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1 Introduction

The qualitative description of the phase space of a differential equation has been an im-
portant area of research in mathematics. In particular, the theory of Poincare and Bendix-
son provides a very good understanding of the dynamics of two-dimensional autonomous
systems, i.e. dynamical systems in R2 ∼= C. When considering holomorphic (complex
analytic) vector fields, even more structure of the phase space can be uncovered. More
precisely, it is possible to characterize and describe the topological, geometrical and an-
alytical properties of so-called Planar Analytic Dynamical Systems locally near equilibria
as well as globally. This detailed analysis is the essential goal of this work. To achieve this
objective, the thesis is mainly divided into two parts.

In the first part (Chapter 3), we explore the quantitative properties of analytic dynamical
systems. Our investigation reveals that the existence and uniqueness of the solutions can
be guaranteed, regardless of whether the time variable is real or complex.

The second objective of this study (Chapters 4 and 5) is to revise and augment the works
of Broughan ([2] and [3]) by providing a detailed qualitative description and character-
ization of the topological and geometrical structure of the phase space. This endeavor
involves two main steps: firstly, we aim to explore the local behavior near an equilibrium,
and secondly, we will analyze the global properties of the so-called global neighborhood
of an equilibrium. Our investigation reveals that the boundaries of such neighborhoods
consist of, at most, countably many separatrix components.
Throughout this chapter, a variety of geometric structures will also be ruled out. For
instance, there are no saddle points or limit cycles in analytical dynamical systems. This
leads to a more accurate description of limit sets according to the Poincare-Bendixson the-
ory. Additionally, examples and phase space plots will be used to illustrate the properties
and characteristics of these geometric structures.
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1 Introduction

Throughout this work, all utilized sources and references will be appropriately cited. Any
contributions made by me will be clearly stated. Sections that are authored entirely by
me will be marked as such at the beginning of each section.
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2 Some common notations

In the following some common notations and definitions are introduced, that are used
throughout this thesis. Further definitions which require more context are introduced in
the following chapters. The notations in the context of dynamical systems are introduced
at the beginning of Chapter 4.

For a set O in a topological space X the boundary of O is denoted by ∂O, and the set of
all inner points of O by O̊. For a complex number z ∈ C (or a vector z ∈ R2 ∼= C) we
denote by ℜ(z) the real part, by ℑ(z) the imaginary part and by arg(z) the argument, i.e
the angle with respect to the real axis, of z. If z = 0, the argument is not defined. Denote
by Br(x) ⊂ X the open ball with radius r > 0 and center x ∈ X. For a vector space V ,
the dual space of V is denoted by V ⋆. Denote by ⟨x, y⟩ the Euclidean scalar product of
two vectors x, y ∈ Cn, n ∈ N. For a matrix A ∈ Rn, n ∈ N, we denote by det(A) the
determinant, by tr(A) the trace and by pA the characteristic polonymial of A. The set
Eig(A) contains all eigenvalues of A.

For an arbitrary measurable set B ⊂ Rn, n ∈ N, the Lebesgue measure of B is denoted
by λ(B).

For arbitrary metric spaces X and Y the space of continuous functions from X to Y is
denoted by C0(X; Y ). The space Ck(X; Y ), k ∈ N, consists of all continuously differentiable
functions from X to Y . The sets X and Y are often omitted in this notation if they result
from the context. If Ω ⊂ Rn is open and f = (f1, . . . , fm) ∈ C1(Ω;Rm), n, m ∈ N, then
the Jacobian matrix of f in x0 ∈ Ω is denoted by Jf (x0). The element of Jf (x0) in the ith

row and jth column is the partial derivative of fj in the ith Euclidean coordinate direction,
i.e. (Jf (x0))i,j = ∂ifj(x0).

For an open set Ω ⊂ Cn, n ∈ N, we denote by Om(Ω) := O(Ω,Cm), m ∈ N, the com-
plex linear space of vector-valued holomorphic functions f = (f1, . . . , fm) : Ω → Cm.
Recall that such a function is holomorphic if and only if for all ξ = (ξ1, . . . , ξn) ∈ Ω, all
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2 Some common notations

i ∈ {1, . . . , n} and all j ∈ {1, . . . , m} the function z 7→ fj(ξ1, . . . , ξi−1, z, ξi+1, ξn) is holo-
morphic.1 In the special case m = 1 we define O(Ω) := O1(Ω). For f ∈ On(Ω) and x0 ∈ Ω
we set Jf (x0) ∈ R2n×2n as the Jacobian matrix (see above) of f in x0, understood as a
function with 2n real input-variables and range R2n ∼= Cn. The residue of a holomorphic
function f ∈ O(Br(x0) \ {x0}), r > 0 sufficiently small, at an isolated singularity x0 is
denoted by Res(f, x0).

Let n ∈ N, a1 < b1 and γ1 : [a1, b1] → Rn be a path with image Γ1 := γ1([a1, b1]). Then we
denote by −γ1 or −Γ1 (if there is a orientation of the parameterization given) the curve
with the same image and opposite direction, i.e. the curve

−γ1(t) := γ1(a1 + b1 − t) ∀ t ∈ [a1, b1].

If a2 < b2 and γ2 : [a2, b2] → Rn is a second path with image Γ2 := γ2([a2, b2]) such that
γ1(b1) = γ2(a2), then the concatenation of γ1 and γ2 is denoted by γ1+γ2. If the orientation
of the curves is given, then we also denote the concatenation by Γ1 +Γ2. Correspondingly,
we define γ1 − γ2 := γ1 + (−γ2) and Γ1 − Γ2 := Γ1 + (−Γ2), if γ1(b1) = γ2(b2) is satisfied.

For a c ∈ R and a continuous function f : [c, ∞) → Rm we define the positive limit set

w+(f) := {v ∈ Rm : ∃ (tk)k∈N ⊂ [c, ∞) : tk → ∞ and f(tk) → v for k → ∞}

and for f : (−∞, c] → Rm the negative limit set

w−(f) := {v ∈ Rm : ∃ (tk)k∈N ⊂ (−∞, c] : tk → −∞ and f(tk) → v for k → ∞} .

Important properties of limit sets can be found in [6, §4] and [7, Chapter 8.4]. In particular,
if w+(f) (and w−(f), respectively) has only one element v0, then

lim
t→∞

f(t) = v0.

and the existential quantifier in the above sets can be replaced by a universal quantifier,
cf. [7, Proposition 8.4.1].

1This result is known as Hartogs’ theorem on separate analyticity and can be found in [4, Theorem 2.2.8].
A rigorous and detailed introduction to holomorphic functions in several variables can be found in [5,
Chapter 1].
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3 Solution Theory for Analytic Ordinary
Differential Equations

In the first chapter, a quantitative theory for Analytic Ordinary Differential Equations
will be explained. The existence and uniqueness of solutions with both, real-valued and
complex-valued time will be proven. The underlying literature is [8, Chapter I.1], [9,
Chapter 2.2] and [10, Chapter 2].

3.1 Solutions with real time

Definition 3.1
Let n ∈ N and F = (F1, . . . , Fn) ∈ On(Ω) be a holomorphic vector function defined on an
open domain Ω ⊂ Cn. An autonomous Analytic Ordinary Differential Equation with real
time by F on Ω is the system of n scalar function equations

x′ = F (x). (3.1)

A solution of the system (3.1) is a continuously differentiable curve x = (x1, . . . , xn) : V →
Cn, defined on an open domain V ⊂ R, satisfying the following two properties:

(i) The phase curve x(V ) of x belongs to Ω, i.e. x(V ) ⊂ Ω.

(ii) The equation x′(t) = F (x(t)) holds for all t ∈ V .

For a fixed point (t0, x0) ∈ R × Ω the initial value problem (IVP) is defined by (3.1) with
an initial condition x(t0) = x0. Its solution is a solution of (3.1), whose phase curve passes
the point x0 at time t0.

5



3 Solution Theory for Analytic Ordinary Differential Equations

Theorem 3.2 (Existence and Uniqueness for real IVPs)
Let Ω ⊂ Cn be an open domain and F ∈ On(Ω). Then for every (t0, x0) ∈ R × Ω there
exists a constant τ > 0 such that the IVP

x′ = F (x)

x(t0) = x0
(3.2)

has an unique solution x : (t0 − τ, t0 + τ) → Cn.

Proof
Let t0 ∈ R and x0 = (x0,1, . . . , x0,n) ∈ Ω be arbitrarily fixed. Then there exists an r > 0
such that Br(x0) ⊂ Ω with respect to the Euclidean norm on Cn. The aim is to lead the
problem back to a higher dimensional problem with real-valued right-hand side.
Set y0 := (ℜ(x0,1), ℑ(x0,1), . . . , ℜ(x0,n), ℑ(x0,n)) ∈ R2n and Ω̃ := Br(y0) ⊂ R2n with respect
to the Euclidean norm on R2n. Write F = (F1, . . . , Fn) and define F̃ : Ω̃ → R2n by

F̃ (y) :=
n∑

j=1
ℜ(Fj(y1 + iy2, . . . , yn−1 + iyn))e2j−1 + ℑ(Fj(y1 + iy2, . . . , yn−1 + iyn))e2j

where y = (y1, . . . , y2n) ∈ Ω̃ and ek is the kth canonical basis vector in R2n. Define a
second IVP of dimension 2n by

y′ = F̃ (y)

y(t0) = y0
(3.3)

on Ω̃. Now we have the following one-to-one correspondence: A function y is a solution of
the IVP (3.3) if and only if x with xj := y2j−1 + iy2j, j ∈ {1, . . . , n}, is a solution of the
IVP (3.2). On the other hand, a solution x of (3.2) leads to the solution

y :=
n∑

j=1
ℜ(xj)e2j−1 + ℑ(xj)e2j

of (3.3). Here, the n and 2n input arguments for x and y, respectively, are transformed
into each other in the same fashion as above.
Furthermore, since F is holomorphic, F̃ ∈ C1(Ω̃) and therefore locally Lipschitz-
continuous. The Picard-Lindelöf theorem now ensures existence and uniqueness of the
solution of (3.3). Because of the one-to-one correspondence between the two IVPs, the
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3 Solution Theory for Analytic Ordinary Differential Equations

existence and uniqueness is also proven for the system (3.2). More precisely, two differ-
ent solutions of (3.2) lead to two different solutions of (3.3), which is impossible by the
uniqueness of solutions.

Remark 3.3
Since we can transform each IVP of the form (3.2) into a real-valued IVP of the form (3.3),
we can use the well-known Theory of Ordinary Differential Equations. Hence we get both,
the unique maximum interval of existence for solutions and the continuous dependence of
the initial data. Furthermore, there are only three cases to consider: the solution either
exists globally, or reaches the boundary of Ω, or explodes in finite time („blow-up“). For
more details see [9, Chapter 2.3 - 2.5]. The holomorphic dependence on initial values will
be proven in Proposition 4.31.

3.2 Solutions with complex time

The explanations in this chapter correspond to the ideas in [8, Chapter I.1.] and [10,
Chapter 2].

Definition 3.4
Let n ∈ N and F = (F1, . . . , Fn) ∈ On(Ω) be a holomorphic vector function defined on an
open domain Ω ⊂ Cn+1. An Analytic Ordinary Differential Equation with complex time
by F on Ω is the system of n scalar function equations

x′ = F (t, x). (3.4)

A solution of the system (3.4) is a holomorphic curve x = (x1, . . . , xn) : V → Cn, defined
on an open domain V ⊂ C, satisfying the following two properties:

(i) The integral curve {(t, x(t)) ∈ Cn+1 : t ∈ V } of x belongs to Ω.

(ii) The equation x′(t) = F (t, x(t)) holds for all t ∈ V .

The system (3.4) is called autonomous, if F is independent of t. In this case the integral
curve is called phase curve and is sometimes also denoted as x(V ) ⊂ Cn.
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3 Solution Theory for Analytic Ordinary Differential Equations

For a fixed point (t0, x0) ∈ Ω the initial value problem (IVP) is defined by (3.4) with an
initial condition x(t0) = x0. Its solution is a solution of (3.4), whose integral curve passes
the point (t0, x0).

Remark 3.5
Let x : V → Cn be a solution of the problem (3.4). From the real point of view, the
integral curve C of x is a 2-dimensional smooth manifold in R2n+2 ∼= Cn+1. For an
arbitrary complex time t = ℜ(t) + iℑ(t) = t1 + it2 ∈ V the curve C is parameterized by
the two real variables t1 and t2. Its tangent space at the point (s, y) ∈ C is spanned by
the two real vectors ℜ(F (s, y)) and ℑ(F (s, y)).

Definition 3.6
Let (t0, x0) ∈ Cn+1 be a fixed point and ε > 0. The polydisk Dε centered in (t0, x0) is
defined by

Dε :=
{
(t, x) ∈ Cn+1 : |t − t0| < ε, |x − x0| < ε

}
.

Proposition 3.7
Let ε, K > 0 be two arbitrary constants and (t0, x0) ∈ Cn+1 be a fixed point such that the
polydisk Dε ⊂ Cn+1 is centered in that point. Then the space

AK(Dε) :=
{
f ∈ On(Dε) ∩ C0(Dε) : |f(t, z) − z| ≤ K|t − t0| ∀ (t, z) ∈ Dε

}
equipped with the supremum-norm ∥f∥∞ := sup

z∈Dε

|f(z)| is a nonempty Banach space.

Proof
Obviously, the function g : Dε → Cn, g(t, z) := z is an element of AK(Dε). Hence the set
is nonempty.
Let (fk)k∈N ⊂ AK(Dε) ⊂ C0(Dε) be a Cauchy sequence. It is known that the space
(C0(Dε), ∥·∥∞) is complete. Hence there exists a f ∈ C0(Dε) such that fk → f uniformly
in Dε (and in any closed subset) for k → ∞, i.e. the sequence converges compactly in Dε.
By applying the Convergence Theorem of Weierstrass, [5, Theorem 1.4.20], we conclude
that On(Dε) is a closed subspace of C0(Dε) with respect to the topology induced by the
compact convergence, i.e. f ∈ On(Dε).
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3 Solution Theory for Analytic Ordinary Differential Equations

In addition, by continuity of the norm | · | in Cn, we have for arbitrary (t, z) ∈ Dε

|f(t, z) − z| = lim
k→∞

|fk(t, z) − z| ≤ lim sup
k→∞

K|t − t0| = K|t − t0|,

since uniform convergence implies pointwise convergence. Hence, f ∈ AK(Dε).

Theorem 3.8 (Existence and Uniqueness for complex IVPs)
Let Ω ⊂ Cn+1 be an open domain and F ∈ On(Ω). Then for every (t0, x0) ∈ Ω there exists
a constant ε > 0 such that the IVP

x′ = F (t, x)

x(t0) = x0
(3.5)

has a unique solution x : Bε(t0) → Cn.

Proof
Let (t0, x0) ∈ Ω be arbitrarily fixed. Since F is holomorphic, the function ht : Bε(x0) → Cn,
ht(z) := F (t, z) is Lipschitz continuous with Lipschitz constant L < ∞. By openness of
Ω, there exists an r > 0 such that the polydisk Dr centered in (t0, x0) is a subset of Ω. Set

K := max
{

1, max
ζ∈Dr

|F (ζ)|
}

< ∞

and ε := min
{

r
2K

, 1
2L

}
. Define for t ∈ C the parameterized curve γt : [0, 1] → C as

the convex combination of t0 to t, i.e. γt(s) := st + (1 − s)t0 and the Picard operator
P : AK(Dε) → AK(Dε) by

P(f)(t, z) := z +
∫
γt

F (s, f(s, z)) ds = z + (t − t0)
1∫

0

F (γt(s), f(γt(s), z)) ds.

This integral is to be understood component-wise. The aim is to show that the operator
has exactly one fixed point that leads to a solution of the IVP (3.5).

9



3 Solution Theory for Analytic Ordinary Differential Equations

But first, we show that the operator P is well-defined. By definition of AK(Dε) and the
choice of ε, the estimation

|f(γt(s), z) − x0| ≤ |f(γt(s), z) − z| + |z − x0| ≤ K|γt(s) − t0| + |z − x0|

< Kε + ε ≤ rK

2K
+ r

2K
≤ r

2 + r

2 = r

holds and thus (γt(s), f(γt(s), z)) ∈ Dr ⊂ Ω for all s ∈ [0, 1] and (t, z) ∈ Dε. Hence the
function F can be evaluated under the integral.
In addition, Dr is convex and therefore the image of γt lies completely in Dr. Hence

|P(f)(t, z) − z| ≤ |t − t0|
1∫

0

|F (γt(s), f(γt(s), z)︸ ︷︷ ︸
∈Dr

)| ds ≤ |t − t0|
1∫

0

K ds = K|t − t0|

holds for all f ∈ AK(Dε) and (t, z) ∈ Dε, which implies P(AK(Dε)) ⊂ AK(Dε).
The second objective is to show that P is contracting on AK(Dε). For all f, g ∈ AK(Dε)

∥Pf − Pg∥∞ ≤ sup
(t,z)∈Dε

|t − t0|
1∫

0

|F (γt(s), f(γt(s), z)) − F (γt(s), g(γt(s), z))| ds

≤ sup
(t,z)∈Dε

ε

1∫
0

∣∣∣hγt(s)(f(γt(s), z)) − hγt(s)(g(γt(s), z))
∣∣∣ ds

≤ sup
(t,z)∈Dε

1
2L

1∫
0

L |f(γt(s), z) − g(γt(s), z)|︸ ︷︷ ︸
≤∥f−g∥∞

ds

≤ 1
2 ∥f − g∥∞ .

holds true and so the Picard operator is contracting with Lipschitz constant LP := 1
2 < 1.

Hence, by Proposition 3.7 and the Banach Fixed Point Theorem, there exists exactly one
fixed point f0 ∈ AK(Dε) of P , i.e.

f0(t, z) = z +
∫
γt

F (s, f0(s, z)) ds ∀ (t, z) ∈ Dε.

