvdx—l—/fyovayludsx
Q r

(3.35)
= —/diva(v)Tudx+/70uT71Udsw.
Q r

Let u be the solution of (3.29) with —dive(u) = 0 and yu = ¢ (in a weak

sense) and v € R. Plugging in u and v into the second Betti formula yields
<70U7 g> =0.

]

Due to (i) in Lemma 3.3.1 we are in the framework of the Lax-Milgram lemma
1

and thus, (3.33) has a unique solution v € HZ(I"). However, instead of discretizing

HZ(I') which is numerically difficult due to the restrictions (w, v) =0, Vw € H 3(I)
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and Yv € R, we use the restrictions to build a stabilization of the hypersingular
1
operator. We define for u,v € Hz(I)

{w, v)ws = (Wu, v) + Z<u> k) (Vk, V),

k=1

where v, denote the translations in x1- and x»-direction and the rotation, respec-
tively, and solve the modified variational problem

Find u € H%(F) : (u, vV)wis = ((% - K') g,v) Yo € H%(F). (3.36)

In the following lemma we proof the equivalence of (3.33) and (3.36).

Lemma 3.3.2 The variational formulations (3.33) and (3.36) are equivalent.

1
Proof. First, we proof that if u is the solution of (3.36) we get uw € HZ(I"). Since
{vg, k =1,...,3} is a (non-orthogonal) basis of R we choose {wy, wq, w3} C R to be

an orthonormal basis of R. There holds
3
ve=Y ajw; k=1,..3 (3.37)
j=1

where the matrix A = (a;j);r=1,.3 is regular. Moreover, there holds

(1K) g = o)~ (514 K) 0.

_ (g, (%IJrK) w;) =0,

where we used (i7) in Lemma 3.3.1 to obtain the second identity, and the first
equation of the Caldéron System and y;w; = 0 to obtain the last identity. Applying
the second equation of the Caldéron System we get

<WU, U)j) = 0.

Testing (3.36) with w; we obtain

w3 = (W, wy) + > 05 (v, ;) = <(1 - K’) g,w;)

2
k=1

which reduces to

3
Z(u, vg) (v, wj) =0, j=1,..,3
k=1

(u,vq) 0

& Al (uv) | =10

(u,v3) 0
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Since A is regular we have (u,vx) =0, k = 1,..., 3, which implies u € HZ(I').
1
Additionally, if u € HZ(I") solves (3.33), (3.36) reduces to

(W, v) = <(% - K’) g,0).

Thus, both problems are equivalent. O
The discrete problem of (3.36) reads with p = p;

. 1 !
Find uj € SYTh,p) : (uh, vy Wwis = ((5 — K) Gh, V7)) Vop € SYTh,p),

where g;, denotes the projection of the Neumann data to S°(7,, po). In order to solve
the discrete problem we define the stabilization matrix S := (S; ;)i j=1,.p+1 With

3
Si,j = Z<\I’j,’0k> <’le, qu)

k=1

Moreover, let M be the mass matrix and K be the Galerkin matrix of the double
layer operator. Defining the coefficient vectors g of g, with respect to the basis of
ST, po) and u of u? with respect to the basis of S*(7y,p) the system of linear
equations reads

(W +S)u= (%M — KT) g.

Besides the Neumann problem we also consider the hypersingular equation in a more
general way, i.e. we solve

Wu=h (3.38)

for an arbitrary function h € H~2(I"). For solving (3.38) we proceed as above, i.c.
the corresponding system of linear equations with stabilization reads

(W + S)u = b,

Concerning the a priori error analysis we state a result that is proven in [15], page
171:

Theorem 3.3.3 (Neumann problem) Let T, be a triangulation of I with h =
max{|Iy| : Iy € To}. Moreover, let s > & and o € H3,(I') be the exact solution of
the Neumann problem (3.30) and ¢} € S*(Ty,p) the solution of the discrete problem
with polynomial degree p € N on the discrete mesh Ty,. Then, there holds

min{s -1
19 = ¥nll 3y S P P2 19 g, ) (3.39)






Chapter 4
Associated Legendre Functions
and Related Functions

In this chapter, we establish a basis for the assembly of the Galerkin matrices. As
it is shown in Chapter 5, we can reduce the calculation of the Galerkin entries to
the calculation of double integrals of a specific type. Therefore, we investigate the
calculation of these integrals, here.

In the first section, we give the theory we need for the calculation of the double
integrals. We introduce the Legendre polynomials, the Lobatto shape functions and
state some important properties. Note that we use the Legendre polynomials and the
Lobatto shape functions for the definition of the basis functions of the ansatz- and
test-spaces S°(Tr, po) and S*(Ty,p1) in order to derive the hp-BEM for the Navier-
Lamé equation for an arbitrary polynomial degree p. Furthermore, we introduce
the associated Legendre functions and related functions that we need to discuss the
calculation of the double integrals in the second section.

4.1 Associated Legendre Functions and Lobatto

Shape Functions

First, we define the Legendre polynomials by a three-term recurrence relation.

Definition 4.1.1 The Legendre polynomials are defined for z € C by

2k +1 k
| ZPk(Z>_k+1

k
with the initial values Py(z) =1, Pi(z) = 2.

Pk+1(z) = Pk_1<2), k Z 1. (41)

Note that this definition shows one of the most important advantages of the Legendre
polynomials. Due to the three-term recurrence relation it is possible to evaluate the
Legendre polynomials Py(z) with complexity O(k). Moreover, the computation is
well-conditioned for |z| < 1, especially for z € [—1,1] (see [11]). Some elementary

properties are stated in the following lemma.

Lemma 4.1.2

(i) The Legendre polynomials are orthogonal with respect to the L* scalar product,

1
2
Pu(t) P, (1) dt = Sem . k.m € N, 12
/_1k() () TR m € Ny (4.2)
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(ii) For all k € Ny there holds Py(1) = 1 and Py(—1) = (—1)*.

(11i) The antiderivative of the Legendre polynomial Py, is given by

t
1
= — — > 1. .
| Pt = g (Peat) = Pia), k21 (43)
(iv) There holds
1 1
/ / Pk(5> Pm(t) det:45k05mO> k,mENO (44)
—1J-1
and
1 pl 1 —k odd
/ / Peo) Pu(®) 4oy ) Gevm+Dm—n) """ )
st st 0 else

Proof. A proof of (i), (ii7) and (iv) can be found in [10], and (é¢) is proven in [13]
page 79. O]

Property (7ii) in Lemma 4.1.2 motivates the definition of the Lobatto shape functions

as antiderivatives of the Legendre polynomials.

Definition 4.1.3 Let k > 3 and t € [—1, 1]. Then, the Lobatto shape functions are
defined by

M) =15 M=t M- [ Pa(€)ds

Note that in the literature, e.g. in [17], the Lobatto shape functions N are scaled
with the factor

this factor.

m. However, for our application to integral equations we omit

The following properties can be derived immediately from the properties of the

Legendre polynomials.

Lemma 4.1.4

(i) The Lobatto shape functions are related to the Legendre polynomials by

1
2k —3

Ni(t) (Po_1(t) — Ppes(t)), k>3

(i) The Lobatto shape functions fulfill the three-term recurrence relation

2k — 3 k—3
S EN(t) = = Nea(t), k=4

with the initial values N3(t) =

Nk+1(t) =




Section 4.1: Associated Legendre Functions and Lobatto Shape Functions

27

(i1i) There holds Ng(£1) =0, k > 3.

(iv) For m > 3, there holds

8
/ / Pul(s) Non(t) d dt = ¢ (m—k=D)(m+k)(m—k=3)(m+k=2) for m —k even
—1 S —

0 , otherwise,

for m = 2 we obtain

/ / Py(s) Ny(t) d gt —ﬁ , for k odd
S_t ——2__  otherwise

(k—1)(k+2)

and for m =1 we get

/ / Pk d gt — —ﬁ , for k odd

m , otherwise.

Proof. The definition of the Lobatto shape functions and Lemma 4.1.2 (i77) imply
(7). For the proof of the three-term recurrence relation (ii) see [11]. (¢ii) results
from Lemma 4.1.2 (i) and from (7). The representation of the Lobatto function of
(1) and Lemma 4.1.2 (iv) imply (iv) . O
For the introduction of the Legendre functions we are guided by the works of [12]
and [13] and summarize the results that are relevant for the application to the hp-

BEM.
Let us consider the associated Legendre differential equation which is given by

dz 22 —

where we assume m, k € Ny and z € C\[—-1,1]. We start investigating (4.6) for
m = 0. In this case, (4.6) is called the Legendre differential equation and all solutions
of (4.6) are called Legendre functions. The Legendre polynomials that we introduced
above solve the Legendre equation and hence, they are also called the Legendre
functions of first kind. It is shown in [12] (page 51) that every solution of (4.6) has
the following representation

1 1
with polynomials Wj_1(z) that are defined by
2k +1 k
W_i(2) =0, Wy(z)=1, Wi(z)= E 2 Wio1(2) — il Wi_a(2). (4.8)
This motivates the definition of the Legendre functions of second kind @)y by
1 z+1
Qr(z) = §Pk( z) log — = Wi_1(2). (4.9)

An important relationship to the Legendre polynomials is given by Neumann’s for-

mula which is stated in the following theorem.
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Theorem 4.1.5 Let k € Ny and z € C\|—1,1]. Then, there holds

Qr(z) = 3 /_1 Bult) dt. (4.10)

12 —1
Proof. See [12], page 63/67. O

Considering the general case m € Ny we define the associated Legendre functions as
solutions of the associated Legendre equation. The associated Legendre functions
of second kind Q}'(z) are given by

m d™
3

dzm

Qi(2) = (1= 2%

Qi(2). (4.11)

and solve (4.6). With this definition we can generalize Neumann'’s formula as follows.

Theorem 4.1.6 Let k,m € Ny and z € C\[—1,1]. Then, there holds

Q(2) : dt. (4.12)

|
T
[
~—
3
<
—~
—_
|
N
[\
~—
wf3
D
—~
N
|
3
s

Proof. See [12], page 116. O

Since we only need the integral in (4.12) for the application to the hp-BEM, we give
the following definition.

Definition 4.1.7 Let k,m € Ny and z € C\[—1,1]. We define

m o ! Pi(t)

Q' (2) = /_1 mdt (4.13)
07l (z) = / P1) og(z 1) d (4.14)
Q=) == / ) (== ) log(z — ). (4.15)

Referring to [10] and [12] we summarize the properties of the function Q7"(z) without

a proof.

Lemma 4.1.8 Let z € C\[—1,1].

(i) For m > —1 and k > max{1,1 — m}, there holds the three-term recurrence

relation

(k—m+1) Qi (2) = (2k + 1) 2 Q' () — (k +m) Qi (2)-



Section 4.2: Special Integrals Related to the Associated Legendre Functions

29

(i) For k € N there holds the following symmetry property

ReGy'(2) = (—1)* ReQ;'(~2)
mQ;'(2) = (—1)* ImQ;'(~2)
ReQp'(2) = (-1)F Re @y (—2) (4.16)

~ ~ +2mi , for 0 <arg(z) <m
Im @ 1(2) =Im@Q, 1(_3) . )
—2mi , otherwise.

(111) The functions @,;1(2) and @,;2(2) can be continuously extended to z =1, i.e.

the limits lim,_,, Qv,zl(z) and lim,_,, @;2(2) exist.

(iv) The function Qy'(z) is not one-valued for all z € (—oo, —1], i.e the imaginary
part of Q3 (2) has a jump.

(v) ég can be represented by

z+1

QY(2) = Pi(2) log = 2 Wi (2), (4.17)

z —

where the polynomials Wy, are defined by (4.8).

4.2 Special Integrals Related to the Associated

Legendre Functions

In this section we first define some special integrals we need for the calculation of

the Galerkin matrices. Referring to [19], we introduce the following notations.

Definition 4.2.1 Let a,b € C, witha+b & [—1,1] and a — b & [—1,1]. Then, we
define for j, k,p € Ny

ijlj(a,b) = /_11 /_11 P;i(s) Py(t) log(a+bs —t)dtds , (4.18)

17, (a,b) = /_ 1 /_ B R) (Hbsl_ s (4.19)

and for j,p € Ny and k € N

O7Ha,b) = /_11 /_11 Py(s) Nu(t) log(a +bs — t) di ds | (4.20)

0% .(a,b) == /_1 /_1 Pj(s) Ni(t) o bgl_ o dt ds. (4.21)

Moreover, we extend this definition and introduce two more integrals we need for

the calculation of the Galerkin matrices.



30 Chapter 4:  Associated Legendre Functions and Related Functions

Definition 4.2.2 Let a,b € C, witha+b ¢ [—1,1] and a — b & [—1,1]. Then, we
define for j, k,p € Ny

I ~Y(a,b) / / t)Im(a +bs) logla+bs —t)dtds, (4.22)
-1

1
I]pk a,b) / / (t) Im(a+0bs) dt ds, (4.23)

(a+bs—t)pt!

and for j,p € Ny and k € N

jk (a,b) / / t)Im(a+bs) log(a+bs —t)dtds, (4.24)
1
OF t)1 . 4.2
0% .(a,b) / / t)Im(a + bs) (@S bs — e dt ds (4.25)

Since we only need Ijjkl, TjO, ks O?,k; and 5;/% for the application to the BEM we restrict
to investigate these integrals.

The calculation via recurrence relations and the stable and efficient implementa-
tion of 7, and O%, (p € Ny) is described in [19] for a £b ¢ [~1,1]. However,
for calculating the Galerkin matrices we get the special case a £ b = £1 consider-
ing neighboring elements (see Section 5.1). Therefore, we continuously extend the

integrals to a + b = +1 and obtain the following lemma.

Lemma 4.2.3 Let (ap)nen, (bn)nen € C\[—1,1] with lim, ,na, = a € C,
lim, oo b, =b € C and a =b = £1. Then, there holds for j € Ny, k € N

(i) Tt I (ans ba) = I3,
(i) 1imy, o0 Iy (an, bn) = I3,.(a, D)
(i) 1m0 19 (an, by) = 19, (a,b)
(1v) 1My, 00 OF 4 (an, bn) = OF,.(a,b)
In particular, all limits in (i) — (iv) ezist.

Proof. Since all integrals are calculated via recurrence relations we only investigate

the initial values.
ad(i) See [10].

ad(ii) According to [19] the initial values of I?(an,by) are calculated with @gl(an +

bn),égl(an—bn) and @,;1 (1 “") Qk ( 1= a") respectively. Note that a+b =

+1 & # =landa—-b=+4+1 & # = —1. Therefore, we have to

investigate the limit lim, .4, @gl(z) in order to proof (ii). Due to Lemma
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ad(iii)

ad(iv)

4.1.8 (4i7) the limit exists for z — 1. For z — —1, we use the symmetry of
@gl(z) (Lemma 4.1.8 (i7)) which yields

lim Q;'(2) = (=1)* " lim Q. (2) + k27 1,
z——1 z—1
where k = £1 depends on the argument of z.

With the linearity of the integral we get

SPk

ddt
1an—|—b s—t

f]('],k(am bn) Im(an) [J k(an7 + Im / /

Using the three-term recurrence relation of the Legendre polynomials (4.1)
yields for j > 1

J+1 J
WPJ'H(S) + ij_l(S)

and s Py(s) = Pl(s), respectively. Thus, there holds for j > 1

Pi(
//S KO Bi6) g g
1an+b s—t
j+1 ]+1 //
= ddt
{2j—|—1/ /1an—|—b s—t lan+b s—t

and
P
//5’“ ) dsdt — // SRS s ar.
1J_1 Qp+ by s—t _lan—l—b s—t

9 (an, b,) = Im(ay) 19 (an, by)

s Pj(s) =

Hence,

Jj+1 J 0
+ Im(bn) [m I]_H k(an, b ) + m Ij—l,k(am bn) (426)
and
I (an, by) = Tm(ay,) I0 4 (an, by) + Im(D) I (an, by).- (4.27)

With (i) we obtain (7).

With the definition of the Lobatto shape functions N; and N, and Lemma
4.1.4 (i) we get for k > 3

Oja(an; bn) = 5 (Lo(an, bn) = I (an, b))
(I]Q,O(ana bn) + [jo,l(a'na bn))

1
ng(ana by) = % —3 (Ijo,k—l(am bn) — Ijo,k—?)(am bn)) .

N~ N

O?,Q(“ﬂa by) =

Applying (ii) completes the proof.
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]

With this result we see that we can use the results of [19], (4.26) and (4.27) for
the calculation of I S , I I° ', and O . Therefore, we do not go into detail about the
calculation of these 1ntegrals B

It still remains to investigate the integral Ojl-’k for the calculation of the Galerkin

matrices. According to [19], the initial values are calculated by @g(z), which cannot
be extended to z = 1. Thus, we cannot prove the existence of an extension to
a+ b= =£1 in the same way as in Lemma 4.2.3.

In the following, we first discuss the calculation of O;, for a +b ¢ [~1,1], where we
derive formulas that are different from the formulas in [19], and then we show that
5]1k can be extended to a b = £1.

By analogy with (4.26) and (4.27) we get

741
0! (a,b) = Im(a) O}, (a, b) + Im(b) Qﬁloulkw b) + 2]Ho w(a,0)] (4.28)
and
O} 1.(a,b) = Im(a) O}, (a, b) + Im(b) O} (a, b). (4.29)

Hence, we discuss the calculation of 0]1’ (@, b) which is done in the following way:

Os
;1 1 ;1 Olk:
0]71 Oj72 0]73 . (4.30)

This structure for the computation results from the fact that the Lobatto shape
functions N7 and N, do not fulfill a recurrence relation, and thus we have to compute
the first an the second column, separately. Moreover, we calculate the Oik(a, b), j >
2, k > 4, via the four-term recurrence relation

*
* %
*
which is given in [19] (Theorem 19) by
1 a 2j — J—k— 127—-1
Oj,k<a7b): b J+koj lk( b)_]TO] Zk(a b)"’g ]—l—k‘O] 1,k— 1(a,b).

