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Abstract

Numerical Methods for Hamilton-Jacobi-Bellman

equation
by

Constantin Greif

The University of Wisconsin - Milwaukee, 2017
Under the Supervision of Professor Bruce A. Wade

In this work we considered HJB equations, that arise from stochastic optimal control problems
with a finite time interval. If the diffusion is allowed to become degenerate, the solution cannot be
understood in the classical sense. Therefore one needs the notion of viscosity solutions. With some
stability and consistency assumptions, monotone methods provide the convergence to the viscosity
solution. In this thesis we looked at monotone finite difference methods, semi lagragian methods and
finite element methods for isotropic diffusion. In the last chapter we introduce the vanishing moment
method, a method not based on monotonicity.
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1. Hamilton-Jacobi-Bellman Equations

In this thesis, we are searching for the numerical solution of a class of second-order fully nonlinear

partial differential equations (PDE), namely the Hamilton-Jacobi-Bellman (HJB) equations. These

PDE are named after Sir William Rowan Hamilton, Carl Gustav Jacobi and Richard Bellman. The

equation is a result of the theory of dynamic programming which was pioneered by Bellman. In

continuous time, the result can be seen as an extension of earlier work in classical physics on the

Hamilton-Jacobi equation. The HJB equations we consider arise from optimal control models for

stochastic processes.

1.1. Outline

In this Chapter we briefly describe how HJB equations arise from stochastic optimal control problems.

Then in Chapter 2 we will introduce the concept of viscosity solutions and we will look at the Barles-

Souganidis Argument, which guarantees us the convergence to the viscosity solution for monotone

schemes. In Chapter 3 we will explain Howard’s Algorithm, which is included in many methods

solving the HJB. In Chapter 4 we will look at monotone finite difference methods. In Chapter 5,

we will look at Semi-Lagrangian Schemes, which also get the convergence through the monotonicity

argument. In Chapter 6 we will look at monotone finite element methods for isotropic problems. In

Chapter 7 we will look at a very different concept, which is this of the vanishing moment method.

1



1. Hamilton-Jacobi-Bellman Equations

1.2. HJB in Optimal Control Problems

Optimal control problems describe the time evolution of a state vector X : t → Ω ⊂ Rd related to

a control process λ : t → Λ, where Λ is the set of admissible control values. If not other stated, Λ

will be a compact metric space. If we say λ(·) ∈ Λ, then we mean a measurable function with λt ∈ Λ

almost everywhere. The state vector X satisfies a given stochastic differential equation (SDE), whose

drift µ ∈ Rd and diffusion matrix σ ∈ Rd×p are functions which depend on the control λ(·) ∈ Λ:

dXt = µλt(t,Xt)dt+ σλt(t,Xt)dWt for t > 0,

X0 = x,

(1.1)

where Wt is a given p-dimensional Wiener process.

The task is to minimize a given cost functional Jλ(t, x) ∈ R with (λ, t, x) ∈ Λ× [0, T )×Ω, dependent

on functions fλt(t, x) ∈ R and g(t, x) ∈ R.

Then we can define the value function as

u(t, x) := inf
λ∈Λ

Jλ(t, x) ,where Jλ(t, x) := E
[ τ∫
t

fλs(s,Xs)ds+ g(τ,Xτ )
]
, (1.2)

where τ = inf{s ≥ t | (s,Xs) /∈ (0, T ) × Ω} is the final time of our problem when the state Xt leaves

the open domain set ΩT = (0, T ) × Ω. The control problem (1.2) with the value function u leads to

the following HJB equation:

∂tu+ inf
λ∈Λ

[Lλu+ fλ] = 0 in ΩT ,

u = g on ∂∗ΩT = {T} × Ω ∪ (0, T )× ∂Ω,

(1.3)

where the linear operator Lλ is defined by:

Lλv := Tr[aλD2v] + µλ · ∇v, v ∈ H2(Ω), λ ∈ Λ,

with aλ := 1
2σ(σ)> ∈ Rd × Rd, the symmetric positive semidefinite diffusion coefficient matrix and

2



1. Hamilton-Jacobi-Bellman Equations

D2v denotes the Hessian matrix after x. Equation (1.3) is now solved by the value function we just

defined in (1.2).

Example 1.2.1.(Control problem with explicit solution) If the drift is given by µλ(t,Xt) =

−c1Xt + c2λt, with c1 and c2 constants, the diffusion is also just a constant σλ(t,Xt) = −σ and the

cost function is given by fλ(t,Xt) = r(t)λ2

2 +
l(t)X2

t
2 , where r(t) > 0 and l(t) > 0 are functions just

dependend on time. Then the HJB equation is given by

∂tu+ inf
λ∈Λ

[−(c1x+ c2λ)∂xu− σ∂xxu+
r(t)λ2

2
+
l(t)x2

2
] = 0

Through a basic calculation by derivation after λ, we see that the unique exact solution at time t is

given by

λt =
c2∂xu

r(t)
,

which leads to the following HJB equation without an inf(·) operator

∂tu =
(
c1x+

c2
2∂xu

2r(t)

)
∂xu+ σ∂xxu−

l(t)x2

2

This is just an example, in this Thesis we have the focus on cases, where it can’t be solved analyti-

cally.

We will cite the Theorem in [11].

Theorem 1.2.2.(Krylov) If the following hold:

• The control set Λ is compact,

• Ω is bounded

• ∂Ω is of class C3 (roughly speaking, the boundary is locally the graph of a C3 function),

• The functions aλ, µλ, fλ are in C(Ω̄T × Λ) with their t−partial derivative and first and second

x−partial derivatives for all λ ∈ Λ,

• h ∈ C3([0, T ]× Rd),

3



1. Hamilton-Jacobi-Bellman Equations

and furthermore, there exists γ > 0 such that for every (t, x) ∈ Ω̄T and λ ∈ Λ, Lλ is uniformly elliptic,

i.e. for aλ(t, x) holds
d∑

i,j=1

aλij(t, x)ξiξj ≥ γ|ξ|2 for all ξ ∈ Rd.

Then the HJB equation has a unique classical solution u ∈ C(Ω̄T ) with continuous t−partial derivative

and continuous first and second x−partial derivatives.

Remark 1.2.3. If we allow the HJB equation to become degenerate, a unique classical solution

is not guaranteed anymore. This is why we need the concept of viscosity solutions. Under suitable

assumptions, which does not include uniformly ellipticy, the HJB equation (1.3) has a unique, bounded,

Hölder continuous, viscosity solution u.

1.2.1. Dynamic Programming Principle

The HJB equation is a result of the dynamic programming principle of Bellman, which allows us to

split the value function.

Theorem 1.2.4. For every t1 ∈ [t, τ ] and y ∈ Ω with Xt = y, we have

u(t, y) = inf
λ∈Λ

{
E
[ t1∫
t

fλs(s,Xs)ds
]

+ u(t1, Xt1)
}

(1.4)

By knowing this, we can apply the Dynamic Programming Principle. Means, instead of looking

for u(0, x0), we can go backwards. Therefore we start with u(t, x) = g(t, x) for (t, x) ∈ ∂∗ΩT and

then inductively, by knowing u(tk+1, ·), we get u(tk, x) = inf
λ∈Λ

{
E
[ tk+1∫
tk

fλs(s,Xs)ds
]}

+u(tk+1, Xtk+1
),

where most numerical methods then approximate E
[ tk+1∫
tk

fλs(s,Xs)ds
]
≈ ∆t Lλku+ ∆t fλ.

Theorem 1.2.5. Assume that the value function is in u ∈ C(Ω̄T ) and u = g on ∂ΩT . Then with the

dynamic programming principle for u, we get u to be a solution of the belonging HJB equation.

4



1. Hamilton-Jacobi-Bellman Equations

1.3. Fully Nonlinear Second Order PDEs

The second order PDE (1.3) is fully nonlinear, because the dependence on D2u is not linear, since

the Hessian is included in an inf(·), or often sup(·), operator in the PDE. The HJB equation would

be linear, if the control set Λ was a singleton. To solve fully nonlinear PDEs, there are classical and

weak solution concepts and theories. It is well known that for a class of fully nonlinear second order

PDEs, a C2,α a priori estimate is provided by the celebrated Evans-Krylov Theorem [4].

The nonlinearity of the highest order derivative in (1.3) makes it impossible to use a weak solution

concept based on the integration by parts approach, like we would do for linear, quasi-linear or

semilinear PDEs. So in fact, there was no weak solution concept for fully nonlinear PDEs until

Crandall and Lions [7] introduced the notion of viscosity solutions for first order fully nonlinear PDEs.

Then their notion and theory were quickly extended to second order fully nonlinear PDEs, like we use

in this work.

1.3.1. Challenges

For solving PDEs numerically there are three main classes, or none of the below.

• Methods based on directly approximating derivatives by difference quotients.

• Methods based on variational principles and approximating infinte-dimensional spaces by finite-

dimensional spaces.

• Methods based on finite basis expansions and approximating PDEs at sampling points.

Unfortunately none of those methods work right away for fully nonlinear second order PDEs. A naive

application of the first and third class can already lead to very bad results. And like mentioned before,

the second class can not even be formulated due to the nonlinearity.

5



1. Hamilton-Jacobi-Bellman Equations

1.4. Monotone Methods

In [1] Barles and Souganidis provided a general convergence theory for a broad class of possibly de-

generate fully nonlinear elliptic and parabolic PDEs. In specific, that the underlying PDE satisfies a

certain maximums principle and that the FDM is monotone, consistent and stable in the sense that

the sequence of approximations {uh}h remains bounded in the maximums norm, then it can be shown

that ||u− uh||L∞ →∞ for stepsize h→ 0.

Some of the first computational methods for HJB equations in stochastic control are based on ap-

proximating the underlying SDE by a discrete Markov chain. Later it became clear that under some

assumptions these are equivalent to monotone finite difference methods [3]. The computational prac-

tice of monotone methods has lagged behind their theoretical development, especially for strongly

anisotropic problems. Two main problems are the lower order convergence rate in the first place and

the necessary choice of wide stencil width. In fact, to achieve monotonicity for strongly anisotropic

problems, compact stencils cannot offer consistence and monotonicity. But increasing the stencil width

increases the truncation error. In the degenerate case, there are examples, where no finite stencil can

yield a monotone discretization, so it needs to increase when the grid is refined. Bonnans and Zidani

showed in [3] the number of conditions needed for the diffusion coefficient. Bonnans gave in [2] an

fast algorithm for computing monotone schemes in 2-dim with finite stencil and a consistency error

depending on the stencil width.

Debraband and Jakobsen gave in [8] a semi-lagrangian framework in which the stencil width also con-

tinuously increases as the mesh is refined. One advantage of these methods is, that the mononticity

is guaranteed for h→ 0.