The third step is the definition of the explicit solution. Define x : Bε(t0) → Cn by
x(t) := f0(t, x0). Then clearly x ist holomorphic and satisfies the initial condition. Since

10



3 Solution Theory for Analytic Ordinary Differential Equations

Dε is simply connected (even convex), F has a primitive function on Dε and so

x′(t) = d
dt

∫
γt

F (s, x(s)) ds = F (t, x(t)) ∀ t ∈ Bε(t0).

In addition, the integral curve of x belongs completely to Ω. To see this, we can estimate

|x(t) − x0| = |f(t, x0) − x0| ≤ K|t − t0| < Kε ≤ r ∀ t ∈ Bε(t0).

Hence, x(Bε(t0)) ⊂ Br(x0) with respect to the norm on Cn. Finally, by Definition 3.4, the
function x is indeed a solution of our IVP (3.5). This proves the existence. It remains to
show the uniqueness of the solution. Although f0 is the unique fixed point, it is hard to
conclude from this that x is also unique. That is because we do not know yet that the
solution depends continuously on the initial data. In [8, p. 5] the author does not prove
the uniqueness. The following arguments are my own work.
Let x(1) : V1 → Cn and x(2) : V2 → Cn be two arbitrary solutions of the IVP (3.5). Then
V1 ∩ V2 is an open neighbourhood of t0, thus there exists ρ > 0 such that Bρ(t0) ⊂ V1 ∩ V2.
Set y := x(1) − x(2) : Bρ(t0) → Cn and fix a t ∈ Bρ(t0). Set d := |t − t0| and θ := arg(t − t0)
as the radius and angle of t inside the ball Bρ(t0), i.e. t = t0 + deiθ. Define for an arbitrary
ξ ∈ [0, d] the holomorphic curve φξ : [0, ξ] → Bρ(t0), φξ(s) := t0 +seiθ. Now the estimation

∣∣∣y (t0 + ξeiθ
)∣∣∣ =

∣∣∣∣∣∣∣
∫
φξ

x(1)′(s) − x(2)′(s) ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
φξ

F (s, x(1)(s)) − F (s, x(2)(s)) ds

∣∣∣∣∣∣∣
≤ K

ξ∫
0

∣∣∣x(1)(φξ(s)) − x(2)(φξ(s))
∣∣∣ |φ′

ξ(s)|︸ ︷︷ ︸
=1

ds = K

ξ∫
0

∣∣∣y (t0 + seiθ
)∣∣∣ ds

holds for all ξ ∈ [0, d]. Define u : [0, d] → R by u(ξ) :=
∣∣∣y (t0 + ξeiθ

)∣∣∣. Then u is
continuous, non-negative and the estimation

u(ξ) ≤ K

ξ∫
0

u(s) ds

holds for all ξ ∈ [0, d]. Now we can apply Gronwall’s lemma, [9, p. 79], and conclude
u(d) = 0, i.e. |y(t)| = 0. Since t ∈ Bρ(t0) is arbitrary, we have y ≡ 0 and x(1) ≡ x(2).
Finally, this proves the uniqueness of the solution.
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3 Solution Theory for Analytic Ordinary Differential Equations

Remark 3.9
The solution in Theorem 3.8 depends holomorphically on the initial data x0 ∈ Ω. This is
clear from the fact that the unique fixed point f0 of the Picard operator in the proof of
Theorem 3.8 depends holomorphically on the variable z.
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4 Equilibria and their local topological
characteristics

In the following chapters we consider autonomous Analytic Ordinary Differential Equations
with real time on the plane, i.e. systems of the form

x′ = F (x) (4.1)

with F ∈ O(Ω), Ω ⊂ C an open domain, an initial condition x(0) = x0 ∈ C and t0 = 0.
We can rewrite this system to

x′
1 = F1(x1, x2)

x′
2 = F2(x1, x2)

with the real right-hand side F1 := ℜ(F ) ∈ C∞ and F2 := ℑ(F ) ∈ C∞. Here we identify
the complex initial point x0 with the real point (ℜ(x0), ℑ(x0)) ∈ R2.
The trajectory or orbit through x0 corresponding to (4.1) is the maximum phase curve
and denoted by the set Γ(x0) := x(I), where x is the unique solution of (4.1) through x0

and I = I(x0) the maximum interval of existence with respect to x0. In this notation,
set Γ+(x0) := x(I ∩ [0, ∞)) and Γ−(x0) := x(I ∩ (−∞, 0]). Each orbit can be evaluated
at a time t ∈ I by Φ(t, x0) := x(t), with x(0) = x0. Using this notation, we have
Γ(x0) = Φ(I, x0). The union of all trajectories is the phase space.
A well known result, cf. [7, Satz 4.4.2], is the following: If for any initial value the solution
exists globally (to the right), then the map (t, y) 7→ Φ(t, y) is a dynamical (semi-dynamical)
system or flow (semi-flow). This result will be used throughout in the following chapters.
Furthermore, by the Identity Theorem, we can always assume that the zeros of F in (4.1)
do not have an accumulation point, i.e. on bounded sets there are at least finitely many
zeros (Bolzano-Weierstrass theorem). The case F ≡ 0 is not interesting for us.
Moreover, in any considerations, the Jordan curve theorem, cf. [11, Theorem 63.4], is to
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4 Equilibria and their local topological characteristics

be presumed. i.e the complement of every closed Jordan curve (a simple closed piecewise
continuously differentiable path) Γ ⊂ C consists of exactly two connected components.
One of these components is bounded (the interior Int(Γ)) and the other is unbounded (the
exterior Ext(Γ)). The curve Γ is the boundary of each component. Note that the Jordan
curve theorem holds in both spaces, C and S2 as its one-point-compactification, cf. [11,
Lemma 61.1] and [11, p. 185, Example 4]. Additionally, if Γ lies in a simply connected
domain Ω ⊂ C, then of course it holds that Int(Γ) ⊂ Ω.
Moreover, Int(Γ) is homeomorphic to B1(0) and is always simply connected. This stronger
version of the Jordan curve theorem is the Theorem of Jordan-Schoenflies. For more details
see also the remarks made in [12, p. 169] and [11, pp. 376-377].2

4.1 Geometry of equilibria with vanishing derivative

In the following the geometric properties of the flow corresponding to the system (4.1)
will be described. Especially the neighbourhood of equilibria in the phase space will be
characterized. The definitions and assumptions can be found in [9, Chapter 1-2], and [7,
Chapter I.3].

Definition 4.1
Let Ω ⊂ C be an open domain and F ∈ O(Ω). A point a ∈ Ω is an equilibrium of (4.1) if
F (a) = 0. In particular, an equilibrium is called

(i) a center if there exists a δ > 0 such that for all y ∈ Bδ(a) \ {a} ⊂ Ω the orbit Γ(y)
is a closed curve with a ∈ Int(Γ(y)).

(ii) a (an) stable (unstable) focus if there exists a δ > 0 such that for all y ∈ Bδ(a)\{a} ⊂
Ω the solution through y exists globally to the right (left) and satisfies |Φ(t, y)| → |a|
and | arg(Φ(t, y) − a)| → ∞ for t → ∞ (t → −∞), in particular w+(Γ(y)) = {a}
(w−(Γ(y)) = {a}). In this case, we say that Γ(y) is a spiral.

(iii) a stable (unstable) node if there exist δ > 0 such that for all y ∈ Bδ(a) \ {a} ⊂ Ω
the solution through y exists globally to the right (left) and satisfies |Φ(t, y)| → |a|
and arg(Φ(t, y) − a) → θ0 for t → ∞ (t → −∞) with a θ0 ∈ [0, 2π), in particular
w+(Γ(y)) = {a} (w−(Γ(y)) = {a}). In this case, we say that Γ(y) tends to a in the
definite direction θ0.

2The original proof by Jordan can be found in [13, pp. 587-594].
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4 Equilibria and their local topological characteristics

(iv) a saddle if there exist four trajectories Γ1, . . . , Γ4 with w+(Γ1) = w+(Γ2) = {a} and
w−(Γ3) = w−(Γ4) = {a} and a δ > 0 such that for all y ∈ Bδ(a) \ {a} ⊂ Ω there
exists a τ > 0 with Φ(t, y) ̸∈ Bδ(a) for all |t| > τ .

Remark 4.2

a) If an orbit Γ tends to an equilibrium a in the definite direction θ0 ∈ [0, 2π), then
the pinned tangent vector of Γ tends to the vector (cos(θ0), sin(θ0)) − a. This tan-
gent vector approaches the ray with angle θ0 centered in a. In fact, the number
arg(Φ(t, y) − a) is the argument of the flow through y at time t with respect to the
circle (or coordinate system) with center a.

b) A geometric visualization of the equilibria defined in Definition 4.1 can be looked
up in [7, Chapter 5.2] and [9, Chapter 1.5]. A more detailed version of the different
types of nodes and foci can be found in [7].

Theorem 4.3
Let Ω ⊂ C be an open domain and F ∈ O(Ω). Let a ∈ Ω be an equilibrium of (4.1) with
F ′(a) = α + iβ ̸= 0. Then:

(i) Eig(Jf (a)) =
{
F ′(a), F ′(a)

}
.

(ii) If α ̸= 0 and β = 0, a is a node. If α < 0 (α > 0), the node is asymptotically stable
(unstable).

(iii) If α ̸= 0 and β ̸= 0, a is a focus. If α < 0 (α > 0), the focus is asymptotically stable
(unstable).

(iv) If α = 0 and β ̸= 0, a is a center or a focus.

In particular, under the above assumptions the equilibrium is not a saddle.

Proof
By the Cauchy-Riemann equations, we have

J := JF (a) =
α −β

β α


and pJ(λ) = (α − λ)2 + β2. As zeros we get λ± := α ± iβ. Hence, if β ̸= 0, the two
eigenvalues are the complex conjugated pair {λ−, λ+}. This proves (i).
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4 Equilibria and their local topological characteristics

Additionally, we have tr(J) = 2α, det(J) = α2 + β2 and tr(J)2 − 4 det(J) = 4α2 − 4(α2 +
β2) = −4β2. Consider the linearized system x′ = Jx on R2. For this system we can use
the already known results about equilibria of linear systems, [9, Chapter 1.5]. If α ̸= 0
and β = 0, there is just one real eigenvalue and a is a node for the linearized system. If
α ̸= 0 and β ̸= 0, a is a focus for the linearized system. And if α = 0 and β ̸= 0, a is a
center for the linearized system.
With the help of the Hartman-Grobman Theorem, [9, Chapter 2.8], we can use [9, Chapter
2.10, Theorem 4] to conclude the assertions (ii) and (iii). The claim about the stability
follows from the principle of linearized stability, [7, Satz 5.4.1]. The function F is real
analytic in a and thus (iv) follows from the Corollary to [9, Chapter 2.10, Theorem 5].

4.2 Index Theory

The so-called Index Theory is a powerful tool for studying the phase space of (4.1). It
provides us with an understanding of how the geometry, topology, and analysis of planar
dynamical systems are interrelated. This chapter is based on [7, Chapter 9.6] and [6, §10].
The statements and proofs are suitably modified for holomorphic vector fields. Some
proofs are entirely reformulated. The underlying area is mostly assumed to be a simply
connected domain. For our later studies in this chapter, this condition is suitable, since
we always want to ensure that the interior of closed Jordan curves lies completely in the
domain.

Definition 4.4
Let Ω ⊂ R2 be an open domain and F = (F1, F2)T ∈ C1(Ω;R2) be vector field. Let γ :
[0, 1] → Ω be a closed Jordan curve with image Γ := γ([0, 1]) such that Γ ∩ F −1({0}) = ∅.
Then the index of F with respect to Γ is the net change in the argument of F over one
trip around Γ, i.e. the integer

ind(F, Γ) := 1
2π

∫
Γ

d(arg(F )) = 1
2π

∫
Γ

∇ arg(F ) ds.

The latter integral is understood as the line integral of 2nd kind along γ.
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4 Equilibria and their local topological characteristics

Lemma 4.5
Let Ω ⊂ R2 be an open domain and F = (F1, F2)T ∈ C1(Ω;R2). Let γ : [0, 1] → Ω be a
closed Jordan curve with image Γ := γ([0, 1]) such that Γ ∩ F −1({0}) = ∅. Then

ind(F, Γ) = 1
2π

∫
Γ

F1∇F2 − F2∇F1

|F |2
ds

and the index only depends on the orientation of the parameterization γ. In particular,
only the sign of the index depends on the orientation. Furthermore, if we identify R2 with
C and assume F ∈ O(Ω), then the index of F is the winding number of the complex closed
curve F (Γ) around 0, i.e.

ind(F, Γ) = 1
2πi

∫
F (Γ)

1
z

dz.

In addition, the index is in fact an integer.

Proof
In the absence of any proof for this lemma in [7, Chapter 9.6], I will prove it myself.
We calculate

∇ arg(F ) = ∇ arctan
(

F2

F1

)
= 1

1 + F 2
2

F 2
1

F1∇F2 − F2∇F1

F 2
1

= F1∇F2 − F2∇F1

F 2
1 + F 2

2
.

This proves the first formula. Furthermore (F has no zeros on Γ)

1
2πi

∫
F (Γ)

1
z

dz = 1
2π

∫
F (Γ)

− iz
zz

dz = 1
2π

1∫
0

−F2(γ(s)) − iF1(γ(s))
|F (γ(s))|2 (F ◦ γ)′(s) ds.

By applying the Cauchy-Riemann equations, we have

−(F2 + iF1)F ′ = −F2∂1F1 − iF2∂1F2 − iF1∂1F1 + F1∂1F2

= −F2∂1F1 + iF2∂2F1 − iF1∂2F2 + F1∂1F2

= F1∂1F2 − F2∂1F1 + i(F2∂2F1 − F1∂2F2)

=
〈
F1∇F2 − F2∇F1, (1, −i)T

〉
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4 Equilibria and their local topological characteristics

and thus for all s ∈ [0, 1]

−(F2 + iF1)(γ(s))F ′(γ(s))γ′(s) =
〈
(F1∇F2 − F2∇F1)(γ(s)), (γ′

1(s), γ′
2(s))T

〉
+ iγ′

2(s)(F1∂1F2 − F2∂1F1)(γ(s))

+ iγ′
1(s)(F2∂2F1 − F1∂2F2)(γ(s)).

Here, the derivative of γ is to be understood as a number in C. Now define h : Γ → R2 by

h := 1
F 2

1 + F 2
2

F2∂2F1 − F1∂2F2

F1∂1F2 − F2∂1F1

 .

With this definition we conclude

1
2πi

∫
F (Γ)

1
z

dz = 1
2π

1∫
0

⟨(F1∇F2 − F2∇F1)(γ(s)), γ′(s)⟩
|F (γ(s))|2 ds + i

2π

1∫
0

⟨h(γ(s)), γ′(s)⟩ ds

= 1
2π

∫
Γ

F1∇F2 − F2∇F1

|F |2
ds + i

2π

∫
Γ

h ds.

Here, the derivative of γ is to be understood as a vector in R2. Since the winding number is
real, [14, Theorem 10.10], the second term (the imaginary part of the integral) is equal to 0.
Additionally, line integrals are parameterization-independent. Hence, the index, or more
precisely, the sign of the index, only depends on the orientation of the parameterization
γ. Since the winding number is an integer, so is the index.

Proposition 4.6
Let Ω ⊂ C be an open domain, F = F1 + iF2 ∈ O(Ω), F ̸≡ 0, and Γ ⊂ Ω a closed Jordan
curve (passed counterclockwise) with Int(Γ) ∩ F −1({0}) = ∅. Then ind(F, Γ) = 0.

Proof
Assume w.l.o.g. that Γ is parameterized by γ with |γ′| ≡ 1, i.e. by its arc length.
This is possible, since Γ is piecewise differentiable and ind(F, Γ) does not depend on the
parameterization γ. Define the vector field g : Ω \ F −1({0}) → R2 by

g :=
g1

g2

 := 1
|F |2

 F1∂2F2 − F2∂2F1

−F1∂1F2 + F2∂1F1
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and g̃1 := F1∂2F2 − F2∂2F1, g̃2 := −F1∂1F2 + F2∂1F1. Let L(Γ) be the length of Γ. Using
this definition yields to

ind(F, Γ) = (2π)−1
L(Γ)∫
0

〈
g(γ(s)),

 γ′
2(s)

−γ′
1(s)

〉 |γ′(s)|︸ ︷︷ ︸
=1

ds = (2π)−1
∫
Γ

⟨g(x), ν(x)⟩ dS(x).

The latter integral is to be understood as a surface integral over the 1-dimensional sub-
manifold Γ ⊂ R2 with the outer unit normal ν := (−γ′

2, γ′
1). Choose R > 0 big enough

such that Γ ⊂ BR(0). Since there are only finitely many zeros of F in Ω ∩ BR(0), there
exists an open domain V ⊂ Ω ∩ BR(0) such that g ∈ C1(V ;R2) and Int(Γ) ⊂ V . More
precisely, finitely many points cannot be arbitrarily close to the compact set Int(Γ). In
the following calculations the Cauchy-Riemann equations and the symmetry of second
derivatives of F (Schwarz’s theorem) are used throughout. We have

∂jgj = −|F |−4∂j|F |2g̃j + |F |−2∂j g̃j = |F |−2∂j g̃j − 2|F |−4g̃j (F1∂jF1 + F2∂jF2)︸ ︷︷ ︸
=g̃j

with j ∈ {1, 2}. Furthermore,

∂1g̃1 + ∂2g̃2 = ∂1F1∂2F2 + F1∂1∂2F2 − ∂1F2∂2F1 − F2∂1∂2F1

− ∂2F1∂1F2 − F1∂2∂1F2 + ∂2F2∂1F1 + F2∂2∂1F1

= 2∂1F1∂2F2 − 2∂2F1∂1F2 = 2|∇F2|2

and

g̃2
1 + g̃2

2 = F 2
1 (∂2F2)2 + F 2

2 (∂2F1)2 − 2F1F2∂2F2∂2F1

+ F 2
1 (∂1F2)2 + F 2

2 (∂1F1)2 − 2F1F2∂1F2∂1F1

= F 2
1

(
(∂2F2)2 + (∂1F2)2

)
+ F 2

2

(
(∂2F1)2 + (∂1F1)2

)
= F 2

1

(
(∂2F2)2 + (∂1F2)2

)
+ F 2

2

(
(−∂1F2)2 + (∂2F2)2

)
= |∇F2|2

(
F 2

1 + F 2
2

)
.