The initial values for this recurrence relation are Og,, O;, and Oj,. Thus, these
values have to be calculated first.

We start investigating the first and second column and obtain the following lemma.
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Lemma 4.2.4 Let a,b € C, witha+b ¢ [—1,1] and j € N. Then, there holds
1~ —1—a ~_ 1—a l~y/(—1—a
0(1)71(a,b):2{Q01 <7]1 b > _Qol (771 b )}"‘ng< b )
1 _ 1 ~0 —1-a) X —1—a
Ohet) = gy (@ (T7) -8 (F7)

~ 1— ~ 1— 1~y [—1—
() (5} o ()

with

1 ,fm’conv{l_T“,_b_“}ﬂ{xER: r<—1}=10

—1 , otherwise.

m = (4.31)

Proof. We start proving the representation of 0371 and 0(1)72. For a,b € C with
at+b¢[—1,1], there holds

1,1 ;
—— dsdt
/_1/_1(a+bs—t)2 ’
—/1 lo (—a—bs+t)+Lbs ds
A a+bs—t/)|__,
! 1—- -1-
:/_110g(b( ba—5)>—10g(b( ba—5>>ds

/1 a+bs a+bs
1a+bs—1 a+bs+1

1

For the first integral we obtain with

—2mi, for arg(a) + arg(b) > 7
log(ab) = log(a) + log(b) + g(a) g(b)
+ 2mi, for arg(a)+arg(b) <7

depending on the arguments of the complex numbers 1’7“, 1’Ta and b

! 1— -1-
/_110g(b< ba—s>>—log<b( 2 a—s))ds
! 1- —-1- !
:/ log 4 — log ¢ s ds+/ k27t ds
-1 b b —1
~ 1— - 11—
:Q61< ; a) _le( ; a) + Kk 4me,
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where k € {—1,0,1}. Note that instead of adding x 4mi explicitly we use the sym-
metry property of Q' in Lemma 4.1.8 (ii) which yields

[ (5 o) ) o (o (F o))
= Q' (mlza) - Q' (m _1b_a),

1 ,forconv{l_T“,_b_“}ﬂ{azeR: r< =1} =10

with

m =
—1 ,otherwise.

For the second integral we obtain

/1 a+t+bs a+bs
qsa+bs—1 a+bs+1

1/1 a+bs a+bs
e

1 /! 1 1
:__/ a(la - )+b(1a8 S )ds. (4.32)
bJa \Ft—s —G*—s 5 —S5 5 —S

With - = 2 — 1, z € C, we simplify (4.32) and get

ds

1
/ a+bs a+bs s

ta+bs—1 Ca+bs+1

1 /1 1 1
== — ds
b . lga —s flbfa — s

~(—1—a ~y(1—a
_ (o A0
(@ (=) -a(5)
Thus, we have

1 1 t
' usdt
/_1 L (atbs—12®
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and the definition of Ni(t) = (1 — ¢) and Na(t) = (1 +t) we get the formula for
O(l),l(a’u b) and O(l),Z(CLv b)
For j € N we use the following result which is proven in [19] (Theorem 16):

+1
I} (a,b) = b2 T I}y o(a,b) +62j - Il o(a,b) +ally(a,b). (4.33)

With the definition of N;(¢) and (4.33) we obtain
0;.(a,b) = (Iglo( b) = I,(a,b))

J J+1
=5(<1—a>1j{o<a,b>—sz [ Daolad) b 501 ()

With the initial values of I}, ([19], Lemma 20 combined with Lemma 17):

Il o(a,b) = % (QO (_1b_ a) — Q" <1 ; a)) (4.34)

we obtain

% (55) -2 (5]

to QO(IT) and QO(
1 ~ —-1- ~ —-1- ~ 1-—
hied = g @ () - (F70) -2 (57
~0 1—a l~y(—1—a
(50 e (),

Note that we added and subtracted %@2 (’11;“). The proof of the formula for

Oj5(a,b) can be done similarly and is omitted here. O

) we obtain

The formula for the calculation of the third column is given in the next lemma.

Lemma 4.2.5 Let a,b € C, witha+b ¢ [—1,1], j > 2 and ny as defined in (4.31).
Then, there holds

o[ (n5)- (o2 [ (0157) -0 (25
(5w @) - (=)
ol (S50 -@ ()] - pl@ () - @ ()| e
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Olstat) =a | (m5%) =@ (w5 ) |+ 50| @ (n75") - @ (=
+ b[@&l <n11;a>—@al nl_lb_aﬂ

| )-a (=)

|-e@(50) - (5]

7N
—
—_ o
IS}

1
3
1
2
_?aa[@g(lba
1
5

[T s e {2 () -2 (50)
g9 () - (5
e (8 () -8 (50))

Proof. The proof can be found in Appendix A. m

The formulas for the calculation of the first and the second row of (4.30) is given in

the following lemma.

Lemma 4.2.6 Let a,be€ C, witha+b¢ [—1,1] and k > 3. Then there holds

Oba0.0) = =7 [P (@ =) = Qs (0 +0) = Qg (o= 1)+ Qs (a+ D)
and
1 1 ~—1 ~—1
OLulah) = g =7 O O (@ 9) = G (a0
— Qs (2 (a4 0) + Qi (n2(a =)
GO+ - - @ - @ la-n)]
with

1 JJorconv{a+b,a—btN{reR: < -1} =10
m{ 1 { Il } .

, otherwise.
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Proof. We start with proving the representation of Oé,k. There holds

ol, = ds dt
0.k /_1/_1 a+bs—t °

1
— N / ds dt
b2 k(1) _1( a 2

—g—i‘%t—s)

1! 1 1
-1 =5t 5T

1 [t 1 1
——— [ N - .
b/1 k(t)<a+b—t a—b—t) dt

Applying the representation of the Lobatto shape functions in Lemma 4.1.4 (i) and

using the definition of QY we get the formula for O} - For the second identity we
obtain analogously

lk_/ / a—i—bs—t latbs—p2 @

5 ds dt

+t—s
b_12 1 Ni(t) (log (8 + % - %t) + (%t - %) ﬁ)
b_12 Nk(){log(l—k%—%t) log( +Z_%t>

As it is done in the proof of Lemma 4.2.4 we simplify the logarithm terms in (4.36)
by
/1 Ny (t) {log <1 + 2o 1t) — log (—1 +3- 1t)} dt
1 b b b b
! 1 1
:/_1Nk(t) {log <5(a+b—t)> — log <5(a—b—t)>} dt

_ /l Ni(t) {log (a + b — ) — log (a — b— 1)} dt+r@2m’/1 Ny (1) dt,

1

dt

s=—1

where £ € {—1,0,1}. Since f  Ne(t) dt = 7 <f_11 Pre_1(t)dt — f_llPk_g(t) dt) =
-3 2 .3 we obtain

! a 1 a 1
Ni(t 10g(1+———t>—log(—1+———t>}dt
/_1 ’“U{ b b b b

1

=53 {@E_ll (2 (a+ b)) — Qrty (2 (a = b)) — Qs (2 (a4 b)) + Qi 24 (12 (a — b))} 7
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where we define ny by

1 forconv{a+b a—-blNn{zeR: z< -1} =10
N2 =
—1 ,otherwise.

Again, we added & % i O 3 implicitly by point reflection of a + b and a — b using the

symmetry property of @a !. For the remaining terms in (4.36) we get

! 1 a 1 1
N (t t— - — dt
/1 ’“(){(b b) (—%+%t—1 —%+%t+1)}
1 a—1t a—1
= N (t — dt
/_1 k()(a+b—t a—b—t)
1 1 1
= -} N (t — dt
/_1 k()(a—i-b—t a—b—t)

- ka_3 <~271 (a+0) = Q) (a—b) = Q)5 (a+b)+ Q) (a—b)) ,

Note that we used ﬁ = % —1, z € C, for the second identity. Putting the results

together completes the proof. O

With the last three lemmas, (4.28) and (4.29) we can calculate 5]1-7k(a, b) provided
that a+b # +1. However, it still remains to investigate the existence of an extension

of 5jlk for a &= b = £1 which is done in the following theorem.

Theorem 4.2.7 Let (an)nen, (bn)nen € C\[-1,1] with lim, ,wa, = a € C,
lim, ;oo b, =b€ C and a £ b= +1. Then, there holds for j € Ny, k € N

lim O} (ay,b,) = O} (a,b).

n—o0 J

Proof. To proof the existence of an extension we use the representation (4.17) of @2

which reads

z+1

ég(z) = Pi(2) log 1 2Wi_1(2).

y —
In particular, we divide the representation of ég(z) into a singular term with coeffi-
cient Py(z) and a polynomial 2 Wj_;(z). Thus, we only consider the singular terms
in the formulas for the calculation of 6]1k and show that they add up to zero. Since
the way of proceeding is the same in all cases and since there are many cases due to
the different formulas for the calculation of 6jlk we restrict to investigate 5571. In

this case we consider

1 —
a+b=1 & bazl
11—
a+b=—1 & ; T
1_
a—b=1 & T-
b
1
a—b=-1 & T

b
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Let (an)nens (bn)nen be as provided in the theorem. Then, we get

o= 50 (1 (0 ) i 052}
I bn ) —1—a, ~ -1 —a,
e () e ()
_Qvg (1;0%) +©8 (1gan>} n Imb(bn)ég (—16— an) ‘

In the case a + b = 1 we define z, := 1;% — 1 (n — o0) to simplify the notation.
For the singular terms there holds

(=5.)

Tim Fméb”) (@8 (=) + Q8 (zn))}

N Imﬁ(b) o [( Pa(zn) + Po(zn) ) log Z : ﬂ + Img(b) (Wi(1) — W_i(1))
—0 (n—)oo)
Im(b)

= —— (1) = Wi (1)).

Note that the Legendre polynomials vanish due to Lemma 4.1.2 (i7)
a+b= —1 we define z, := _11;“"

. In the case

— 1 (n — 00). For the singular terms there holds

Im(an) o Im(b,) ~o 0
nll_>Holo b Qo (2n) b, Q1 (zn) + (Q2 Zn) QO (Z")>]
i [{ o) Im;f“pl )+ g’ (P = B () o 2
N Im(a+b)t —0 (n—o00)
=== =0 (n—o0)

-2y ) - 28w ) - 2 s ) - )
_ Im(a) Im(b) Im(b)
@y )~ 2Oy ) - 2O s 1) <, )
In the case a — b = 1 we define z, := =% — —1 (n — o0) and obtain

i [P0 (8 )+ G )]

) [(—mzn)j Pzw) g 2 ﬂ + 20 1)~ (-

—0 (n—o0)
_ Im(b)

= 22 WA(=1) = Wi (1)),
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For a — b = —1 we define z, := %;““ — —1 (n — 00) and get
- Im(an) ~o Im(b,) ~, Im(bn) (~g 0
i [0 (e + G0 )+ 220 (@) - )

~ lim H\Imb(:”)Po (2) + Imb(b’"b)P1 () +2200) oy B ) } log % 1}

n 6 ~ N no 1
*)Im(z—b)‘:ro (noso0) g —0 (n—00)
LG e CI ey
_ —Imgfa) Wy (~1) Imb(b) Wo (—1) — Img,(b) (W1 (=1) = W_y (=1)).

Thus, we obtain finite values for 5371 (an £ b, — £1).



Chapter 5
Realization of the hp-BEM for the

Navier-Lamé Equation

In this chapter, we describe the realization the hp-BEM for the Navier-Lamé equa-
tion. We begin by introducing a parametrization and some notations that we need
for the calculations in this chapter. The main point for implementing the Ap-BEM
for high polynomial degrees is the choice of the basis functions of the discrete spaces
S%(Th, po) and S*(Ty, p1), which is described in the second section. The calculation
of the Galerkin matrices is given in the third section. We close this chapter by
introducing some a posteriori error estimators that can be used to create adaptive
algorithms.

5.1 Geometrical Basics

In this section we introduce a parametrization of the boundary elements and state
some geometrical results that we need for the calculation of the Galerkin matrices.

Let I'; € T, be a boundary element. Defining the center my, := A“QLB‘ of the boundary
element [y we introduce the following parametrization

[—1, 1] — Fg

Ve : B, — A 0.1
t - =L, 51)
2
Note that we obtain v,(t) = B‘%AZ and |yy(t)| = ‘%‘I, and
2

Hr) = —————(By— AT (x — my),
Ve ( ) HBE_AEHQ( l Z) ( 5)

which implies

. By — Ay
V’W (l’) 2”BZ—A4H2

As we see in the subsequent sections all calculations for the Galerkin matrices are
performed for a fixed combination of boundary elements. Therefore, we consider the
boundary elements I, I, € T, with x € I'; and y € [},,. The configuration is given
in Figure 5.1.

Using the parametrization and the vectors u :=
r=my+sv and y = m,, +tu with s,t € [-1,1].
In the following we take a closer look at the term |z — y|?. With w = m,, — my

Bm—Am “— BZ_AE
Zmofmoand v = S50 we get
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I

Fig. 5.1: Configuration of the boundary elements I, and I7,.

there holds v —y = my — m,,, + sv —tu = sv —w — tu and hence

lz —y|* =|sv—w—tul?
=(sv—w—tu)(sv—w—tu)
=vulut® —2(sv—w)ut+ (sv—w)(sv—w)

= ulu(z(s) — t)(2(s) — t), (5.2)

where z(s) is one of the zeros of the quadratic equation with

(sv—w)Tu++/[(sv—w)Tu2 — uTu(sv —w)T(sv— w)'

uT'u

2(s) =

Applying the Lagrangian identity we get
[(sv—w)Tu)? —u"u(sv—w)(sv—w)=—[ux (sv—w)?
which yields

(sv—w)Tu+iux (sv—w)

2(s) =

uTu
To simplify the notation we define a := % and b := % and get
z(s) =a+bs. (5.3)

Note that in the special case of identical elements I',, = I, we get t —y = (s —t) u
and z(s) = s. Moreover, one can show that in the case of neighboring elements, i.e.
Ay = B, or A,, = By, we get a £ b= =+1.
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5.2 Basis Functions of the Discrete Function Spaces

In order to calculate the Galerkin matrices it remains to choose an appropriate ba-
sis of the discrete spaces S° (T, po) and S* (T, p1). Thereby, we do not choose the
monomials, as it is done in the standard approach, but we choose the Legendre
polynomials and the Lobatto shape functions, as they fulfill recurrence relations
and can be evaluated efficiently up to a high polynomial degree. Additionally, this
choice of the basis functions leads to recurrence relations the Galerkin entries can
be computed with very efficiently.

In the following we describe the basis functions more precisely. Let 7, be a tri-
angulation of the polygonal boundary I with N, corner points and N = |T].
Additionally, let py € N and p; € NNet,

As the functions of S° (7, py) are piecewise polynomial, globally discontinuous func-
tions, we choose the transformed Legendre polynomials as basis functions, i.e. the

basis is given by
PY(2) 0
j ~
( 0 and Pj(z) ()

where the transformed Legendre polynomials are defined by ﬁj(g) (z) == (Pjovy, Y)(x)
for ¢ =1,...,Ng and j =0, ...,po . Note that

(7)) <o 50} -5

and thus, we have a local basis, i.e every basis function only lives on one boundary
element. For the implementation we sort the basis functions as follows:

1. The basis functions are sorted by their non-zero entries, i.e all basis functions
whose first entry is non-zero are listed first.

2. The basis functions are sorted by the boundary element they live on.
3. The basis functions are sorted by their polynomial degree.

All functions in S*(7y,p;) are globally continuous and hence, we cannot choose the
Legendre polynomials as basis functions. However, the Lobatto shape functions
N;(t) vanish at the endpoints £1 for all j > 3 and thus, we choose the transformed
Lobatto shape functions as basis functions for j > 3

(Vo) (),

with Nj@ (z) == (N; o, ")(x). Again, there holds

(T} -om{()} -5

However, the first two Lobatto shape functions N; and N; do not vanish at the
endpoints. Hence, to ensure the global continuity we add hat functions to the basis,
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that live on two neighboring elements. Thus, we have both linear basis functions
that live on two elements and basis functions of higher polynomial degree that live
on one element. For the implementation we introduce the following oder of the basis
functions:

1. The basis functions are sorted by their non-zero entries, i.e all basis functions
whose first entry is non-zero are listed first.

2. All hat functions are listed before all other basis functions with higher poly-
nomial degree.

3. The basis functions are sorted by the boundary element they live on.
4. The basis functions are sorted by their polynomial degree.

Figure 5.2 shows an example of the basis functions for three elements and py = p; =
(1,2,3). In particular, the figure shows the enumeration of the basis functions of
St (T, p1) within one component.

' \ /I
\ ) /]
05 \ ~ / j’ \‘
/ \ // J"
/ /|
0 t %‘ 7
I\ \ /]
| / |

N

05 1 15 2 25 3 0 0.5 1 15 2 25 3

Fig. 5.2: Basis function for S° (75, po) (left) and S* (T, p1) (right) for three elements
and po = p1 = (1,2,3). Source: [3].