The argument of Barles and Souganidis can not be applied for finite element schemes right away, since

it is made for finite difference schemes. But Ian Smears and Jensen were still able [12] to create a

monotone finite element scheme for possible degenerate isotropic HJB equations. It was shown that

this method converges to the viscosity solution in the L∞ norm.

6



1. Hamilton-Jacobi-Bellman Equations

1.5. Nonmonotone Methods

To guarantee monotonicity and consistency one needs wide stencils, which causes high truncation

errors and therefore reduces the accuracy. In fact, monotone schemes are in practice behind their

theoretical development. Therefore many authors proposed different nonmonotone methods in order

to avoid the stencil restrictions. One of them is the vanishing moment method, which involves fourth

order perturbations to the PDE. Non of the non-monotone methods currently offers a satisfactory

convergence analysis. Nevertheless, some methods have offered good computational results.

1.6. Different Types of HJB equations

HJB equations can have different forms, like

∂tv +H = 0 or

∂tv −H = 0 or

H = 0,

where H is the Hamiltonian, in our case (1.3) H = inf
λ∈Λ

[Lλv+ fλ]. To show that different types of the

HJB equation arise from the same control problem, we will use the following lemma.

Lemma 1.6.1. For a compact set A and continuous function F : A→ R, we have

sup
a∈A

[F (a)] = − inf
a∈A

[−F (a)]

Proof. inf
a∈A

[−F (a)] ≤ −F (a) for all a ∈ A =⇒ − inf
a∈A

[−F (a)] ≥ F (a) for all a ∈ A =⇒ − inf
a∈A

[−F (a)]

is a upper boundary, i.e. − inf
a∈A

[−F (a)] ≥ sup
a∈A

[F (a)].

And similarly, sup
a∈A

[F (a)] ≥ F (a) for all a ∈ A =⇒ − sup
a∈A

[F (a)] ≤ −F (a) for all a ∈ A =⇒ it is a

lower boundary, i.e. − sup
a∈A

[F (a)] ≤ inf
a∈A

[−F (a)] =⇒ sup
a∈A

[F (a)] ≥ − inf
a∈A

[−F (a)].

7



1. Hamilton-Jacobi-Bellman Equations

1.6.1. Time-dependent Case

If we consider the minimising stochastic control problem like before, where we defined the value

function as u(t, x) := inf
λ∈Λ

Jλ(t, x), and with Ω = Rd, then we get the HJB equation with terminal

condition:

∂tu+ inf
λ∈Λ

[Lλu+ fλ] = 0 in ΩT ,

u(T, x) = g(T, x) with x ∈ Ω,

If we change the value function to v(t, x) := −u(t, x), then we get the following HJB

∂tv + sup
λ∈Λ

[Lλv − fλ] = 0 in ΩT ,

u(T, x) = −g(T, x) with x ∈ Ω,

If we substitute the time by defining ũ(t, x) := u(T − t, x), then we get the following HJB with initial

condition

∂tũ− inf
λ∈Λ

[Lλũ+ fλ] = 0 in ΩT ,

ũ(0, x) = g(T, x) with x ∈ Ω,

which is equivalent to

∂tũ+ sup
λ∈Λ

[−Lλũ− fλ] = 0 in ΩT ,

ũ(0, x) = gT, x) with x ∈ Ω,

If we do both at the same time w(t, x) := −u(τ − t, x), then we get

−∂tw + sup
λ∈Λ

[Lλw − fλ] = 0 in ΩT ,

w(0, x) = −g(T, x) with x ∈ Ω,

8



1. Hamilton-Jacobi-Bellman Equations

which is equivalent to

∂tw − sup
λ∈Λ

[Lλw − fλ] = 0 in ΩT ,

w(0, x) = −g(T, x) with x ∈ Ω.

1.6.2. Time-independent Case

In this case, the HJB equation is elliptic and we have

inf
λ∈Λ

[Lλv + fλ] = 0 in Ω. (1.5)

Or if we define v(x) := −u(x), we get

sup
λ∈Λ

[Lλu− fλ] = 0 in Ω. (1.6)

1.6.3. Infinite Time-horizon Case

Case 3 is, when we have a infinite time-horizon, then if we consider the value function:

u(x) = inf
λ∈Λ

E
[ ∞∫

0

fλs(s,Xs)e
−γsds

]
subject to dXt = µλt(t,Xt)dt+ σλt(t,Xt)dWt for t > 0,

X0 = x,

(1.7)

we get the HJB equation

γu− inf
λ∈Λ

[Lλu+ fλ] = 0 in Ω,

u = 0 on ∂Ω,

(1.8)

Remark 1.6.2. If we have γ = 0, it is the elliptic case (1.5) of the HJB equation.
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1. Hamilton-Jacobi-Bellman Equations

1.6.4. Maximising Problem

If we are dealing with a maximising problem

u(t, x) = sup
λ∈Λ

E
[ τ∫
t

fλs(s,Xs)ds+ h(τ,Xτ )
]
, (1.9)

we get the HJB

∂tu+ sup
λ∈Λ

[Lλu+ fλ] = 0 in ΩT ,

u = g on ∂∗ΩT ,

(1.10)

Remark 1.6.3. It is possible to rewrite methods for time-dependent HJBs to time-independent or

infinite time interval HJBs, since the approximation of the Hamiltonian is the challenging task.

1.7. Examples

Example 1.7.1. Let’s consider the stochastic control problem with value function u(t, x) = minλ E[
∫ τ
t 1ds],

which means we want to leave the domain ΩT as soon as possible to minimize this integral.

Then with Λ = {−1, 1}, fλ = 1, σλ = 0, µλ = λ, the HJB equation to this is given by

∂tu(t, x)− sup
λ∈Λ
{−λ∇u(t, x)− 1} = 0 for t ∈ (0, 1) and x ∈ (−1, 1)

u = 0 on {1} × (−1, 1) ∪ (0, 1)× {−1, 1}.

With unique viscosity solution u(t, x) = min(1− t, 1− |x|). See Figure (2.2).

Example 1.7.2. If we consider the HJB equation with

fλ(t, x) = sin(x1) sin(x2)[(1 + 2β2)(2− t)− 1]− 2(2− t) cos(x1) cos(x2) sin(x1 + x2) cos(x1 + x2),

cλ(t, x) = µλ(t, x) = 0,

σλ(t, x) =
√

2
( sin(x1 + x2) β 0

sin(x1 + x2) 0 β

)
with β2 = 0.1. In this Case the HJB eqaution is linear and the

10



1. Hamilton-Jacobi-Bellman Equations
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Figure 1.1.: u(t, x1, x2) = (2− t) sin(x1) sin(x2), plot for t = 0

solution of this is

u(t, x) = (2− t) sin(x1) sin(x2). (1.11)

See Figure (1.1)
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2. Viscosity Solution and the Barles-Souganidis

Convergence Argument

Definition 2.0.1.(degenerate elliptic) An operator F : Rd×R×Rd×Sn(R)→ R is called degenerate

elliptic on Ω if for all x ∈ Ω, r ∈ R P,Q ∈ Sn(R) with P ≥ Q and y ∈ Rd we have

F (x, r, y, P ) ≤ F (x, r, y,Q).

We call an operator −∂t+F degenerate parabolic, if F (·, t, ·, ·, ·) is degenerate elliptic for all t ∈ (0, T ).

Definition 2.0.2.(proper) An operator F : Rd × R × Rd × Sn(R) → R is called proper on Ω if for

all x ∈ Ω, r, l ∈ R with r ≥ l, P ∈ Sn(R) and y ∈ Rd we have

F (x, r, y, P ) ≥ F (x, l, y, P ).

We call an operator −∂t + F proper, if F (·, t, ·, ·, ·) is proper for all t ∈ (0, T ).

Recall the HJB operator

−∂tu+ sup
λ∈Λ

[−Lλu− fλ]. (2.1)

It can be proven, that this operator is in fact degenerate parabolic and proper.

2.1. Viscosity Solution

Without further requirements, general fully nonlinear PDEs second order, like our HJB equation, do

not necessarily have a classical solution. Because of the nonlinearity on the highest order derivative

12



2. Viscosity Solution and the Barles-Souganidis Convergence Argument

Figure 2.1.: viscosity solution, i.e. ϕt(x0) + F [ϕ(x0)] ≤ 0, right: vis. supersolution, i.e. ϕt(x0) +
F [ϕ(x0)] ≥ 0

in (2.2), we can also not extend a weak solution concept based on the integration by parts approach

for fully nonlinear PDEs. So in general there is no variational/weak formulation for fully nonlinear

PDEs. In 1983 Crandall and Lions [7] introduced the notion of viscosity solutions and established

their theory for the Hamilton-Jacobi equations of first order. For the definition of first order, we

refer to Chapter 7. The notion and theory of viscosity solutions to fully nonlinear second order got

extended by Jensen, who established the uniqueness of solutions and by Ishii, who proved the existence

of solutions. Viscosity solutions are a mathematical concept to select the value function u from the

possibly infinite set of weak solutions for the HJB equation.

2.1.1. Motivation

To motivate the notion of viscosity solutions, suppose for a moment that F is degenerate elliptic and

u is a C2-function satisfying F (D2u(x),∇u(x), u(x), x) ≤ 0 (resp. F [u(x)] ≥ 0). Suppose further

that ϕ is also a C2-function satisfying u ≤ ϕ (resp. u ≥ ϕ) and u − ϕ has a local maximum (resp.

minimum) at x0 ∈ Ω ⊂ Rd, without loss of generalization the maximum is allocated at zero, so u(x0) =

ϕ(x0). Then elementary calculus tells us that ∇u(x0) = ∇ϕ(x0) and D2u(x0) ≤ D2ϕ(x0) (resp.

D2u(x0) ≥ D2ϕ(x0)). So we get F (D2ϕ(x0),∇ϕ(x0), ϕ(x0), x0) ≤ F (D2u(x0),∇u(x0), u(x0), x0) ≤ 0

(resp. F [ϕ(x0)] ≥ F [u(x0)] ≥ 0). Consider Figure (2.1)
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

2.1.2. Definition

With the observation above, we give the definition of a viscosity solution for

−∂tu+ F (x, t, u,∇u,D2u) = 0 on ΩT (2.2)

Definition 2.1.1.(continuous case) Consider F : Rd×d×Rd×R×Rd → R is a continuous non-linear

function.

(i) A function u ∈ C0(Ω) is called a viscosity subsolution of (2.2) if, for every C2 function ϕ such

that u− ϕ has a local maximum at x0 ∈ Ω, there holds −ϕt + F (D2ϕ(x0),∇ϕ(x0), ϕ(x0), x0) ≤ 0.