Hence, we conclude that the divergence of g is given by

div(g) = ∂1g1 + ∂2g2 = |F |−2 (∂1g̃1 + ∂2g̃2) − 2|F |−4
(
g̃2

1 + g̃2
2

)
= |F |−2

(
2|∇F2|2 − 2|F |−2|∇F2|2

(
F 2

1 + F 2
2

))
= 2|F |−2

(
|∇F2|2 − |∇F2|2

)
= 0.
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4 Equilibria and their local topological characteristics

Therefore, the divergence theorem implies

ind(F, Γ) = (2π)−1
∫

Int(Γ)

div(g)(x) dx = 0.

Lemma 4.7
Let Ω ⊂ C be a simply connected open domain, F = F1 +iF2 ∈ O(Ω) and a ∈ Ω fixed. For
r > 0 set Γr := ∂Br(a) ⊂ Ω, Assume that Γr is passed counterclockwise. Let 0 < r1 < r2

be two radii such that Γr2 ⊂ Ω. Assume that there are no zeros in the circle ring with the
radii r1 and r2, i.e.

(
Br2(a) \ Br1(a)

)
∩ F −1({0}) = ∅. Then it holds that

ind(F, Γr1) = ind(F, Γr2).

Proof
In [7, Chapter 9.6] the index of equilibria is constructed in a slightly different way. The
following arguments are therefore my own.
Parameterize (counterclockwise) the curve Γr by t 7→ a + re2πit, t ∈ [0, 1] and define
h : [0, 1] × [r1, r2] → C by

h(t, r) := r
(F1∇F2 − F2∇F1)(a + re2πit)

|F (a + re2πit)|2 .

Here we identify h(t, r) ∈ R2 as an element of C. Since |F |2 has no zeros in Br2(a)\Br1(a),
h is well-defined and continuous on the compact set [0, 1] × [r1, r2]. So the Heine-Cantor
theorem implies the uniform continuity of h. Now, let ε > 0 be arbitrary. Then there
exists a δ > 0 such that for all ρ1, ρ2 ∈ [r1, r2] with |ρ1 − ρ2| < δ we have

|ind(F, Γρ1) − ind(F, Γρ2)| ≤ 1
2π

1∫
0

|h(t, ρ1) − h(t, ρ2)|︸ ︷︷ ︸
<ε

∣∣∣2πie2πit
∣∣∣︸ ︷︷ ︸

=2π

dt < ε.

Hence the map r 7→ ind(F, r) is also uniformly continuous on [r1, r2]. On the other hand,
this continuous map takes values in the discrete set Z, cf. Lemma 4.5. So it must be
constant. The assertion follows.
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Definition 4.8
Let Ω ⊂ C be an open domain, F ∈ O(Ω) and a an equilibrium of (4.1). Assume F ̸≡ 0.
Then there exists an r > 0 such that Br(a)∩F −1({0}) = {a}. The index of a with respect
to F is defined as the integer

ind(F, a) := ind(F, ∂Br(a)).

The curve ∂Br(a) is parameterized counterclockwise, e.g. by t 7→ a + re2πit, t ∈ [0, 1].

Remark 4.9
The number ind(F, a) in Definition 4.8 does not depend on the choice of the radius r. This
follows directly by applying Lemma 4.7.

Theorem 4.10
Let Ω ⊂ C be a simply connected open domain, F = F1 + iF2 ∈ O(Ω), F ̸≡ 0, and Γ ⊂ Ω
a closed Jordan curve with Γ ∩ F −1({0}) = ∅. Assume that Γ is passed counterclockwise.
Then it holds that

ind(F, Γ) =
∑

a∈Int(Γ)
F (a)=0

ind(F, a).

Proof
This proof is based on the ideas given in [6, §11.1] and [9, p. 302].
By the Identity Theorem, there are in fact only finitely many equilibria in Int(Γ), so the
sum is well-defined. If there are no zeros in Int(Γ), nothing is to show, cf. Lemma 4.5. Let
{a1, . . . , aℓ}, ℓ ∈ N, be the zeros of F in Int(Γ). The following explains the geometrical
idea of the proof.
For j ∈ {1, . . . , ℓ} choose a radius rj > 0 and a curve Λj := ∂Brj

(aj) such that Λj ⊂ Int(Γ).
The radii can be assumed small enough to ensure Int(Λj2) ∩ Int(Λj1) = ∅, if j1 ̸= j2.
Additionally, choose a C1-curve Ξj to connect Λj with Γ such that these connecting curves
have empty pairwise intersections. Since Γ is continuously differentiable and there are only
finitely many equilibria in Int(Γ), all these objects exist. By this construction, we have

∑
a∈Int(Γ)
F (a)=0

ind(F, a) =
ℓ∑

j=1
ind(F, Λj).
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Now parameterize for j ∈ {1, . . . , ℓ} the curve Ξj by ξj : [0, 1] → C such that ξj(0) ∈ Λj

and ξj(1) ∈ Γ. Set pj := ξj(1) and suppose that the points p1, . . . , pℓ are arranged counter-
clockwise with pℓ+1 := p1 on Γ. Let Γj be the part of Γ connecting the two points pj and
pj+1 and parameterized by γj : [0, 1] → C. Using this notation, we have γj(0) = pj and
γj(1) = γj+1(0) = pj+1. Parameterize Λj by λj : [0, 1] → C such that λj(0) = λj(1) = ξ(1).
This construction can be illustrated by the following figure.

·a1

Λ1Ξ1

·a2

Λ2

Ξ2

·a3

Λ3

Ξ3

·a4
Λ4

Ξ4

·
a5

Λ5

Ξ5

Ω

Γ

Figure 4.1: Geometrical visualization of the proof of Theorem 4.10 with ℓ = 5

Using the definition of concatenation of paths, leads to the piecewise continuously differ-
entiable path Π : [0, 1] → C defined by

Π :=
ℓ∑

j=1
(pj − ξj − λj + ξj + γj) .

Since p1 = γℓ(1), this path is closed.
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By construction and Proposition 4.6, we conclude

∑
a∈Int(Γ)
F (a)=0

ind(F, a) −
ℓ∑

j=1
ind(F, Λj) = 1

2π

∫
Π

F1∇F2 − F2∇F1

|F |2
ds = ind(F, Π) = 0.

In this equation we used the fact that the line integral is linear with respect to the paths
and vanishes along the connecting paths Ξj, j ∈ {1, . . . , ℓ}. In addition we assumed the
following: For each j ∈ {1, . . . , ℓ} the path Ξj can be approximated by two parallel paths
such that Π is indeed a closed Jordan curve without any zeros in its interior, cf. Figure
4.1. This can be done by approximation of Π and the continuous dependence of the index
on the chosen Jordan curve, cf. [7, p. 244].

Theorem 4.11
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and Γ ⊂ Ω a periodic orbit of
(4.1) with Int(Γ) ̸= ∅. Assume that Γ is parameterized as solution of (4.1). Then:

(i) ind(F, Γ) ∈ {1, −1}.

(ii) Int(Γ) ∩ F −1({0}) ̸= ∅.

(iii)
∑

a∈Int(Γ)
F (a)=0

ind(F, a) = 1.

In particular, there exists at least one equilibrium of (4.1) in Int(Γ).

Proof
First, Γ cannot be an equilibrium, since the interior of Γ is nonempty. Let T > 0 be the
period of Γ and parameterize Γ by γ : [0, T ] → R2 where γ is a C1-solution of (4.1), i.e.
γ′(t) = F (γ(t)) for all t ∈ [0, T ]. By [9, Chapter 2.3, Remark 1], this solution is even a
C2-curve.
The proof of this theorem is essentially based on Hopf’s Umlaufsatz, a result of differential
geometry, cf. [15, p. 28, Theorem 2.28]. By applying [15, p. 26, Definition 2.25] and
Lemma 4.5, we get

ind(F, Γ) = 1
2πi

∫
F (Γ)

1
z

dz = 1
2πi

∫
γ′

1
z

dz ∈ {1, −1}.
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This proves (i). Suppose there is no equilibrium in Int(Γ). Then, by Proposition 4.6,
we conclude the contradiction ind(F, Γ) = 0 ̸∈ {1, −1}. Thus (ii) holds. The sign of
ind(F, Γ) is positive if and only if Γ is parameterized counterclockwise, cf. the proof of
[15, p. 28, Theorem 2.28]. If this is the case, then (iii) is implied by (i) and Theorem 4.10.
If ind(F, Γ) = −1, then Γ is parameterized clockwise and γ̃ := −γ is a counterclockwise
parameterization. Hence, again by Theorem 4.10, we have

∑
a∈Int(Γ)
F (a)=0

ind(F, a) = ind(F, γ̃([0, T ])) = −ind(F, γ([0, T ])) = − ind(F, Γ)︸ ︷︷ ︸
=−1

= 1

Here we used the fact that only the sign of ind(F, Γ) depends on the orientation of Γ. This
proves (iii) also for this case.

Theorem 4.12
Let Ω ⊂ C be a simply connected open domain and F ∈ O(Ω) with F ̸≡ 0. Let a ∈ Ω be
an equilibrium of (4.1) with F ′(a) ̸= 0. Then ind(F, a) = 1.

Proof
This proof is based on [7, p. 247] with minor changes. The omitted steps of the proof are
performed by me, in particular the equations (4.2) and (4.3).
Assume w.l.o.g. that a = 0, which is possible since the phase space structure of the
analytic vector filed x 7→ F (x + a) is just shifted and has the same topological properties.
This simplifies the notation in the following arguments.
The proof is based on the idea that the index is invariant under linearization of the vector
field. Set α := ℜ(F ′(a)), β := ℑ(F ′(a)),

J := JF (a) =
α −β

β α


and B := (J−1)T . Note that det(J) > 0. Define H, H̃ : R2 → R2, H(x) := Jx = F ′(a)x,
H̃(x) := Bx and g : [0, 1] → O(Ω) as the convex combination of F and H, i.e. g(τ) :=
τH + (1 − τ)F , τ ∈ [0, 1]. Since H is entire, i.e. holomorphic on C, we indeed have
g(τ) ∈ O(Ω) for all τ ∈ [0, 1].
Denote by arg(x, y) the angle between the two vectors x, y ∈ R2. At first, consider the
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following estimation for all r > 0 and x ∈ ∂Br(0)

|H(x)|
∥∥∥H̃∥∥∥ = |Jx| sup

|y|=1
|By| = 1

r
sup
|y|=r

|Jx||By| ≥ 1
r

sup
|y|=r

| ⟨By, Jx⟩︸ ︷︷ ︸
=⟨x,y⟩

|

= 1
r

sup
|y|=r

| cos(arg(x, y))| |x||y|︸ ︷︷ ︸
=r2

= r max
|y|=r

| cos(arg(x, y))|︸ ︷︷ ︸
=1 (with y=x)

= r.
(4.2)

Here we used the Cauchy-Schwarz inequality and the operator norm for H̃ ∈ (R2)⋆. Choose
ε := 1

2

∥∥∥H̃∥∥∥−1
> 0. Then, by differentiability of F in a, there exists a δ > 0 such that

|F (x) − H(x)| = |F (x) − F (a) − J(x − a)| ≤ ε|x| ∀ x ∈ Bδ(a). (4.3)

Choose r ∈ (0, δ
2) sufficiently small such that Br(a) ⊂ Ω and Br(a) ∩ F −1({0}) = {a}. By

applying the reverse triangle inequality and the estimations (4.2) and (4.3), this leads to

|g(τ)(x)| = |τH(x) + (1 − τ)F (x)| = |H(x) − (1 − τ)︸ ︷︷ ︸
≤1

(H(x) − F (x))|

≥ |H(x)| − |F (x) − H(x)| ≥
∥∥∥H̃∥∥∥−1

r − ε|x| = r

2
∥∥∥H̃∥∥∥ > 0

for all τ ∈ [0, 1] and x ∈ ∂Br(a) ⊂ Bδ(a). Parameterize ∂Br(a) by γ(s) := re2πis, s ∈ [0, 1].
Then Ψ(τ, s) := g(τ)(γ(s)), (τ, s) ∈ [0, 1]2, satisfies Ψ ∈ C0([0, 1]2;C \ {0}). Hence, it is a
path homotopy between Ψ(0, ·) and Ψ(1, ·) on C\{0}. Actually, since Ψ([0, 1]2) is compact
in C \ {0}, we can even find a ρ > 0 such that Ψ([0, 1]2) ⊂ C \ Bρ(0), i.e. Ψ has away from
zero. By applying the homotopy version of Cauchy’s Integral Theorem, we conclude

∫
F (∂Br(a))

z−1 dz =
∫

Ψ(0,[0,1])

z−1 dz =
∫

Ψ(1,[0,1])

z−1 dz =
∫

H(∂Br(a))

z−1 dz.

Applying Lemma 4.5 implies ind(F, a) = ind(H, a), i.e. the index is invariant under
linearization. Furthermore, we have (H ◦ γ)′(s) = F ′(a)2πire2πis = 2πiH(γ(s)), s ∈ [0, 1].
Hence, we conclude

ind(F, a) = ind(H, a) = 1
2πi

1∫
0

(H ◦ γ)′(s)
(H ◦ γ)(s) ds = 1

2πi

1∫
0

2πiH(γ(s))
H(γ(s)) ds = 1.
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4 Equilibria and their local topological characteristics

4.3 Sectorial decomposition of equilibria

The aim of this section is to characterize the local structure of an equilibrium with non-
vanishing derivative, i.e. the order of the zero is at least 2. The definitions are based
on [1, Chapter 1.5] and the results in [6, §20]. The main theorem in this chapter is our
first fundamental result: There are a certain number of so-called elliptic sectors in an
equilibrium and locally no other sectors can occur.

Definition 4.13
Let Ω ⊂ C be an open domain, F ∈ O(Ω), F ̸≡ 0, a ∈ Ω an equilibrium of (4.1) and r > 0
sufficiently small. Set Γ := ∂Br(a). Assume that Int(Γ) ⊂ Ω and Int(Γ)∩F −1({0}) = {a}.

a) For p, q ∈ Γ, p ̸= q, we denote by Γ(p, q) the closed (i.e. including p and q) curve
section of Γ from p to q in counterclockwise direction.

b) A sector S ⊂ Int(Γ) of (4.1) in a with respect to Γ is a compact set such that there
exist two characteristic orbits Γ1, Γ2 of (4.1) and two intersection points p1, p2 ∈ Γ
with the following properties:

(i) For i ∈ {1, 2} it holds that Γi ∩ Γ = {pi} and furthermore this cutting is
transverse, i.e. the embedded tangent spaces of the two 1-dimensional C1-
surfaces Γ and Γi at pi are not equal.

(ii) The boundary of S is given by

∂S = Int(Γ) ∩ ({a} ∪ Γ1 ∪ Γ2 ∪ Γ(p1, p2)) .

Definition 4.14
Let Ω ⊂ C be an open domain, F ∈ O(Ω), F ̸≡ 0, a ∈ Ω an equilibrium of (4.1) and r > 0
sufficiently small. Set Γ := ∂Br(a). Assume that Int(Γ) ⊂ Ω and Int(Γ)∩F −1({0}) = {a}.
Let ν : Γ → S1 be the outer unit normal of Γ. Let S be a sector of (4.1) in a with respect
to Γ with characteristic orbits Γ1, Γ2, intersection points p1, p2 ∈ Γ and the curve piece
Λ := Γ(p1, p2). Then S is called

a) an attracting (repelling) parabolic sector if for all y ∈ Λ and z ∈ S \{a} the following
properties are satisfied:

(i) ⟨F (y), ν(y)⟩ < (>) 0.
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4 Equilibria and their local topological characteristics

(ii) w+(Γ(z)) = {a} (w−(Γ(z)) = {a}).

(iii) Γ−(z) ∩ Λ ̸= ∅ (Γ+(z) ∩ Λ ̸= ∅).

In particular, S is positive (negative) invariant.

b) an elliptic sector with clockwise (counterclockwise) direction if there exists a point
E ∈ Λ \ {p1, p2} such that the following properties are satisfied:

(i) Γ(E) ⊂ Int(Γ) ∪ {E}.

(ii) w+(Γ(E)) = w−(Γ(E)) = {a}.

(iii) For all y1 ∈ Λ1 := Γ(p1, E) \ {E} and y2 ∈ Λ2 := Γ(E, p2) \ {E} it holds:

– ⟨F (y1), ν(y1)⟩ < (>) 0.

– ⟨F (y2), ν(y2)⟩ > (<) 0.

(iv) For all y1 ∈ Λ1 and y2 ∈ Λ2 it holds:

– Γ+(y1) ∪ Γ−(y2) ⊂ Int(Γ)
(
Γ−(y1) ∪ Γ+(y2) ⊂ Int(Γ)

)
.

– w+(Γ(y1)) = w−(Γ(y2)) = {a} (w−(Γ(y1)) = w+(Γ(y2)) = {a}).

(v) Γ(z) ⊂ Int(Γ) and w+(Γ(z)) = w−(Γ(z)) = {a} for all z ∈ S \ SE, where

SE := {p} ∪ Γ(E) ∪
⋃

y1∈Λ1

Γ+(y1) ∪
⋃

y2∈Λ2

Γ−(y2)SE := {p} ∪ Γ(E) ∪
⋃

y1∈Λ1

Γ−(y1) ∪
⋃

y2∈Λ2

Γ+(y2)
.