Finally, we define the number of degrees of freedom with respect to the discrete
space S° (Th, po) by

Nel

N = dim S° Ty, po) = 2 Z (pox +1)

k=1

and the degrees of freedom with respect to S* (Ty, p1) by

Nei
N = dim S* (T, p1) = 2 <Z(p1’k - 1)+ Nc> )

k=1

Considering different types of boundary conditions we denote the degrees of freedom

on the Dirichlet boundary by N}, := dim S*(7,.p,pi), on the Neumann boundary

by N := dim S (T, n,p;) and on the gliding boundary (subsequently defined) by
&o=dim SY(The,pi) (i =0,1).
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5.3 Computation of the Galerkin Matrices

In the section we describe the calculation of the Galerkin matrices. In particular, we
derive analytical formulas that depend on the double integrals that we introduced
in Section 4.2. Hence, we can assemble the Galerkin matrices efficiently and stably
for high polynomial degrees. In the first section we investigate the Galerkin matrix
of the single layer operator and in the second section we describe the calculation of
the Galerkin matrix of the double layer operator. Finally, we derive formulas for
the entries of the Galerkin matrix of the hypersingular operator.

5.3.1 The Single Layer Operator

With the definition of the basis functions for S°(7;,p) the Galerkin matrix for a
fixed combination of boundary elements I, and I, with polynomial degrees p, and

Pm reads:
B\ (O B\ (O B 0 B
()0 e ()0 e () o) e () (3

AW (B
() (%)

(m) )
v (%) ()

ﬁ(m) ' 0
() ()

<V <~m
Bfm™

)

5144
PO“>
0

(V(

0
Pm

)

a
0

)

0
5O

)

\%4
4
\%4

(m)
0
B
0 b
0
< (1315?) ’ (Po

0
5O
0
{4
A
0
20

)
)
)

0 . PO 0 - PO 0 . 0 0 0
(V <150(m)> ; < ’(’f >> (v (ﬁé?) ; ( f)‘ >> (V <}5(§m)> ; <§1§5>>> 1% (g}g:)) , (13155)>>

Using the given block structure of the Galerkin matrix, we compute the 2 x 2 matrix
of the (7, k)-th entry ( =0,...,pp and k = 0, ..., p,,) of each block, since there holds

plm) PO plm) 0
L N I A D T ) Y i
0 0 0 pj“) ) -
j 12 m
Vg ) o ) e )\ ) 7
k k i — ‘/‘vj’k,m)

For the calculations, we distinguish the case of identical elements I, = I, and
non-identical elements |1, N I},,| = 0 and investigate both cases, separately.
Starting the calculation of Vj(im) for identical elements, we need the following result

that is proven in [10].

Lemma 5.3.1 Let Iy € Ty, be a boundary element with hy := |I;| and k,j € Ny.
Then, there holds

/ ﬁ]@ (x) / log |z — y|f’,§é) (y) dsy ds,
I, I,

"log (h2)—3) , forj=k=0
2h7

=\ TR GETD for g+ k>0 and j —k even

0 , otherwise.
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With Lemma 5.3.1 we obtain the following explicit formula in the case of identical

elements.

Theorem 5.3.2 Let I, € T}, be a boundary element and u be the directional vector
of Iy as defined in Section 5.1. Moreover, let j,k € Ng. Then, there holds in the

case of identical elements
A+ 3u A+ uut
vUO = LT Ty (01— S 46,0650 —— | |
gk (N + 2p) e\ Vi A+3p OT0Ty

where

(2log (4v"v) — 6) , forj=k=0
Hk,j -

8 . .
GGG for j+k >0 and j —k even

0 , otherwise.

Proof. For reasons of clarity we split the Kelvin matrix (3.2) into the two parts (1)
and U® with

A +3u
A (N + 2p)

Ulz,y) =

<b@x_ml_k+u(w—ww—yf)

A3p oz —yf?
= UMW (z,y) = U@ (z,y)

and investigate both parts, separately. We get

/p PO(x) | Ux,y) B (y)ds, ds,
L

Iy

- @ P (x lJ( ) T,y P Yy ds de
1 ()\ 2,“) ” J ( ) ) ( ) k ( ) Y

P (x x,y) P, (y) ds, ds,
)\ 3 ) J ( ) ) ( ) k ( ) )

Using Lemma 5.3.1 there holds for the first integral

/ PO®@) [ UV (z,y) PO (y) ds, ds,

Iy Iy

= / f’j(z)(x) / log |z — y| lgk(é)(y) dsyds, 1 =0y;1
Iy I,
with

2log (4u"u) — 6 ,forj=k=0

8
(+k+2) (k) ((G—Fk)>-1)

0 , otherwise.

9k7j =

, for j+k > 0and j — k even
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Note that we used the fact that hy, = 2 |u|. For calculating the second term we plug
in the parametrization and use (z—y) = (s—t) u, which we already stated in Section
5.1. Thus, we obtain

/ POy )/ U<2>(x y) PO (y) ds, ds.

— 9 50() P (2) ds, d
2 k <y> 7 (27) Sy Sg
r,Jr, |x ?J|

F2
”' //Pk (s)ds dt
1 u-u

= 45k0 (530 UU

Note that we used (iv) in Lemma 4.1.2 and v"u = |u|? = & -

Putting the results together completes the proof. O]

In the case of non-identical elements we reduce the calculation of V(e’m) to the cal-
culation of the integrals I kl and [ Ok that we introduced in Chapter 4. For reasons
of clarity we split the Kelvin matrix into two parts and investigate both parts sep-
arately, as it is already done in the proof of Theorem 5.3.2 (See (5.4)). We start

investigating the first part of the Kelvin matrix and obtain the following lemma.

Lemma 5.3.3 Let Iy, I, € Tp, be boundary elements with |I,NI[,,| = 0. Moreover,
let w and v be the directional vectors of Iy and I, and z(s) = a+ bs as defined in
Section 5.1. Then, there holds for 7,k € Ny

[ 0@ [ 00 B ) ds, s,
Iy m

= |u| |v| {2 log(u"u) 6xodj0 + Re (I;kl(a, b))} L.
Proof. We start plugging in the parametrization and obtain with |u| = ‘M o] = el

2
and z 1= z2(s) =a+bs
/ P(e)(x)/ UWD(xz,y) f’,ﬁm)(y) ds, ds,

-/ / log |z — y| B (y) P (w)ds, ds, 1

Iy

IUI [l

/_1/_110g|3“— — tul*Py(t) Pj(s) dtds 1

_ |u| o]

/ / log(uTu(z — )(Z — 1)) Pu(t) P;(s) dtds 1

|U| |U (10g u u / / Pk dtdS—F/ / log Z—t Pk( )PJ(S) dtds

+/_1 /_1 log(z — t) Pi(t) P(s) dtds) I (5.5)
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Since there holds logz = log z, Vz € C, we obtain

//logz—t Pu(t)P dtds_/ / log(= — ) Py(t)Py(s) dt ds

and hence,

//logz—t Pu(t)P dtds+/ / log( — ) Pu(t)P;(s) dt ds
_2Re(/ / log( — 1) Pk()P()dtds)

With the definition of I;,; and (iv) in Lemma 4.1.2 we can write (5.5) shorter

[P0 [ 0 B s, s,
I I
= |u| Jv| {2 log(u"u) 6xod;0 + Re (]jfkl(a, b))} 1
]

Before we investigate the second part of the Kelvin matrix we state the following

partial fraction decompositions that we need for the calculations.

Lemma 5.3.4 Lett € [-1,1] and z € C\[—1,1]. Then, there holds
‘ t2 B Re(z)? — Im(z)? 1 1
O TohEmn T T 2 <z—t z—t) Re(z ( t+z—t)

(i1) (z—t)t(z—t):_;<zit+zit> 211m1< z—t>

(i1) (Z_t)l(z_t) - _21'1;1(,2) (Zit - Z_t>

Proof. The proof can be done by multiplying the equations with (z —¢)(Z — t) and

comparing the coefficients. O

For the second part of the Kelvin matrix we obtain the following result.

Lemma 5.3.5 Let [, I, € Tp, be boundary elements with |I,N1,,| = 0. Moreover,
let w and v be the directional vectors of Iy and I, and z(s) = a+bs as defined in
Section 5.1. Then, there holds for j, k € Ny

./i f¥”<a»t/; (f”’Cx,y>f%"”<y>dsydsm
L m

UUT — U/J_UJ_T

uTy

= |ul ]v[{45k0 5]0 —i— Im ([]Ok(a b))

. T
_Re (J;{km, ) w}

uTu
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Proof. First, we investigate U®)(x,y). With the parametrization and z := z(s) we

obtain

(z —y)(z—y)"

|z —yl?
(sv — (w4 tw))(sv — (w+tu))T
uTu(z —t)(Z —t)
t? T t

T WTuz— 0z -0 WTu(z—D(E ¢

U (z,y) =

] ((sv —w)u” +u(sv— w)T)

(sv—w)(sv—w)’.

TG = DE =1

In general, every vector b € R? can be represented by a linear combination of u and

uy = (ug, —up)7, ie.

Applying this identity on sv — w yields

ul'(sv —w) u X (sv—w)
SV —w = u— Uy
uTu uTu

= Re(z) u — Im(2) ug,

where we used the representation of z(s) in (5.3). Hence, we get

VR = g - e
t T .
_ Tz =1z 1) (u (Re(z)u — Im(2)uy)” + (Re(z)u — Im(2) uy ) u )
1

-+ UTU<Z _ t)(? — t) (Re(z) u — Im(z) UJ_) (Re(z) u — Im(z) UJ_> ,

which we can further simplify by applying Lemma 5.3.4 as follows

U (a.y) = u;qu N Re(z)jlm§3(2)2 (zit - zit> ~ Re(2) (zit + Z;)}UUT

+{; (Zifrzit) +2?§f12) <Zit —Zit)} (u(Re(z)u—Im(z)uL)T

+ (Re(z)u — Im(2) uy) uT>

20 1;1(2) <Z 1 PR i t) (Re(2) u — Im(2) u ) (Re(z) u — Im(2) UL)T]
R

Im(z)< 1 i 1 )UJ_UT“FUUJ_T
B .

5.7
—t z—t uT'u (5.7)
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With this representation of U and the linearity of the integral we obtain

[ B0 [ e B ) s s,

T
|u||v|{// dtds#
-1J-1 usu
1 1 wul —u u,
— P;(s) P(t) 1 — dtds ———————
+2i /1/1 5(5) k()m(z)(z—t i—t) i ul'u
1 [+t 1 1 wiut +uu, T
— = Pi(s) P(t) 1 dtds ———— 3.
2/1/1 (5) k()m<z)<z—t+§—t> ° ulu }
In general, for all z € C there holds % = ? which implies that
1 1
// (z)( = )dtds
z—1 —t
I
/ / O I(2) g / / =) 4 ds
:2ilm(/ / Fi(s) B ()dtds) (5.8)
1J-=1 Z—t

/ / (z)<zit _115) dt ds
// DIm(2) 4 g +// (Z)dtds
= 2Re (/_1/_1 (5 Z’“_t m(z )dtds>. (5.9)

With the definition of 1:;9 w(a,b) and Lemma 4.1.2 (iv) we finally have

and

/p P (x) / U@ (2, ) B (y) ds, ds,
Y4 m

uu” w® —wiw. T
= |u] ]U|{45k0 00 —— T + Im ([]k(a b)) T“
70 wyut + uu,”
~Re (Ty(a,0)) T}

]

Putting the results of the previous lemmas together we get a formula for the com-
putation of the single layer operator.

Theorem 5.3.6 Let Iy, [, € Ty be a boundary elements with |I;, N I,,| =0 and u
and v be the directional vectors of I, and I, and z(s) = a+bs as defined in Section
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5.1. Moreover, let j,k € Ny. Then, there holds

(m) _ A +3p T ' 1
Vik = IO + 200 |ul |v|{ [2 log(u” u) 6xodjo + Re (INC (a, b))} I
Atp uu” 70 uu? —ujuy T
T T
- 70 uLu tuu
Re (19 (a, b)) “2 ] }

5.3.2 The Double Layer Operator

The Galerkin matrices of the single and the double layer operator have the same
2 x 2 block structure, as the basis functions of S°(7y,po) and S*(Ty,p1) are sorted
similarly by their components. Therefore, we compute the entries of the Galerkin
matrix of the double layer operator similarly to the entries of the matrix of the single
layer operator. Hence, we calculate for a fixed combination of boundary elements
Iy and I, with polynomial degrees py s and p1,,, (j =1,...;p1pand k= 1,...,p1m):

A (m) 5 ~7(m)
N P; N, 0
(K ’6 3 A S ;6 A0 )
( ~ -
5(0) ! = / PO (z) / T(x,y) N\™ (y) ds,, ds,.

g By k[0 0| Lo r,
{ N™ L o N )| po -

k k b _. KJ( ,I;m)

Again, we distinguish the cases of identical elements and non-identical elements. In

the case of identical elements we derive the following explicit formula.

Theorem 5.3.7 Let I, € T}, be a boundary element and u be the directional vector
of Iy as defined in Section 5.1. Moreover, let j € Ny and k € N. Then, there holds
in the case of identical elements
v u——— VR S
gk 2 (A +2p) [ul mj
where for k > 3

8 .
~ GGGty ¢ JorJ —k even

/)7‘77k :: .
0 , otherwise,
and
2 ~ 2 ~
Nj2 = TG+ , for j odd N = CS)) , for j odd
I’ 2 . ) ’ : 2 .
—GThGT) otherwise 06 otherwise.

Proof. In the case of identical elements there holds (z—y)Tn(y) = (s—t) u'n(y) = 0.
Plugging in the parametrization we obtain for the co-normal derivative T'(z,y) of
the Kelvin matrix that is given in (3.3) with ¢t := t(y) = >

|yl

po (z—y't
T —
@) = v 20 o =P
" 1 1

IxTI.

- 2m(A 4 241) |u] (s — 1)
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and thus

f%’/ﬂ@/mwwumm
Iy

Ni(t) Pi(s)
ddtI I.
A+2u"// 8

Simplifying the notation we define 7, := f I, ' M dsdt. Thus, we obtain

1

¢ —
gok 27(A + 2u)

|U’ M.k IxI.
With (iv) in Lemma 4.1.4 we get for k£ > 3

8
 (k—j—1)(k+j) (k—j—3)(k+j—2)

, for j — k even

Mk = .
, otherwise,
and
2 ~ 2 »
Mz = _](j—+1) y for ] odd ’ M1 = —m s for J odd
7 —m , otherwise 7 m , otherwise,
which completes the proof. O]

In the case of non-identical elements, we derive a formula for the computation of the
Galerkin entries that depends on the integrals O, (a,b) and O}, (a,b). To simplify
the calculations, we split 7'(z,y) into three parts:

o (z —y)"n(y) [ (x —y)"t(y)
O =00 ook TamOrom Je—sP
= 70(z.) =)
R W o1
T2 oo ;
— TO)(z, )

In the following we successively investigate all parts stating the next three lemmas.

In the of this section, we summarize the results in Theorem 5.3.11.

Lemma 5.3.8 Let Iy, I, € Ty, be boundary elements with |y N I,,| = 0. Moreover,
let w and v be the directional vectors of Iy and I, and z(s) = a + bs as defined in
Section 5.1. Then, there holds for 7 € Ny and k € N

/pﬁ;@(:ﬂ)/ T (z,y) N'™ (y) ds, ds, = |v|Im (07 4(a, b)) 1 (5.12)

m
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Proof. First, we investigate 7" (z,y). Plugging in the parametrization we obtain
with n :=n(y), z := 2(s) and (5.2)

10(ag) = 0
_ (sv—w—tu)ln
uTu(z —t)(z —t)

_ (sv—w)n 1

where we used

(sv—w)'n _ (sv—w)xu  Im(z)

uTu  uTulu ]

With the partial fraction decomposition in Lemma 5.3.4 (iii) we get

T(l)(x,y):2i1‘u|( CHI ) (5.13)

z—t zZ—t

Thus, we obtain for the integral

/p P(x) / T (2, y) N™(y) ds, ds,
¥4 m

— ] Jo] — /1/1N(t)P-(s) Lo b)) sart
B 2lul J ) z—t Z-—t

([ [ 2B )

Note that we obtain the last identity with (5.8) by substituting Py (¢) with Ni(t).
Plugging in the definition of Of,(a,b) yields (5.12). O

Lemma 5.3.9 Let Iy, I, € Tp, be boundary elements with |, N 1,| = 0. Moreover,
let w and v be the directional vectors of Iy and I, and z(s) = a+bs as defined in
Section 5.1. Then, there holds for j € Ny and k € N

/F PO (2) /F T® (2, ) N (y) ds, ds, = o] Re (0%, 0) Ix 1. (5.14)
£ m

Proof. As in the proof of the previous lemma we start with investigating T (z, y).
With the parametrization, t(y) = ik z(s) and (5.2) there holds

 (sv—w—tu)u
R ITER P e S
i{(sv—w)Tu 1 t

Tu G-DE—1) (z—t)(z—t)}IXI

Jul
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Applying (7) and (i) in Lemma 5.3.4 we get

T®(z,y) = ﬁ{ {;11(12) (zit _2115)
_2?1(;(12) (zit—zit)
:2|1u| (ziﬁzit)l“' o

Hence, by using (5.9) we obtain

/ ﬁj@)(ff)/ T® (2,y)" N(m)( ) dsy dsq
T,

14
1
= |u| |v] == /Nk — = dsdt Ix1
2[| z—t Z-—1
Ni(
:|U|Re<// Nu®) Py(5) ddt)IxI.