(ii) A function u ∈ C0(Ω) is called a viscosity supersolution of (2.2) if, for every C2 function ϕ(x)

such that u−ϕ has a local minimum at x0 ∈ Ω, there holds ∂tϕ+F (D2φ(x0),∇φ(x0), φ(x0), x0) ≥ 0.

A function u ∈ C0(Ω) is called a viscosity solution of (2.2) if it is both, a viscosity subsolution and

a viscosity supersolution.

This definition can be generalized to the case when both F and u are just bounded functions, which

can be easily done using the lower and upper semi continuous envelopes of F and u.

Definition 2.1.2.(semi continuous envelope) For u ∈ B(Ω̄) we define the lower semi-continuous

envelope as

u∗(x) = lim inf
y→x

u(x) , for x ∈ Ω

and similarly the upper semi-continuous envelope as

u∗(x) = lim sup
y→x

u(x) , for x ∈ Ω

Definition 2.1.3. Consider F : Rd×d × Rd × R× Rd → R and u : Ω→ R are bounded functions.

(i) u is called a viscosity subsolution of (2.2), if for every C2 function ϕ such that u∗−ϕ has a local

maximum at x0 ∈ Ω, there holds −∂tϕ+ F (D2ϕ(x0),∇ϕ(x0), ϕ(x0), x0) ≤ 0.

(ii) u is called a viscosity supersolution of (2.2), if for every C2 function ϕ(x) such that u∗ − ϕ has

a local minimum at x0 ∈ Ω, there holds −∂tϕ+ F (D2ϕ(x0),∇ϕ(x0), ϕ(x0), x0) ≥ 0.
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

Then u is called a viscosity solution of (2.2) if it is both, a viscosity subsolution and a viscosity

supersolution.

Geometrically speaking, u is a viscosity solution if, for every C2 function ϕ that touches u from

above at x0, there holds F [ϕ(x0)] ≤ 0 and if ϕ touches the graph of u from below at x0, there holds

F [ϕ(x0)] ≥ 0.

Example 2.1.4. If we consider the following PDE

−∂tu(t, x) + |∇u(t, x)| = 1 with t ∈ (0, 1] and x ∈ (−1, 1)

u = 0 on {1} × (−1, 1) ∪ (0, 1)× {−1, 1}.
(2.3)

Then with Λ = {−1, 1}, fλ = 1, σλ = 0, µλ = λ, we get the HJB equation

∂tu(t, x)− sup
λ∈Λ
{−λ∇u(t, x)− 1} = 0 for t ∈ (0, 1] and x ∈ (−1, 1)

u = 0 on {1} × (−1, 1) ∪ (0, 1)× {−1, 1}.
(2.4)

Then the unique viscosity solution for this equation is given by

u(t, x) = min(1− t, 1− |x|). (2.5)

Theorem 2.1.5. Let u ∈ C(Ω̄T )∩C2,1(ΩT ). Then u is a viscosity solution of (2.2) if and only if u is

a classical pointwise solution of (2.2).

2.1.3. Final Value Problem and Comparison

In viscosity solution theory for second order fully nonlinear equations the comparison principle gives

us the uniqueness of a viscosity solution. Generally speaking, the comparison principle asserts that

if F is elliptic, u, v are, respectively, a viscosity subsolution and a viscosity supersolution, i.e., if

−∂tu + F [u] ≤ 0 and −∂tu + F [v] ≥ 0 and u ≤ v on ∂ΩT , then u ≤ v in all of ΩT . Clearly

such a result leads to uniqueness of viscosity solutions, namely, if ∂tu + F [u] = ∂tv + F [v] in Ω and

u = v on ∂ΩT , then u = v. Indeed, if u, v are two viscosity solutions with u = v on ∂ΩT , then

15
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Figure 2.2.: min(1− t, 1− |x|)

−∂tu + F [u] ≤ 0,−∂tv + F [v] ≥ 0, and u ≤ v, implying u ≤ v in ΩT . Switching the roles of u and v

we obtain u ≥ v and so u = v.

For that, we will consider (2.2) with boundary:

−∂tu+ F (x, t, u,∇u,D2u) = 0 in ΩT

u = g on ∂ΩT

(2.6)

Definition 2.1.6. An upper semi-continous function u ∈ USC(Ω̄T ) is a viscosity subsolution of (2.6)

if u is a viscosity subsolution of the (2.2) in the sense of the above definition and u ≤ g on ∂ΩT .

A lower semi-continous function u ∈ LSC(Ω̄T ) is a viscosity supersolution of (2.6) if u is a viscosity

supersolution of (2.2) in the sense of definition and u ≥ g on ∂ΩT .

A function u ∈ C(Ω̄T ) is a viscosity solution if both holds true.

Now we will cite some theorems in [9].

Theorem 2.1.7. Let Ω ⊂ Rd be open and bounded. Let F ∈ C([0, T ] × Ω̄ × R × Rd × Sn(R)) be

continuous, proper, and degenerate elliptic with the same function w. If u is a subsolution of (2.6)

and v is a supersolution of (2.6) then u ≤ v on [0, T )× Ω.
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

Assumption 2.1.8. We assume that there exists C ≥ 0 such that for all λ ∈ Λ, x, y ∈ Rd and

t, x ∈ [0, T ]

|µλ(t, x)− µλ(s, y)| ≤ C(|x− y|+ |t− s|)

|σλ(t, x)− σλ(s, y)| ≤ C(|x− y|+ |t− s|)

|µλ(t, x)| ≤ C(1 + |x|)

|σλ(t, x)| ≤ C(1 + |x|)

(2.7)

Assumption 2.1.9.

|fλ(t, x)− fλ(s, y)| ≤ C(|x− y|+ |t− s|)

|fλ(t, x)| ≤ C(1 + |x|)

|gλ(t, x)| ≤ C(1 + |x|)

(2.8)

Theorem 2.1.10. Given assumptions (2.1.8) and (2.1.9) then there is at most one viscosity solution

to the HJB final value problem.

Theorem 2.1.11. Provided that the value function is uniformly continous up to the boundary. u is

a viscosity solution of the HJB equation with no boundary and if furthermore u = g on the boundary,

then u is a viscosity solution of the HJB with boundary.

2.2. The Barles-Souganidis Convergence Argument

Barles and Souganidis showed in [1] the convergence of a wide class of approximation schemes to

the solution of fully nonlinear second order degenerate elliptic or degenerate parabolic PDE’s. They

proved that any monotone, stable and consistent scheme converges to the unique viscosity solution,

provided that there exists a comparison principle, which is the case in our setting.
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

Again, consider the fully nonlinear operator

−∂tu+ F (D2u,∇u, u) = 0 in Rd

u(0, x) = u0(x) in Rd,
(2.9)

while F is continuous in all of it’s arguments and degenerate elliptic.

Definition 2.2.1. We say (2.9) satisfies the strong comparison principle for a bounded solution, if for

all bounded functions u ∈ USC and v ∈ LSC it holds:

• u is a viscosity subsolution

• v is a viscosity supersolution

• the boundary condition holds in the viscosity sense

max{∂tu− F [u], u− u0} ≥ 0 on {0} × Rd

min{∂tu− F [u], u− u0} ≤ 0 on {0} × Rd,

then we have u ≤ v on [0, T ]× Rd.

Let’s consider the general numerical scheme

K(h, t, x, uh(t, x), [uh]t,x) = 0 for (t, x) ∈ Gh \ {t = 0},

where h = (∆t,∆x), Gh = ∆t{0, 1, ..., nd} ×∆xZd, [uh]t,x stands for the value of uh at other points

than (t, x).

(i) Monotonicity.

K(h, t, x, r, a) ≥ K(h, t, x, r, b) whenever a ≤ b,

where this monotonicity assumption can be weakened. We only need it to hold approximately,

with an error that vanishes to 0 as h goes to zero.
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

(ii) Solvability and Stability. For arbitrary h > 0, there exists a solution uh ∈ B(Ω̄T ) to

K[uh] = 0, x ∈ Ω̄ (2.10)

also, there also exists a constant C > 0 such that

||uh||L∞ ≤ C.

(iii) Consistency.

For all x ∈ Ω̄ and ϕ ∈ C∞ there holds

lim sup
(h,t−s,y−x,ξ)→0

K(h, s, y, ϕ(y) + ξ, ϕ+ ξ)

h
≤ −∂tϕ+ F (D2ϕ(x),∇ϕ(x), ϕ(x), x)

lim inf
(h,t−s,y−x,ξ)→0

K(h, s, y, ϕ(y) + ξ, ϕ+ ξ)

h
≥ −∂tϕ+ F (D2ϕ(x),∇ϕ(x), ϕ(x), x)

Remark 2.2.2. If F is not continuous in all of its arguments, then F has to be replaced by its upper

and and lower semi-continuous envelopes F ∗ and F∗, respectively.

To approximate a degenerate parabolic PDE −∂tu + F [u] = 0, in our case F [u] := Hu with

Hu := supλ(Lλu − fλ), we consider a not more specified sequence of numerical schemes in the i-th

refinement level

Ki[ui](s
k
i , x

l
i) = 0,

with solutions ui, where {xli}l is the set of grid points and {ski }k the set of time nodes. Under a

stability condition, one can define the upper and lower envelope of the sequence by

u∗(t, x) := sup
(ski ,x

l
i)i∈N→(t,x)

lim sup
i→∞

ui(s
k
i , x

l
i)

u∗(t, x) := inf
(ski ,x

l
i)i∈N→(t,x)

lim inf
i→∞

ui(s
k
i , x

l
i).

We obviously get then u∗ ≥ u∗. Then in [?] it is proven, that if u∗ − w has a strict local maximum,

for smooth w, also ui−Iiw has a strict local maximum for a nearby point (ski , y
l
i), where Ii is a nodal
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2. Viscosity Solution and the Barles-Souganidis Convergence Argument

interpolation operator. A certain monotonicity assumption implies

0 = Ki[ui](s
k
i , x

l
i) ≥ Ki[Iw](ski , x

l
i),

together with the consistency condition

Ki[Iiw](ski , x
l
i)→ −∂tw(t, x) +Hw(t, x)

we get

−∂tw(t, x) +Hw(t, x) ≤ 0.

Therefore u∗ is a subsolution. Similar argument leads to u∗ being a supersolution. Finally with a

comparison principle subsolutions are bounded from above by supersolutions

u∗ ≤ u∗,

which gives convergence.

Theorem 2.2.3. Assume that the problem (2.9) satisfies the strong comparison principle for bounded

functions. Assume further that the scheme satisfies the consistency, monotonicity and stability prop-

erties then it’s Solution uh converges locally uniformly to the unique viscosity solution of (2.9).