In particular, S \ SE is an invariant attractor for a.

c) a hyperbolic or saddle sector with clockwise (counterclockwise) direction if there exists
a point E ∈ Λ \ {p1, p2} such that the following properties are satisfied:

(i) The cutting of Γ(E) with Γ is tangent and satisfies Γ(E) ∩ Int(Γ) = {E}, i.e.
the embedded tangent spaces of the two 1-dimensional C1-surfaces Γ and Γ(E)
at E are equal and the orbit through E remains outside of Int(Γ).

(ii) For all y1 ∈ Γ(p1, E) \ {E} and y2 ∈ Γ(E, p2) \ {E} it holds:

– ⟨F (y1), ν(y1)⟩ > (<) 0.

– ⟨F (y2), ν(y2)⟩ < (>) 0.
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4 Equilibria and their local topological characteristics

(iii) Γ−(z) ∩ Γ ̸= ∅ and Γ+(z) ∩ Γ ̸= ∅ for all z ∈ S \ {E, a} ∪ Γ1 ∪ Γ2.

In particular, there is no invariant subset of S. Every orbit starting in S̊ exits S in
positive and negative finite time.

18 1 Basic Results on the Qualitative Theory of Differential Equations

(2) Repelling parabolic sector. At all points of [pi, pi+1] ⊂ ∂V the vector
field points outward, and for all q ∈ Si \ {p}, α(q) = {p} and γ+(q) ∩
∂V �= ∅.

(3) Hyperbolic sector. There exists a point qi ∈ (pi, pi+1) ⊂ ∂V with the
property that at all points of [pi, qi) the vector field points inward
(respectively outward) while at all points of (qi, pi+1] the vector field
points outward (respectively inward); at qi the vector field is tangent
at ∂V and the tangency is external in the sense that the x–orbit of qi
stays outside V ; and for all q ∈ Si\ci ∪ ci+1 ∪ qi we have γ

+(q)∩ ∂V �=
∅ and γ−(q) ∩ ∂V �= ∅.

(4) Elliptic sector. There exists a point qi ∈ (pi, pi+1) ⊂ ∂V with the
property that γ(qi) ⊂ V with ω(qi) = α(qi) = {p}; at all points
q ∈ [pi, qi) the vector field points inward, γ+(q) ⊂ V and ω(q) = p.

We denote by S[pi,qi] =
⋃

q∈[pi,qi]

γ+(q); at all points of q ∈ (qi, pi+1] the

vector field points outward, γ−(q) ⊂ V and α(q) = p. We denote by

S[qi,pi+1] =
⋃

q∈[qi,pi+1]

γ−(q); at all points q of S\(S[pi,qi]∪S[qi,pi+1]∪{p})

we have γ(q) ⊂ V with ω(q) = α(q) = p.
The same may also be true for [pi, qi] and [qi, pi+1] interchanged.

See Figure 1.8 for a picture of the different sectors.
LetX be a C1 vector field defined in a neighborhoodW of some singularity

p. We say that X has the finite sectorial decomposition property at p if there
exists some neighborhood V ⊂ W of p such that X|V satisfies one of the
conditions (i), (ii), (iii) or (iv).

In the first three cases we speak about a trivial sectorial decomposition,
since there is but one sector. We remark that the distinction between a focus
and a node is not topological but differentiable. We will deal with it in Chap. 2.
In the last case (case (iv)), we denote respectively by e, h and p the number of
elliptic, hyperbolic and parabolic sectors. Since we are not in the cases (i), (ii)
or (iii), we clearly need that e or h, or both, are different from zero. We try
to keep p as small as possible, both by joining two adjacent parabolic sectors,
in other words, not accepting two adjacent parabolic sectors, and by adding a
parabolic sector to an elliptic one if it is adjacent to it. Hence the remaining

Saddle sector or 
hyperbolic sector

Elliptic
sector

Attracting
Sector

Repelling
Sector

Fig. 1.8. Sectors near a singular pointFigure 4.2: Geometrical visualization of a hyperbolic, elliptic, attracting parabolic and
repelling parabolic sector ([1, Fig. 1.8])

Definition 4.15
Let Ω ⊂ C be an open domain, F ∈ O(Ω), F ̸≡ 0, a ∈ Ω an equilibrium of (4.1) and r > 0
sufficiently small. Set Γ := ∂Br(a). Assume that Int(Γ) ⊂ Ω and Int(Γ)∩F −1({0}) = {a}.

a) The system (4.1) has a finite sectorial decomposition (FSD) of order d ∈ N \ {1} in
a, if the equilibrium is neither a center nor a focus and if there are d characteristic
orbits Γ1, . . . , Γd with corresponding points p1 . . . , pd ∈ Γ such that the following
properties are satisfied for all i ∈ {1, . . . , d}:

(i) The set
S̃ := Int(Γ) ∩ ({a} ∪ Γi ∪ Γi+1 ∪ Γ(pi, pi+1))

is a simple closed piecewise continuously differentiable path.

(ii) The set S := Int(S̃) is a parabolic, elliptic or hyperbolic sector of (4.1) in a

with respect to Γ whose characteristic orbits are Γi, Γi+1 and whose intersection
points are pi, pi+1 ∈ Γ.

(iii) The characteristic orbits with the corresponding points are ordered cyclic and
counterclockwise with respect to a.

Using this notation, we set Γd+1 := Γ1 and pd+1 := p1.

b) A FSD of order d is minimal if there is no possibility to construct a FSD of order
d̃ ∈ {2, . . . , d − 1}. If d = 2, the FSD is always already minimal.
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4 Equilibria and their local topological characteristics

Remark 4.16
Since the constructions in the definitions above are not straightforward, the following
remarks provide a more elaborate view.

a) A more detailed geometrical description of the scheme of equilibria and the structure
of sectors can be found in [6, Chapter VIII]. Here the author constructs the different
types of sectors step by step, by means of arcs and subarcs without contact to the
circle Γ, cf. [6, §3]. In particular, the constructions starts with semipaths (parts of
orbits) that tend to the equilibrium and form so-called separatrices. This semipaths
correspond to our characteristic orbits Γ1, . . . , Γd. However, in our case this property
is a priori not given and will be proven later in this section.

b) Whether a sector is elliptic, hyperbolic or parabolic, does not depend on the choice
of the radius r, i.e. the topological structure of a finite sectorial decomposition is a
local property of the equilibrium. To ensure this, the radius must be chosen small
enough. Recall that there are only finitely many zeros of F in any bounded set. Also
the cyclic order of the characteristic orbits and intersection points does not depend
on the radius. This can be proven with lengthy geometric contradiction arguments,
cf. [6, §17, Lemma 1].

Remark 4.17
The order of a given FSD can be reduced by joining two adjacent parabolic sectors, in other
words, not accepting two adjacent parabolic sectors, and by adding a parabolic sector to
an elliptic one if it is adjacent to it. Hence in a minimal FSD the parabolic sectors can
only be the ones lying between two hyperbolic sectors.

Example 4.18
The simplest already known example of an equilibrium with a minimal FSD is a saddle,
cf. Definition 4.1. The characteristic orbits are Γ1, . . . , Γ4 and the order is 4. All sectors
are hyperbolic. Additionally, there are no other FSDs and there is no way to construct
one with either smaller order, or with an elliptic sector.
Geometrically, a node is an equilibrium with arbitrary many parabolic sectors. But there
is no way to construct a minimal FSD for nodes, since it would have only one sector, i.e.
the order of the minimal FSD would be 1 < 2.
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4 Equilibria and their local topological characteristics

Proposition 4.19
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω), F ̸≡ 0 and a ∈ Ω an
equilibrium of (4.1) with order m ∈ N. Then ind(F, a) = m.

Proof
If m = 1, the assertion follows directly from Theorem 4.12. Assume m ≥ 2 and let r > 0
be small enough such that ind(F, a) = ind(F, ∂Br(a)). Set Γ := ∂Br(a). By Lemma 4.5,

ind(F, a) = 1
2πi

∫
F (Γ)

z−1 dz = 1
2πi

∫
Γ

F ′(z)
F (z) dz = Res

(
F ′

F
, a

)
.

Since the order of the zero is m, the residue of F ′

F
in a is also m. Thus ind(F, a) = m.

Proposition 4.20
Let Ω ⊂ C be a simply connected open domain, a := 0 ∈ Ω, F = (F1, F2)T ∈ C∞(Ω;R2)
real analytic with at most finitely many zeros in every bounded set and F (a) = 0. Assume
that the order of a is m ∈ N \ {1}. Let F

[k]
1 and F

[k]
2 be the sum of all terms of the Taylor

series at a of F1 and F2 with degree k ∈ N and set

H(x1, x2) := x1F
[m]
2 (x1, x2) − x2F

[m]
1 (x1, x2)

with (x1, x2)T ∈ R2. Assume that H is not identically zero. Then:

a) Any orbit Γ of (4.1) tending to a for t → ∞ or t → −∞ is either a spiral, or tends
to a in a definite direction3 θ0 ∈ [0, 2π).

b) If Γ is an orbit of (4.1) tending to a in a definite direction θ0 ∈ [0, 2π), then θ0

satisfies the equation H(cos(θ0), sin(θ0)) = 0.

c) If there exists a spiral Γ of (4.1) tending to a for t → ∞ (t → −∞), then a is a
stable (unstable) focus.

Proof
The formulated Proposition coincides with [6, §20, Theorem 64]. In the following some
technical details of the proof are left out. A more detailed version can be found in [6, §20].

3We defined this expressions in Definition 4.1.
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4 Equilibria and their local topological characteristics

At first we apply polar coordinates to deduce

d|x|
dt

= d
dt

√
x2

1 + x2
2 = 2x1x

′
1 + 2x2x

′
2

2
√

x2
1 + x2

2

= x1F1 + x2F2

|x|

and

d arg(x)
dt

= d
dt

arctan
(

x2

x1

)
= 1

1 + x2
2

x2
1

x1x
′
2 − x2x

′
1

x2
1

= x1F2 − x2F1

|x|2

for an arbitrary solution x = (x1, x2). This leads to the system

ρ′(t) = F1(ρ cos(θ), ρ sin(θ)) cos(θ) + F2(ρ cos(θ), ρ sin(θ)) sin(θ)

θ′(t) = 1
ρ

(
F2(ρ cos(θ), ρ sin(θ)) cos(θ) − F1(ρ cos(θ), ρ sin(θ)) sin(θ)

) (4.4)

on the simply connected open domain Ω1 := R × (0, ρ⋆) with a small ρ⋆ > 0. The relation
between the orbits of (4.1) and (4.4) is determined in [6, §8.3]. For j ∈ {1, 2}, k ∈ N and
θ ∈ R set F̃

[k]
j (θ) := F

[k]
j (cos(θ), sin(θ)). With this notation we have

F
[k]
j (ρ cos(θ), ρ sin(θ)) =

∑
0≤k1≤k2
k1+k2=k

∂(k1,k2)Fj(0)
k1!k2!

ρk1 cosk1(θ)ρk2 sink2(θ) = ρkF̃
[k]
j (θ).

By applying the time transformation dτ = ρm−1dt and the real analyticity of F1 and F2

in a, there exist two analytic functions Ψ1 and Ψ2 such that the orbits of (4.4) coincide
with those of the system

ρ′(τ) = ρF̃
[m]
1 (θ) cos(θ) + ρF̃

[m]
2 (θ) sin(θ) + ρ2Ψ1(ρ, θ)

θ′(τ) = F̃
[m]
2 (θ) cos(θ) − F̃

[m]
1 (θ) sin(θ) + ρΨ2(ρ, θ)

(4.5)

on the domain Ω1. More precisely, Ψ1 and Ψ2 are the Taylor series of F1 and F2 without
the terms of degree less than or equal to m and multiplied by ρ1−m. This system can also
be considered on Ω2 := R × (−ρ⋆, ρ⋆). But only on Ω1 we can relate the orbits of (4.1)
with those of (4.5), cf. [6, §8.3].
Now, let Γ be an arbitrary orbit of (4.1) tending to a for t → ∞ with the corresponding
orbits Γ1 of (4.4) and Γ2 of (4.5). The argument for t → −∞ is analogous. Fix a
z ∈ Γ ∩ Bρ⋆(0). It is clear that |Φ(t, z)| → 0 for t → ∞. Thus ρ(t) → 0 for t → ∞ on Γ1.
By a short contradiction argument it can be shown that τ → ∞ if t → ∞ and the other
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4 Equilibria and their local topological characteristics

way around. Note that the used time transformation is monotone increasing. Hence it
follows ρ(τ) → 0 for τ → ∞ on Γ2. Moreover, this shows that the orbit Γ2 exists globally
to the right on Ω2. In order to ascertain whether Γ tends to a in a definite direction, we
have to analyze the function τ 7→ θ(τ) corresponding to the orbit Γ2. A priori we have
three possibilities:

(i) |θ(τ)| → ∞ for τ → ∞.

(ii) There exists a C > 0 such that |θ| ≤ C on [t0, ∞) with t0 ∈ R sufficiently large.

(iii) θ is not bounded by a constant and does not tend to ∞ or −∞ for τ → ∞.

By using H ̸≡ 0 it can be shown that possibility (iii) cannot occur. The possibility (i) fits
to the case that Γ is a spiral. And (ii) describes a bounded orbit away from the boundary
of Ω2. Hence w+(Γ2) ̸= ∅. But we also have ρ(τ) → 0 for τ → ∞. Thus, by [6, §4,
Theorem 9], we get w+(Γ2) ⊂ {0}×R. This cannot be a limit cycle. So a Corollary to the
Poincare-Bendixson theorem, cf. [7, Satz 9.2.4], implies that w+(Γ2) consists of exactly
one equilibrium a1 := (0, θ0) ∈ Ω2. In summary, we get arg(Φ(t, z)) → θ0 for t → ∞, i.e.
Γ tends to a in the definite direction θ0. This proves a). Moreover, a1 is a zero of the
right-hand side of (4.5). This implies

H(cos(θ0), sin(θ0)) = F̃2(θ0) cos(θ0) − F̃1(θ0) sin(θ0) = 0.

This shows b). The assertion c) is proved in [6, §20.2, Remark 2]. Here one makes use of
arcs without contact, cf. [6, §3, Lemma 14].

Remark 4.21
The singular case of Proposition 4.20, i.e. H ≡ 0, is described in [6, §20.3]. However, we
do not need this result in our further considerations.
In the proof of [2, Theorem 2.5] the author uses the equation H(cos(θ0), sin(θ0)) = 0, cf.
Proposition 4.20, not only as a necessary but also as a sufficient condition for definite
directions. But why does this hold? The author does not provide an explanation. Hence
we need the following proposition to ensure the correctness of [2, Theorem 2.5]. The proof
of this proposition is my own work and uses the geometrical properties of the phase space
belonging to system (4.5).
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Definition and Proposition 4.22 (Sufficient condition for definite directions)
Let Ω ⊂ C be a simply connected open domain, a := 0 ∈ Ω, F = F1 + iF2 ∈ O(Ω), F ̸≡ 0
and F (a) = 0. Assume that the order of a is m ∈ N \ {1}. Let F

[k]
1 and F

[k]
2 be the sum

of all terms of the Taylor series at a of F1 and F2 with degree k ∈ N and set

H(x1, x2) := x1F
[m]
2 (x1, x2) − x2F

[m]
1 (x1, x2)

with (x1, x2) ∈ R2. Then for all θ0 ∈ [0, 2π) satisfying H(cos(θ0), sin(θ0)) = 0 there exist
r > 0 and δ > 0 such that for every x0 ∈ {x ∈ R2 : |x − a| < r, | arg(x − a) − θ0| < δ} ⊂ Ω
the orbit though x0 tends to a in the definite direction θ0. These orbits tend to a for
t → ∞ (t → −∞) if and only if cos(arg(F (m)(a)) + θ0(m − 1)) < (>) 0. Define the set

E(F, m) :=
{

ℓπ − arg(F (m)(a))
m − 1 mod 2π : ℓ ∈ Z

}
⊂ [0, 2π).

Then additionally there are exactly 2m − 2 such definite directions for a and every orbit
tending to a does so in a definite direction θ0 ∈ E(F, m).

Proof
The proof is divided into several steps. The first step is to constitute the real Taylor
expansions of F1 and F2 in an appropriate manner. Set ck := 1

k!F
(k)(0) for all k ∈ N. Note

that under the above assumptions we always have cm ̸= 0. This is used throughout this
proof. The complex Taylor expansion of F in a is

F (z) =
∞∑

k=1
ckzk ∀ z ∈ Br0(0) ⊂ Ω

with a sufficiently small radius of convergence r0 > 0. In particular, reduce r0 such that
Br0(0) ∩ F −1({0}) = {0}. The functions z 7→ ℜ(z) and z 7→ ℑ(z) are continuous on C.
Hence it follows

F1(z) = ℜ(F (z)) = ℜ
( ∞∑

k=1
ckzk

)
=

∞∑
k=1

ℜ
(
ckzk

)
∀ z ∈ Br0(0)

and analogous with F2 = ℑ(F ).
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Fix k ∈ N. By the Binomial theorem we get for the real part of the kth term F1
[k] : R2 → R

F1
[k](x, y) := ℜ

(
ck(x + iy)k

)
= ℜ

ck

k∑
j=0

(
k

j

)
xk−j(iy)j

 =
k∑

j=0

(
k

j

)
ℜ
(
ckij

)
xk−jyj

for all (x, y) ∈ R2. Thus a term of the (real) Taylor expansion of F1 has degree k if and
only if it is a term of F1

[k], i.e. F1
[k] is exactly the sum of all addends with degree k

in the (real) Taylor expansion. Note that the Taylor expansion is unique. So we have
F

[k]
1 ≡ F1

[k]. Of course, the same holds for F
[k]
2 (x, y) = F2

[k](x, y) := ℑ
(
ck(x + iy)k

)
with

(x, y) ∈ R2. As in the proof of Proposition 4.20, set F̃
[k]
j (θ) := F

[k]
j (cos(θ), sin(θ)) with

j ∈ {1, 2}, k ∈ N and θ ∈ R.
The second step is to prove the following: For all θ ∈ R it is impossible that both,
F̃

[m]
1 (θ) = 0 and F̃

[m]
2 (θ) = 0. Suppose that such a θ exists. Then we have

0 = F̃
[m]
1 (θ) + iF̃ [m]

2 (θ) = ℜ
(
cm

(
eiθ
)m)

+ iℑ
(
cm

(
eiθ
)m)

= cmeiθm.