Plugging in the definition of O?}k(a, b) completes the proof. O

Lemma 5.3.10 Let Iy, I}, € Tp, be boundary elements with |I,N1,,| = 0. Moreover,
let uw and v be the directional vectors of Iy and I, and z(s) = a + bs as defined in
Section 5.1. Then, there holds for j € Ny and k € N

/F PO () / TO) (2,5)7 N™(y) ds, ds,
Y4

m

=)

wul —uu)”

= 2{Im (0%4(a,b)) I - Re (@{k(a, b)) (5.16)

(upu? 4+ uu, T)
ul'u

uTu

~Im (5;.,,@(@, b))
Proof. We start simplifying T (z,y). Since there holds
T(g) (l‘, y) - T(l) (ZE, y) ’ U(2) (I, y)

we use the representations (5.7) and (5.13) and obtain

T T _ T
TG) (3,4)) = '1 < 1 771 ){uu JrIm(.z) (zl 771 >uu U U

2ijluf \z—t z-t) |ulu 2i -t z-—t uTy
_Im(z)< 1 N 1 >(uluT+uuLT)}
2 z—t zZ—t uTu
1 (1 1 1 wul  Im(2) 1 1\ wu? —uju, T
:M{Qi(z—t_z—t>uTu_ 4 <z—t_z—t> uTu
1

~ Im(z) 11 N 1 (upu® +uu,T)
43 22—t Z—t z2—t Z—t ulTu '
With

(zit_zit)zz <(z—115)2Jr (z—lt)2) +iIIr11(z) (zit_zit>
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and

_Im(z)( 1 1 )(uLuTJruulT)}

(z—t)2 (z—1)? ulu

111 1 we” +uguy”
o |ul\4i\z—t Z—t ul'u
Im(z)< 1 N 1 >UUT—ULUJ_T

4 (z—1)2  (z-—1)2 uTu

_Im(z)( 1 1 )(uLuTﬂmlT)}

45 ul'u

G-t -1

Simple calculus shows that % = I and thus

T(s)(x’y):1{41i< L1 >I_Im(z)<( Lo, )UUT_ULULT

|ul z2—t zZ—t 4 z—1)2  (z—1t)2 uTu
Im(z) 1 1 (uru! +uuy®)
4 (@-t)?‘ (z—t)2> uTu }

In general, there holds = t)Q = ﬁ, t € R, z € C, which implies

| [ woreme (- et ) s

1/ (z—-1)? (z-—-t

e Nl PN 4,y [ [ ROEGmE),,

11 —t)? (z —1)?

— 2 Tm (/_1 _IN(t J_)) m(z) dsdt) (5.17)

and

/_11 /_11 Ni(t) P;(s) Im(z) <(E—1t)2 - (E—lt)2) ds dt
_ / / Nku)Pj(st)im(z) Jsdi 1 / / Nk<t><?fst))£m(z> o

= 2Re </_1 3 (t)( Fi(s )) ()dsdt>. (5.18)
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Thus, we obtain for the integration with (5.8), (5.9), (5.17) and (5.18)

/Fﬁj(e)(x)/ TG (z,y)" ]V,gm)(y) dsy dsg
4 m

(] f )

z—
N P T T
—Re</ / w(t ]s) m()dsdt> uut —uug

z—1)? ulu

)
~ 1m </ / Ny t)i % () Im( )dsdt> (ULUZ;LUULT)}
b

Applying the definition of O, (a,b) and Oj1 .(a,b) completes the proof. O

Summarizing the results we have the following formula for the computation of the

Galerkin entries for the double layer operator.

Theorem 5.3.11 Let I, I}, € Ty, be boundary elements with |I, N I, = 0. More-
over, let u and v be the directional vectors of I, and I, and z(s) = a+bs as defined
in Section 5.1. Then, there holds for j € Ny and k € N

K(£7m) _ ‘U|Im (O (a’ b)) I+ ARG (O?’k(a, b)) IxI

Ik 2 (A + 2p)
(A v ~ vul —wiu "
2(A +2p) Re (Oj’k(a’ b)> ulu (5:19)
T T
~ (ugu' +uuy™)
+Im (Oj’k(a, b)) T } .

5.3.3 The Hypersingular Operator

Instead of deriving an analytical formula for the computation of the Galerkin matrix
of the hypersingular operator, as it is already done in the previous sections, we
proceed as in [5] and use the formulas for the single layer operator and the property
(v) in Lemma 3.1.5, i.e.

d d 1
(Wipr,1hg ) = <V*%¢1, E%) Vi, € H2(I). (5.20)

We calculate for a fixed combination of boundary elements I, and I3, and for fixed
polynomial degrees j (1 < j <p,) and k (1 <k < p,;,) the 2 x 2-matrix

cd (NN d (N A (N d (0
vV ds( IE) )’ds( 6 ) v ds IE) ds Nj@ )
wd (0N d (N d (0N d(0
V" 35 (;vp)ads( 0 ) Vias\Fm) @ \vo )

Thereby, the arc length derivative of N ]@ is given by

LRO@) = & (Nyoni) ()

= (Njoy ') (@) - 'V, Y,
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where t denotes the unit tangential vector of I, with ¢t = ﬁ and u as defined in

Section 5.1. Then, we get with B, — Ay =2u

1 2u
'V =t :
T T Wl

Moreover, using the definition of the Lobatto shape functions we obtain for 7 > 3
NI(t) = Pi_s(t), N3(t) = 5 Po(t) and Nj(t) = —35 Py(t) which yields

)

%Wwbﬁémm

S = o Be)
and

SO =~ @)

Thus, we calculate for j,k > 3

(0 CF) 050 (5 ()
A e (2. (P 0 () ()

Note that the other cases j < 3 or k£ < 3 arise analogously.

As we already stated in the introduction the operators V and V* are only distin-
guished from the factors of the kernel function. Hence, we use the result from Lemma
5.3.3 and Lemma 5.3.5 and obtain a formula for the calculation of the entries of the
Galerkin matrix of the hypersingular operator.

5.4 A Posteriori Error Estimators

In this section we introduce error estimators for the Dirichlet, the Neumann and the
mixed problem. Since all estimators are provided by the epsBEM framework we do
not go into detail on the calculation and the implementation.

5.4.1 The Dirichlet Problem and Symm'’s Integral Equation

There are three different types of error estimator that are considered within this
work for solving Symm'’s integral equation:

(i) Error estimators that are created by space enrichment with respect to the
mesh-size (h - h/2 estimators).

(ii) Error estimators that are created by space enrichment with respect to the
polynomial degree (p - p* estimators).

(iii) Residual based error estimators.
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In order to define the error estimators we introduce the following notations. Let
¢ € H™2(I") be the exact solution of Symm’s integral equation (3.26), ¢ € S°(Th, p)
be the numerical solution on a given triangulation 7, and ¢ h2 € S%(Tn2.p) be the
numerical solution on the uniformly refined triangulation 7;/,. Moreover, we denote
by II? the L*-projection on S°(7,,p) and by | - || the energy norm on I' which is
induced by the single layer operator, i.e. ||¢[* := (V @, ®).

Definition 5.4.1 (h-h/2 error estimators) The h-h/2 error estimators for

Symm’s integral equation are given by

@) = ||oh s — O (5.22)
(id) i =[] (1 = TI) 6 | (5.23)
(i) uh—HpH ia= ), (5.24)
h1/2
() —H (1 —1II,) &4, (5.25)
L(I)

Definition 5.4.2 (p-p* error estimators) For p* > p, the p-p* error estimators

for Symm’s integral equation are given by

(i) mo=|leh — el (5.26)
(i) 7= |l (1 =T17) o | (5.27)
._‘ W2 5.28)
(491)  prp = p+1 (h — o) L (5.
v) B '_‘ e (5.20)
() = 1 ( h) Ph L) :

Definition 5.4.3 (Residual based error estimator) The residual based error

estimator for Symm’s integral equation is given by

(Véh —f) : (5.30)

L2(I)

/2 q
B Hp+1 ds

where % denotes the arc length derivative on I

Note that the n estimators cannot be used to create adaptive algorithms, since
the energy norm cannot be localized meaning we cannot estimate the error on one
boundary element. However, the p estimators can be calculated locally and are
consequentially appropriate for controlling the refinement in adaptive algorithms.
In [8] the efficiency and reliability of the h-h/2 estimators for p = 0 is proven,
whereas there is no proof for the other error estimators. A detailed description of
the calculations of all above defined estimators can be found in [10].
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5.4.2 The Neumann Problem and the Hypersingular Integral
Equation

For the hypersingular integral equation we introduce two different types of error
estimators, namely the h-h/2 estimators and p-p* estimators for p* > p.

In order to defining the error estimators we introduce the following notation. Let
u e Hz(I') be the exact solution of the hypersingular integral equation (3.31), ub €
S(Th, p) be the numerical solution on a given triangulation 7 and ufl/Q € SY(Thnj2.p)
be the numerical solution on the uniformly refined triangulation 7} /,. Moreover, we
denote by IT} the L*-projection on S*(7y,p) and by || - || the energy norm on I” that
is induced by the hypersingular operator, i.e. |u|* := (Wu,u) (If I' is connected

we define [Jul* := (u, u)w+s).

Definition 5.4.4 (h-h/2 error estimators) The h-h/2 error estimators for the

hypersingular integral equation are given by

0 = -l )
(i) o= | (1 —1I0) UZ/QH‘ (5.32)
i) o= | Ly (5.33)
1) g = D1 ds Uy o = Up, v .
(iv) PR (o) ) (5.39)
" p+l ds W) Ly |

Definition 5.4.5 (p-p* error estimators) For p* > p the p-p* error estimators

for the hypersingular integral equation are given by

(i) = ful = (5.35)

(it) = || (1 —1I}) 5.36)
P2 od e,

i)y = ()~ 5.37

@)y =27 75 — ) v (5.37)
W2 d P

v) i = 111 . 5.38

) Foi= |5 g (G- ) | (5.38)

Again, only the p estimators are suitable for implementing adaptive algorithms.
The efficiency and the reliability of the h-h/2 estimators for p = 0 is proven in [7],
whereas there is no proof for the other error estimator.

5.4.3 The Mixed Problem

For the mixed problem we introduce the h-h/2 and p-p* estimators (p* > p).
In order to define the error estimators we introduce the following notation. Let np s,

NDp.h, MDps NMpp a0d lpp, ph, pyp and fip, be the error estimators for Symm’s
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integral equation restricted to the Dirichlet boundary. Moreover, let ., N,

NNps TN p a0d liN h, AN by (N, and fin, be the error estimators for the hypersingular
integral equation restricted to the Neumann boundary.

Definition 5.4.6 (h-h/2 error estimators) The h-h/2 error estimators for the

mixed problem are given by

(i) W =Nhp+ N
(it) 7= %,h +?7?v,h
(idd)  pp =ty + s
(

) R i+

(24

Definition 5.4.7 (p-p* error estimators) For p* > p the p-p* error estimators

for the hypersingular integral equation are given by

(i) mp=nh,+ Ny (5.43)
(@) 7= Thy + Ty (5.44)
(iid)  po = ph, + My (5.45)
( (5.46)

i) [ = Jip, + iy,

This definition implies that the results concerning the efficiency and the reliability
of the estimators can be transferred from the previous two subsections.



Chapter 6

Implementation

In this chapter we discuss the implementation. Since it is one of the main goals of
this thesis to integrate all functions for solving the Navier-Lamé equation into the
epsBEM framework, we give a short overview on the software package in the first
section.

In the second section we go into detail on the implementation of the double integrals
that we introduced in Section 4.2 and finally, we describe the implementation of the
hp-BEM for the Navier-Lamé equation.

6.1 Overview on the epsBEM Package

epsBEM (efficient and p-stable Boundary Element Methods) is a software package
to solve the Laplace and the Navier-Lamé equations with the hp-BEM. Figure 6.1
shows an overview on all routines of the software package.

The focus of this software package is on the efficient and stable implementation
such that the results are accurate close to machine precision. The main routines are
supposed to be implemented in MATLAB, such that an easy handling for the user is
provided.

Two C-libraries to calculate the associated Legendre functions and integrals thereof
(bottom row in Figure 6.1) are the core of the software package. Using openMP and
multi-precision libraries these C-libraries provide an efficient and stable calculation
of the basic integrals.

Based on the C-libraries, the routines for the calculation of the Galerkin matrices
are implemented in both C and MATLAB. On the one hand the code is supposed
to be understandable and short (MATLAB-routines), on the other hand the routines
are supposed to be efficient and stable (C-routines). Additionally, there are routines
for assembling and solving the linear system of equations, routines for displaying the
solution and routines for refining the mesh using different mesh refining strategies.
On the top layer, the error estimators and routines for calculating the exact error
are implemented.

Within the scope of this thesis, we add the C-functions O1, Ul and Utl to the
double integral library, implement the MATLAB- and C-routines for the the calcu-
lation of the Galerkin matrices and adjust some plot routines for displaying the
displacement field. Moreover, we investigate the incorporation of gliding conditions
(subsequently defined) for the Navier-Lamé problem.
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Error Calculation

Error Estimators

errDirichlet estSIpMu estSIpMu estHypMu estHypMuP
oscDirichlet estSIpMuTilde estSIpMuTildeP estHypMuTilde estHypMuTildeP
errNeumann estSIpEta estSIpEtaP estHypEta estHypEtaP
oscNeumann estSIpEtaTilde estSIpEtaTildeP estHypEtaTilde estHypEtaTildeP
/lib/general estSIpNu prolongationHH2  projectionH2H /lib/general
Solution of E——— —Mesh Functions — Display —Miscellaneous—
SolveSymm_f buildSymmRHS_f refineUniform plotArclenthP checkpO
SolveSymm buildSymmRHS refineAdaptive plotArclenthN checkp1
SolveHypsing_f buildHypsingRHS_f hpMeshSlit showSolDom gauss
SolveHypsing buildHypsingRHS hpMeshLshape showPot diagscaling
SolveMixed buildMixedRHS buildSortedMesh showComplex loglogTriangle
buildHypsingStabilization markElements showBoundaryGrid
/lib/general /lib/general /lib/general /lib/general
Potentials Ansatz Spaces- Galerkin Matlab: —Galerkin C
potV potK bLegendre  projectionL.2 buildV  buildW buildvV  buildw
potA potW bLobatto projectionH1 buildK  buildM buildK
/lib/lame/mat /lib/lame/mat /lib/lame/c
/lib/lapace/mat /lib/general /lib/lapace/mat /lib/lapace/c
Single Integrals Matlab: Single Integrals C Double Integrals
gqtm2 gtm1 qtO qtm2 qtm1 qto qt1 r0 r1 Im1 10 I
qtl r0 r1 qtm2_mpc  gtml1_mpc qtO_mpc qtl_mpc rO_mpc rl1_mpc utl U1 01
/lib/general/mat /lib/general/c /lib/general/c

Fig. 6.1: Overview on the functions of the epsBEM package, where C-routines are
depicted red and MATLAB-routines are depicted blue. Source:[10].

6.2 Integrals of the Associated Legendre Functions

The functions for the calculation of the double integrals [} and OF} are imple-
mented according to formulas that are derived in [19] and - in the case of Ojl-’,C -
with the formulas that are proven in Section 4.2, respectively. Note that there are
no routines for the calculation of the integrals I]Q,k and Ojl»’ . since these integrals are
computed directly in the routines for the calculation of the Galerkin matrices using
(4.26), (4.27), (4.28) and (4.29).

The routines for the calculation of I}, I9,, 0%, and O}, are implemented in the C-
library liblegendre.c and connected to MATLAB via mex-files. Thereby, the double
integrals are calculated via recurrence relations in order to get an efficient imple-
mentation for high polynomial degrees p with complexity O(p?) (j = 0,..,p, k =
1,..,p+ 1). Since the recurrence relations are not stable we use the multi-precision
libraries mpfr (The Multiple Precision Floating-Point Reliable Library, see [9]) and
mpc (The Multiple Precision Complex Library, see [6]) in order to ensure results
that are accurate close to machine precision, i.e. the tolerance 1074 is used. Using
the libraries mpfr and mpc the number of digits that are used for the calculations is
computed heuristically with the function getdigits that is provided by the epsBEM
framework.

In the following, we exemplarily describe the implementation of Oj{ i» as this function
is one of the functions that is implemented within the scope of this thesis.
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mex-function

Input: double a,b
intp
Output: double* A (matrix)

C-functions

Input: double a_re, a_im, b_re, b_im
int p, ndigits
double* Are, Aim (matrices)

Output: -

Input: mpc_ta, b
int p, ndigits
double* Are, Aim

Output: -

O1_int (a_re, a_im, b_re, b_im, p,

ndigits, Are, Aim)

.

01 (a, b, p, ndigits, Are, Aim)

Fig. 6.2: Overview on the functions for the calculation of O} (a,b).

An overview on the routines for the calculation of Ojl-,k is given in Figure 6.2. We see
that the calculations are performed in two different levels (red boxes). Thereby, the
first level is the interface between MATLAB and C and the second level converts the
input parameters that are given in double precision to mpc variables and performs
the computations. In the following we describe the implementation of the two levels

more closely.

The first level is implemented by the mex-function O1. The input parameters are
the complex numbers a, b (in double precision) and the polynomial degree p, and

the output is the matrix A € C+Dx@+) which is given by

The mex-function computes the number of digits that are needed for the calculation,
allocates the memory for the output matrix A and calls the C-function O1_int.

Oé,l (CL, b)
A=
Oll),].(a7 b)

O(l),p—i-l (CL, b)

OzlJ,p-i-l (a,b)

Listing 6.1: Excerpt of liblegendre.c: O1_int.

1 void 01_int (double a_re,
2 b_

im, int p, int ndigits,

4 mpc_t a, b;

double a_im, double b_re,

double

double* Are, doublex* Aim)
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mpc_init2 (a, ndigits);

mpc_init2 (b, ndigits);

/* set a and b */

mpc_set_d_d(a, a_re, a_im, MPC_RNDNN);
mpc_set_d_d(b, b_re, b_im, MPC_RNDNN) ;
/* call 01 =%/

01(a,b,p,ndigits, Are, Aim);

/* clear a and b */
mpc_clear (a);

mpc_clear (b) ;

The second layer is implemented by the functions O1_int and O1.