Remark 2.2.4. For example in [13] Oberman described why monotone schemes are necessary and

gave an example of a scheme which is stable, but nonmonotone and nonconvergent.
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3. Using Howard’s Algorithm

3.0.1. Idea

The HJB equation like in (1.3) is naturally related to linear nondivergence form equations with

discontinuous coefficients. The relation between these linear and nonlinear problems is that nondiver-

gence form linear operators can be viewed as linearisations of the fully nonlinear operator. Howard’s

Algorithm can be interpreted as a Newton method for a nonlinear operator equation. Another name

is policy iteration and it is included in several numerical methods.

3.0.2. Problem statement

Here we consider the following fully non-linear HJB equation.

∂tu+ inf
λ∈Λ

{
Lλu+ fλ

}
= 0 in ΩT

u = g on ∂∗ΩT

(3.1)

with

Lλv = Tr[aλD2v] + µλ · ∇v (3.2)

defined like in Chapter 1.

3.1. Howard’s Algorithm

We consider the value functional Jλ(t, x) := E
[ τ∫
t

fλs(s,Xs)ds+h(τ,Xτ )
]
. For the optimal control λ∗

and time t, the value functional is the value function u(t, x) = Jλ
∗
(t, x).
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3. Using Howard’s Algorithm

Lemma 3.1.1. Let Jλ(t, x) be the value functional.

Then Jλ is also the solution of the boundary value problem corresponding to the arbitrary but fixed

control law λ ∈ Λ:

∂tJ
λ + LλJλ + fλ = 0, in ΩT

with boundary data Jλ(t, x) = g(t, x), for (t, x) ∈ ∂∗ΩT

(3.3)

With this information we can define a successive approximation algorithm. The sequence of control

laws is given by

λk+1 = arg min
λ∈Λ
{Lλ(t,Xt)J

λk + fλ(t,Xt)} (3.4)

With that, we get Lλ
k+1

(t,Xt)J
λk + fλ

k+1
(t,Xt) ≤ Lλ

k
(t,Xt)J

λk + fλ
k
(t,Xt). Now let Jλ

k+1
be

defined as the solution of (3.3) corresponding to the new control law λk+1:

∂tJ
λk+1

+ Lλ
k+1

Jλ
k+1

+ fλ
k+1

= 0, on ΩT

with boundary data Jλ
k+1

(t, x) = g(t, x), for (t, x) ∈ ∂∗ΩT

(3.5)

If we continue defining the sequences of the control laws λk and their belonging value functionals

Jλ
k

like above, then we get the following Lemma and Theorem.

Lemma 3.1.2. The sequence {Jλk}k∈N satisfies:

Jλ
k+1 ≤ Jλk (3.6)

Theorem 3.1.3. λk together with Jλ
k

converge to the optimal feedback control law λ and the value

function u(x, t) of our optimal control problem :

lim
k→∞

λk = λ

lim
k→∞

Jλ
k
(t, x) = u(t, x)

This gives us the following Algorithm

22



3. Using Howard’s Algorithm

Algorithm 3.1.4. • For k = 0, Choose initial control law λ0 ∈ Λ.

• Get the functional Jλ
k
(t, x) by solving the boundary value problem for the already known control

law λk:

∂tJ
λk + Lλ

k
Jλ

k
+ fλ

k
= 0, on ΩT

with boundary Jλ
k
(t, x) = g(t, x), for (t, x) ∈ ∂∗ΩT

• Compute the control law λk+1, by solving:

λk+1 = arg max
λ∈Λ
{fλ(t,Xt) + Lλ(t,Xt)J

k}

• k = k + 1 and go back to the second step

3.2. Computational Implementation

For using our successive Algorithm, we still need to solve the PDE (3.5) and the Optimization problem

(3.4). We can takle (3.5) with standard methods for solving linear parabolic PDEs, like the heat

equation. Then this can be solved by finite difference schemes with upwind differences for the first

order derivatives and mixed derivatives for the second order derivatives. Now we just have a finite

grid, so also the optimization problem (3.4) just needs to be solved for every grid point.

Remark 3.2.1. Many full methods have Howard’s algorithm included, like for example the finite

element method we will look at in Chapter 6.

3.3. Application

For the 1-dimensional applications I did use the following scheme. First we approximate the PDE

(3.5) to

u(tn+1, xi)− u(tn, xt)

∆t
+ µλD±u(tn, xi) + σλ

u(tn, xi+1)− 2u(tn, xi) + u(tn, xi−1)

(∆x)2
+ fλ, (3.7)
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3. Using Howard’s Algorithm

where D± stands for the upwind operator related to the drift µ

D±ϕ(tn, xi) =
ϕ(tn, xi)− ϕ(tn, xi−1)

∆x
, if µ > 0

D±ϕ(tn, xi) =
ϕ(tn, xi+1)− ϕ(tn, xi)

∆x
, if µ < 0

Then we defined this as F (y), where y = u(tn, xi). Then we applied the Newton method

yk+1 = yk −
F (yk)

F ′(yk)

to get the solution F (y) = 0.

We applied this method to the following examples

Example 3.3.1. For the HJB

∂tu+ sup
λ∈Λ
{λ∂xxu+ (1− x2)} = 0 in (0, 1)× (−1, 1)

u(t, x) = 0 for (t, x) ∈ {1} × [−1, 1] ∪ (0, 1)× {−1, 1},
(3.8)

with Λ = {0, 0.5, 1}. Then the solution of this PDE is u(t, x) = (1− t)(1− x2). The numerical results

are in Figure (3.1)

Example 3.3.2. For the HJB

∂tu+ sup
λ∈Λ
{−λx∂xxu+ λ∂xu− π cos(πt)25x2} = 0 in t ∈ (0, 1)× (−1, 1)

u(t, x) = sin(πt)(5x)2 for (t, x) ∈ {1} × [−1, 1] ∪ (0, 1)× {−1, 1},

(3.9)

with Λ = {0, 0.5, 1}. Then the solution of this PDE is u(t, x) = sin(πt)(5x)2. The numerical results

for h = 1
10 are in Figure (3.2)
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4. Finite Difference Methods

Here we consider two different finite difference approximations in space and then the θ−method for

the approximation in time. For simplicity we take h = (∆t,∆x) and consider the uniform grid

Gh = ∆t{0, 1, 2, ...,K} ×∆xZd and G+
h = Gh \ {t = 0}

4.0.1. Problem Statement

Here we consider the following fully non-linear diffusion equations

∂tu+ sup
λ∈Λ

{
− Lλu− cλu− fλ

}
= 0 in ΩT = Rd ∪ (0, T ]

u(0, x) = u0(x) on Rd
(4.1)

with

Lλ[u](t, x) = Tr(aλ(t, x)D2u(t, x)) + µλ(t, x)∇u(t, x) (4.2)

defined like in Chapter 1.

4.0.2. Well-Posedness

We will use the following assumptions on the initial value problem (4.1)

Assumption 4.0.1. For any λ ∈ Λ, aλ,β = 1
2σ

λσλ> for some d× p matrix σλ. There is a constant K

independent of λ such that

| u0 |1 + | σλ |1 + | µλ |1 + | cλ |1 + | fλ |1≤ K
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4. Finite Difference Methods

This assumption ensures that we get a well-posedness bounded Lipschitz continuous (resp. to the

value x ∈ Ω) value function, which satisfies the comparison principle.

Proposition 4.0.2. If assumption (5.0.1) holds. Then there exists a unique solution u of the inital

value problem (4.1) and a constant C only depending on T and K from the assumption such that we

have

| u |1≤ C.

Furthermore, if u1 and u2 are sub- and supersolutions of (5.1) satisfing u1(0, ·) ≤ u2(0, ·), then it holds

u1 ≤ u2.

4.1. Approximation in Space

To get the approximation in space we approximate Lλ by a finite difference operator Lλh

Lλhψ(t, x) =
∑
η∈S

Cλh (t, x, η)(ψ(t, x+ η∆x)− ψ(t, x)) for (t, x) ∈ Gh, (4.3)

where the stencil S is a finite subset of Zd \ {0} and where

Cλh (t, x, η) ≥ 0 for all η ∈ S, (t, x) ∈ G+
h , h = (∆t,∆x) > 0, λ ∈ Λ, (4.4)

which gives us a difference approximation of positive type, which is a sufficient assumption for mono-

tonicity in the stationary case.

4.1.1. Approximation of Kushner-Dupuis

We denote by {ei}di the standard basis for Rd and we define

Lλhψ(t, x) =

d∑
i=1

(
aλii(x, t)∆iiψ(x, t) +

∑
i 6=j

[
a+,λ
ij (x, t)∆+

ijψ(x, t)− a−,λij (x, t)∆−ijψ(x, t)
])

d∑
i=1

[µ+,λ
i δ+

i ψ(x, t)− µ−,λi δ−i ψ(x, t)],

(4.5)
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4. Finite Difference Methods

where µ+ = max{µ, 0}, µ− = −min{µ, 0} and

δ+
i ψ(x, t) :=

ψ(x+ ei∆x, t)− ψ(x, t)

∆x
,

δ−i ψ(x, t) :=
ψ(x, t)− ψ(x− ei∆x, t)

∆x
,

∆iiψ(x, t) :=
ψ(x+ ei∆x, t)− 2ψ(x, t) + ψ(x− ei∆x, t)

∆x2
,

∆+
ijv(x, t) :=

1

2∆x2

(
ψ(x+ ei∆x+ ej∆x, t) + 2ψ(x, t) + ψ(x− ei∆x− ej∆x, t)

)
− 1

2∆x2

(
ψ(x+ ei∆x, t) + ψ(x− ei∆x, t) + ψ(x+ ej∆x, t) + ψ(x− ej∆x, t)

)
,

∆−ijψ(x, t) := − 1

2∆x2

(
ψ(x+ ei∆x− ej∆x, t) + 2ψ(x, t) + ψ(x− ei∆x+ ej∆x, t)

)
+

1

2∆x2

(
ψ(x+ ei∆x, t) + ψ(x− ei∆x, t) + ψ(x+ ej∆x, t) + ψ(x− ej∆x, t)

)
.

This approximation is of positive type if and only if a is diagonal dominant, i.e.

aλii(t, x)−
∑
i 6=j
|aλij(t, x)| ≥ 0 in ΩT , λ ∈ Λ, i = 1, 2, ..., d. (4.6)

One can prove now, that this scheme is monotone in the stationary case. For the proof we refer to

[3].