Hence cm = 0, which is impossible.
Define now H̃(θ) := H(cos(θ), sin(θ), θ ∈ R. The next claim is the following: There is no
θ ∈ [0, 2π) satisfying the system of equations

0 = H̃(θ)

0 = F̃
[m]
1 (θ) cos(θ) + F̃

[m]
2 (θ) sin(θ)

.

Suppose again that such a θ exists. Then θ satisfies
F̃

[m]
1 (θ) sin(θ) = F̃

[m]
2 (θ) cos(θ)

F̃
[m]
1 (θ) cos(θ) = −F̃

[m]
2 (θ) sin(θ)

.

We can exclude the following impossible cases: If F̃
[m]
j1 (θ) = 0, then F̃

[m]
j2 (θ) = 0 or

cos(θ) = sin(θ) = 0 for j1, j2 ∈ {1, 2}, j1 ̸= j2. If cos(θ) = 0, then sin(θ) ̸= 0 and so
F̃

[m]
1 (θ) = F̃

[m]
2 (θ) = 0.

Hence we must have

− F̃
[m]
1 (θ)

F̃
[m]
2 (θ)

= sin(θ)
cos(θ) = F̃

[m]
2 (θ)

F̃
[m]
1 (θ)
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and thus
(
F̃

[m]
1 (θ)

)2
= −

(
F̃

[m]
2 (θ)

)2
. We conclude F̃

[m]
1 (θ) = F̃

[m]
2 (θ) = 0, which is

impossible.
In the next step we prove H ̸≡ 0. Suppose this is the case. Then we have

xℑ (cm(x + iy)m) = yℜ (cm(x + iy)m)

for all (x, y) ∈ R2. We would like to derive a contradiction by choosing x, y ∈ R suitably.
First, choose x = 1 and y = 0. This leads to ℑ(cm) = 0, i.e. cm ∈ R. Second, for arbitrary
θ ∈ R and (x, y) = (cos(θ), sin(θ)) we can conclude

cos(θ)ℑ
(
cmeiθm

)
− sin(θ)ℜ

(
cmeiθm

)
= 0.

Hence cm = 0 (this is impossible) or cm cos(θ) sin(mθ) − cm sin(θ) cos(mθ) = 0. By using
a trigonometric addition formula, we get 0 = sin(mθ − θ) = sin(θ(m − 1)). So choosing
θ := π

2(m−1) leads to the contradiction 0 = 1. Note that m ≥ 2, i.e. m − 1 ̸= 0.
In the next step we calculate the zeros of H̃. Since F̃

[m]
1 and F̃

[m]
2 cannot be both zero (see

above), we can characterize these zeros appropriately. Set c := |cm| and β := arg(cm) =
arg(F (m)(0)). For θ ∈ [0, 2π) we have

F̃
[m]
2 (θ)

F̃
[m]
1 (θ)

=
ℑ
(
ceiβeiθm

)
ℜ
(
ceiβeiθm

) =
ℑ
(
ei(β+θm)

)
ℜ
(
ei(β+θm)

) = sin(β + θm)
cos(β + θm) = tan(β + θm).

Hence θ satisfies H̃(θ) = 0 if and only if tan(θ) = tan(β + θm). And this is the case if and
only if there exists a ℓ ∈ Z such that β + θm = θ + ℓπ, which is equivalent to θ = ℓπ−β

m−1 .
Note that x 7→ tan(x) is π-periodic. So we conclude H̃−1({0}) = E(F, m). Moreover,

(ℓ + 2m − 2)π − β

m − 1 = ℓπ − β

m − 1 + (2m − 2)π
m − 1 = ℓπ − β

m − 1 + 2π

for all ℓ ∈ Z. Hence E(F, m) has exactly 2m − 2 elements. Now we have all auxiliary
results to proof our proposition.
Let θ0 ∈ [0, 2π) satisfy H̃(θ) = 0. We have to find r > 0 and δ > 0 such that all orbits
Γ of (4.1) trough a point of the set {x ∈ R2 : |x − a| < r, | arg(x − a) − θ| < δ} tend to
a in the definite direction θ0. Consider the C∞-system (4.5) on Ω2 := R × (−ρ⋆, ρ⋆) with
ρ⋆ > 0 sufficiently small. Set Ω1 := R× (0, ρ⋆). The point a1 := (0, θ0) is an equilibrium of

35



4 Equilibria and their local topological characteristics

(4.5). Denote by G : Ω2 → R2 the right-hand side of (4.5). We calculate the linearization

JG(a1) =
F̃

[m]
1 (θ0) cos(θ0) + F̃

[m]
2 (θ0) sin(θ0) 0

Ψ2(0, θ0) H̃ ′(θ0)


and the derivatives

d
dθ

F̃
[m]
1 (θ) = d

dθ
ℜ
(
cmeiθm

)
= mℜ

(
icmeiθm

)
= −mℑ

(
cmeiθm

)
= −mF̃

[m]
2 (θ)

and

d
dθ

F̃
[m]
2 (θ) = d

dθ
ℑ
(
cmeiθm

)
= mℑ

(
icmeiθm

)
= mℜ

(
cmeiθm

)
= mF̃

[m]
1 (θ).

Here we used the formulas ℜ(iz) = −ℑ(z) and ℑ(iz) = ℜ(z), which are valid on C. Hence

H̃ ′(θ0) = d
dθ

[
F̃

[m]
2 (θ) cos(θ) − F̃

[m]
1 (θ) sin(θ)

]
θ=θ0

=
[
mF̃

[m]
1 (θ) cos(θ) − F̃

[m]
2 (θ) sin(θ) + mF̃

[m]
2 (θ) sin(θ) − F̃

[m]
1 (θ) cos(θ)

]
θ=θ0

= F̃
[m]
1 (θ0) cos(θ0)(m − 1) + F̃

[m]
2 (θ0) sin(θ0)(m − 1)

= (m − 1)
(
F̃

[m]
1 (θ0) cos(θ0) + F̃

[m]
2 (θ0) sin(θ0)

)
.

We can identify the two real eigenvalues λ1 := F̃
[m]
1 (θ0) cos(θ0) + F̃

[m]
2 (θ0) sin(θ0) and

λ2 := (m − 1)λ1. λ1 can be calculated explicitly by

λ1 = cos(β + θ0m) cos(θ0) + sin(β + θ0m) sin(θ0) = cos(β + θ0m − θ0).

Here we used again a trigonometric addition formula. Since λ1 ̸= 0 (see above) and
m − 1 > 0, the linearization JG(a1) has two real non-zero eigenvalues with the same sign.
Thus a1 is a stable or unstable node of (4.5), cf. [9, Chapter 2.10, Theorem 4]. More
precisely, a1 is stable if and only if λ1 < 0 and unstable if and only if λ1 > 0, cf. [9,
Chapter 1.5]. Assume w.l.o.g λ1 < 0. The other case is analogous. Additionally, it can be
calculated that Ψ2(0, θ0) = F̃

[m+1]
2 (θ0).

By using Definition 4.1, we find r ∈ (0, min{r0, ρ⋆}) and δ > 0 such that for all ξ ∈
(−r, r) × (θ0 − δ, θ0 + δ) ∩ Ω1 we have |Φ(τ, ξ)| → θ0 for τ → ∞. Fix such a ξ. We claim,
that the orbit Γ+(ξ) stays in Ω1. Suppose that this is not the case. Then we find a τ0 ∈ R
such that Φ(τ0, ξ) ∈ {0} × R, i.e. ρ(τ0) = 0 on Γ+(ξ). But due to (4.5) the orbit through
a point in {0} × R stays on {0} × R. But ξ ̸∈ {0} × R. Thus Γ+(ξ) ⊂ Ω1.
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Additionally, on Ω1 we can relate the orbits of (4.1) with those of (4.5), cf. the proof
of Proposition 4.20. So for x0 ∈ {x ∈ R2 : |x − a| < r, | arg(x − a) − θ0| < δ} and the
orbit Γ through x0 we find ξ ∈ (−r, r) × (θ0 − δ, θ0 + δ) ∩ Ω1 and the orbit Γ1 through ξ

of (4.5) which corresponds to Γ. So we have Γ+(ξ) ⊂ Ω1 and Γ1 tends to a1. Hence the
corresponding orbit Γ tends to a in the definite direction θ0. This relation also implies
that Γ tends to a for t → ∞ if and only if λ1 < 0 and for t → −∞ if and only if λ1 > 0.
Finally it remains to show that we have exactly 2m − 2 such definite directions. We have
already shown that every θ0 ∈ E(F, m) is a definite direction in the sense described above,
i.e. there are at least 2m − 2 > 0 definite directions. Now let Γ be an arbitrary orbit
tending to a. Since we have H ̸≡ 0 (see above), we can apply Proposition 4.20. So if Γ
was a spiral, a would be a focus. But we have already found orbits tending to a in certain
definite directions. This is a contradiction to Definition 4.1. Hence, by Proposition 4.20,
Γ tends to a in a definite direction θ̃0 and satisfies H̃(θ̃0) = 0. Thus θ̃0 ∈ E(F, m) and
there are no more definite direction than these in E(F, m). We summarize that every orbit
tending to a does so in a definite direction θ0 ∈ E(F, m).

Lemma 4.23
Let Ω ⊂ C be a simply connected open domain, F = F1 + iF2 ∈ O(Ω), F ̸≡ 0 and a ∈ Ω
an equilibrium of (4.1) with order m ∈ N \ {1}. Let r > 0 be sufficiently small and S an
elliptic sector of (4.1) in a with respect to Γ := ∂Br(0) with two characteristic orbits Γ1, Γ2

and two intersection points p1, p2 ∈ Γ. Then there are two directions θ1, θ2 ∈ E(F, m) such
that Γi tends to a in the definite direction θi for i ∈ {1, 2} and θ1 ̸= θ2.

Proof
Assume w.l.o.g. a = 0. By applying Definition 4.13 we have

∂S = Int(Γ) ∩ ({a} ∪ Γ1 ∪ Γ2 ∪ Γ(p1, p2)) .

This implies that Γ1 and Γ2 connect a with Γ, i.e., by Proposition 4.22, these characteristic
orbits tend to a in some definite directions θ1, θ2 ∈ E(F, m). For i ∈ {1, 2} set λi :=
cos(arg(F (m)(a)) + θi(m − 1)). Suppose θ1 = θ2. Then λ1 = λ2. By Definition 4.14, there
exists a point E ∈ Γ(p1, p2) such that w+(Γ(E)) = w−(Γ(E)) = {a}. But then Proposition
4.22 implies λ1 < 0 as well as λ1 > 0, which is impossible. Thus we have θ1 ̸= θ2.

37



4 Equilibria and their local topological characteristics

Theorem 4.24 (Existence of elliptic decomposition)
Let Ω ⊂ C be a simply connected open domain, F = F1 + iF2 ∈ O(Ω), F ̸≡ 0 and a ∈ Ω
an equilibrium of (4.1) with order m ∈ N \ {1}. Then a is not a node. Furthermore, the
system (4.1) has a minimal finite sectorial decomposition of order d := 2m − 2 with only
elliptic sectors and there are neither hyperbolic nor parabolic sectors in a. Additionally,
the characteristic orbits of each sector in this minimal FSD tend to a in adjacent definite
directions given by E(F, m), i.e. the sectors have pairwise empty intersection up to the
characteristic orbits.

Proof
Assume w.l.o.g. a = 0. Since F ̸≡ 0, we can find an r0 > 0 with Br0(0) ∩ F −1({0}) = {a}.
By applying Proposition 4.22 the equilibrium has exactly d definite directions θ1, . . . , θd,
given by E(F, m), and every orbit tending to a does so in a definite direction θ ∈ E(F, m).
Assume that the angles in E(F, m) are ordered cyclic and counterclockwise with respect
to a. Additionally, for every i ∈ {1, . . . , d} we have ri > 0 and δi > 0 such that for every
x0 ∈ {x ∈ R2 : |x − a| < ri, | arg(x − a) − θi| < δi} ⊂ Ω the orbit though x0 tends to a

in the definite direction θi. It is geometrically clear that a cannot be a center or focus, cf.
Definition 4.1. Fix an i ∈ {1, . . . , d}. Set β := arg(F (m)(0)) and λi := cos(β + θim − θi).
Proposition 4.22 characterizes whether the orbits near the ray with angle θi ∈ E(F, m)
tend to a for positive or negative time. The equilibrium a is reached for t → ∞ if and
only if λi < 0 and for t → −∞ if and only if λi > 0. We calculate

λi = cos(β + θi(m − 1)) = cos
(

β + (m − 1)iπ − β

m − 1

)
= cos(iπ) =

1 if i even

−1 if i odd

and conclude that there is a pair of orbits, one reaching a with positive time and one
with negative time. Note that d ≥ 2, i.e. there are always at least two definite directions.
Hence the equilibrium cannot be a node. In addition, the directions are alternating, i.e.
every ray has no adjacent ray with the same direction.
Set r := min{ri : 0 ≤ i ≤ d} > 0 and Γ := ∂Br(0). Let S be a hyperbolic sector of
(4.1) in a with respect to Γ and with two characteristic orbits Γ1, Γ2 and two intersection
points p1, p2 ∈ Γ. By Definition 4.13, we know that Γ1 and Γ2 connect a with Γ, i.e., by
Proposition 4.22, these characteristic orbits tend to a in some definite directions given by
E(F, m). In addition, there exists a point x0 in S such that the orbit though x0 tends to
a. Note that δ > 0 in Proposition 4.22. But this contradicts Definition 4.14, i.e. S cannot
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be hyperbolic. It follows that there are neither hyperbolic nor parabolic sectors in every
minimal FSD, cf. Remark 4.17.
For the next step of the proof let S be an elliptic sector of (4.1) in a with two characteristic
orbits Γ1, Γ2 tending to a in the definite directions η1, η2 ∈ E(F, m), η1 ̸= η2, and two
intersection points p1, p2 ∈ Γ, cf. Lemma 4.23. Assume w.l.o.g. η1 < η2. We claim now
the following: All other directions θ ∈ E(F, m)\{η1, η2} satisfy either θ < η1, or η2 < θ, i.e.
there are no definite directions between η1 and η2 and these two directions are adjacent.
Suppose, this is not the case and such a θ exists. Then there is an i ∈ {1, . . . , d} such that
θ = θi with the corresponding „attracting region“ defined by ri > 0 and δi > 0. We have
η1 < θi < η2. Assume w.l.o.g. that S has clockwise direction. The other case can be treated
equally. Then there exits an E ∈ Γ(p1, p2) such that for all y1 ∈ Λ1 := Γ(p1, E) \ {E} and
y2 ∈ Λ2 := Γ(E, p2) \ {E} it holds:

(i) ⟨F (y1), ν(y1)⟩ < 0, i.e. the vector field points inwards.

(ii) ⟨F (y2), ν(y2)⟩ > 0, i.e. the vector field points outwards.

Assume w.l.o.g that E ∈ Γ(p1, reiθi) and set Θ := θi + δi

2 . The case E ∈ Γ(reiθi , p2) is
analogous, here we would have Θ := θi − δi

2 . The vector field points outwards at reiΘ ∈ Λ2,
i.e. λi = 1 and w−(reiΘ) = a. The orbit Γ2 tends to a for negative time as well. Note that
p2 ∈ Λ2. Now there are two possibilities: Either η2 = θi+1 or there exists at least one more
definite direction between θi and η2. In the first case we conclude directly λi = λi+1 = 1,
which is impossible. And in the second case there exists reiθi+1 ∈ Λ2 \ {p2}. At this
point the vector field points outwards as well and we have again λi = λi+1 = 1. This is a
contradiction. Hence every elliptic sector consists of exactly two definite directions.
Denote by E(F, a) and H(F, a) the number of elliptic and hyperbolic sectors in a with
respect to Γ. In the next step we want to apply the Poincare-Bendixson Index Theorem,
cf. [6, Appendix, p. 511] and [16, Theorem 2.2]4,

ind(F, a) = 1 + E(F, a) − H(F, a)
2 .

By Proposition 4.19, we have ind(F, a) = ind(F, Γ) = m. Thus we get

E(F, a) = H(F, a) + 2m − 2 = H(F, a) + d.

4The original proof by Bendixson can be found in [17].
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Since we do not have any hyperbolic sectors, we conclude E(F, a) = d. Overall, we can
conclude that there must be d elliptic sectors, each between exactly two definite directions.
But we also have only d definite directions. Hence the only areas in Int(Γ) where other
topological structures than elliptic sectors can occur are the „attracting regions“ near the
definite directions. If that were the case, we would have two elliptic sectors, each having an
characteristic orbit with a common definite direction θi, but the two characteristic orbits
near this definite direction are not equal. This means we would have a different topological
structure between two elliptic sectors in a subset of such an „attracting region“. But in this
region we have the structure of a parabolic sector (attracting for λi = −1 and repelling
for λi = 1).
As described in Remark 4.17, we can add this parabolic sector to one of the adjacent
elliptic ones. The (in general not unique) common characteristic orbit of these two elliptic
sectors is now one orbit lying in the parabolic sector. Finally, there is no more space left
in Int(Γ). Hence the FSD with the d elliptic sectors must be already minimal and has in
fact order d.

Corollary 4.25
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and F ̸≡ 0. Then all nodes,
centers and foci have index 1.

Proof
Let a ∈ Ω be a node, center or focus of (4.1). Then a is an equilibrium with order m ∈ N.
If m > 1, we can apply Theorem 4.24 and Definition 4.15. Thus a is not a node, focus or
center, a contradiction. Hence m = 1. The assertion follows with Proposition 4.19.