Listing 6.1 shows the code of O1_int. In the lines 4-6 the mpc variables a and b are
first defined and initialized, then the function O1, which performs the calculations,
is called (line 11). Finally, a and b are deleted (lines 13-14).

The computation of the matrix A is performed in the C-function O1 according to
(4.30) with the formulas that are derived in Lemmas 4.2.4, 4.2.5 and 4.2.6. There-
fore, we do not go into detail on the complete implementation, here. However, we
describe the computation of 7, and Q; ' (12 (a & b)) and take a closer look at the

implementation for @ b = 41 in the following.

Listing 6.2: Excerpt of liblegendre.c: O1 (computation of 7).

eta2=1;
if ( (a_im*a_im - b_im*b_im)<0 &&
(a_re*b_im - a_im*b_re)/b_im<=
{
eta2=-1;
} else {

int condl
fabs(a_im+b_im) < le-14;
fabs(a_im-b_im) < le-14;
if ( (condl && cond2

,cond?2;

cond1l

cond?2

-1+1e-14 )

&& (a_re-b_re) <= -1+1e-14) ||

(condl && (a_re+b_re) <= -1+1e-14) ||
(cond2 && (a_re-b_re) <= -1+1e-14) )

{
eta2=-1;

Listing 6.2 shows the calculation of 7y. The four situations in which conv{a+b,a —
b} N{z €R : x < —1} # (0 and thus 7o = —1 are illustrated in Figure 6.3. In line
2-3 in Listing 6.2 we check the first situation. Thereby, we check if conv{a+0b,a—b}
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a+b A a+b A

1

g N
v

N
v

\-b ash ab
1 1

v
v

Fig. 6.3: Configurations with 7, = —1.

intersects the real axis (Im(a + b) - Im(a — b) < 0, line 2) and if the intersection is
smaller than —1 (line 3). The remaining three situations are treated in line 10-12.
We check if a + b € R with a + b < —1 (line 10), if a — b € R with a — b < —1 (line
11) orif a+b € R with a £ b < —1 (line 12). As already mentioned above, the
tolerance 107 is used for the case differentiation.

Listing 6.3: Excerpt of liblegendre.c: O1 ( calculation of Qi (n2(a £ b)) ).
mpc_add(zl, a, b, MPC_RNDNN); /* zl = a+b;*/
mpc_sub(z2, a, b, MPC_RNDNN); /*x z2 = a-b;*/
if (eta2==-1){
mpc_neg (zl1, zl, MPC_RNDNN);
mpc_neg (z2, z2, MPC_RNDNN) ;

}
qtml_ex (zl, p+1, ndigits, cb);
qtml_ex (z2, p+l, ndigits, c6);
if (eta2==1)

for (i=0; i<=p+1l; i++)

mpc_sub(c5[i], cb5[i], c6[i], MPC_RNDNN) ;

else{ /* multiply with (-1)"k x/
for (i=0; i<=p+1l; i+=2) /* even indices: cb5-c6 */

mpc_sub(c5[i], cb5[i], c6[i], MPC_RNDNN) ;
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for (i=1; i<=p+1l; i+=2) /% odd indices: c6-cb5 */
mpc_sub(cb5[i], c6[i], cb5[i], MPC_RNDNN) ;

Listing 6.3 shows the calculation of Qv;l(ng(a + b)) — @;1(’)72((1 —b)). In line 1-
6 we compute 21 = a + b and 20 = a — b and, if n = —1, 21 = —a — b and
zy = —a + b, respectively. Then, we call the function qtml_ex that computes
Q;'(2), k =0,...,p+ 1, and save the result in the mpc arrays c¢5 and c6. In the
case that 7, = 1 we compute Q; '(n2(a + b)) — Q5 ' (n2(a — b)) (line 9-11), whereas
we calculate (—1)* [@;1(772(a +b) — Q. (ma(a — b))] in the case that n, = —1 (line
13-18). We change the order in the subtraction for all odd indices k (line 16-17).
Hence, we add implicitly 47 in the case of £ = 0. Note that the implementation of
1 and Q,:l (771 #) is done analogously.

Finally, we describe the implementation in the special case that a b = +1, where
we only refer to the case a + b = 1. As we already stated in the proof of Theorem
4.2.7, the coefficients of the singular terms in the formulas for the computation of
O} (a,b) vanish. Therefore, we set Q}(1) to its finite part, i.e.

QA1) == —2Wi (1),

where we again use the tolerance of 1074, We want to stress that this method only

works if either only Q%(a + b) or Q° (52) occur in the formula for the calculation

of 5}7k(a,b). This effect is due to the fact that the sequences (a, + b,)nen and

(%)%N converge to 1 from different directions. Thus, combining Q%(a + b) and

(52 (1;ba) results in a different value for a + b = 1, which yields a discontinuous

behavior of the double integral 631‘,1@(‘17 b) in the neighborhood of 1. Note that the
formulas that we derived for the computation of 5]1k fulfill this constraint, whereas
the formulas that are stated in [19] do not fulfill this constraint and cannot be used
for the implementation.

6.3 Implementation of the hp-BEM

In this section we describe the implementation of the hp-BEM for the Dirichlet, the
Neumann and the mixed problems. Since the main routines and the routines for
solving the three different problems are provided by the epsBEM framework and
were only adjusted for the Navier-Lamé equation, we only describe the procedure
in solving the problems but not the implementation. However, in the subsequent
sections we go into detail on the implementation of the routines that are different
from the routines for the Laplace equation and implemented within this work.

As we already derived in Chapter 3 for solving the mixed, the Dirichlet and the
Neumann problems we solve

Ax = (%M - A) (ui) : (6.1)
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Vx — (K + %M) up (6.2)
and
(W +S)u = GM - KT) g. (6.3)

We proceed as follows:

(i) We project the Dirichlet data that is given by the function handle up and
the Neumann data that is given by the function handle g to the discrete
spaces S*(Tx,p1) and S°(Tp,po), respectively. For this, we use the MATLAB
functions projectionH1.m and projectionL.2.m and as a result we obtain
the coefficient vectors up with respect to basis of S*(7,, p1) and g with respect
to basis of S°(T,po)-

(ii) Depending on the problem we assemble the Galerkin matrices V, K and W
by calling the functions buildV.m, buildK.m and buildW.m, the stabi-
lization matrix by calling buildHypsingStabilization.m and the mass ma-
trix by calling buildM.m. In the case of the mixed problem we restrict
the matrices V, K and W to the degrees of freedom of the Neumann and
the Dirichlet boundaries, since (6.1) holds on I'v x I'p. Thus, we solve a

(NN +ND) x (Ny + NP) system.

(iii) We solve the linear system of equations (6.1) with the backslash operator
of MATLAB and obtain the coefficient vector of the numerical solution with
respect to the bases of S°(Ty, po) and S* (T, p1)-

In the subsequent sections we amplify the implementation of the Galerkin matrices
and investigate another type of boundary conditions, namely gliding conditions.

6.3.1 Implementation of the Galerkin Matrices

For the calculation of the Galerkin matrices there are both C-functions and MATLAB
functions. We describe the implementation of the C- and the MATLAB functions by
taking the example of the single layer operator. Note that the complete code for
calculating the Galerkin matrices can be found in Appendix B.

An overview on the MATLAB functions for the calculation of the Galerkin entries is

given in Figure 6.4. All functions in the red boxes are implemented in the MATLAB
file buildV.m.

Figure 6.4 shows that the calculation is implemented on three different levels (red
boxes). In the lowest level we perform the calculation of the 2 x 2 block matrix
that we introduced in Section 5.3.1 for one fixed combination of boundary elements.
As we already stated in Section 5.3 we distinguish the case of identical elements
(galV_id) and non-identical elements (galV _ex).

In the following we describe the implementation of galV_ex. The input parameters
of galV _ex are
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/ \ 4

Fig. 6.4: Overview on the functions for the calculation of the Galerkin matrix for

the single layer operator.

e vert_x € R?*2: Matrix that contains the edges of I}, i.e. A, corresponds to
the first row and B, corresponds to the second row.

e vert_y € R?*2: Matrix that contains the edges of I},, i.e. A,, corresponds to
the first row and B,, corresponds to the second row.

e p € Nj: Polynomial degree.

e options: Struct that contains the Lamé coefficients A and pu.

The output val is the 2 x 2 block matrix that is introduced in Section 5.3.1. Listing
6.4 shows an excerpt of the code.

10

11

12

Listing 6.4: Excerpt of buildV.m: galV _ex.

%*** compute u,v,w,a,b

%*** compute matrices

uut = u’*u / utu;

usust = [u(2);-u(1)]1*[u(2),-u(1)] / utu;
uust = u’*[u(2),-u(1)] / utu;

usut = [u(2);-u(1)]*u / utu;

%***x compute integrals Iml

iml = real(Imi(a,b,p));

tmpml = [iml,zeros(p+1);zeros(p+1l),iml];
%***x compute It0 => combination of rows!
i0 = [zeros(1,p+2);I0(a,b,p+1)];
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cl repmat ((1:(p+1))./[1,3:2:(2*p+1)],p+1,1)°;
c2 = repmat ((0:p)./[1,3:2:(2xp+1)],p+1,1)7;
tmp0 = a2*i0(2:end-1,1:p+1)+...
b2*(cl1.%10(3:end,1:p+1)+c2.*xi0(l:end-2,1:p+1));
%**x compute matrices multiplied with intgrals
Ul = [(uut(l,1)-usust(1,1))*imag(tmp0),...
(uut (1,2) -usust (1,2))*imag (tmp0) ;...
(uut (2,1) -usust (2,1)) *imag (tmp0) , ...
(uut (2,2) -usust (2,2)) *imag (tmp0)];
U2 = [(uust(l,1)+usut(1,1))*real (tmp0),...
(uust (1,2)+usut (1,2))*real (tmp0) ;...
(uust (2,1)+usut (2,1))*real (tmp0),...
(uust (2,2) +usut (2,2))*real (tmp0)];
h*x*% compute single layer potential
val=-facx*(tmpml-fac2*(U1-U2)) ;
%h*xx* add deltakOxdeltajoO
tmp=fac*2*(log(utu) *xeye (2) -2xfac2*uut) ;
val ([1,p+2],[1,p+2]) = val([1,p+2],[1,p+2]) - tmp;

After having computed the vectors u, v and w according to Figure 5.1 and a,b € C
according to (5.3) we compute the matrices

uuT uluf uuLT + uLuT

and
Ty, ul

ulu’ U

u

in line 4-7. In line 9-10 we compute the real part of the integral (Ijj,i(a, b))jk:O o

by calling the C-function Im1 and assemble the 2 x 2 block matrix

Re (I]_,k} (CL, b))jJC:O,..,p

tmpml =
0 Re (ijkl(a, b))

j:k:07"'7p

Afterwards, we compute the matrix (J?k(a, b))jk:0 o in lines 12-16. Therefore, we

call the C-function I0 to calculate the matrix (ng(a, b))j,k:(),...,p and combine the
rows according to (4.26) and (4.27). Note that defining I°, , (a,b) := 0 we can treat
(4.27) similar to (4.26) for j = 0 and thus the first row of i0 is initialized with zeros
(line 12). Since MATLAB can perform matrix operations efficiently, we combine all
rows at once without a loop. We build the coefficient matrices ¢l := (¢l x);k=o0,..p

and ¢2 := (€2 )jk=o0,..p With

j+1
2j + 1

cljp = and 25 =

2j + 1
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and combine the whole sub matrices with the elementwise multiplication (line 15-
16). In line 18-24 we compute the 2 x 2 block matrices

~ T _ T ~ T_ T
Im (IQk(a, b)) (%) TIm <[Ok(a’ b)) <%)
o J:k=0,...p uu 1,1 S J:k=0,...p utu 1,2

Ul =
70 wuT —uy uT 70 wul —uj ul
Im (Ij’k(a’ b))j,kzo,..,p (#)2,1 tm (Ij’k(a’ b))j,k=0,--,p <WL)272
and
0 wu T4u T 70 wu T4 u”
Re (Ij’k(a’b)>j,k:0,”7p <#>171 Re (1¥4(a, b))m:o,..,p (#)12
U2 =

~ T T ~ T T
Re ([Qk(m b)) <W> Re ([Ok(m b)) (M)
a J:k=0,...p utu 2,1 o J:k=0,...p wu 2,2

Finally, we compute Galerkin matrix according to (5.10), where we add the term
with 0y 00,0 in lines 28-29.

Note that in galV _ex we distinguish the case that || < |I3,| in which we proceed
as described above and the case that |I;| > |I3,| in which we change the order of
the integration, as the formulas for the calculation of the number of digits for Im1
and IO prescribe that the element of the outer integral is smaller. One can show
that by changing the order of integration we get

v ey u
w ~ —Ww
a
a ~ ——
b
1
b -
R

Besides these changes, the calculation that is described above is exactly the same in
the other case.

In the second level the routines buildV _ex and buildV _quad are implemented.
The input parameters of both functions are given by:

e coordinates € R"*? : Matrix that contains the vertices of the boundary
I'; each row contains the z1- and xe-coordinate of one edge. (N, denotes the

number of edges of the triangulation.)
e elements € RY<*2: Matrix that describes the boundary elements; each row

contains the indices of the edges of one boundary element.

e pcC Név °: Vector that contains the polynomial degree of each boundary ele-
ment.

e options: Struct that contains the Lamé parameters A and pu.

Both routines return the Galerkin matrix V of the single layer operator. However,
the routines build _ex and buildV _quad differ in the calculation of the entries of
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the Galerkin matrix. buildV _ex calculates the entries analytically by calling the
functions galV _ex and galV _id, whereas the entries for non-identical elements are
computed semi-analytically in buildV _quad, i.e. the inner integral in

/F PO (2) / Ule,y) PI™(y) ds, ds,
? m

is computed analytically with the function potV that is described in [2] and the
outer integral is computed vice quadrature. Thus, we obtain

N,

- . Iy &
/F PO(x) /F U(z,y) PY™ (y) ds, ds, ~ %} Wi Pi(29) potV(zg),  (6.4)
L m P v=1

N

-~

=potV(z)

where N, denotes the number of Gauss nodes and wy and zJ denote the Gauss
weights and points. Defining the matrix P = (pl,’j)FO"“’Ng with p,; = Pj(z9) and

v=1,...,

the matrix W € RNa*(P+1) that contains the Gauss weights we can compute (6.4)
for all j =0,...,pand v =1, .., Ny efficiently by

D H(m T,
/F F)j([) () U(z,y) Pk( )(y) dsy ds; = %(W + P)T % potV.
14

I'm

Here, .x denotes the elementwise product and * denotes the matrix-matrix multipli-
cation.

The top level in Figure 6.4 is used for exception handling and calling the sub-routines
for the analytical and semi-analytical computations.

The C-routines for the analytical computation of the Galerkin matrices are im-
plemented in the C-library libGalerkinLame.c. The structure of the routines is
similar the structure of the MATLAB functions. Since the recurrence relations for the
calculation of the double integral I ;kl(a, b) and IY,(a,b) are very sensitive concern-
ing the input parameters a and b, the multi-precision libraries mpfr and mpc are
used. In order to reduce the computational times we only compute a and b with the
multi-precision libraries, the other calculations are performed in double precision.
Moreover, the routines for the calculation of the Galerkin matrices are parallelized
with openMP so that every thread calculates the sub-matrix for a fixed combination
of boundary elements. For a detailed description of the parallelization we refer the
(3]

An analysis of the computational times for the assembly of the Galerkin matrices
with both the C- and the MATLAB routines is given in Figure 6.5. The calculations
were performed on a computer with the following setup:

Processor: AMD Phenom II X6 1090T
Operating System: Ubuntu 10.4
RAM: 16GB DDRS3.

Figure 6.5 shows the computational time for several different methods, i.e. a geo-
metric hp-method with 660 degrees of freedom (green), a uniform hA-method with
512 elements and p = 0 (blue), a uniform hp-method with 32 elements and p = 32
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Fig. 6.5: Computational times for the assembly of the Galerkin matrices V (top), K
(middle) and W (bottom) with the C-functions depending on the number
of threads. The black dashed line is the optimal scaling and the horizon-
tal lines denote the computational time for the assembly with MATLAB

routines.
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(dashed light blue) and a uniform p-method with 8 elements and p = 127 (red). The
times that are illustrated in the plots are the average times of three runs each and
scaled with the computational time of the C-routines with one thread.

The results that we obtain for the Navier-Lamé equation are similar to the results
that are described in [10] for the Laplace equation. All three plots show that we
do not achieve the optimal scaling (black dashed line) for the computations with
the C-routines, the maximal scaling factor that is achieved using 6 threads is in
the range of 3.9 — 4.4. This is what we expected, since every thread calculates a
fixed number of blocks of the Galerkin matrices, i.e. the blocks are not distributed
dynamically to the threads. Thus, if the number of blocks is not divisible by the
number of threads, some threads are finished while other threads calculate an extra
block. Additionally, the threads block each other while writing the results into the
Galerkin matrix, since the entries for the hat function are added up and thus exclu-
sive writing is necessary.

Moreover, we see that the scaling factor for V is worse than the scaling factors for
K and W. This is due to the fact that the computational effort for computing a
matrix block is higher for the double layer and the hypersingular operator than for
the single layer operator and hence the parallelization has a bigger impact.
Comparing the MATLAB routines to the C-routines with one thread we see that the
MATLAB routines are slower than the C-routines except for the calculations of V
with high polynomial degrees. This is due to the fact that C can perform simple
calculations very efficiently, whereas MATLAB can perform matrix operations very
efficiently. Thus, the MATLAB routines for the calculation of V are faster than the
C-routines for high polynomials degrees, since we only used matrix operations in
galV _ex. For h-methods the matrix blocks are smaller and the matrix operations
have less impact and consequentially the MATLAB functions are slower. Further-
more, since the computational effort for computing K and W is bigger than for
V the efficient matrix operations of MATLAB have a smaller impact and thus, the
MATLAB routines for the double layer and the hypersingular operator are slower
than the C-routines even with high polynomial degrees.