4.1.2. Approximation of Bonnans and Zidani

We assume a finite stencil S̄ and a set of positive coefficients āη : η ∈ S̄} ⊂ R+ such that

aλ(t, x) =
∑
η∈S̄

āλη(t, x)η>η in ΩT , λ ∈ Λ, (4.7)

which also ensures the approximation to be of positive type. The approximation of Bonnans and

Zidani is then given by

Lλhψ =
∑
η∈S̄

āλη∆ηψ +

d∑
i=1

[µ+,λ
i δ+

i − µ
−,λ
i δ−i ]ψ, (4.8)
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4. Finite Difference Methods

where ∆η is an approximation of Tr[ηη>D2]

∆ηψ(x, t) =
ψ(x+ η∆x, t)− 2ψ(x, t) + ψ(x− η∆x, t)

|η|2∆x2

This approximation is of positive type per definition, and so monotone in the stationary case.

For both approximations there is a constant C > 0 such that for every ψ ∈ C4(Rd) and (t, x) ∈ G+
h

|Lλψ − Lλhψ| ≤ C(|µλ|0|D2ψ|0∆x+ |aλ|0|D4ψ|0∆x2)

4.2. Fully Discrete Scheme

For θ ∈ [0, 1], we set the fully discrete scheme then as

u(t, x) = u(t−∆t, x)− (1− θ)∆t sup
λ
{−Lλhu− cλu− fλ}(t−∆t, x)

−θ∆t sup
λ
{−Lλhu− cλu− fλ}(t, x) in G+

h

(4.9)

Under assumption (4.4) this this fully discrete scheme is monotone if also the following CFL condi-

tion holds

Assumption 4.2.1.

∆t(1− θ)(−cλ(t, x) +
∑
η

Cλh (t, xη)) ≤ 1,

∆tθ(cλ(t, x) +
∑
η

Cλh (t, xη)) ≤ 1,

4.3. Fast Algorithm for 2 Dimensions

In [2] Bonnans proposed an algorithm for computing monotone discretisations of two-dimensional

HJB problems with finite stencils, with a consistency error depending on the stencil width. This is

achieved by approximating the diffusion coefficient a by another coefficient ã for which a monotone
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Figure 4.1.: Numerical solutions and the exact solution u(t, x) = min(1− t, 1− |x|), plotted for t = 0

discretisation is available on a user-specified stencil. To compute the coefficients, one needs to solve

a linear programming problem at each point of the grid. They also show that this can be solved in

O(p), if p is the stencil size. The method uses the Stern-Brocot tree and on the related filling of the

set of positive semidefinite matrices. Convergence is then achieved by increasing the stencil size along

with mesh refinement.

4.4. Application

Example 4.4.1. Here we assumed the HJB in Example (2.1.4) and applied the Kushner-Dupuis

Scheme on it, see Figure (4.1). The plot is for t = 0. N stands for the number of grid points, i.e.

x1, x2, ..., xN .
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Figure 4.2.: Numerical solutions and the exact solution u(t, x1, x2) = (2 − t) sin(x1) sin(x2), plotted
for t = π

Example 4.4.2. If we consider the HJB equation with

fλ(t, x) = sin(x1) sin(x2)[(1 + 2β2)(2− t)− 1]− 2(2− t) cos(x1) cos(x2) sin(x1 + x2) cos(x1 + x2),

cλ(t, x) = µλ(t, x) = 0,

σλ(t, x) =
√

2
( sin(x1 + x2) β 0

sin(x1 + x2) 0 β

)
with β2 = 0.1. In this Case the HJB equation is linear and the

solution of this is

u(t, x) = (2− t) sin(x1) sin(x2). (4.10)

See Figure (4.2), where I applied the Kushner-Dupuis Scheme for stepsize π.
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5. Semi-Lagrangian Schemes

5.0.1. Idea

The results in this Chapter are based on the work of K. Debrabant and E. R. Jakobsen [8]. Semi-

Lagrangian schemes are a type difference-interpolation schemes and arise as time-discretizations of

the following semi-discrete equation

∂tu− inf
λ∈Λ

{
Lλk [I∆xu](t, x) + fλ(t, x)

}
,

where I is a monotone interpolation operator of the grid and Lλk is a monotone difference approxi-

mation of the operator Lλ. One advantage of these methods is the guaranteed monotonicity of the

discretisations, with consistency achieved for the step-size h→ 0. But to achieve this the stencil size

width continually increases as the mesh is refined.

Here we treat HJB equations especially posed on the entire space Rd, rather than on bounded domains.

Using a boundary, the formula used needs to be modified for points close to the boundary, for example

by a one-sided asymmetric formula.

5.0.2. Problem Statement

Here we consider the following fully non-linear diffusion equations

∂tu− inf
λ∈Λ

{
Lλu+ cλu+ fλ

}
= 0 in ΩT = (0, T )× Rd

u(0, x) = u0(x) in Rd
(5.1)
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5. Semi-Lagrangian Schemes

with

Lλ[u](t, x) = Tr[aλ(t, x)D2u(t, x)] + µλ(t, x)∇u(t, x), (5.2)

where the functions are defined like in Chapter 1. By setting cλ = 0, we get the HJB equation in

Chapter 1.

5.0.3. Well-Posedness

We will use the following assumptions on the initial value problem (5.1)

Assumption 5.0.1. For any λ ∈ Λ, aλ = 1
2σ

λσλ> for some d × p matrix σλ. There is a constant K

independent of λ such that

| u0 |1 + | σλ |1 + | µλ |1 + | cλ |1 + | fλ |1≤ K

This assumption ensures that we get a well-posedness bounded Lipschitz continuous (resp. to the

value x ∈ Ω) value function, which satisfies the comparison principle.

Proposition 5.0.2. If assumption (5.0.1) holds. Then there exists a unique solution u of the inital

value problem (5.1) and a constant C only depending on T and K from the assumption such that we

have

| u |1≤ C.

Furthermore, if u1 and u2 are sub- and supersolutions of (5.1) satisfing u1(0, ·) ≤ u2(0, ·), then it holds

u1 ≤ u2.

The norms are defined in the last Chapter.

5.1. Definition of SL-Schemes

Let G∆t,∆x be a not necessarily structured family of grids with

G = G∆t,∆x = {(tn, xi)}n∈N0,i∈N = {tn}n∈N0 ×X∆x,
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5. Semi-Lagrangian Schemes

for ∆t,∆x > 0. Here 0 = t0 < t1 < ... < tn < tn+1 < ... < T satisfy max
n

∆tn ≤ ∆t, where

∆tn = tn − tn−1 and X∆x = {xi}i∈N is the set of vertices of nodes for a non-degenerate polyhedral

subdivision T ∆x = {T∆x
j }j∈N of Rd. For some ρ ∈ (0, 1) the polyhedrons Tj = T∆x

j satisfy

int(Tj ∩ Ti)
i 6=j
= ∅,

⋃
j∈N

Tj = Rd, ρ∆x ≤ sup
j∈N
{diamBTj} ≤ sup

j∈N
{diamTj} ≤ ∆x,

where diam(·) is the diameter of the set and BTj the greatest ball contained in Tj .

Let’s say the matrix σ = (σ1, σ2, ..., σP ) with σm is the m-th column of σ, ψ is a smooth function

and k > 0. In the second equation we replace ψ by its interpolant Iψ on the grid G. We get the

approximation

1

2
Tr[σσ>D2ψ(x)] =

P∑
m=1

1

2

ψ(x+ kσm)− 2ψ(x) + ψ(x− kσm)

k2
+O(k2)

≈
P∑

m=1

1

2

(Iψ)(x+ kσm)− 2(Iψ)(x) + (Iψ)(x− kσm)

k2

µ∇ψ(x) =
1

2

ψ(x+ k2µ)− 2ψ(x) + ψ(x+ k2µ)

k2
+O(k2)

≈ 1

2

(Iψ)(x+ kµ)− 2(Iψ)(x) + (Iψ)(x− kµ)

k2

These approximations are positive monotone. If we also consider the interpolation to be monotone,

we get a fully monotone discretization. The general finite difference operator has the form

Lλk [ψ](t, x) =

M∑
i=1

1

2

ψ(t, x+ yλ,+k,i (t, x))− 2ψ(t, x) + ψ(t, x+ yλ,−k,i (t, x))

k2
, (5.3)

where for smooth functions ψ holds

|Lλk [ψ]− Lλ[ψ]| ≤ C(|Dψ|+ ...+ |D4ψ|0)k2 (5.4)

Then we get the final scheme by
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5. Semi-Lagrangian Schemes

δ∆tnU
n
i = inf

λ∈Λ

{
Lλ,k [IŪ.θ,n]n−1+θ

i + cλ,n−1+θ
i Ū θ,ni + fλ,n−1+θ

i

}
in G

U0
i = h(xi) in X∆x,

(5.5)

where θ ∈ [0, 1] and Uni = U(tn, xi), f
λ,n−1+θ
i = fλ(tn−1 + ∆tθtn, xi) with (tn, xi) ∈ G,

δ∆tψ(t, x) := ψ(t,x)−ψ(t−∆t,x)
∆t and ψ̄.

θ,n
:= (1− θ)ψ.n−1 + θψ.n

Example 5.1.1. For θ = 0 we get the Explicit Euler.

U(tn, xi)− U(tn−1, xi)

∆t
= inf

λ

{
Lλk [IU(tn−1, ·)](tn−1, xi) + cλ(tn−1, xi)U(tn−1, xi) + fλ(tn−1, xi)

}

If we choose θ = 1 we get implicit Euler and for θ = 1
2 we get the midpoint rule.

5.1.1. Collocation Method

We can also interpret the scheme (5.5) as a collocation method for a derivative free equation. If

W∆x(QT ) = {v : v is a function on QT satisfying v = T v in QT }

denotes the interpolant space, equation (5.5) can be stated in a equivalent way:

Find U ∈W∆x(QT ) solving

δ∆tnU
n
i = inf

λ∈Λ

{
Lλk [Ū θ,n]n−1+θ

i + cλ,n−1+θ
i Ū θ,ni + fλ,n−1+θ

i

}
in G (5.6)

5.2. Analysis

In this section, we give assumptions under which the SL scheme (5.5) is monotone and consistent, and

we also present L∞-stability, existence, uniqueness, and convergence results for these schemes.
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5. Semi-Lagrangian Schemes

Assumption 5.2.1. For the operator Lλk we will assume that

M∑
i=1

[yλ,+k,i + yλ,−k,i ] = 2k2µλ +O(k4),

M∑
i=1

[yλ,+k,i ⊗ y
λ,+
k,i + yλ,−k,i ⊗ y

λ,−
k,i ] = k2σλσλ> +O(k4),

M∑
i=1

[⊗3
j=1y

λ,+
k,i +⊗3

j=1y
λ,−
k,i ] = O(k4),

M∑
i=1

[⊗4
j=1y

λ,+
k,i +⊗4

j=1y
λ,−
k,i ] = O(k4),

(5.7)

where ⊗ stands for the Outer-product. And for the interpolation operator I we will assume that there

are K ≥ 0, r ∈ N such that

|(Iψ)− ψ|0 ≤ K|Dpψ|0∆xp (5.8)

for all p ≤ r and smooth functions ψ.