Remark 4.26

a) In the proof of Theorem 4.24 we used the Poincare-Bendixson Index Formula to proof
the existence of elliptic sectors. I conjecture that this is also possible „by hand“: A
posteriori the „attracting regions“ cover the punctured circle Int(Γ) \ {a}, i.e. the
radii of these regions are big enough. Maybe this can be proven without using the
Index Formula. It is probably possible to derive a contradiction by supposing the
following: There exists an i ∈ {i, . . . , d} such that θi+δi < θi+1−δi+1. Geometrically,
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this would generate a set between the „attracting regions“ similar to a hyperbolic
sector, which is impossible.
As already mentioned in Remark 4.16, this could be possible with the ideas in [6,
Chapter VIII]. In particular, at the beginning of [6, §19] the author summarizes the
possible local structures of an isolated equilibrium.

b) Some of the results in [6, Chapter VIII] are used in the proof of the Poincare-
Bendixson Index Formula, cf. [6, Appendix, pp. 511]. Moreover, the properties in
the definitions of sectors at the beginning of this section (cf. [1, Chapter 1.5]) are
basically the results of [6, Chapter VIII]. Hence these definitions are formulated in
a way such that the types of sectors in Definition 4.14 coincide with those in [6,
Chapter VIII] and the Poincare-Bendixson Index Formula is indeed applicable for
the sectors defined in Definition 4.14.

c) In the proof of Theorem 4.24 we used Remark 4.17 to conclude the non-existence
of parabolic sectors in every minimal FSD in a. In addition we have seen that the
characteristic orbits are not uniquely determined. Later we will see (under certain
conditions) that there exists indeed exactly one characteristic „delimiting“ orbit with
maximum interval of existence different from R, called separatrix.

Example 4.27
In this example we want to visualize our results in this section. Define the polynomial
F : C → C by F (x) := (2 + 3i − x)4, F ∈ O(C). This is a polynomial of degree 4 having
a zero in a := 2 + 3i of order m := 4. By Theorem 4.24 there exists a minimal FSD of
order d := 2m − 2 = 8 − 2 = 6. It is easy to calculate the definite directions

E(F, 4) =
{

ℓπ

3 : 1 ≤ ℓ ≤ 6
}

.

Note that F (m)(2 + i) > 0 in this case. Between two such adjacent directions there exists
exactly one elliptic sector. Set θℓ := ℓπ

3 . Moreover, we can calculate the directions of the
rays and thus of all orbits. We have

cos(arg(F (m)(a)) + θℓ(m − 1)) = cos(πℓ) =

1 if i even

−1 if i odd
.

41



4 Equilibria and their local topological characteristics

Thus the elliptic sector lying above the ray with angle zero is an sector with clockwise
direction. After each ray the direction of the sector changes.

-1 0 1 2 3 4 5

0

1

2

3

4

5

6

Figure 4.3: Phase portrait of system (4.1) with F (x) = (2 + 3i − x)4

In the phase portrait of (4.1) (cf. Figure 4.3) we see the chracteristic orbits (blue) and
the equilibrium a (red). In this example the characteristic orbits are exactly the rays.
We verify that there are indeed 6 elliptic sectors. The radius of the FSD can be chosen
arbitrarily large in this case.

Example 4.28
In this example we want to look at a more complicated example. Define F : C → C by
F (x) := x5ex, F ∈ O(C). The unique zero a = 0 has order m := 5. By Theorem 4.24
there exists a minimal FSD of order d := 2m − 2 = 10 − 2 = 8. We calculate the Taylor
series of F by

F (x) = x5
∞∑

k=0

xk

k! =
∞∑

k=0

xk+5

k! =
∞∑

k=5

1
(k − 5)!x

k
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and conclude the definite directions

E(F, 5) =
{

ℓπ

4 : 1 ≤ ℓ ≤ 8
}

.
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Figure 4.4: Phase portrait of system (4.1) with F (x) = x5ex

Between two such adjacent directions there exists now exactly one elliptic sector. In this
example only the characteristic orbits lying on the ℜ-axis are rays. As we can see in the
phase portrait of (4.1) (cf. Figure 4.4), the exponential function „tugs“ all orbits (up to
these on the ℜ-axis) to the right. We verify that there are indeed 8 elliptic sectors.
If the radius of the FSD for this example is not sufficiently small, we have a different
topological structure near the ray θ = π. It can be shown that there exists a parabolic
sector near this ray and all orbits in this sector tend to the ℜ-axis. In addition, here
we can use the argument in Remark 4.17 only locally. Globally it is possible that there
is a „parabolic region“ between two elliptic sectors. This geometrical structure will be
discussed in section 5.2.
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4.4 The non-existence of limit cycles

In this section the main aim is to prove our second fundamental result: Holomorphic flows
do not have limit cycles. The ideas are based on [2, Chapter 3].

Definition 4.29
Let Ω ⊂ C be an open domain and F ∈ O(Ω). A periodic orbit Γ ⊂ Ω of (4.1) is called an
limit cycle for (4.1) if there exists an r > 0 such that for all x0 ∈ {x ∈ Ω : dist(Γ, x) < r}\Γ
the orbit Γ(x0) is not periodic.

Definition 4.30
Let Ω ⊂ C, O ⊂ Ω be open domains and F ∈ O(Ω). Then F is complete on O if for every
x0 ∈ Ω we have I(x0) = R, i.e. the solution through x0 exists globally.

Proposition 4.31
Let Ω ⊂ C be an open domain, F = F1 + iF2 ∈ O(Ω) a complete vector field on O ⊂ Ω
and τ ∈ R. Define G : O → O by G(z) := Φ(τ, z). Then G ∈ O(O).

Proof
If τ = 0, G is the identity and thus holomorphic. Assume w.l.o.g. τ > 0. The case τ < 0
is analogous. Set A := ℜ(Φ) and B := ℑ(Φ). Then A and B are real analytic in O with
fixed time, cf. [9, Chapter 2.3, Remark 1]. For all z = (x, y) ∈ O and t > 0 we have

Φ(t, x, y) = (x, y)T +
t∫

0

F (Φ(s, x, y)) ds.

We calculate the derivative (the partial derivatives of A, B and Φ are with respect to z)

JΦ(t,·)(z) =
∂1A(t, z) ∂2A(t, z)

∂1B(t, z) ∂2B(t, z)



=


1 +

t∫
0

⟨∇F1(Φ(s, z)), ∂1Φ(s, z)⟩ ds

t∫
0

⟨∇F1(Φ(s, z)), ∂2Φ(s, z)⟩ ds

t∫
0

⟨∇F2(Φ(s, z)), ∂1Φ(s, z)⟩ ds 1 +
t∫

0

⟨∇F2(Φ(s, z)), ∂2Φ(s, z)⟩ ds
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and conclude by applying the notations z = (s, z), zt = (t, z)

(∂1A − ∂2B)(zt) =
t∫

0

∂1F1(Φ(z)) (∂1A(z) − ∂2B(z)) + ∂2F1(Φ(z)) (∂2A(z) − ∂1B(z)) ds.

Furthermore, by the Cauchy-Riemann equations

(∂1B + ∂2A)(zt) =
t∫

0

∂1F1(Φ(z)) (∂2A(z) − ∂1B(z)) − ∂2F1(Φ(z)) (∂1A(z) − ∂2B(z)) ds.

Now fix a z0 ∈ O and define C ∈ C1((0, ∞),R2) by

C(t) :=
∂1A(t, z0) − ∂2B(t, z0)

∂2A(t, z0) + ∂1B(t, z0)

 .

We want to prove C ≡ 0. Set Q := JF (z0) ∈ R2×2. Because of the above calculations, C

satisfies the equation

C(t) =
t∫

0

QC(s) ds ∀t ∈ (0, ∞).

Hence C is a solution to the linear ODE z̃′ = Qz̃, z̃ ∈ R2. Furthermore, since Φ defines
the flow of (4.1), we have Φ(0, ·) = id on O and thus

C(0) =
∂1A(0, z0) − ∂2B(0, z0)

∂2A(t, z0) + ∂1B(t, z0)

 =
1 − 1

1 − 1

 = 0.

Together with the initial condition z̃(0) = 0, by the Picard-Lindelöf theorem, there exists
a unique solution of the linear ODE through z0. Hence C is this unique solution. But
obviously, the constant zero-map is also a solution to this linear ODE. So we must have
C ≡ 0. In particular, this implies for t = τ∂1A(τ, z0)

∂2A(τ, z0)

 =
 ∂2B(τ, z0)

−∂1B(τ, z0)


Thus G = Φ(τ, ·) = A(τ, ·) + iB(τ, ·) satisfies the Cauchy-Riemann equations in z0. Since
z0 ∈ O is arbitrary, we conclude G ∈ O(O).
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Lemma 4.32
Let Ω ⊂ C be a simply connected open domain and F ∈ O(Ω), F ̸≡ 0. Let Γ ⊂ Ω be a
periodic orbit of (4.1). Then there is exactly one equilibrium a in Int(Γ) and a is either a
node, a focus, or a center. In addition, every periodic orbit Γ̃ ⊂ Int(Γ) satisfies a ∈ Int(Γ̃).

Proof
Assume that Γ is parameterized as solution. Theorem 4.10 implies that there is at least
one equilibrium a in Int(Γ) and

∑
b∈Int(Γ)
F (b)=0

ind(F, b) = 1.

By Proposition 4.19 the index of every equilibrium in Int(Γ) is at least 1. Hence a is the
only equilibrium in Int(Γ) and ind(F, a) = 1, i.e. the order of a is 1. Theorem 4.3 implies
that a must be either a node, a focus, or a center.
Suppose there exists a periodic orbit Γ̃ ⊂ Int(Γ) with a ̸∈ Int(Γ̃). Then again by Propo-
sition 4.19, there exists at least one equilibrium ã ∈ Int(Γ̃) ⊂ Int(Γ). But ã ̸= a and thus
there are at least two equilibria in Int(Γ), which is a contradiction to the above argument.

Lemma 4.33
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω), F ̸≡ 0 and a ∈ Ω be an
equilibrium of (4.1). Assume there are two points x1, x2 ∈ Ω \ {a} such that w+(Γ(x1)) =
w−(Γ(x2)) = {a}. Then ind(F, a) ≥ 2.

Proof
Suppose ind(F, a) < 2, i.e. ind(F, a) = 1. Then by Proposition 4.19 and Theorem 4.3,
a is a node, focus or center. A center is geometrically impossible. Hence, a must be
asymptotically stable in exactly one time direction, say w.l.o.g. t → ∞. Note that the
real parts of the non-zero eigenvalues of JF (a) have the same sign. But we also have
w−(Γ(x2)) = {a}. With this property there exists a sequence (yk)k∈N ⊂ Γ−(x2) with
yk → a for k → ∞ such that for all k ∈ N sufficiently large there is a ε > 0 such that
|a − yk| < |a − Φ(ε, yk)|. This is a contradiction to the stability of a. Hence a cannot be
a focus or node and we must have ind(F, a) ≥ 2.
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Theorem 4.34 (Non-existence of limit cycles)
Let Ω ⊂ C be a simply connected open domain and F ∈ O(Ω). Then the system (4.1)
does not have a limit cycle in Ω.

Proof
This idea of the proof is based on [2]. The omitted steps are performed by me. In addition,
the structure of the proof is modified.
If F ≡ 0, there is nothing to show, since every orbit consists only of one point. Hence
assume w.l.o.g F ̸≡ 0 and suppose there is at least one limit cycle. By the theorem of
Dulac, cf. [9, Chapter 3.3], there exist at most a finite number of limit cycles.5 Therefore
there exists a limit cycle Γ with no other limit cycles in Int(Γ). By Lemma 4.32, there
is exactly one equilibrium a in Int(Γ) and this equilibrium is either a node, a focus, or a
center. We have ind(F, a) = 1 and F ′(a) ̸= 0.
Since the set Int(Γ) is clearly invariant and Int(Γ) ⊂ Ω, every orbit in Int(Γ) exists
globally. Let τ ∈ R be arbitrary and define G : Int(Γ) → Int(Γ) by G(z) := Φ(τ, z).
Then, by Proposition 4.31, G ∈ O(Int(Γ)). In addition, G is continuous on Int(Γ). Set
D := B1(0) ⊂ C. By the Riemann mapping theorem, there exists a conformal map
φ : Int(Γ) → D such that φ(a) = 0. Define h : D → D by h := φ ◦ G ◦ φ−1. Since the
orbit through a is constant for all times, we conclude

h(0) = φ(G(φ−1(0))) = φ(G(a)) = φ(a) = 0.

Furthermore, we have h ∈ O(D). Hence we can apply the Schwarz lemma to conclude
|h(z)| ≤ |z| for all z ∈ D. Let z1 ∈ (0, 1) ⊂ D \ {0} be arbitrary and set z2 := φ−1(z1) ∈
Int(Γ) \ {a}. Define αn := hn(z1) and βn := Gn(z2), n ∈ N.
By a short inductive argument, it can be shown that hn = φ ◦ Gn ◦ φ−1 for all n ∈ N
and (αn)n∈N ⊂ Bz1(0) ⊂ D, which is compact. By the Bolzano-Weierstrass theorem, there
exists a subsequence (αnj

)j∈N and z3 ∈ Bz1(0) ⊂ D such that αnj
→ z3 for j → ∞.

Note that convergent sequences in a compact set have their limit in this compact set. By
continuity of φ and φ−1, we get

lim
j→∞

βnj
= φ−1

(
lim

j→∞

(
φ ◦ Gnj ◦ φ−1

)
(φ(z2))

)
= φ−1

(
lim

j→∞
hnj (z1)︸ ︷︷ ︸

=αnj

)
= φ−1(z3).

5The original proof by Dulac can be found in [18].
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In addition, G defines the flow of a dynamical system. Hence we have

φ−1(z3) = lim
j→∞

βj = lim
j→∞

Gnj (z2) = lim
j→∞

Φ(τnj, z2).

Note that z3 depends on τ and z1 in this argument. We conclude now the follow-
ing: For all z1 ∈ (0, 1) and τ > 0 (τ < 0) there exists a z3 ∈ Bz1(0) such that
φ−1(z3) ∈ w+(−)(Γ(φ−1(z1))). In the next step, using this statement, we want to de-
rive a contradiction.
First, suppose a is a center. Since Γ is a limit cycle, there exists an r > 0 such that
for all x0 ∈ {x ∈ Ω : dist(Γ, x) < r} the orbit Γ(x0) is not periodic. Since φ−1 is
uniformly continuous in particular, there exists a continuation of φ−1 on D such that
φ−1(∂D) = Γ. This ensures the existence of a z1 ∈ (0, 1) near 1 ∈ ∂D such that
z2 := φ−1(z1) ∈ {x ∈ Ω : dist(Γ, x) < r} and Γ(z2) ⊂ Int(Γ) is not a periodic orbit.
We have I(z2) = R. Furthermore, there exists at least one periodic orbit around a and
thus Γ(z2) cannot tend to a (orbits cannot cross each other). In addition, there are no
other equilibria or limit cycles in Int(Γ). Hence, by the Poincare-Bendixson theorem, we
must have w+(Γ(z2)) = w−(Γ(z2)) = Γ, i.e. the orbit converges to the limit cycle for both,
t → ∞ and t → −∞. But by the above statement with τ := 1 there exists a z3 ∈ Bz1(0)
such that φ−1(z3) ∈ w+(Γ(z2)) = Γ, which implies z3 ∈ Bz1(0)∩∂D = ∅. Note that z1 < 1.
This is a contradiction. Hence a cannot be a center.
Second, suppose a is a focus or node. Assume w.l.o.g that a is asymptotically stable and
set τ := −1. The unstable case can be treated similarly, here we can set τ = 1. By Defi-
nition 4.1, there exits a δ > 0 such that for all x ∈ Bδ(a) we have w+(x) = {a}. Assume
δ so small that Bδ(a) ⊂ Int(Γ). Then, by the topological characterization of continuity of
φ−1, the set B := φ(Bδ(a)) is an open set containing 0 and satisfying B ⊂ D. Hence there
exists a z1 ∈ (0, 1) ∩ B ̸= ∅ satisfying Bz1(0) ⊂ B and z2 := φ−1(z1) ∈ Bδ(a) ⊂ Int(Γ). We
have I(z2) = R and w+(z2) = {a}.
By the above statement, with this τ and z1, there exists a z3 ∈ Bz1(0) such that
φ−1(z3) ∈ w−(Γ(z2)). Hence z3 ∈ B and φ−1(z3) ∈ φ−1(B) = Bδ(a). This implies
dist(Γ, φ−1(z3)) > 0, i.e. φ−1(z3) ̸∈ Γ. But there are no other limit cycles or equilibria (up
to a) in Int(Γ). Hence, again by a Corollary on the Poincare-Bendixson theorem, [7, Satz
9.2.4], we must have a = φ−1(z3) and w+(Γ(z2)) = w−(Γ(z2)) = {a} or there is another
homoclinic orbit Λ ⊂ w−(Γ(z2)) satisfying w+(Λ) = w−(Λ) = {a}. Note that a ̸∈ Γ(x2)
and that there are no heteroclinic orbits in w−(Γ(z2)), since a is the only equilibrium. In
both cases this is a contradiction to Lemma 4.33.
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Finally, a cannot be an equilibrium, a contradiction. Thus the limit cycle Γ does indeed
not exist.

Corollary 4.35 (Poincare-Bendixson for Analytic Dynamical Systems)
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω), F ̸≡ 0 and K ⊂ Ω compact.
Let Γ ⊂ K be an orbit of (4.1) in K. Then Γ either is a periodic orbit with exactly
one equilibrium, a center, in Int(Γ), or the limit sets of Γ each consist of exactly one
equilibrium. Additionally, if Γ is periodic, the interior of Γ (except of the center) is filled
entirely with periodic orbits all having the center in its interior.