6.3.2 Mixed Problem with Gliding Conditions

In this section, we discuss the implementation of another type of boundary condi-
tions that occurs in many applications in the field of linear elasticity, namely the
gliding conditions. Besides the Dirichlet boundary I’y where the displacement is
given and the Neumann boundary [’y where the traction is given, we denote the
gliding boundary by [ and prescribe the gliding conditions, i.e. the displacement
of the body is fixed in one specified direction n € R? and the traction is fixed in
another specified direction m € R2. Thus, we get for h € Hz(I'g) x H2(Is) the
following condition

nTyou
(mT’ylu =h onlg. (6.5)

We do not go into detail on the theory of the mixed problems with gliding condi-
tions, i.e. the existence and the uniqueness of a solution, but discuss the numerical
realization.
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A standard example in linear elasticity that can be solved using gliding conditions
is the membrane with a hole that is illustrated in Figure 6.6.

Fig. 6.6: Membrane with a hole where a surface force is applied on the upper and
lower boundary (left), part of the membrane with gliding conditions dis-

played by the circles (right).

As we can see in Figure 6.6 (left) there holds I' = I'y with yyu = g(x) := (0, —1)7
on the lower boundary, yyu = g(z) := (0,1)7 on the upper boundary and
yu = g(x) := (0,0)T on the left and right boundary. Instead of solving this Neu-
mann problem, we split the membrane in four parts and only calculate the solution
on one of the parts exploiting the symmetry of the solution (see Figure 6.6, right).
Thereby, we get gliding conditions on the cut edges, i.e. there holds

()= (0)

Youz\ _ (0
QUG 0
on the lower boundary.

For incorporating the gliding conditions, we cannot proceed as we did for the mixed
problem in Section 3.1, to be more precisely, we cannot use the symmetric formu-
lation of the Caldéron system (3.17). Instead we rearrange the Caldéron system

(3.16) as follows
V —%I — K nuy) _ 0
—s 1+ K’ W Yol 0/)°

For the implementation we prescribe a sorted mesh, i.e.

on the left boundary and

dirichlet
elements = | neumann
gliding
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and we denote the coefficient vector of u}," by
T
a= (o .l o, ul)
and the coefficient vector of ¢}° by
T
x— (Xgm,XgN>,XgG>,ng>,x;N>,x;G>) ]
Using the previously defined Galerkin matrices we obtain the discrete system
A\ —iM-K x\ (0
— M+ K7 \%\% u/  \0)’

Then, the boundary conditions are incorporated by extending the linear system of
equations to

A% -iM-K M;"\ [x 0
—IM+ K7 W M," ul=10], (6.6)
1\/Il M2 0 A f

where A denotes the Lagrange parameter and the vector

f=(up1, Uupa2, 81, g2, hy, hy)”

denotes the coefficient vector of the given Dirichlet, Neumann and gliding data. The
matrices My and My are given by

00 0 00 0
00 0 00 0
0I 0 00 O
M1_000010
00 0 00 O
00m1100m21

and
10 0 00 0
00 0 I 0 0
00 O 0O0 O
M2_000000’
007111007%21
00 0 00 0

where the upper part of both matrices corresponds the Dirichlet data, the middle
part to the Neumann data and the lower part to the gliding data. Thus, the given
boundary conditions are fulfilled due to last equation of the extended system

M1X + M2u =f.

Note that the system (6.6) is not appropriate for solving the mixed problem without
gliding conditions as there are also disadvantages compared to the system of linear
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equations for the mixed problem (6.1). First, system (6.6) is not symmetric and
thus, efficient algorithms, such as the cg-method, cannot be used for solving the
system. Moreover, using (6.6) we have to solve a bigger system of linear equations.
Besides the extension of the Caldéron system by the matrices M; and My we do
not restrict the Galerkin matrices V, K and K to the degrees of freedom of the
Dirichlet and the Neumann boundary as it is done in (6.1). Therefore, the extended
system is of the size

N+ NP ND+NR) x (NO + NP+ N+ NYD.

The assembly and the solving of the linear system of equations (6.6) is implemented
in the MATLAB function solveMixedGliding.m. The input parameters are:

e coordinates € RV*2: See input parameters buildV _ex.

e dirichlet € RM.0*2 peumann € RM~v*2 gliding € RM.6*2: Matrix
that describes the boundary elements on the Dirichlet, the Neumann and the
gliding boundaries; each row contains the indices of the edges of one boundary

element. (N p, Ny and N denote the number of elements on I'p, I'y
and Fg)

e u, g: Function handles of the Dirichlet and the Neumann data.

e m,n € RY.6*2: The directions in which the displacement and the traction
are fixed for every gliding boundary.

In the following we describe the assembly of the matrices M; and My more closely.
Although the matrices M; and M, are sparse, we abdicate the sparse format and
initialize both matrices as full matrices, since the Galerkin matrices V, K and W
and thus the complete matrix in the system of linear equations are in general densely
populated.

In order to assemble the lower part of the matrices My and My, we first extend the
matrices m and n to the size N2 x 2 and NV} x 2 and save the result in the variables
ctmpO and ctmpl. The corresponding excerpt of the code of solveMixedGliding
is presented in Listing 6.5. Note that the complete code can be found in Appendix
C.

Listing 6.5: Excerpt of solveMixedGliding.m.

freenodesG=unique (gliding) ;
ctmp0 = []; ctmpl = [];
for k=1:length(freenodesG)
[idx,"]=find (gliding == freenodesG(k));
ctmpl = [ctmpl; n(idx(1),:)];
end
for k=1:size(gliding,1)
% dof on k-th gliding boundary with respect to S1
idxl = [cpl (nED+nEN+k) :cpl (nED+nEN+k+1) -1]+1;
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% dof on k-th gliding boundary with respect to SO
idx0 = cpO(nED+nEN+k-1)+1:cpO(nED+nEN+k) ;

% extend m and n
ctmpO = [ctmpO;repmat(m(k,:),length(idx0) ,1)];
ctmpl = [ctmpl;repmat(n(k,:),length(idxl) ,1)];

end

Extending m is implemented with a loop over all elements on I;. For extending
n we need both a loop over all nodes and a loop over all elements on [, since in
SY(Th,p1) there are both nodal basis functions (hat functions) and basis functions
of higher polynomial degree that live on one element. After having extracted the
indices of all nodes on the gliding boundary (line 1) we loop over all nodes on [
and append the row of n that corresponds the the k-th node to ctmpl (line 2-6).
The loop over all elements of the gliding boundary is implemented in lines 7-15.
First, we extract the indices of the degrees of freedom on the k-th boundary element
with respect to the basis of S°(7,po) (idx0) and the basis of S'(7,,p;) (idx1) in
lines 8-11. Using the MATLAB-function repmat we extend the rows of m and n
that correspond to the k-th boundary element and append it to ctmpO and ctmpl,
respectively.

Finally, the entries for the gliding data in M; are created by the MATLAB expression
diag(ctmpO0(:,1)) and diag(ctmpO0(:,2)), the entries in My by ctmpl(n(:,1))
and diag(ctmp1(:,2)) and inscribed into the matrices.






Chapter 7

Numerical Results

In this chapter we present the numerical results. One focus is on the verification of
the convergences rates and the efficiency and reliability of the error estimators for
several refinement strategies. As we already stated in the introduction the results
have to be accurate close to machine precision. However, in the implementation we
calculate the squared error estimators and the squared energy error and extract the
square root afterwards, where we loose half the precision. Hence, we want to reduce
the error and the error estimators by 1077-1078.

In the first section we illustrate the results for Symm’s integral equation and the
Dirichlet problem, and in the second section the results for the hypersingular integral
equation and the Neumann problem are presented. This chapter closes by showing
the results for the mixed problem with and without gliding conditions.

7.1 The Dirichlet Problem

Slit Example

As a first example, we calculate

o= ()

on the slit, i.e. I" := [—1,1]. For all computations on the slit we choose A = 600
and p = 300. Since there is no analytical solution for this problem, we compute
the energy norm of the exact solution ||¢[| by extrapolation in order to compute the
error in the energy norm by

Gal.—Orth.
o — b lI* = =""llell* — llr .

In the following we verify the convergence rate that is given in (3.28). For a constant
right-hand side f it can be shown that ¢ € H™*(I"), ¢ > 0, and thus we expect a
convergence rate of O | 0]-2 ) for a uniform h-method and O([N°]7!) for a uni-
form p-method.

In Figure 7.1 the numerical results for uniform h- and p-refinements are illustrated.
The plots show the error and the error estimators plotted against the degrees of free-
dom with a double logarithmic scaling. Note that for all p—p* estimators p* = 2p+1

is used.

We see that all lines run parallel with the slope of —% for the uniform h-method and
—1 for the uniform p-method, i.e. the convergence rates coincide with the expected
convergence rates. Note that it can be shown numerically that increasing the poly-
nomial degree for the uniform h-method or pre-refining the mesh for the uniform
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Fig. 7.1: Error and error estimators for a uniform h-refinement with p = 0 (top) and
a uniform p-refinement with two elements (bottom) for V¢ = (1,1)7 on
the slit.

p-method does not yield a better convergence rate, but we obtain a better constant
in (3.28).

Figure 7.2 shows the error and the error estimators plotted against the degrees of
freedom using an adaptive h-refinement with p = 0 in the first plot and p = 4 in
the second plot. Again, the plots are scaled double logarithmically and p* = 2p + 1
is used for the p — p* estimators. Moreover, we mark the elements in the adaptive
algorithms with the Dérfler criterion (f = 0.55) using the estimator .

_3 11

We see that we get a convergence rate of O([N°]72) for p = 0 and O([N?]"2 )

for p = 4, which corresponds to the optimal convergence rate of (’)([ 0]~ ”+%))
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Fig. 7.2: Error and error estimators for an adaptive h-refinement with p = 0 (top)
and p = 4 (bottom) for V¢ = (1,1)7 on the slit.

that can be reached according to (3.28). Thus, using an adaptive h-refinement the
regularity of the solution does not spoil the convergence rate. Note that for p = 4
the slope of the estimator v varies from —% in the last three steps. However, we
already reduced the estimator by 7 digits and cannot assume that the results are

accurate anymore.

In Figure 7.3 we see the error and the error estimators plotted against the square
root of the degrees of freedom for an adaptive hp-refinement in the first plot and a
geometric hp-refinement in the second plot. Here, only the y-axis is scaled logarith-
mically. We use the error estimator fi;, and the Dorfler criterion for both marking the
elements for mesh refinement (6, = 0.55) and for marking the elements for increas-
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Fig. 7.3: Error and error estimators for an adaptive hp-refinement (top) and a geo-
metric hp-refinement (bottom) for V¢ = (1,1)7 on the slit.

ing the polynomial degree (6, = 0.8). According to [17] we expect an exponential
convergence rate, to be more precisely, there holds

lo —ohll S e ”¥N, B>o. (7.1)

Thus, we expect a straight line with slope — log(e) in the plots.

Figure 7.3 shows that we obtain an exponential convergence rate for both the adap-
tive and the geometric hp-refinement. However, we see that we obtain a better
constant for the adaptive algorithm than for the geometric algorithm, i.e. there
hods Badap. > Bgeom.- This can be explained by the fact that we use a posteriori
knowledge for the adaptive algorithm, whereas we prescribe the refinement a priori
in the geometric algorithm. Additionally, we see that the slope of the residual based
estimator in the first plots varies in the last steps. Again, we already reduced the
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estimator to machine precision and cannot assume the results to be accurate any-
more.

All figures for the slit example show that the error estimators run parallel to the
energy error, which proofs the efficiency and the reliability of these estimators nu-
merically for the slit example.

Rotated L-shape Example

(-111)

(2,0)

(-1-1)

(0.-2)

Fig. 7.4: Rotated L-shape domain.

The second example that is treated in this section is a common benchmark example
on the rotated L-shape that is also investigated in [1], [4] and [18]. The rotated
L-shape is illustrated in Figure 7.4 and the exact solution u := (u,,u,)’ is given in
polar coordinates by

,r.Oé

u,(r, ) = o {=(a+1) cos [(a+1)p] + [C2 — (a+1)] Cy cos [(a« — 1) ¢]}
u,(r, ) = %{(a—i—l) sin [(a+1) @] + [Co+a—1] Cy sin[(a—1)¢]},

where the parameters are defined by C; = —%, Cy = 2(%2“) with w = %ﬂ'.

Moreover, o &~ 0.54448373 is the positive solution of « sin(2w) + sin(2wa) = 0.
In order to compare the numerical results with [1] we choose the parameters of
material of bronze (£ = 100000 and v = 0.3), which implies that A\ ~ 5.7692 - 10*
and p = 3.8462 - 10%.

In Figure 7.5 the h-h/2 estimator pu;, is plotted against the degrees of freedom for
a uniform h and a uniform p-refinement, an adaptive h-refinement with p = 4 and
an adaptive hp-refinement. For both adaptive algorithms the Dorfler criterion with
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Fig. 7.5: py, for a uniform h- and p-refinement, an adaptive h-refinement with p = 4

and an adaptive hp-refinement.
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Fig. 7.6: L-shape: p; for an adaptive h-refinement with p = 4 and an adaptive
hp-refinement with semi-logarithmical scaling.

¢ = 0.55 for the adaptive h-method, and 6, = 0.55 and 6, = 0.8 for the adaptive
hp-method is used. Additionally, we mark the elements using the estimator py,.
Figure 7.5 shows the following results:

e Even with the adaptive algorithms the error estimator is only reduced by 6
digits. This is due to the fact that for approximating the given Dirichlet data
we need a very high polynomial degree py, i.e. p; = 20(po + 1) is chosen in
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this example. Thus, we have to store big matrices and need a large number of
digits for the computations with the multi-precision libraries. This results in
very long computational times.

e The adaptive h-method converges faster than the adaptive hp-method. This
can be explained by the fact that the parameters for marking the elements
are better chosen for the adaptive h-method than for the adaptive Ap-method.
However, Figure 7.6 shows, that we do not obtain an exponential convergence
rate for the adaptive h-method. The adaptive hp-method converges exponen-
tially, although the convergence is slow.

e For all refinement strategies we obtain the same convergence rates as for the
slit example which indicates numerically that ¢ € H=(I").
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Fig. 7.7: L-shape: Absolute value of displacement with displacement field on the

domain ).

Figure 7.7 shows the exact solution of the Dirichlet problem plotted in the domain
), where the vector field denotes the displacement on a grid and the colors denote
the absolute value of the displacement in every point of the grid.

Figure 7.8 shows the boundary I" (red dashed) and the deformed boundary f, ie.
I' > 7 :=x+u(x), YVr € I'. In order to visualize the displacement, it is scaled
with the factor 3000 as it is also done in [18] and [1]. Both figures coincide with the
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2.5

1.5F

0.5

Fig. 7.8: L-shape: Undeformed boundary I" (red dashed) and deformed boundary r
(blue) scaled with factor 3000.

figures that are illustrated in [18] and [1], although no exact values are presented,
there.

7.2 The Neumann Problem

Slit Example

As a first Neumann example we solve

()

on the slit. As we already did for solving Symm’s integral equation, we prescribe
the Lamé parameters A = 600 and p = 300 and determine the energy of the exact
solution [|u|| by extrapolation since there is no analytical solution. Again, we verify
the convergence rates that we stated in Section 3.3 ( See (3.39)). For a constant
right-hand side it is known that v € H™5(I"), ¢ > 0, and therefore (3.39) implies a
convergence rate of O( [N -2 ) for a uniform h-refinement and a convergence rate
of O([N'™!) for the uniform p-refinement. Figure 7.9 shows the errors and the
estimator plotted against the degrees of freedom in a double logarithmic scaling.

We see that the convergence rate of the uniform h-method is O([N]"2) and the
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convergence rate of uniform p-method is O( [N]7!), which is what we expected.

—=[l¢ — ¢l
——lp
—a Uy ]
——TIp
+ﬁp
[in
Hh
-o- T
S

error and estimators

——|ll¢ — &3l
——[ip
el
—oTp
+ﬁp

A

fth ]
<= o-Tlh i
S| -1, ]

-4

error and estimators

10~k

10

Nl

Fig. 7.9: Error and error estimators for a uniform h-refinement with p = 1 (top) and
a uniform p-refinement with two elements (bottom) for Wu = (1,1)” on
the slit.
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Figure 7.10 shows the error and the error estimators plotted against the degrees of
freedom for an adaptive h-method, where we used the Dérfler criterion with 6 = 0.55
and gy, for refining the mesh adaptively. Referring to (3.39), the optimal conver-

gence rate that we can obtain by refining the mesh is (9([ 1]_(”+%>). Again, the

numerical results coincide with the theory, since we get a numerical convergence
3 13

rate of O([N']72) for p=1 and O([N']72 ) for p = 6.
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Fig. 7.10: Error and error estimators for an adaptive h-refinement with p = 1 (top)
and p = 6 (bottom) for Wu = (1,1) on the slit.

For the geometric hp-refinement it is proven in [17] that there holds an error es-
timation that is similar to (7.1) for the hypersinguar equation, i.e. we can expect
an exponential convergence rate. The adaptive and geometric hp-methods are il-
lustrated in Figure 7.11 semi-logarithmically plotted against the square root of the
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degrees of freedom. We see that both methods converge exponentially and the the
constant in the estimation is better for the adaptive hAp-refinement. Thus, the results
are similar to the results for Symm’s integral equation.