Further we will assume that there is a non-negative basis of functions {wj(x)}j such that

(Iψ)(x) =
∑
j

ψ(xj)wj(x), wi(xj) = δij , and wj(x) ≥ 0 for all i, j ∈ N, (5.9)

where δij stands for the Kronecker Delta.

Lemma 5.2.2. Assume that all three assumptions in (5.2.1) hold, Then we get

• The consistency error of the scheme (5.5) is bounded by

|1− 2θ|
2
|ψll|0∆t+ C

(
∆t2(|ψll|0 + |ψlll|0 + |∇ψll|0 + |D2ψll|0)

+|Drψ|0
∆xr

k2
+ (|∇ψ|0 + ...+ |D4ψ|0)k2

)

• The scheme (5.5) is monotone if the following CFL condition holds

(1− θ)∆t
[M
k2
− cλ,n−1+θ

i

]
≤ 1 and θ∆tcλ,n−1+θ

i ≤ 1 for all λ, n and i. (5.10)
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5. Semi-Lagrangian Schemes

Theorem 5.2.3. If we assume that the Assumptions (5.0.1) and (5.2.1) and (5.10) holds, then

• There exists a unique bounded solution Uh of (5.5).

• If 2θ∆t supλ |cλ,+|0 ≤ 1 :

|Un|0 ≤ e2 supλ, |cλ,+|0tn [|h|0 + tn sup
λ
|fλ|0],

then the solution Uh of (5.5) is L∞ stable

• Uh converges uniformly to the solution u of (5.1) for ∆t, k, ∆xr

k2
→ 0.

Remark 5.2.4. When solving PDEs on bounded domains, the SL schemes may exceed the domain

and therefore needs to be modified.

• For Dirichlet conditions, the scheme must be modified or the boundary conditions must be

extrapolated.

• For Homogenous Neumann conditions, the scheme can be implemented exactly by extending in

the normal direction.

• If the boundary has no regular points, no boundary condition may be imposed.

5.3. Specific SL Schemes

• The approximation of Falcone,

µλDψ ≈ Iψ(x+ hµλ)− Iψ(x)

h

corresponding to our Lλk for yλ,±k = k2µλ and k =
√
h.

• The approximation of Crandall-Lions,

1

2
Tr[σλσλ>D2ψ] ≈

p∑
j=1

Iψ(x+ kσλj )− 2Iψ(x) + Iψ(x− kσλj )

2k2
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5. Semi-Lagrangian Schemes

corresponding to our Lλk for yλ,±k = ±kσλJ and M = p.

• If we combine the first two approximations, we get

1

2
Tr[σλσλ>D2ψ] + µλDψ ≈

p∑
j=1

Iψ(x+ kσλj )− 2Iψ(x) + Iψ(x− kσλj )

2k2
+
Iψ(x+ hµλ)− Iψ(x)

k2

(5.11)

• The approximation of Camilli-Falcone,

1

2
Tr[σλσλ>D2ψ] + µλ∇ψ ≈

p∑
j=1

Iψ(x+
√
hσλj + h

pµ
λ)− 2Iψ(x) + Iψ(x−

√
hσλj + h

pµ
λ)

2h

• And last but not least a modified more efficient version of the last one,

1

2
Tr[σλσλ>D2ψ] + µλDψ ≈

p−1∑
j=1

Iψ(x+ kσλj )− 2Iψ(x) + Iψ(x− kσλj )

2k2

+
Iψ(x+ kσλp + k2µλ)− 2Iψ(x) + Iψ(x− kσλp + k2µλ)

2k2

5.4. Linear Interpolation SL Schemes

A natural choice to keep our scheme (5.5) monotone, is to use linear or multi-linear interpolation. In

this case we call the scheme (5.5) the LISL scheme. If we apply the results of Section 6.3. to this

special case we get

Corollary 5.4.1. Let’s assume that Assumptions (5.0.1) and (5.2.1) hold, then

• The LISL scheme is monotone if the CFL conditions (5.10) hold.

• The consistency error of the LISL scheme is O(|1− 2θ|∆t+ ∆t2 +k2 + ∆x2

k2
), and hence it is first

order accurate when k = O(∆x
1
2 ) and ∆t = O(∆x) for θ 6= 1

2 or ∆t = O(∆x
1
2 ) for θ = 1

2 .

• If 2θ∆t sup
λ
|cλ,+|0 ≤ 1 and (5.10) hold, then there exists a unique bounded and L∞-stable

solutiuon Uh of the LISL scheme converging uniformly to the solution u of (5.1) as ∆t, k, ∆x
k →∞.

39



5. Semi-Lagrangian Schemes

So this scheme is at most first order accurate, has wide and increasing stencil and a good CFL

condition.

5.5. Stochastic Control

Let’s assume that B is a singleton such that the equation simplifies to the HJB equation for a optimal

stochastic control problem. Then we can apply the dynamic programming principle.

We will assume that Assumption (5.0.1) holds and that cλ(t, x) = 0 and all coefficients are independent

of time t. Then we know that the viscosity solution u of (5.1) is

u(T − t, x) = min
λ(·)∈Λ

E
[ T∫
t

fλs(Xs)ds+ g(XT )
]

(5.12)

constrained to the SDE

Xt = x and dXs = σλs(Xs)dWs + µλsds for s > t (5.13)

Now we will write a SL scheme like in the collocation form (5.6). Let {t0 = 0, t1, ..., tM = T} be

the discrete time steps and consider the discretization of (5.12), AM ⊂ Λ is an appropriate subset of

piecewise constant controls and kn =
√

(p+ 1)∆tn.

ũ(T − tm, x) = min
λ∈AM

E
[M−1∑
k=m

fλk(X̃k)∆tk+1 + g(X̃M )
]

X̃m = x, X̃n = X̃n−1 + σλn(X̃n−1)knξn + µλn(X̃n−1)k2
nηn, n > m,

(5.14)

where ξ = (ξn,1, ..., ξn,p)
> and ηn are independent sequences of identically distributed random variables

with

Pr
(
(ξn,1, ..., ξn,p, ηn) = ±ej

)
=

1

2(p+ 1)
, for j ∈ {1, 2, ..., p}

Pr
(
(ξn,1, ..., ξn,p, ηn) = ep+1

)
=

1

(p+ 1)
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Now we get

ũ(T − tm, x) = min
λ∈AM

E
[
∆tm+1f

λ(x) + ∆tm+1L
λ
km+1

[ũ](T − tm+1, x) + ũ(T − tm+1, x)
]
, (5.15)

where we used Lλk like in Chapter 5.4 the third approximation.

5.6. Application

We applied the above scheme with an equidistant step size ∆t, where we got the following scheme

then for k =
√

(p+ 1)∆t, 0 = t0, t1, ..., T and the piecwise constant control space AM

ũ(tj , x) = min
λ∈AM

[
∆tfλ(x) + ∆tLλk [ũ](tj−1, x) + ũ(tj−1, x)

]

Example 5.6.1. Here we applied the scheme to the HJB equation

∂tu− inf
λ

[λ∂xxu+ (1− x2)] = 0,

u = 0 on [0, 1)× {−1, 1} ∪ {1} × (−1, 1),

with exact solution u(t, x) = t(1− x2). In Figure (5.2) we see the solution with stepsize ∆t = 1
4 and

∆x = 1
10 and in Figure (5.1) with stepsize ∆t = 0.12 and ∆x = 1

10 .

Example 5.6.2. Here we applied the scheme for x ∈ R2 with the distance function as a solution

u(t, x1, x2) = min(t, 1 − |x1|, 1 − |x2|) to the HJB equation, where the diffusion is zero, µλ = (λ, λ)>

and the cost function is given by fλ = 1, Λ = {−1, 1} and ΩT = (0, 1) × (−1, 1)2. We can see the

numerical result at time T = 1 for ∆t = ∆x = 1
25 in Figure (5.3).

Example 5.6.3. Here we applied the scheme for (t, x1, x2) ∈ ΩT = (0, 1)× (−1, 1)2 with the solution

u(t, x1, x2) = exp(t) exp( x1√
2
) exp( x2√

2
) to the HJB equation, where the drift and the cost function are

both zero and the diffusion is given by σλ =
( 4
√

2 0

0 4
√

2

)
. We can see the numerical result at the

terminal time T = 1 for ∆t = ∆x = 1
4 in Figure (5.4) and for ∆t = ∆x = 1

20 in Figure (5.5).
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Figure 5.1.: top: numerical solution with ∆t = 1
4 and ∆x = 1

10 , botton: exact solution
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Figure 5.2.: top: numerical solution with ∆t = 0.12 and ∆x = 1
10 , botton: exact solution
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6.0.1. Idea

In this Chapter we will discuss the work of Max Jensen and Iain Smears [12]. Here we look at

monotone P1 finite element methods on unstructered meshes for fully nonlinear HJB equations. We

study stochastic control problems with isotropic diffusions, i.e. the diffusion matrix is given by a

constant

aλ = const.Id ∈ Rd × Rd.

Like for the Finite Difference Methods and the Semi-Lagrangian Schemes, in this method we will use

the monotonicity properties of the operator, rather than using the underlying optimal control structure.

We will also use the montonicty argument of Barles and Souganidis to guarantee the convergence to

the viscosity solution, but we have to modify some assumptions, since we are not dealing with finite

differences.

To get rid of the Laplacian, we will use the following finite element approach in this paper

a(y)∆u(y) = a(y)

∫
∆u(y)φ̂(x)dx ≈ −a(yl)

∫
∇u(x) ·∇φ̂(x)dx = −a(yl)

∫
∇Pu(x) ·∇φ̂(x)dx, (6.1)

where φ̂ is a hat test function and in the last step we used an orthogonal protection Pu with respect

to
∫
∇v · ∇w dx.
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6. Finite Element Method for Isotropic Diffusion

6.0.2. Problem Statement

Let Ω be a bounded Lipschitz domain in Rd, Λ be a compact metric space and we assume {aλ}λ∈Λ,

{µλ}λ∈Λ, {cλ}λ∈Λ, {fλ}λ∈Λ to be equicontinuous. The bounded linear operator is defined by:

Lλw := −aλ∆w + µλ∇w + cλw, with w ∈ H1
0 (Ω), λ ∈ Λ,

with aλ ≥ 0. The HJB considered is then:

−∂tv + sup
λ

(Lλv − fλ) = 0 in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v = vT on {T} × Ω̄,

(6.2)

where we assume fλ ≥ 0 pointwise, vT ∈ C(Ω̄) with vT ≥ 0 on Ω̄. Furthermore, we will assume:

sup
λ∈Λ
||(aλ, µλ, cλ, fλ)||C ¯(Ω)×C(Ω̄,Rd)×C ¯(Ω)×C ¯(Ω) <∞, sup

λ∈Λ
||Lλ||C2(Ω̄)→C(Ω̄) <∞.