Proof
Since Γ ⊂ K, the maximum interval of existence of Γ is R. By Theorem 4.34, there are no
limit cycles in Ω. Hence we can apply the Poincare-Bendixson theorem to conclude that
Γ is either a periodic solution, or w±(Γ) consists of at least one equilibrium.
Assume that Γ is a periodic solution. By Lemma 4.32 there exists exactly one equilibrium
a ∈ Int(Γ) with ind(F, a) = 1. Assume that a is not a center. Then, by a Corollary on the
Poincare-Bendixson theorem, [7, Satz 9.2.4], the limit sets of all orbits sufficiently close to
a consist only of a or there is at least one homoclinic orbit Λ satisfying w+(Λ) = w−(Λ) =
{a}. In both cases this is a contradiction to Lemma 4.33. Thus a must be a center. In
addition, the same argumentation holds now for every point in Int(Γ) \ {a}. Hence the
set Int(Γ) \ {a} has to be filled entirely with periodic orbits all having a in its interior, cf.
Lemma 4.32.
Assume that Γ is not periodic. Then, by [7, Satz 9.2.4] and [9, Chapter 3.7, Theorem
3], the following case occurs: The set w±(Γ) is either a single equilibrium of (4.1), or
w±(Γ) consists of a finite number of equilibria connected by a finite number of limit orbits
together with a finite number of homoclinic orbits each in one of these equilibria. One can
say, that each equilibrium in w±(Γ) forms a „rose“ with finitely many „petals“, cf. [9, p.
245]. We want to prove that the latter case cannot occur.
Suppose w.l.o.g. there is at least one homoclinic orbit S ⊂ w+(Γ) in the equilibrium
a ∈ w+(Γ), i.e. w+(S) = w−(S) = {a}. The case S ⊂ w−(Γ) is analogous. Then,
by Lemma 4.33 and Theorem 4.24, the equilibrium has a finite sectorial decomposition
with only elliptic sectors. Let x ∈ Γ, y ∈ S be arbitrary. There also exist sequences
(tk)k∈N, (t̃k)k∈N ⊂ R with tk, t̃k → ∞, Φ(tk, x) → a and Φ(t̃k, x) → y for k → ∞. Hence
the orbit comes arbitrary close to a, but does not tend to a. This is impossible for such
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an equilibrium, cf. Definition 4.14. Hence w+(Γ) can only consist of heteroclinic orbits,
i.e. the „roses“ have no „petals“.
Suppose there are at least two equilibria a1, a2 ∈ w+(Γ), a1 ̸= a2, with at least one
heteroclinic limit orbit S ⊂ w+(Γ) satisfying w+(S) = {a1} and Theorem w−(S) = {a2}.
The case S ⊂ w−(Γ) is analogous. By the proof of the Generalized Poincare-Bendixson
Theorem for Analytic Systems, cf. [9, p. 249], there must be at least one limit orbit
S̃ ⊂ w+(Γ) \ S such that w−(S̃) = {a1}. Choose x1 ∈ S and x2 ∈ S̃. Then, by Lemma
4.33 and 4.24, the equilibrium has again a finite sectorial decomposition with only elliptic
sectors. But we have already proven that none of these sectors (these are heteroclinic
orbits) can be part of w+(Γ). But in both cyclic directions, there must be at least one
elliptic sector between S and S̃. Hence this sector must be part of w+(Γ), a contradiction.
We conclude that there are neither homoclinic nor heteroclinic orbits in w±(Γ), i.e. w±(Γ)
must consist of only one equilibrium.
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5 Topological structure of global
neighbourhoods and separatrices

We have already seen that in a small neighbourhood of an equilibrium there is a specific
topological and geometrical structure. For example that of a center. Around a center
are only periodic orbits having exactly one equilibrium, the center, in the interior. A
natural question is now the following: How does the set consisting of all of these periodic
orbits around the center look like? What topological properties does this set have? What
happens with the orbits on the boundary of such a set? How does the maximum interval
of existence look like for such boundary orbits? These questions, not only for centers, will
be answered in the following considerations.
The underlying literature is [2] and [3]. The topological basis is provided by [11] and [19].
In particular, the Jordan curve theorem will be used many times.
In the theorems and proofs in [2] and [3], there are many omitted arguments. The following
sections provide a more detailed proof structure of these results. All added arguments are
made by myself. In particular, the considerations and solution findings in section 5.2 are
completely worked out by myself.

5.1 The global neighbourhood of equilibria

Definition 5.1
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and a ∈ Ω an equilibrium of
(4.1). If a

a) is a center, the global neighbourhood Uc(a) of F in a is defined as the set

Uc(a) := {a} ∪ {x ∈ Ω : Γ(x) is a periodic orbit with a ∈ Int(Γ)} .
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b) is a stable (unstable) node or focus, the global neighbourhood Un(a) of F in a is
defined as the set

Un(a) :=
{
x ∈ Ω : w+(−)(Γ(x)) = {a}

}
.

c) has order m ≥ 2, the global neighbourhood or global sector Us(a, θ+, θ−) of F in a

with respect to the adjacent directions θ+, θ− ∈ E(F, a) is defined as the set

Us(a, θ+, θ−) :=
{

x ∈ Ω : w±(Γ(x)) = {a}, lim
t→±∞

arg(Φ(t, x) − a) = θ±

}
.

Theorem 4.24 ensures the existence of the elliptic sector with corresponding adjacent
directions given by E(F, a).

Remark 5.2

a) Definition 4.1 and 4.14 ensures that the global neighbourhood of an equilibrium
always consists of more than just the equilibrium itself, i.e. the topological interior
of these sets is always nonempty.

b) In the case of nodes and foci, the equilibrium a always lies in the global neighbour-
hood Un(a). Every global sector is defined in such a way that the equilibrium a itself
is not contained in the global sector. Note that arg(a − a) = arg(0) is not defined.

c) Note that the global sector in the case m = 2 (by Theorem 4.24, there exists only
one elliptic sector) does actually not look like a sector envisioned as a „piece of
cake“ between two adjacent definite directions. In fact, there are locally only two
elliptic sectors and the global sector looks like a „filled eight“ as subset of C. Note
that in this case there are only two definite directions and on both „sides“ of these
directions the conditions in Definition 5.1 c) are fulfilled, cf. Theorem 4.24. If m ≥ 3,
this effect cannot occur, since there are at least 3 definite directions and every elliptic
sector lies between two adjacent directions.

(d) If m ≥ 3, a global sector is in some sense a global point of view of (local) elliptic
sectors, cf. Definition 4.14: For an arbitrary orbit Λ ⊂ (U)s(a, θ+, θ−) the radius of
the elliptic sector can be set as

r := max
x∈Λ

|a − x| ∈ (0, ∞).
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Note, that all orbits in Λ ⊂ Us(a, θ+, θ−) are bounded. The point E in Definition
4.14 b) is then given by a point in ∂Br(a) ∩ Λ. By the continuous dependence on
initial conditions applied in E, there exist suitable characteristic boundary orbits Λ1

and Λ2 such that these orbits form indeed an elliptic sector in a. Considering these
orbits, the properties (iii) and (iv) in Definition 4.14 b) are satisfied.
Additionally, in this chapter we are going to show that Int(Γ(E) ∪ {a}) ⊂
Us(a, θ+, θ−). Hence, such orbits Γ(E) form a so-called elliptic region and satisfy
property (v) of Definition 4.14 b).

Definition 5.3
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and a ∈ Ω an equilibrium of
(4.1). Then the boundary of a is defined as the boundary of the global neighbourhood of
F in a (with respect to adjacent directions given by E(F, a)).

Proposition 5.4
Let F ∈ O(C) be entire and a ∈ C an equilibrium of (4.1). Let U be a global neighbour-
hood of F in a. Then

U =
⋃

x∈U
Γ(x). (5.1)

Furthermore, if x ∈ ∂U , we have Γ(x) ⊂ ∂U . In particular, U and ∂U are both invariant.
Additionally, in the case of a center, we even have

Uc(a) =
⋃

x∈Uc(a)
Int(Γ(x)). (5.2)

Proof
Let y ∈ U and z ∈ Γ(y). Then Γ(y) = Γ(z) and Γ(z) has the same properties as Γ(y).
This proves equation (5.1) and that U is invariant.
In the case ∂U = ∅, U is open, closed and nonempty, thus completely C and nothing is
to show. Suppose there exists a τ ∈ R such that ξ := Φ(τ, x) ̸∈ ∂U , i.e. ξ ∈ Ů ∪ C \ U ,
which is open. The case τ = 0 is not possible, since Φ(0, x) = x ∈ ∂U . Since Ů ≠ ∅,
there exists a ε > 0 such that either Bε(ξ) ⊂ U , or Bε(ξ) ⊂ C \ U . By the continuous
dependence on initial conditions, [9, Chapter 2.4, Theorem 4], there exists a δ > 0 such
that |Φ(τ, y) − ξ| < ε for all y ∈ Bδ(x). Since x ∈ ∂U , there exist points y1 ∈ Bδ(x) ∩ U
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and y2 ∈ Bδ(x) ∩ (C \ U). If ξ ∈ C \ U , we conclude Φ(τ, y1) ̸∈ U with y1 ∈ U . If ξ ∈ Ů ,
we conclude Φ(τ, y2) ∈ U with y2 ̸∈ U . But U is invariant, this is a contradiction. Hence
such a τ cannot exists, Γ(x) ⊂ ∂U and ∂U is also invariant.
If a is a center, then every y ∈ Int(Γ(x)) either satisfies y = a, or, by Corollary 4.35, is a
periodic orbit with a in its interior. This proves equation (5.2).

Proposition 5.5
Let F ∈ O(C) be entire and a ∈ C an equilibrium of (4.1). If a is a center, then
∂Uc(a) ∩ F −1({0}) = ∅, i.e. there are no equilibria on the boundary of a. If a has a global
sector with adjacent directions θ+, θ− ∈ E(F, a), then ∂Us(a, θ+, θ−) ∩ F −1({0}) = {a}, i.e.
a is the only equilibrium on the boundary of a.

Proof
First, let a be a center and x ∈ ∂Uc(a). We show, that x cannot be an equilibrium. Suppose
this would be the case. Then for all ε > 0 sufficiently small there exists a y ∈ Bε(x)∩Uc(a)
such that Γ(y) neither has x in its limit sets nor is a periodic orbit with x in its interior.
Note, that a is the only equilibrium in Uc(a). Hence x cannot be a center, focus or node
and, by Theorem 4.3, the order of x must be at least 2, i.e. F ′(x) = 0. By Theorem 4.24,
x has a FSD with only elliptic sectors. But the orbits in Uc(a) all do not converge to x,
this is a contradiction to Definition 4.14. In particular, the orbits in Uc(a) even form a
hyperbolic sector in x, which is also impossible, since all sectors have to be elliptic. Thus
x cannot be an equilibrium.
Second, let the order of a be at least 2 with a FSD in a. Set θ := (θ+, θ−) and let
x ∈ ∂Us(a, θ) \ {a}. Suppose x would be an equilibrium. Since the orbits in Us(a, θ) all
converge to a ̸= x in both time directions and are not periodic, x cannot be a center, focus
or node. With the same argumentation as above (by applying Theorem 4.24), we again
derive a contradiction to Definition 4.14. Also in this case the orbits in Us(a, θ) form a
hyperbolic sector in x, which is impossible. Thus x cannot be an equilibrium. This proves
∂Us(a, θ) ∩ F −1({0}) ⊂ {a}.
It remains to show that a lies indeed on the boundary of a. On the one hand, there are
orbits (sequences of points) in Us(a, θ) converging to a, hence we must have a ∈ Us(a, θ).
One the other hand, a ̸∈ Us(a, θ). Thus a ∈ ∂Us(a, θ).
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Theorem 5.6
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m ∈ N. Then
the global neighbourhood (or global sector) of F in a is open. Furthermore, if m = 1,
the global neighbourhood is connected and path-connected. If a is a center, the global
neighbourhood is even simply connected. If m ≥ 2, the set consisting of the global sector
and a is connected and path-connected.

Proof
We proof the assertion by distinguishing the following three cases:

(i) a is a center.
Suppose there would exist a x ∈ Uc(a)∩∂Uc(a) ̸= ∅. Then also Γ(x) ∈ Uc(a)∩∂Uc(a),
since both sets are invariant, by Proposition 5.4. The case x = a can be excluded,
since there are no equilibria on the boundary of a, cf. Proposition 5.5. Hence
Γ(x) ⊂ Uc(a) is a periodic orbit with a ∈ Int(Γ(x)) ̸= ∅. Suppose there also exists
a y ∈ ∂Uc(a) \ Γ(x) ̸= ∅. If y ∈ Int(Γ(x)), by openness of Int(Γ(x)), there exists an
r > 0 such that Br(y) ⊂ Int(Γ(x)). By equation (5.2), we get Br(y) ⊂ Uc(a), i.e. y is
not a boundary point of Uc(a). This a contradiction. Furthermore, if y ∈ Ext(Γ(x)),
which is also open, there exists an r > 0 such that Br(y) ⊂ Ext(Γ(x)). Since y lies
on the boundary of a, there exists a z ∈ Br(y) ∩ Uc(a), i.e. Γ(z) is a periodic orbit
with a ∈ Int(Γ(z)). Note that we must have z ̸= x. Since Γ(z) is path-connected
and z ∈ Ext(Γ(x)), we must have x ∈ Γ(x) ⊂ Int(Γ(z)). By equation (5.2) and
openness of Int(Γ(z)), we conclude x ∈ Ůc(a), which is a contradiction to the fact
that x lies on the boundary of a. Thus such a y does not exist and ∂Uc(a)\Γ(x) = ∅,
i.e. the boundary of a exists exactly of Γ(x). In addition, in this case Uc(a) would
be compact and Γ(x) would be the unique outermost periodic orbit in Uc(a).
By equation (5.2), the periodic orbit Γ(x) is not isolated. Hence we can apply a result
on limit cycles of analytic dynamical systems, [6, §12.1, Lemma 1, p. 203], to con-
clude the existence of a neighbourhood U := {y ∈ C : dist(Γ(x), y) < ρ} ∩ Ext(Γ(x))
with ρ > 0 such that all orbits in this neighbourhood are periodic. This result is
based on the theory of succession functions for arcs without contact6, cf. [6, §3.8].
Reduce ρ such that U ∩ F −1({0}) = ∅. This is possible, since F ̸≡ 0. Let T > 0 be
the period of Γ(x). By the continuous dependence on initial conditions, [9, Chapter
2.4, Theorem 4], there exists a δ > 0 such that Φ(T, z) ∈ Bρ(x) for all z ∈ Bδ(x).

6In the literature, arcs without contact are sometimes called „transversals“, cf. [7, Chapter 9.1].
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We conclude the existence of at least one periodic orbit Γ ⊂ U . Since Γ(x) is the
outermost periodic orbit in Uc(a), we must have a ∈ Ext(Γ), i.e. Γ ⊂ C \ Uc(a).
But by Lemma 4.32, there exists an equilibrium ã ∈ Int(Γ) ⊂ Int(Γ(x)) ∪ U with
ã ̸= a. This is a contradiction to the choice of ρ, since there are no more equilibria
in Int(Γ(x)) ∪ U than a. Hence such a x does not exists and Uc(a) ∩ ∂Uc(a) = ∅. It
follows the openness of Uc(a).
Next, we want to proof that Uc(a) is connected. There are two possibilities to prove
this, with a contradiction argument or directly.
The first proof is by contradiction: Suppose Uc(a) is not connected. Then there ex-
ists a separation (U, V ) of Uc(a). But a cannot lie in both sets, U and V . Hence all
periodic orbits with a in its interior must lie either in U , or in V . Note that all orbits
are connected as image of an interval under a continuous function (the solution). It
follows that one of the two sets has empty intersection with Uc(a), i.e. (U, V ) is not
a separation and Uc(a) is connected.
The second proof can be formulated directly: The interior of any periodic orbit is
connected. Hence, by Proposition 5.4, Uc(a) can be written as union of connected
sets, all having the point a in common. Thus, also the union must be connected, cf.
[11, Theorem 23.3].
The global neighbourhood Uc(a) is even path-connected. A simple proof fol-
lows by applying [19, Proposition 12.25]. An alternative direct proof with our
obtained results is as follows. For x, y ∈ Uc(a) there exists a z ∈ Uc(a) ∩
(Ext(Γ(x)) ∪ Ext(Γ(y))) ̸= ∅ such that Γ(x)∪Γ(y) ⊂ Int(Γ(z)). This follows from the
openness of Uc(a), the Jordan curve theorem and equation (5.2). The set Int(Γ(z))
is clearly path-connected (even simply connected), hence there exists a path from
x to y in Int(Γ(z)). Equation (5.2) ensures that this path lies completely in Uc(a).
Actually, this proves already that Uc(a) is connected. All in all, these considerations
give a good imagination of the topological and geometrical structure of Uc(a).
In the last step we proof that Uc(a) is even simply connected. Let L ⊂ Uc(a)
be a loop, i.e. a closed path. Let x ∈ L be arbitrary. As above, there exists a
yx ∈ Ext(Γ(x)) ∩ Uc(a) ̸= ∅ such that x ∈ Γ(x) ⊂ Int(Γ(yx)) ⊂ Uc(a). Hence the set
{Int(Γ(yx)) : x ∈ L} is an open cover of L. Furthermore, L is compact, i.e. there
exist finitely many points x1, . . . , xℓ ∈ L, ℓ ∈ N, such that

L ⊂
ℓ⋃

k=1
Int(Γ(yxk

)) ⊂ Uc(a).
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Since the orbits Γ(yx), x ∈ L, are path-connected and ℓ is finite, there must exist a
y ∈ {yxk

: 1 ≤ k ≤ ℓ} such that Γ(y) is the outermost periodic orbit having the other
ℓ − 1 periodic orbits in its interior. By equation (5.2), we conclude L ⊂ Int(Γ(y)) ⊂
Uc(a) with an y ∈ Uc(a). Since Int(Γ(y)) is clearly simply connected, L can be
continuously deformed to a point p ∈ L ⊂ Uc(a). This proves that Uc(a) is simply
connected.