‘
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VAT

Fig. 7.11: Error and error estimators for an adaptive hp-refinement (top) and a ge-
ometric hp-refinement (bottom) for Wu = (1,1)” on the slit.

Square Membrane Example

As a second Neumann example we illustrate the square membrane that is given by
Q) := [-3,3]% and that is stretched on the upper and lower side, i.e. a traction g = n
is applied, where n denotes the outer normal vector. The Lamé coefficients are given
by A = 600 and p = 300. The results are illustrated in Figure 7.12 and 7.13. Note
that we scaled the displacement with the factor 100 for the visualization in Figure

7.13.
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Both Figures show that the membrane contracts in x;-direction and expands in

xo-direction and the maximal displacement of 3.6 - 1072 is located at the edges.

Moreover, we see that the displacement is symmetric to the center, i.e. this example

can also be calculated by partitioning the domain in four parts using gliding condi-

tion.

x10

LA LALAS
LSS SLI TS
PP PRI PN
PP PPN,

Fig. 7.12: Square Membrane: Absolute value of displacement with displacement field

on the domain 2.
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Fig. 7.13: Square Membrane: Undeformed boundary I" (red dashed) and deformed
boundary I" (blue) scaled with factor 100.

7.3 The Mixed Traction and Displacement Problem

Cook’s Membrane Example

As a first example we choose a common example of linear elasticity that is also
treated in [1] and [18] and that corresponds to the two-dimensional model of the
bar that we introduced in Section 2.2, namely the Cook’s membrane example. The
membrane that we investigate in the following is given in Figure 7.14.

The membrane is fixed on the left-hand side, i.e. we have a Dirichlet boundary
with up(z) = (0,0)7 and a shearing load is applied on the right-hand side, i.e. we
have a Neumann boundary with g(z) = (0,1)”. Moreover, the top and the bottom
boundary are also Neumann boundaries with g(x) = (0,0)7 and volume forces van-
ish. Thus, we have a mixed problem. According to [1] we choose the parameter of
material of Plexiglass, i.e. E = 2900 and v = 0.4, which implies that A = 4.1429-103
and p = 1.0357 - 103.

The error estimator py, is illustrated in Figure 7.15 for different refinement strate-
gies.

We see that we obtain a exponential convergence rate for the adaptive hp-method
and algebraic convergence rates with the slope of —% for the uniform A-method,
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(48,60)

(0,44)
(48,44)

(/]

(0,0)

Fig. 7.14: Cook’s membrane with Q = conv{(0,0), (48,44), (48,60), (0,44)} and a
surface force applied on the right-hand side.
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Fig. 7.15: Cook’s membrane: pu; for a uniform h- and p-refinement, an adaptive

h-refinement with p = 0 and an adaptive hp-refinement.

—1 for the uniform p-method and —% for the adaptive h-method with polynomial
degree p = 0. Using the adaptive hp-algorithm we reduce the estimator by 7 digits
and thus we are accurate close to machine precision.

Figure 7.16 and 7.17 show the displaced boundary and the displacement field, re-
spectively. Note that we used a scaling factor of 50 for illustrating the displaced
boundary. We see that the membrane bends up, whereas the left-hand side is fixed.
The displacement proceeds continuously from the left to the right side, where the
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maximal displacement of 0.14 is located on the upper right edge of the membrane.
The second Figure shows that the upper side of the membrane is bulged and the
lower side is stretched. Thus, we see the typical displacement of a bar that is loaded
as described above. Moreover, in [1] and [18] similar result are illustrated, although
no exact values for a comparison are given.

0.14

60 - -
0.12

50 - -
- 201

40- -
- HJo.08

30- -
- 006

20- -
0.04

10- -
0.02

0, -

0 10 20 30 40 50

Fig. 7.16: Cook’s Membrane: Absolute value of displacement with displacement field

on the domain §).
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70

401

30

201

0 10 20 30 40 50

Fig. 7.17: Cook’s Membrane: Undeformed boundary I" (red dashed) and deformed
boundary I" (blue) scaled with factor 50.

Membrane with a Hole

As a last example we investigate the membrane with a hole that we introduce in
Figure 6.6. We solve the problem according to the right figure in 6.6 using gliding
conditions. Figure 7.18 shows the geometry with the initial mesh that is used for
the calculations, where the gliding boundary is denoted by the circles.

Again, we choose the parameters of material of Plexiglass. The directions in which
the displacement and the traction is fixed on the gliding boundary are given by n =
(1,0)" and m = (0,1)7 for the left boundary and by n = (0,1)7 and m = (1,0)7 for
the lower boundary. On the upper boundary we prescribe a traction g(z) := (0,1)7,
whereas we set g(x) = (0,0)” on all other Neumann elements.
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Fig. 7.18: Right upper part of the membrane with a hole with initial mesh (red
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Fig. 7.20: Membrane with a hole: Undeformed boundary I" (red dashed) and de-
formed boundary I" (blue) scaled with factor 10 .

The displacement of the membrane is presented in the Figures 7.19 and 7.20. We
see that the gliding boundaries only move orthogonal to the directions n, i.e. the
displacement in the directions n vanishes. Moreover, we see that the maximal dis-
placement is located on the left boundary, which corresponds to the vertical axis in
the middle of the whole membrane. Since on this axis there is the least material
we can expect the maximal displacement in xo-direction. Thus, the results that
we obtain coincide with the expected results, and - as far as it is comparable - the
results coincide with the results that are stated in [1].



Chapter 8

Conclusion

In this thesis, we investigated how to derive an efficient and stable implementation
of the hp-BEM for the Navier-Lamé equation. In particular, a wide range of prac-
tical problems in two-dimensional linear elasticity should be solved. The focus of
the implementations was on two main aspects. First, the routines that were devel-
oped for solving the Navier-Lamé equation should be integrated into the epsBEM
framework. Second, the routines should be fast and stable, so that the error can be
reduced close to machine precision.

With the theory of the associated Legendre functions we derived recurrence rela-
tions for some special integrals that are related to the associated Legendre functions
and that can be evaluated efficiently up to high polynomial degrees. Choosing the
Legendre polynomials and the Lobatto shape functions as ansatz-functions, we used
these recurrence relations to derive analytical formulas for assembling the Galerkin
matrices of the boundary integral operators very efficiently.

All implementations are completely integrated into epsBEM framework, so that the
user only has to adjust the main routines for solving the Laplace and Navier-Lamé
equations. The core of the implementation are two C-libraries for evaluating the
special integrals and assembling the Galerkin matrices. Using the multi-precision
libraries mpfr and mpc provided a stable implementation of the core routines even
for high polynomial degrees.

For all examples we could reduce the error at least up to a precision of 10~'* using
the adaptive hp-refinement strategies. Additionally, we were able to reduce compu-
tational time by parallelizing the assembly of the Galerkin matrices with openMP.
However, research can be performed on incorporating data compression techniques
that further reduce computational time and that are currently developed for the
Laplace equation (see [10]).

Besides the hp-BEM we also implemented uniform h- and p-, and adaptive h-
methods with arbitrary polynomial degrees. The numerical results showed that
we can calculate the solution up to machine precision exploiting the exponential
convergence rate of the adaptive hp-refinements. Moreover, we could reproduce the
theoretical results concerning the convergence rate of the uniform refinements and
regain the optimal convergence rate using the adaptive h-refinement.

Practical examples in linear elasticity could be solved by incorporating gliding con-
ditions. However, it still remains to develop error estimators for the problems with
gliding conditions in order to create adaptive algorithms for these problems. Fur-
thermore, within the scope of this thesis we ignored volume forces. It is another
task to implement the Newton potential, so that volume forces such as gravity can
be considered.
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Lemma A.0.1 Leta,b € C, witha+b¢ [—1,1], j > 2 and n; as defined in (4.31).
Then, there holds
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Proof. We start proving the first identity. Using the definition of N3(t), we have
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Therefore, we investigate both integrals separately. There holds
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For proving the last identity we use two results that are stated in [19], i.e

Jg+1
Ijlvl(a,b) b j+1Igl+10<a7b)+b2j+1—]]1—1,0(%17)"'“]]‘1,0(@7[7)
and
7j—1 742
1;72(a,b)—62j+1.7]1+11( ,0)+b ]+1I]1 11(a,b)+a]]{1(a,b).

Combining both result yields

37 3 =1 3(—1)
I',(a,b) = ab I} b 2 b’ I'y(a,b
J,Z(aa )=a G+2)(2j + 1) J+1,0(a7 )+ |a j+2+j+2+ G+2)(2j—1) J,O(aa )
3(37 +2) 37

+ ab

Ijl—l,O(a7 b) + b2 ]1—2,0(017 b)

(J+2)(25+1) G+2)2 -1~

Thus, we obtain

1
0j(a,b) = 3 (£} 5(a,b) — I} y(a,b))
J 1 2 1 1 2 J—1 1
= ab L@ b) + |a° — — —— + b~ . I}o(a,b
RAVE)CTE) s+10(@:0) [a i+2 j+2 0 (+2)(2i-1) so(a:0)
-y :
+ ab 3j s ]jl—l,O(aa b) + b2 / I'1—2,0<a7b)'

(U+2)(2+1) G+2)(2 -1~

Plugging the initial values of I }’O(a, b), that are given by

I}o(a,b) = % [@? <_1b_ ) QO (1 _“)] 7

completes the proof.
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£(A3n/ (D% A)xZORI*T—- (T)2Lex(nr3a)SoT)*xgxoey=dus
f((gn-1n)*zoey-Tudur)xoey-=TeA 0fe3Tepx0NBITOP PPR® **x*Y
Tetqusgod 1sfel oT3urs o3ndwod k%%

$((ZA-TA)*goeF-Tudwy)*doeF-=TCA

‘[(odwa) Teerx((Zz g)ansn+ (g g)asnn) Tetausiod zefey oT8uts o3andwod xxxY Gz
crrf(odwa) TeeIx ((T°Z)ansSn+(T€g)asnn) %8
crrf(odua) TeeIx((ZCT)INSN4+(ZCT)asnn) f[(odwa) TeeoIx ((T°C)1ASA+(ZT) 3SAL) ezl
©r¢(odwa) TReIk((TT)ANSN4+ (T T)asnn)] = zn ©rrf(odwa) TEeIX ((T°T) 3ASA+(T°T) 3SAA) ae

‘[(oduwa)Seutx( (g g)asnsn-(g‘g)ann) crrf(oduwa) Tee Ik ((ZTCT)AASA+(ZTCT)ASAR) 1%
crrf(odua)Sewtx ((T€Z)ISnsSn-(T°g)ann) crcf(oduwa) Tee Ik ((TT)2ASA+(T°T)asAn)] = A 0Z1

$[(0dwa)Seutx ((2C)ISASA- (T T)20L)
cerf(odwa) Sew Ttk ((T°C) ASASA-(TFZ)2AR0)

©rrf(odwa) SewT« ((Z°T)aSnsn- (g 1) 20n)
s (odwa)SewTx ((T°T)asnsn-(7°1)ann)]

131t
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X11

pus ZGg < 1¢(Z°:)S1UPWSOTO) SOIRUTIPIOOD) = © [77
pus [CT squomwaT® oYl Jo so3pe 219H xxx% (07C
¢ (TPUT ‘ TPUT)A = (TPUT‘ZPUTI)A 0sc 61¢
f(:fpue:t+ssnedu)duy x Awwnp = (ZPUT‘T+(pus)ddo+TXopuT)p 6¥%¢ ¢ (d xew‘8x)eapusleq = So1d g7
¢(:“ssne8u:7)duy x Lwwnp = (gpur® T+TXopUT) A IS %4 ¢(8m)yyaSusT = ssnelu )7
XTIjeuqng <-- T[eI8e3UuUT I99N0 I0J oinjeirpenbxxxY LVC ¢ (ssnedu)ssneld = [3x°3n] 91C
igé G1¢e
fT+[gxeputr+(pue)do‘ gxepur] = gpur Sve pus  JI¢
f1-(T+g¥)do: (gx)do = gxepur YT ¢ssne8uxg = ssnelu 1T
XTIJeW TeqOoT8 UT g XOpUT x%x%Y 74 9 + d xeuwxgz => ssne8u eTTyn
¢ (suotado‘ (gx)d e ‘zg = ssneSu
crrfsqurodf (¢ (:fgY)squoweTe)sojeurprood)prod = dug §zé squtod sSsneH JO IOQUNU 39S *x%Y
TeI893UT JISUUT OYJ 93eTNOTRD *x%x%Y f(d)yxeuw = d-xeu
(T¢squemoT®)ozZTsS:T+I¥ = g IO pus
fduy = (TPUT‘TPUT)A 2 f(1°(1¢sausmeTo)ezrs)souoxd = d
f(suotado‘ (1x)d* (:‘1H)e)pTpATed = dug Z (T==(d) Townu) st
Co((T+(TA)diT i) 8etdx (T4 (TA)D:T ) M) *(TA)UY = LAwunp 9¢e d ezTsoI xxxY
‘T+[TXepuT+(pus)do ¢ IxXepur] = T[pur z (suotado‘df squsmweTe ¢ sejeuUTPIOODd ) penb  ApTTIng = A UOTIOUNT
- (T+7M)do: (Tx)do = Txepur eT
XTIrew TeqoT8 UT | XOPUT *%xY €ee
C(:CTM)aqx((8x)ezTs)souo + (:°I¥)e x 8Xx = sjautod €T pus
quowa Ty 03 sjutod ssnen dew xxxY 162 pus
(1¢s3uswaTe)ezTis:] = X I0F (L7 ¢ (ZPUT‘TPUT)A = (TPUT‘ZPUT)A
C([T+(:)déo])unsuno = do (77 f(zxpriz+(TH)d+u:ig+u)duy = (ZpuUT i+ (pue)ds+IXepuUT)p
C(T+(d)yxew e (:)8m)yqeuwdax = M Q77 (2°2) “(1°C) sausuodwod xxxY
f((r+d)unsxg)soiez = A )77 f(gxpr T+ (1H)d:7)dwy = (gpUT‘ T+TXOPUT)A
92% (1) “(1°1) sausuodwod xxxY
z/uj% f((zg. eyuns)qibs = Uy Cgp ¢8etd | Serr = Seld
2/ ((:°(C°:)S3uUdoWSTd)SOIRUTPIOOD + i%&8 ¢ (suotado‘m
o (ff(T¢r)S3uUBWATS) S9QRUTIPIOOD) = q 77 crr (2 (1€ZY)S3UPWOTO) SOIRUTIPIOOD
2/ ((:°(T¢:)S3uewWe®T®)SO3RUTPIOOD — GGG crrf(rf (1) squemweTe) se3RUTIPIOOD) X0 ATed = [Serr‘dui]




X111

mnea‘n oqndwod xxxY

C(1d¢1+0d) xeu=d

(suotado‘1dfod‘ £7ax0A X7 q108) X0 YTeS = [Je(I‘Tea] uorioung

pus
pus
C(T+TT2+0d+0T) - = (T+Td+TT¢ T+0T) ¥
PC(T+TT+0T)* (T-TT+0T)* (T+TT-0T)* (TT-0T))/20I*¥
o= ( T+IT¢Z+0d+0T)
ppo (-3 ®se) xx*x*Y
od:z:0 = 01 I0%
1d:g:g = 11T 707
pus
pus
E(T+TT°2+0d+0T) M- = (T+Td+TT ¢ T+0T) Y
CC(T+TTH0T)* (T-TT+0T)* (Z+TT-0T)*(TT-0T))/2CFx¥
o= ( T+TT ‘Z2+0d+0T) M
usnd [-¥ ose) *%x%xY
od:z:1 = 0ot I07%
1d:g:z = 1T 107

("""t f€TN) X MTd I0F d77a °3ndmo)d kkxY
pus
f(1°2+0d+0T) M- = (g+7d° T+0T)
f(1¢z+0d+0T) = (T ‘z+0od+0T) M
f(1°2+0d+0T) M- = (T+7df T+0T) A
C((T+0T)%(0T))/2®F = (T ‘z+0d+0T) Y

ppo [ os®D *x*xY
od:z:1 = ot o7

pus
f(1z+0d+0T) = (g+1d° T+0T) A
(TT+0d+0T)- = (T ‘z+0d+0T) N
f(1°2+0d+0T) M- = (g+1d° T+0T) Y
£((2+0T)*(T-0T)) /21— = (T ‘z+0d+01) A

usnas [ ese) *xxxY
od:g:0 = 0T 0%
A7d X (Z"N°T°N) I0F d1a e3ndwo)d kxxY

C((T+7d)xz¢ (T+0d)xg)sorez = Y

‘yyx ((nu-suotrdoxg+epqueT suortado)xtd)/nu- suortado- = deJ
potyrTduts ApeoI[le g I03DB %xxx%Y
(suotado‘yy‘td¢od)pr yres = y uorioung

(¢°¥PTINQ UT TNFSS000O1S

©++ oxem penbTyprTng Iou X8TYPTTNQ ISYITSN,) I0IIS
pue

([o8essow- uotrqdesxs ¢, :penb ypring utr Ioxxg.])dstp
uotideosxs yos3eo

uIinjiex

pue

(¢ ®31eInddeUT oI®
*++sqrnsey -sde uweya ISTTeWS OZTS Ysow TewtuTll ,)dsTp

T==8el4 JT

¢ (suotqdo“1dfod‘ squsmate ‘ seqeutpiocod)penb ypring = [SeTs‘y]