For the definition of a viscosity solution, we refer to Chapter 2.

6.1. Definition of the Numerical Method

First we will define the numerical scheme and then give a numerical method.

6.1.1. Numerical Scheme

Let Vi be a sequence of piecewise linear shape-regular finite element spaces with nodes yli and hat

functions φli. Here l is the index ranging over the nodes of the finite element mesh. Let V 0
i be the

subspace of functions which satisfy homogeneous Dirichlet conditions. Let N := dimV 0
i and the nodes

yli ∈ Ω for l ≤ N . Now normalize the hat functions by φ̂li := φli/||φli||L1(Ω). The largest diameter of an

element in each i-mesh is denoted by (∆x)i, where we will assume convergence to zero for i→∞.
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6. Finite Element Method for Isotropic Diffusion

For every sequence step i, we will cut the interval [0, T ] in T/hi ∈ N parts, where hi is the uniform

time step. The set of time steps is then Si := {ski : k = 0, 1, ..., Thi }.

The derivation after time will be discretized by

(diw(ski , ·))l :=
w(sk+1

i , yli)− w(ski , y
l
i)

hi

We will approximate the fully nonlinear operator Lλ by two linear operators Eλi , I
λ
i : H1

0 (Ω)→ H−1,

so that we get Lλ ≈ Eλi + Iλi . Where later in the algorithm the first one will stand for the explicit

part and the second one for the implicit

Eλi w = −āλi ∆w + b̄λi · ∇w + c̄λi w,

Iλi w = −¯̄aλi ∆w + ¯̄bλi · ∇w + ¯̄cλi w.

We also need c̄λi , ¯̄c
λ
i ≥ 0 and ||c̄λi ||L∞ + ||¯̄cλi ||L∞ ≤ α, for some α ∈ R and all λ ∈ Λ,

The non-negative cost function fλ will be approximated by a non-negative fλi ≈ fλ. Our first as-

sumption is then

Assumption 6.1.1. For all sequences of nodes (yli)i∈N:

lim
i→∞

sup
λ∈Λ

(
||aλ−(āλi (yli)+¯̄aλi (yli))||L∞(supp φ̂li)

+||bλ−(b̄λi +¯̄bλi )||L∞(Ω)+||cλ−(c̄λi +¯̄cλi )||L∞(Ω)+||fλ−fλi ||L∞(Ω)

)
= 0

6.1.2. Numerical Method

Now we will use the finite element approach (6.1)

−a(x)∆w(x) ≈ −a(yli)〈∆w, φ̂li〉L2 = a(yli)〈∇w,∇φ̂li〉L2
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6. Finite Element Method for Isotropic Diffusion

to discretize the operators Eλi , I
λ
i by operators Eλi , I

λ
i . So that we get a discretization that is consistent

in the sense needed for the analysis by approximating the diffusion.

(Eλi w)l := āλi (yli)〈∇w,∇φ̂li〉L2 + 〈µ̄λi∇w + c̄λi w, φ̂
l
i〉L2 ,

(Iλi w)l := ¯̄aλi (yli)〈∇w,∇φ̂li〉L2 + 〈 ¯̄µλi∇w + ¯̄cλi w, φ̂
l
i〉L2 ,

(Cλ
i w)l := 〈fλi , φ̂li〉L2 .

(6.3)

Obtain the numerical solution vi(T, ·) ∈ Vi by interpolation of the boundary function vT . Then

vi(s
k
i , ·) ∈ V 0

i at time ski is defined by the implicit (if Iλi ≡ 0 explicit) equation

−divi(ski , ·) + sup
λ

(Eλi vi(s
k+1
i , ·) + Iλi vi(s

k
i , ·)− Cλi ) = 0 (6.4)

Assumption 6.1.2. Assume for each λ ∈ Λ that Eλi has non-positive off-diagonal entries on Vi. Let

the time step hi be small enough so that all operators hiE
λ
i −Id have just non-positive entries. Assume

that for each λ ∈ Λ that Iλi satisfies the local monotonicity property, i.e. for all v ∈ Vi with nonpositive

local minimum at yli we have (Iλi v)l ≤ 0.

We will use the short-notation

Ik,wi = I
λi(w)l,k

i and Ek,wi = E
λi(w)l,k

i ,

where

λl,ki (w) = arg sup
λ

(
Eλi w(sk+1

i , ·) + Iλi w(ski , ·)− Fλi

)
l

6.1.3. Solution Algorithm

If λl,ki (w) maximises sup
λ

(
Eλi w(sk+1

i , ·)+Iλi w(ski , ·)−Cλ
i

)
l
, we will use the shorter notation Ek,wi , Ik,wi ,Ck,w

i

instead of E
λl,ki (w)
i , I

λl,ki (w)
i ,C

λl,ki (w)
i .

We can solve the optimization problem (6.4) by the following algorithm, which uses Howard’s Algo-

rithm in Chapter 3 as a tool.
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6. Finite Element Method for Isotropic Diffusion

Algorithm 6.1.3. Given k ∈ N and vi(s
k+1
i , ·) ∈ V 0

i for k = {0, ..., Thi − 1}, choose λ0 ∈ Λ to start

with and then inductively for m = {1, 2, 3, ...} find wm ∈ V 0
i such that

(hiI
wm
i + Id)wm+1 = −(hiE

λ
i − Id)vi(s

k+1
i , ·) + hiF

wm
i

6.2. Analysis

6.2.1. Well-Posedness

Theorem 6.2.1. There exists a unique numerical solution vi : Si → V 0
i that solves (?) and (??).

Moreover, 0 ≤ vi ≤ vλi for each λ ∈ Λ. Given that vi(s
k+1
i , ·) ∈ V 0

i for k ∈ {0, 1, ..., Thi −1}, the iterates

of Algorithm (6.1.3) converge superlinearly to the unique solution vi(s
k
i , ·) of (?).

The monotonicity and mass-lumping helps us to get L∞ bounds of parabolic Galerkin methods, like

in our case.

Lemma 6.2.2. For all i ∈ N one has ||(hiIλi + Id)−1||∞ ≤ 1 and ||(hiEλi + Id)−1||∞ ≤ 1, where the

norms are the matrix ∞−norms.

Corollary 6.2.3. The numerical solutions vi are uniformly bounded in the L∞ norm, i.e. there is a

C > 0 such that for all i ∈ N and λ ∈ Λ

||vi||L∞(Si×Ω) ≤ ||vλi ||L∞(Si×Ω) ≤ ||vT ||L∞(Ω) + T ||fλi ||L∞(Ω) ≤ C

6.2.2. Consistency properties

Barles and Souganidis used in their Framework a nodal interpolation, but this does not give us strongly

consistence in this the FEM case. Therefore we use a orthogonal projection with respect to
∫
∇v∇w

dx.

Assumption 6.2.4. There are linear mappings Pi satisfying

〈∇Piw(T, ·),∇φ̂li〉 = 〈∇w(T, ·),∇φ̂li〉 ∀t ∈ [0, T ] and ∀φ̂li ∈ V 0
i and a given w ∈ C([0, T ], H1(Ω)).

(6.5)

49



6. Finite Element Method for Isotropic Diffusion

And there is a constant C ≥ 0 such that for every w ∈ C∞(Rd) and i ∈ N

||Piw||W 1,∞(Ω) ≤ C||w||W 1,∞(Ω) and lim
i→∞
||Piw − w||W 1,∞(Ω) (6.6)

Lemma 6.2.5. Let w ∈ C∞(R× Rd) and let ski → t ∈ [0, T ) for i→∞. Then

lim
i→∞

diPiw(ski , ·) = ∂tw(t, ·) in W 1,∞(Ω) (6.7)

Lemma 6.2.6. Let w ∈ C∞(R× Rd) and let ski → t ∈ [0, T ], yki → x ∈ Ω for i→∞. Then

lim
i→∞

(
Eλi Piw(sk+1

i , ·) + Iλi Piw(ski , ·)− F λi
)
l

= Lλw(t, x)− fλ(x), (6.8)

with uniform convergence over all λ ∈ Λ.

6.2.3. Super- and Subsolution

Like in Chapter 2, we will define.

v∗(t, x) = sup
(ski ,y

l
i)i∈N→(t,x)

lim sup
i→∞

vi(s
k
i , y

l
i)

v∗(t, x) = inf
(ski ,y

l
i)i∈N→(t,x)

lim inf
i→∞

vi(s
k
i , y

l
i)

Theorem 6.2.7. The function v∗ is a viscosity subsolution of (?) and v∗ is a viscosity supersolution

of (?).

6.2.4. Uniform Convergence

Now we take a look at the initial and boundary conditions. Then we use the sub- and supersolution

property to get a comparision principle to obtain uniform convergence of the numerical solutions.

vλ,∗(t, x) = sup
(ski ,y

l
i)i∈N→(t,x)

lim sup
i→∞

vλi (ski , y
l
i) for λ ∈ Λ
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Assumption 6.2.8. For each (t, x) ∈ [0, T ]× ∂Ω

inf
λ∈Λ

vλ,∗(t, x) = 0

With Theorem (6.2.1) we get 0 ≤ v∗ ≤ v∗ ≤ vλ,∗ and with Assumption (6.2.8) we get that

v∗|[0,T ]×∂Ω = v∗|[0,T ]×∂Ω = 0.

Lemma 6.2.9. The sub- and supersolutions v∗ and v∗ satisfy

v∗(T, ·) = v∗(T, ·) = vT on Ω̄ (6.9)

Assumption 6.2.10. Let v̄ be a lower semicontinuous supersolution with v̄(T, ·) = vT and v̄|[0,T ]×∂Ω =

0. Similarly, Let v be a lower semicontinuous supersolution with v(T, ·) = vT and v|[0,T ]×∂Ω = 0. Then

v ≤ v̄.

If t ∈ [ski , s
k+1
i ] we write

vi(t, ·) = θvi(s
k
i , ·) + (1− θ)vk+1

i (sk+1
i , ·),

for t = θski + (1− θ)sk+1
i

Theorem 6.2.11. For the viscosity solution v of (?), we have v∗ = v∗ = v, with v(T, ·) = vT and

v|[0,T ]×∂Ω = 0. With

lim
i→∞
||vi − v||L∞ = 0

6.3. Method of Artificial Diffusion

To guarantee monotonicity, for aλ = ãλi + ˜̃aλi we select certain artificial diffusion parameters η̄λ,li and

¯̄ηλ,li so that we get āλi (yli) ≥ max(ãλi , η̄
λ,l
i ) and ¯̄aλi (yli) ≥ max(˜̃aλi , ¯̄ηλ,li ). In (6.3) for ¯̄aλi , ā

λ
i we can use a

artificial diffusion parameter so that we satisfy assumtions (6.1.1) and (6.1.2) holds.

In [12] they described a possible way, by using strictly acute meshes, how to achieve the local mon-
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tonicity

(Eλi w)l ≤ 0, (Iλi w)l ≤ 0,

where w ∈ Vi has a nonpositive local minimum at an inner node yli.

6.4. Application

Example 6.4.1. Consider again the following HJB equation, like in Chapter 2.

−∂tv + sup
λ∈{−1,1}

(λ∂xv − 1) = 0 in (0, 1)× (−1, 1)

v = 0 on [0, 1]× {−1, 1} ∪ {1} × [−1, 1],

with the viscosity solution v(t, x) = min(1−t, 1−|x|). Then we can choose the (Eλi w)l = ε〈∂xw, ∂xφ̂li〉+

λ〈∂xw, φ̂li〉, where ε is the artificial diffusion operator here. Then the matrix has the form

(Eλi w)lj =



−λ/2∆xi − ε/∆x2
i , if j = l-1

2ε/∆x2
i , if j = l

λ/2∆xi − ε/∆x2
i , if j = l+1

0 otherwise,

where for ε ≥ ∆xi/2, the off-diagonal terms are non-positive. This FEM applied to this specific

problem is very effective. In fact method also converges with stepsize ∆t = ∆x = 1 like we can see in

Figure (6.1).
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Figure 6.1.: top: numerical solution with stepsize ∆t = ∆x = 1, botton: exact solution
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7.1. Idea

The theory in this Chapter is based on the work of Feng and Neilan [10]. The general fully nonlinear

second order PDE takes the form:

F (D2u(x),∇u(x), u(x), x) = 0, with x ∈ Ω, (7.1)

where in our HJB time-independent case F (D2u(x),∇u(x), u(x), x) = sup
λ∈Λ

[Lλu − fλ]. Computing

viscosity solutions of fully nonlinear second order PDEs has been impracticable. There are several

reasons for that. Firstly, the strong nonlinearity is an obvious one. Secondly, the conditional unique-

ness of solutions is difficult to handle numerically. Lastly and most important, the notion of viscosity

solutions, which is not variational, has no equivalence at the discrete level.

To introduce the notion of viscosity solutions, Crandall and Lions [5] used the vanishing viscosity

method to show existence of a solution for the first order Hamilton-Jacobi equation:

∂tu+H(∇u, u, x) = 0

The vanishing viscosity method approximates the first order Hamilton-Jacobi equation by the following

regularized, second order quasilinear PDE:

∂tu
ε +H(∇uε, uε, x) = ε∆uε (7.2)
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It was shown in [5] that there exists a unique solution uε to the regularized Cauchy problem that

converges locally and uniformly to a continuous function u which is defined to be a viscosity solution

of the first order Hamilton-Jacobi equation. However, to establish uniqueness, the following definition

of viscosity solutions for general fully nonlinear first order PDE was also proposed.

Definition 7.1.1.(Viscosity solution first order) To make things easier we assume F : Rn ×R×

Rn× → R to be continuous.

• A function u ∈ C0(Ω) is called a viscosity subsolution of (7.2) if, for every C1−function ϕ(x)

such that u− ϕ has a local maximum at x0 ∈ Ω, there holds

F (∇ϕ(x0), ϕ(x0), x0) ≤ 0.

• A function u ∈ C0(Ω) is called a viscosity supersolution of (7.2) if, for every C1−function ϕ(x)

such that u− ϕ has a local minimum at x0 ∈ Ω, there holds

F (∇ϕ(x0), ϕ(x0), x0) ≥ 0.

• A function u ∈ C0(Ω) is called a viscosity solution of (7.2) if it is both a viscosity subsolution

and a viscosity supersolution.

It was shown that every viscosity solution constructed by the vanishing viscosity method is an

viscosity solution in the sense of Definition (7.1.1). Besides the uniqueness issue, another reason to

favor the second definition is that it can be extended to fully nonlinear second order PDEs like seen

in Chapter 2.

7.2. General Framework

Because it is not constructive nor variational, the notion of a viscosity solution is not good from a

computational point of view. By looking for a better notion for a weak solution, we change the original
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second order nonlinear PDE to the following higher order quasi-linear PDE:

Gε(D
ruε) + F (D2uε,∇uε, uε, x) = 0, with r ≥ 3, ε > 0, (7.3)

where {Gε} is a family of suitably chosen linear or quasilinear operators or order r. With that we get

the definition of a moment solution.

Definition 7.2.1.(moment solution) If the limit u := lim
ε→0+

uε exisits, with uε solves (7.3) for each

ε > 0, we call u the moment solution of (7.2).

In order to choose the operator Gε, there are some reasonable assumptions, like mentioned in [10].

• Gε is linear or at least quasiliniear.

• Gε → 0 in some reasonable sense for ε→ 0+.

• If (7.2) is elliptic, Gε(D
ru) should also be elliptic.

The last point implies that the operator must be of even order, so we get r ≥ 4. So for example we

can take the biharmonic operator Gε(D
4v) := −ε∆2v and (7.3) becomes

−ε∆2 + F (D2uε,∇uε, uε, x) = 0 (7.4)

Now we want to take care of the boundary conditions. Here we will only consider the Dirichlet

problem:

F (D2u(x),∇u(x), u(x), x) = 0, x ∈ Ω

u = g, x ∈ ∂Ω

(7.5)

We also need this boundary condition for our moment solution. Moreover, since (7.4) is a fourth order

PDE, we need to impose an additional boundary condition for uε. We will suggest three different

types of boundary conditions for (7.3):
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−ε∆2 + F (D2uε,∇uε, uε, x) = 0, x ∈ Ω

uε ≈ g, x ∈ ∂Ω

∆uε = cε or
∂∆uε

∂n
= cε or D2uεn · n = cε, x ∈ ∂Ω

(7.6)

Since (7.6) is a nonlinear biharmonic equation, one can use any numerical method for biharmonic

problems to discretize the equation. In (??) they did choose Galerkin methods, where they studied

conforming finite element approximations and mixed finite element approximations extensively. Here

we will just mention the approach of finite element approximations in two dimensions.

Remark 7.2.2. If we pick the first boundary condition with ∆uε = ε on ∂Ω, then with uε = g on ∂Ω

we get an additional boundary condition

εm∆uε + uε = εmε+ g = g + εm+1 on ∂Ω

Definition 7.2.3. We define uε ∈ H2(Ω) with u|∂Ω = g to be a solution (7.6) if for all v ∈ H2(Ω) ∩

H1
0 (Ω)

ε(∆uε,∆v) + (F (D2uε,∇uε, uε, x), v) = 〈ε2, ∂v
∂n
〉∂Ω (7.7)

Definition 7.2.4. Suppose that uε solves problem (7.6). Then lim
ε→0+

uε is called a weak moment

solution to problem (??) if the convergence holds in H1-weak (resp. H2-weak) topology.

7.3. Finite Element Method in 2d

The variational formulation is then defined as:

Find uε ∈ H2(Ω) with uε = g on ∂Ω such that for any test function φ ∈ H2(Ω) ∩H1
0 (Ω)

−ε〈∆uε,∆φ〉L2 + 〈F (D2uε,∇uε, uε, x), φ〉L2 = −〈εcε,
∂φ

∂n
〉L2(∂Ω) (7.8)
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If we now choose Th to be a quasiuniform triangular or rectangular mesh with mesh size h ∈ (0, 1) for

the domain R2 and Uhg ⊂ H2(Ω) denote one of the conforming finite element spaces whose functions

take the boundary g. Then our finite element method is defined as:

Find uεh ∈ Uhg such that

−ε〈∆uεh,∆φh〉L2 + 〈F (D2uεh,∇uεh, uεh, x), φh〉L2 = −〈εcε,
∂φh
∂n
〉L2(∂Ω) for all φh ∈ Uh0 (7.9)

7.4. Parabolic Case

If we are dealing with fully nonlinear PDEs of parabolic type, like our HJB equation:

−∂tu+ F (D2u,∇u, u, x, t) = 0 in ΩT (7.10)

Then the following may be one possible vanishing moment approximation to this

−ε∆2uε − ∂tuε + F (D2uε,∇uε, uε, x, t) = 0 in ΩT . (7.11)

Which gives us

−ε∆2uε − ∂tuε + sup
λ∈Λ

[Lλuε − fλ] = 0 in ΩT .
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A. Notations

A.1. Sobolev Spaces

W k,p(Ω) := {f ∈ Lp(Ω) | Dαf ∈ Lp(Ω), |α| ≤ k}

For Ω ∈ RN open set and the boundary ∂Ω smooth enough, we define

H1(Ω) := W 1,2

H1
0 (Ω) := {f ∈ H1(Ω) : u|∂Ω = 0}

H2(Ω) := W 2,2

A.2. Norms

||f ||H1 :=
(∫

Ω

(
| Df |2 + | f |2

)) 1
2

For a bounded function ω on Q′ we set

| ω |0:= sup
(t,y)∈Q′

| ω(t, y) |

And for δ ∈ (0, 1] we set

[ω]δ := sup
(t,x)6=(s,y)

| ω(t, x)− ω(s, y) |
(| x− y | + | t− s |1/2)δ

And
| ω |δ=| ω |0 +[ω]δ

A.3. Inner products

For v, w ∈ L2(Ω) with a measure ζ we define

〈v, w〉L2 :=

∫
Ω

vwdζ

For v, w ∈ L2(∂Ω) with a measure ζ we define

〈v, w〉 :=

∫
∂Ω

vwdζ

59



A. Notations

For v, w ∈ H1(Ω) we define
〈v, w〉H1 := 〈v, w〉L2 + 〈Dv,Dw〉L2

And for v, w ∈ H2(Ω) we define

〈v, w〉H2 := 〈v, w〉H1 + 〈D2v,D2w〉L2 = 〈v, w〉L2 + 〈Dv,Dw〉L2 + 〈D2v,D2w〉L2

H1 and H2 become Hilbert spaces with these inner products.

A.4. Vectors, Matrices and Functions

We use Sd(R) for the notation of symmetric d× d matrices in R.
B(Ω̄) is the set of bounded functions with the domain Ω̄.
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