£xq
seuTanox-oxnjerpenb Jutsn L1l *xxxY
pus

([°8essow-uotadedsxe ¢, :xX0 YpTIng uTl J0xiyg,])dstip
uotgdeoxe yYdO3eD

uingex

pue

(¢ ®2BINDOBUT oI®
*+rsqrnsey -sde uweya ISTTeWS OZTS Ysow Tewturl ,)dsTp

1==8e1d 7T

¢ (suotqdo1dfod‘ squemaTe ‘ S93RUTPIOO0D) X8 YPTINg = [SeTd ‘]
£xq
soutqnox-oduw Sutrsn LIl xxxY
f(qu‘ 1d) dyoeyo = 1d
‘¢ (qu‘od) odyoeyo = od
f(T¢s3udware)ezis = Hu
pue

(c"poxtnbeax sjuswn3xe andutr oATJ,)I0II®
Gg> ut8ieu 3T

(suotado ¢ 1d¢od‘ squesmaTa ‘ S93BUTPIOOD ) YPTING = H UOTIOUNT

wryprmq igg Sunsry

el D C
[ I e B |

N
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Xiv

(suotado ¢ 1d ¢ od
*t ¢ SquUeWSTe ¢ S93BUTPIOOD) XS YPTTnq = [Serg‘y] uorioung

f(aqn)rIbskTea=TeA
f((rdus)Seut*-1snn + (7dw3)Teeix’ (LSNSN-1AN) )*gOeF-

s (odwy) SeuwTx  Ix(Td%g) /T+ (0dwa) TeoIx " IXIxJoeI=TCA
Tetjusqod 1efeT oTqnop aY3 jJo uorieqndwod xxxY

(2 (T+Td:iT ) 0ox  [(T-Td:T¢:)0T-(T+7d:g ) 0T
T (@ OTH(T)0T(E ) 0T- (T ) 0T]) 3eudex=odus
YN I0F SUWNTOD JO UOTFRUTQUWOD k%Y
C(r+1d:7¢T+0d:7)0dwio = 0OtT

(2T ((:°C-pPue:T)TOx"go+
Tt (:fpue:ig) o T0)*gA+(:‘T-pus:g)Toxge )iemdex = 1dug
(sq+®)W] IOJ SMOI JO UOTQRBRUTQUOD %%x%Y
f[(T+7d:1°g+0d:7) 7dwao ¢ (1+7d 1)sox2z] = ToO
f(1+dfqe)1o=1dwao

pus
f(dq‘e)o1r = odwao

esT®
¢t (d‘q/1a/e-)01%a/7- = odwao

T < (9Q)sqe It
Co(TCT+Td [ (T+0dxg)gie 1]/ (0d:0)) 3eudex=go

[ (p+l2)/C ¢ =+ < g/T © 0] = TO *xx

ST T+Td [ (T+0d%x2) g€ 1]/ ((1+0d):1)) zreudex=10

[ (r+f2)/(p+b) -0 Cg/g © 11 = 12 *%xJ

$(1°1+0d° [(T-dxg):g:g g g]/ 1) 3eudex = 00

[(e-¥2g)/T ° " “ €/T ° T/T ° T/T] = 02 xx*x*J

/ / A

z.(s-2z)/(z)ul AN (Td|==‘0)1dwr 5 (s-z)/94°N ("d|=(x°[)odus ¥
/ / yA

Y3TM sodTIxjew 93ndwod sxxx%Y

f(zq ‘19 )xordwod = q

AN/ (T A% (T ) M-(T ) AxT (T95) M) =gq
MAN/((TE ) AT (T )N+ (T ) A% (T9:)n) =1q

f(ge ‘te)xerdmod = ®
LV AGOARDEL MCARDLENCARDEL NG AR ROESIA
‘fman/((g )M (T )N+ (T )M " (T°:)n)-=T®
1q+e=2 230dWOD %x%x%Y

f[(T+1d 1+0d)seuox (g g)asun‘ (1+7d‘1+0d) seuox (1 g)asnn
ccori(r+1dit+0d) seuox (g r)asnnt (T+17d1+0d) seuox (1°7)asnn] =1s00
f[(T+7d“1+0d)seuox (g g)asnsn‘ (1+7d°1+0d)souox(7°g)asnsn

ce ¢

(T+7d°1+0d) seuox (g 1) asusn’ (T+7d‘1+0d)seuox (1°1)asnsn]=150SN
f[(1+7d1+0d)seuox (g g)ann‘ (1+7d 1+0d)sauox(1°g)ann

T (T+TdT40d) seuox (g Ty aun ¢ (T+Td T+0d) seuox (T T)ann]=100
f[(T+1dT+0d)soxez¢ (T+7d ¢ 1+0d) seuo-

s (r+t1det+0d)seuo (T+7dT+0d) sox0z ]=IXT

‘[(1+1d°1+0d)souof (T+7dT+0d)soxez

ot (1+T7d1+0d) soxezf (T+7d T+0d) seuo]=1

fnan/(nx[(1)0-f(g)n]+[(T)0-° (g)n]*, n)=3snn

A«> SA + (SA >v ***o\g

fn3n/[ (1) - (g)n]*[(F)n- (g)n]=3susn

‘nan/ 0k n=300

SeOTIlRW OSTqUASSE %%x%Y

f((nuxz+weT)*xTdxg)/ (nU+wWRT) = gdOeF

f((nuxg+weT)xTdxg)/nuw = [oRJ
pus
uiniex
f1=8eT1zI
(sde>(aqa)a1bs) || (sde > (man)qibs) 7t
f0=5eT17s

C((T+7d)*z ¢ (T+0d)*g)so1ez = TeA

‘nu-suorydo = nu
‘epqueT - suorado = wef
fCAxA = AJA

f,0xN = nan

2/ ((:92)XTaTon+(“T)X 2T00)-g/((:‘g)LT1T0A+(: T)LT2I0A) = M
2/ ((:f1)L72x0n-(:g)L73T00) = n
fC/(( T)XT3I0A- (€)X 3I0A) = A




XV

TeI8e3UT JISUUT oY] 93BTNOTBD %%
fT+[(pue) 1do+gxXepuT ¢ gxeputr] = gput
CLT- (T+gA) 1do: (gq) Tdo “T- (: ‘g¥)sausmweTa] = gXopuUT
f(T¢s3usware)ezIs:] = g¥ I07
ST+ () 0d:T ) Bordx (T+(THN)0A:T 1) M)* (TH)YY = Lwunp
f7+[(pus)odo+Txeputr ¢ Tx0puUT] = TpPUT
f1- (T+7M)0do: (1) 0do = Txepur
C(:CTH)ax((8x)ezts)sauo 4+ (:°T¥)e® x 3x = squtod
quowa Ty 03 sjutod ssnen dew xxxY
f(T¢s3uswerd®)ezIs T = Y 107
f(r+(od)yxeuw T (:)3m)qeudox = p

pus
uiniex
¢1=8eT1d
(sde>(qu)utuxg) It
0 = Serd
f((pus)Tdoxg® (pue)odoxg)soiez = Yy

C(LT-(:)Tdi(T°S01RUTPIOOD)OZTS] ) UNSUND

C([T+(:)odfo])unsuns = odo

f((g‘g. e)uns)aibs = 4y
£2/((:€(2°:)s1uPWaTO)SO3RUTPIOOD +

I
—

[o3

o

ot (:f(T€:)S3ULWSTS) S9JBUTIPIOOD ) = q

2/ ((:°(T€:)S3UPWSTD)SO3RUTPIOOD —
crr(:f(Zft)SQUAWAOTE) SOQRBRUTPIOOD ) = ®©
squawaTe oYyl Fo sa3pe 3y3TI pue 3I89T 299HY
f((od)xeu‘3x)osaipusaldeq = Jo1d
¢(8x)ya8usT = ssnelu

¢ (ssne3u)ssned = [8x°‘3n)

pue
¢ssne8uxg = ssnelu
$9 + d xewxg => ssnel8u o[TUM
‘ze = ssmneSu
f(1dfodyxeu = d-xeuw
(suotado ¢1d ¢od

*+ ‘sjusmweTe ¢ sejeurprood)penb ypiing = [Serg‘y] uvoriouUNT

pue
pus

pus

f(suotado‘ (TM)UY‘ (TX) Td¢ (1) 0d) PT TR +

3

.o

Tt (TPUTfIPUT)Y = (QPUT‘ IPUT)Y
SjuewWeT® TROTIUSPT OSBD *x*%xY
asT®
pue:g+ (1X)0d)dus +(gpPut‘T+(pue)ods+IXepuUT)y
T (ZPUuT ‘ T+ (pus) 0ds+TxepuT)y
T+(19)0d:1)dus +(gpur’ T+TXOPUT) Y
s (zput”® T+TXOPUT) Y
¢Se77|8e1d = Se1d

f(suotaddo‘ (gx)1d ‘(1x)0d
(:¢(:°CY)S1UPWSOTO) SOIRUTIPIOOD
(:¢(:°7¥)sauomoTa)sereuTpIood)xo~yTed8 = [Serr‘dua]
S1USWOT® TROTIUSPT-UOU OSB) ***Y
CH=_179 IT
‘T+[(pus) 1ds+gXepur ‘ gxepur] = Zpul
C[T-(T+gq) 1ds: (gq) 1ds “1-(:‘gH)squemwea] = gXepur
(T°s3usweT®)ozTs =g JIO0I
{T+[(pue)ods+TXepur ¢ [Xepur] = TpUT
f1-(T+1%) 0ds: (1%)0ds = Txepur
XTIjew TeqOTS8 UT XOpPUT %%
(T€s3usweTd®)ezTs T=1Y I07
‘0 = Setrd

¢ ((pus)T1dsxg (pus)odsxg)soiez = }

C([T-(:)Tdé(T¢ seqeurpiood)ezis])unsuns = [ds

f([T+(:)odfo])unsuns = ods

f((zfg. e)uns)aibs = yy
fC/((°(T¢:)S3UPWOT®)S93RUTPIOOD -

crr(rf(Tfi)sS3usowWOTO)SO3RUTPIOOD ) = ®




1ces

Matr

Matlab Programs for the Assembly of the Galerkin

Appendix B

XVl

pus
pus
pue
f(suotado (1) yu‘ (TN) 1d° (1) od) PT ™ NTES +
*t 0 (TPUT TPUT)Y = (ZPUT‘TPUT)Y
S3UdWOT® TROTIUSPT JO OSBD *xx*xxY

asT®

f(: ‘pus

:7+ssnelu)dug s Lwunp + (ZPUT ‘T+(pus)odo+IXapur)y

*tt = (TPUT T+ (pue)do+TXepuT)y

ssne8u:1)dugxAwwnp + (ZPUT‘T+TX9PUT)Y

ceeeg

*tt = (gputf T+1X9pUT) Y
¢ (suotado‘ (gx)1d‘squtod

1 (:¢gq)squameTe) seqrurpIood)yrod = dug

CH=_T9 JtT



Xvil

2/ ((:°(T€:)S3uUPWdT®)SO3RUTPIOOD —
crr(:f(Zft)s3usWeTe ) S93RBRUTIPIOOD ) = 0
f((dyxeuw8x)eapusalaq = Jatrd
¢ (ssnelu)ssned = [3x‘saylSten]
pus
¢ssneluxg = ssnelu

dxg>ssne8u oTTyus

‘ze = ssneSu
(ut8ieges ‘d ‘squewele ‘sojeurpiood)penb MpTIng = M uwoTiOUNT
pue

pus

cduy 4+ (ZPUT‘ TPUT)M = (ZPUT‘TPUT)M

fz/([e+(2)Te] ‘) dus ([e+(z)Te]‘:)dus

2/ ([e+(2) T 1] ‘) dua- ([g+(z)T 7] :)dus

fg/ e+ (1) Te])dus (:¢[e+(T)T g])dua

£/ (G [e+(T)T1])dua- (:f[g+(r)T¢1])dua
C([pPus:T+(2)

TT+(Z)TE(T) T T Tl [PUO T+ (T)T T+ (T)T (1) T:1°7])dwr = dug

ftz/(dur)ezts = T
pus

f({1}ut8aexen‘1-([)d‘n)pryTesd dug

asT®
C([T+(A)d+aeasd:g+aeasd (q)d:1]
s f[1+(f)d+aeasd:g+aeasd ([)d:7])dur = dua
¢ ({7}ut8aexes‘ zeasd‘gzazea ‘yaxen)xo~mT1ed = dua
f(1- (M der-(l)d)xeu=aeysd
q=.0 37
f(:¢(r¢)S3uUPWOT®) SO3RUTIPIOOD = g3IdDA
f[(pue)do+gxepur ‘gxepur] = gput
CT4+[T- (T+¥)do: (H)do - (:“Y)sausware] = ZXOpuUTI
(T¢sausmweT®)ozTs:] = ¥ I0T
{[(pue)do+TXepuTr‘ IXxeput] = TpUT
T4+ [7-(1+0)do:([)ydo“1-(:“[)squamaTa] = T[Xopul
f2/((:°T)TaI0a-(:°g)TaT0A)=0
f(:f(:“f)squomaTe)S93RUTPIOOD = T[3I9A

(1¢saqusmatre)ezis:] = [ o7

f((pus)doxg)soisz = M
C([T-(:)df(7¢searurprood)ezrs])unsund = do

(utSieren‘d squoweTs ‘ S93RUTPIOOD )X MPTINQ = M UOTIOUNT

(¢ MPTTINQ
UT TnJssedons oIoM penb " MpTIng Iou Xo MPTTNQ ISYITON,)I0IIS
pus
([o8essom-uotradedsxs ¢, :penb mpTTing urt zoxayg,])dstp
uotadeoxs yYos3eDd
uIngex
pue
f({1}ut8aexen
s+ ¢7-df squomwe o ‘ S9QRUTPIOOD ) A\PTING = {J}anoSrexea
f({1}ut81exesr ‘dfsjquemoTs ‘ssjeurpiood)penb pypiIng = M
EER R
f({1yur8aegesr ‘d ‘squewsale ‘sogeurpiood)penb MpTIng = p
== 1no8Ieu JI
Lxa

seutTanoi-osanjzexpenb Sutsn L1 *xxxY

pue
([e3essow-uotradedsxe ¢, :X8 MPTINg Ul Jo0xxayg,])dstp

uotideoxe yos3eo

uIngex
pue
f({1}ut8iexen
c++ ¢7-d¢squomeTe ‘ S03RUIPIOOD) APTTING = {[}anoSieren
f({1}urdaeres ‘dfsjuowsIe ‘S9QRUTPIOOD)Xd MPTING = M
osT®
¢ ({1}utr8ierenr‘d‘ squomwaTo‘ S91RUTIPIOOD) X8 MPTINg = M

== 3no8ieu JIT
£xq
soutqanox-oduw 3utsn LIl %%
f((1¢squamatre)ezts ‘d)pdyoeys = d
(ut8iexea‘d

©t ¢ SqQUeWSTS ¢ S9QRUTPIOOD ) MPTING = [3no8IeIeA‘p] UOTIOUNT

ur AP gtg Sunsig
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sisquwered Tersusl o1ndwod xxxY

(suotado‘df £ 3x0A° X qI08) X0 " MTeS = TeBA UOTIOUNT

pue
pue
pus
S(feym = (1¢0)m
(t+d)xz:g:ig+T =
(1+d)*z:1 = T 0%
qxed otxzouwmhs k%%

( xog

pus
pus
C(A*T+T) ‘TIM = (T+d+ (Axg+T) ‘T+deTIN
CC(T+A*T) * (T-A*T) * (A+T)* (T-H+T)) /ORI*T- = ((A*T+T) TN
(¢/(1+1-d)) 100T3:T = ¥ 07
d:ig = 1t 101
qxed zeTnSuetia ioddn Fo gq1ed SuTuUTRWEI KkxY
pus
£((2)ohex
e D2+ D) x (340 x L) /8)*0er- = ([e+d+[2+0] ¢ [2+d 1] M
(1-dy:z:1 = [ zog
MOX 3SITI x%*%*
SeTIque TeUOSRTIP-FJO *%xY
pus
$((@)ohex ((T-T)*T)/2)*#28F=([T+d+T 1] [T+d+T T]) M
T+d:g=1 107
soTIuU® TRUOSRTDP %%
T=<d g1
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Appendix D
Content of the CD

The CD contains the epsBEM software package (version 2.0, August 2012). We first
give an overview on the structure of the software package before we explain how to
run the main routines.

The main directory consists of four subdirectories which we describe briefly. For a
detailed explanation of the software package see [10].

e examples: This folder contains the main routines and subdirectories that
contain the geometries and the function handles for the different problems of
the Laplace and the Navier-Lamé equations. Furthermore, a graphical user
interface is provided.

e lib: This directory is divided into three subdirectories. In the lame and the
laplace folder the (compiled) C- and the MATLAB-functions for the assembly
of the Galerkin matrices for the corresponding PDEs can be found. All other
MATLAB-functions that are listed in the overview on the epsBEM package in
Figure 6.1 can be found in the folder general.

e src: This folder contains the C- and the mex-files of the C-libraries for calcu-
lating the integrals and assembling the Galerkin matrices.

In following we give a short instruction how to run the main routines.

e First, the C-libraries have to be compiled with the make-file make.m that
is located in the root directory. For compiling the parallelized routines for
the assembly of the Galerkin matrices the option p has to be used. How-
ever, this options can only be used while working on a Linux or Unix system.
Furthermore, the multi-precision libraries mpfr and mpc have to be installed.

e The main routines for the Dirichlet, the Neumann and mixed problem with
and without gliding conditions can be found in the folder examples. In the
beginning of each example file the user can chose the PDE, the problem, the
geometry, the Lamé coefficients as well as the refinement parameters for the
adaptive algorithms. The initial values are set in the way that the examples,
which are treated in Chapter 7, are solved. The comment in the subsequent
row denotes the alternative settings for all examples, that are implemented for
the Navier-Lamé equation.
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