(ii) a is a (w.l.o.g. stable) focus or node (the proof of the unstable case is analogous).
By Definition 4.1, there exists a ε1 > 0 such that for all y ∈ Bε1(a) we have
w+(Γ(y)) = {a}. This proves Bε1(a) ⊂ Un(a) and a ∈ Ůn(a). Let x ∈ Un(a) \ {a}
be arbitrary. Then there exists a τ > 0 such that ξ := Φ(τ, x) ∈ Bε1(a). Choose
ε2 > 0 so small that Bε2(ξ) ⊂ Bε1(a), e.g. ε2 := 1

2 min{|ξ − a|, ε1 − |ξ − a|}. By
the continuous dependence on initial conditions, [9, Chapter 2.4, Theorem 4], there
exists a δ > 0 such that |Φ(τ, z) − ξ| < ε2 for all z ∈ Bδ(x). Thus w+(Γ(z)) = {a}
for all z ∈ Bδ(x) and Un(a) is open.
All orbits converging to a are path-connected. Hence, by the same contradiction
argument as in (i), Un(a) is connected. The direct proof is also possible in this case:
We can write Un(a) as union of sets, each consisting of an orbit converging to a and
a itself. The equilibrium a lies on the boundary of each of these orbits. Hence, by
[11, Theorem 23.4], these sets are connected and so is the union.
Again by [19, Proposition 12.25] we conclude the path-connectedness of Un(a). Also
an alternative proof is possible. Let x, y ∈ Un(a). Then there are τ1, τ2 > 0 such
that {Φ(τ1, x), Φ(τ2, y)} ⊂ Bε1(a) ⊂ Un(a), which is clearly path-connected (even
convex). Hence there exists a path from Φ(τ1, x) to Φ(τ2, y) lying in Bε1(a) ⊂ Un(a),
e.g. the convex combination of these two points. The orbits Γ(x) and Γ(y) are also
path-connected. This leads to the existence of a path from x to y in Un(a).

(iii) a has order at least 2.
By Theorem 4.24, there is a FSD in a. Let θ+, θ− ∈ E(F, a) be two adjacent directions
and set θ := (θ+, θ−). By Proposition 4.22, there exist r, δ+, δ− > 0 such that for
every x0 ∈ {x ∈ R2 : |x − a| < r, | arg(x − a) − θ±| < δ±} := A± the orbit though x0

tends to a in the definite direction θ± for t → ±∞.
Let x ∈ Us(a, θ). Then there exists a τ± such that ξ± := Φ(τ±, x) ∈ A±. Choose
ε± > 0 small enough such that Bε±(ξ±) ⊂ A±. By the continuous dependence on
initial conditions, [9, Chapter 2.4, Theorem 4], there exists a δ± > 0 such that
|Φ(τ±, y) − ξ±| < ε± for all y ∈ Bδ±(x). Thus with δ := min{δ+, δ−} we have
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Bδ(x) ⊂ Us(a, θ). This proves the openness of Us(a, θ).
Define A := Us(a, θ)∪{a}. We have to show that A is connected and path-connected.
We have a ∈ A. Hence, with the same contradiction argument as in (i) and (ii), one
can show that A is connected. The direct version is also possible. The set A can be
written as union of connected sets, each consisting of an orbit of Us(a, θ) and a.
In this case we cannot use [19, Proposition 12.25] to conclude the path-connectedness
of A, since A is not open. The alternative proof also does not work. In fact, for
arbitrary x, y ∈ Us(a, θ) we do find τ1, τ2 > 0 such that {Φ(τ1, x), Φ(τ2, y)} ⊂ A+,
which is clearly path-connected (even convex). Note that this set looks like a „piece
of cake“. But we cannot ensure A± ⊂ Us(a, θ). Hence it is not straightforward to
construct a path from Φ(τ1, x) to Φ(τ2, y) lying in Us(a, θ). Thus the arguments and
ideas in (i) and (ii) cannot be applied analogously. Especially in the case m = 2 the
global sector does not have to be (path-)connected, cf. Remark 5.2.
We proof the path-connectedness by constructing a path γz : [0, 1] → A from z ∈
Us(a, θ) to a. Note that the existence of such a path is not clear, since paths always
map from a compact interval in R to the underlying set, in our case A. Define for a
fixed z ∈ Us(a, θ) the path

γz(t) :=

Φ
(

1
1−t

− 1, z
)

if t ∈ [0, 1)

a if t = 1
.

The global neighbourhood is invariant, cf. Proposition 5.4, hence γz([0, 1]) ⊂ A

and γ is indeed well-defined. We have γz(0) = Φ(0, z) = z. Moreover, the map
t 7→ 1

1−t
− 1 is strictly monotonously increasing on [0, 1] and converges to infinity for

t → 1. Thus, by [7, Proposition 8.4.1], we have

lim
t→1−

γz(t) ∈ w+(Γ(z)) = {a}

and Γ is continuous. Here we used the fact that the existential quantifier in the
definition of limit sets on p. 3 can be replaced by a universal quantifier, if the
limit set does only have one element. Note that continuity in 1 means that we have
convergence of the function values for all sequences converging to 1.
For arbitrary x, y ∈ Us(a, θ) we now find a path γx from x to a and a path γy from
y to a. This leads to the existence of a path from x to y in A.
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Remark 5.7
Part (i) of the proof of Theorem 5.6 also shows that the following case cannot occur for
holomorphic flows: There exists a periodic orbit Γ such that the obits on at least „one
side“ of Γ, i.e. on Int(Γ) or Ext(Γ), converge to Γ. In fact, the interior of every periodic
orbit forms a subset of a global neighbourhood Uc(a) of a center a and this set is open,
i.e. there exists a neighbourhood U ⊂ Uc(a) of Γ. In addition, the convergence in Int(Γ)
was excluded by a contradiction argument in the proof of Corollary 4.35. Afterwards, the
convergence in Ext(Γ) was excluded by [6, §12.1, Lemma 1, p. 203].
Furthermore, there is not even a single solution converging to a periodic orbit Γ̃. This can
also be proven by openness of Uc(a) (cf. Theorem 5.6). An alternative option is to use the
proof of [6, §4.9, Theorem 19] separately, once for the interior and once for the exterior of
the orbit Γ̃.

Theorem 5.8
Let F ∈ O(C) be entire, a ∈ C an equilibrium of (4.1) and x ∈ C a point on the boundary
of a. If a is a center, then Γ(x) is unbounded. If a is a focus or node, then Γ(x) is either
unbounded, a focus, or a node. If a has order at least 2, then either x = a or Γ(x) is
unbounded.

Proof
We proof this result by distinguishing again the following three cases:

(i) a is a center.
Suppose Γ(x) ⊂ ∂Uc(a) (cf. Proposition 5.4) is bounded. Then K := Γ(x) is compact
and Γ(x) ⊂ K. Furthermore, K ⊂ ∂Uc(a) and w±(Γ(x)) ⊂ K. Note that boundaries
are always closed. By Proposition 5.5, there are no equilibria on the boundary of a,
hence also not in w±(Γ(x)) ⊂ K. Thus, by Corollary 4.35, Γ(x) must be a periodic
orbit with exactly one equilibrium, a center ã, in Int(Γ(x)).
Suppose a ̸= ã. By Theorem 5.6, the set Uc(ã) is open, i.e. there exists an r > 0
such that Br(x) ⊂ Uc(ã). But x lies also on the boundary of a, thus there exists
at least one point z ∈ Br(x) ∩ Uc(a) ⊂ Uc(ã) ∩ Uc(a) ̸= ∅. This is impossible, since
there can only be exactly one equilibrium in the interior of every periodic orbit, cf.
Lemma 4.32. We conclude a = ã and thus x ∈ Uc(a), which is a contradiction to the
openness of Uc(a), cf. Theorem 5.6. Hence Γ(x) must be unbounded.
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(ii) a is a (w.l.o.g. stable) focus or node (the proof of the unstable case is analogous).
Suppose there exists an equilibrium ã on the boundary of a being a center or having
order at least 2. Then ã has a global neighbourhood (or global sector) U that is
open, cf. Theorem 5.6. Hence there exists r > 0 such that Br(ã) ⊂ U . But ã lies
also on the boundary of a. Hence there exists a y ∈ Un(a) ∩ Br(ã) ̸= ∅. This is
impossible, since ã ̸= a ∈ Un(a) (U cannot be a global sector) and w+(Γ(y)) = {a}
(ã cannot be a center). Thus all equilibria on the boundary of a have to be nodes
and foci. In particular, this holds for Γ(x) ⊂ ∂Uc(a), if this orbit is an equilibrium.
Suppose Γ(x) ⊂ ∂Un(a) is bounded and not an equilibrium. As in (i), K := Γ(x)
is compact and Γ(x) ∪ w±(Γ(x)) ⊂ K ⊂ ∂Un(a). By Corollary 4.35, Γ(x) either
is a periodic orbit with exactly one equilibrium, a center a ̸= a, in Int(Γ(x)), or
w+(Γ(x)) and w−(Γ(x)) each consist of exactly one equilibrium. If the first case
occurs, there exists an r > 0 such that Br(x) ⊂ Uc(a), cf. Theorem 5.6. But x

lies also on the boundary of a, i.e. there exists a z ∈ Br(x) ∩ Un(a) ̸= ∅. Since
w+(Γ(z)) = {a}, Γ(z) ca not be a periodic orbit, which is a contradiction. Hence
the second case must occur: There exist two equilibria a+, a− ∈ ∂Un(a) ∩ F −1({0})
such that w±(Γ(x)) = {a±}, i.e. Γ(x) is either a heteroclinic orbit or a homoclinic
orbit. In both cases we want to derive a contradiction.
Suppose Γ(x) is a homoclinic, i.e. a+ = a−. By Lemma 4.33 and Proposition 4.19,
the order of a+ is at least 2, i.e. a+ is neither a node nor a focus, cf. Corollary 4.25.
But a+ is an equilibrium on the boundary of a. This is a contradiction (cf. above).
Suppose, Γ(x) is heteroclinic, i.e. a+ ̸= a−. Since there are only foci and nodes on
the boundary of a, a+ must be a stable node or focus. If we investigated the case
that a is unstable, we would choose a− at this point. By Definition 4.1, there exists a
δ > 0 such that for all y ∈ Bδ(a+) the solution through y satisfies w+(Γ(y)) = {a+}.
But a+ lies also on the boundary of a, i.e. there exists a z ∈ Un(a) ∩ Bδ(a+) ̸= ∅
with w+(Γ(z)) = {a}. We conclude a = a+, i.e. a ∈ ∂Un(a). This is a contradiction
to the openness of Un(a), cf. Theorem 5.6. Thus Γ(x) must be unbounded.

(iii) a has order at least 2.
By Theorem 4.24, there is a FSD in a. Let θ+, θ− ∈ E(F, a) be two adjacent directions
and set θ := (θ+, θ−). Suppose Γ(x) ⊂ ∂Us(a, θ) \ {a} is bounded. As in (i),
K := Γ(x) is compact and Γ(x) ∪ w±(Γ(x)) ⊂ K ⊂ ∂Us(a, θ). By Corollary 4.35,
Γ(x) either is a periodic orbit with exactly one equilibrium, a center ã, in Int(Γ(x)),
or w+(Γ(x)) and w−(Γ(x)) each consist of exactly one equilibrium. If the first case
occurs, a ̸= ã and a ∈ Ext(Γ(x)). By path-connectedness of Us(a, θ) ∪ {a}, cf.
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Theorem 5.6, we must have Us(a, θ) ⊂ Ext(Γ(x)). Since Uc(ã) is open, cf. Theorem
5.6, there exists an r > 0 such that Br(x) ⊂ Uc(ã). But x lies on the boundary
of Us(a, θ), i.e. there must also exist a point y ∈ Us(a, θ) ∩ Br(x) ̸= ∅. This is a
contradiction. Thus Γ(x) is not periodic and the second case occurs.
By Proposition 5.5, a is the only equilibrium on the boundary of a. Hence Γ(x) must
be a homoclinic orbit satisfying w±(Γ(x)) = {a}. We want to derive a contradiction
also in this case. By Theorem 4.24, Γ(x) converges to a in adjacent definite directions
η± ∈ E(F, a) for t → ±∞. Hence x ∈ Us(a, η+, η−). By Theorem 5.6, this set is
open, i.e. there exists a ρ > 0 such that Bρ(x) ⊂ Us(a, η+, η−). But x lies also on
the boundary of Us(a, θ), i.e. there exists a z ∈ Us(a, θ) ∩ Bρ(x). The orbit cannot
converge to a in more than two directions, thus we must have Us(a, θ) = Us(a, η+, η−),
i.e. θ+ = η+ and θ− = η−. We conclude x ∈ ∂Us(a, θ) ∩ Us(a, θ), which is a
contradiction to the openness of Us(a, θ). Thus Γ(x) cannot be a homoclinic orbit
and must be unbounded.

Corollary 5.9
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C an equilibrium of (4.1) with order 1. Then the
global neighbourhood in a is unbounded. In particular, the boundary of a node or focus
is either empty, or consists of at least one unbounded orbit.

Proof
Let U be the global neighbourhood in a. If the boundary of a is empty, then U is open,
closed and nonempty, i.e. completely C and thus unbounded. Hence assume ∂U ̸= ∅.
If a is a center, the boundary of a consists of unbounded orbits, cf. Theorem 5.8. Hence
U must also be unbounded.
Suppose that a is a node or focus, the global neighbourhood is bounded and its boundary
consists only of equilibria. Then C \ ∂U is the union of two disjoint nonempty open sets
(the global neighbourhood itself and the complement of its closure). Hence C \ ∂U cannot
be connected, which is a contradiction. In fact, since the boundary of a has to be a discrete
set, C \ ∂U is path-connected and thus connected. Note that F ̸≡ 0. Hence, by Theorem
5.8, the boundary consists of at least one unbounded orbit and the global neighbourhood
is unbounded also in this case.
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Theorem 5.10
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C a focus or node of (4.1). Assume that
∂Un(a)∩F −1({0}) does no have isolated points in ∂Un(a), i.e. for all ã ∈ ∂Un(a)∩F −1({0})
and all ρ > 0 it holds that (Bρ(ã) ∩ ∂Un(a)) \ {ã} ≠ ∅. Then Un(a) is simply connected.

Proof
Let L ⊂ Un(a) be a loop. Since L is compact and Un(a) is open (cf. Theorem 5.6), there
exist points y1, . . . , yℓ ∈ L and radii r1, . . . , rℓ > 0, ℓ ∈ N, such that

L ⊂
ℓ⋃

k=1
Brk

(yk) =: O.

and O ⊂ Un(a). In addition, there exists a closed Jordan curve J ⊂ ∂O ⊂ Un(a) such that
L ⊂ Int(J). Suppose now that A := Int(J) \ Un(a) ̸= ∅.
There holds A ⊂ Int(J). In fact, we have A ⊂ Int(J) and thus A ⊂ Int(J). If there exists
a point z ∈ ∂A ∩ J , then there is an r > 0 such that Br(z) ⊂ Un(a), cf. Theorem 5.6. But
then we would have A ∩ Un(a) ̸= ∅, since z ∈ ∂A. This is a contradiction to the definition
of A.
Suppose ∂A = ∅. We clearly have Int(J) ⊂ A ∪ Un(a) and A ∩ Un(a) = ∅. Since A ̸= ∅
is open and Int(J) is connected, we must have Un(a) ∩ Int(J) = ∅, i.e. A = Int(J). This
implies ∂A = ∂Int(J) = J , i.e. A ̸⊂ Int(J). This is a contradiction to our above result
and thus ∂A ̸= ∅.
Let x ∈ ∂A ̸= ∅ be arbitrary. Then clearly x ̸∈ Un(a), since this set is open, cf. Theorem
5.6. In particular, x ∈ Int(J), since A ⊂ Int(J). Suppose x ̸∈ ∂Un(a). Then there exists
a ε > 0 such that Bε(x) ⊂ C \ Un(a) and Bε(x) ⊂ Int(J). Note that Int(J) is open. We
conclude Bε(x) ⊂ Int(J)∩(C \ Un(a)), i.e. x ∈ Å. Since ∂A∩A = ∅, this is a contradiction.
Thus x ∈ ∂Un(a). Since orbits cannot cross each other, we must have Γ(x) ⊂ Int(J), i.e.
Γ(x) is bounded. By Theorem 5.8, Γ(x) must be an equilibrium.
We conclude that ∂A ⊂ F −1({0}) is a nonempty, discrete and bounded set, i.e. ∂A is
finite and Int(J) \ ∂A is connected (even path-connected). Note that every path going
through a point of ∂A can be deformed such that the path „bypasses“ this point, e.g.
the bypass could be on the boundary of a sufficiently small circle around this point. In
addition, Int(J) \ ∂A is the union of the two disjoint open sets Un(a) ∩ Int(J) ̸= ∅ and
Å ⊂ C \ Un(a). Hence we must have Å = ∅, i.e. A = ∂A and A consists only of finitely
many equilibria. In particular, A ⊂ ∂Un(a) ∩ F −1({0}).
We derive now a contradiction by the following argument: We can choose ã ∈ A, since
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A ̸= ∅. Then ã ∈ ∂Un(a) ∩ F −1({0}). But Int(J) is open and A is discrete, which implies
the existence of a ρ > 0 such that Bρ(ã) ⊂ Int(J) and Bρ(ã) ∩ A = {ã}, i.e.

(Bρ(ã) ∩ ∂Un(a)) \ {ã} = (Bρ(ã) ∩ Int(J) ∩ ∂Un(a)︸ ︷︷ ︸
⊂Int(J)\Un(a)=A

) \ {ã} = {ã} \ {ã} = ∅

and ã is isolated in ∂Un(a). Hence we must have A = ∅ and thus Int(J) ⊂ Un(a). Since
Int(J) is simply connected, L can be deformed to a point. Since L is arbitrary, Un(a) is
simply connected.

Remark 5.11
In Theorem 5.10 we assumed that the boundary of the global neighbourhood does not
consist of equilibria ã being isolated on the boundary. Since F −1({0}) is a discrete set, this
is equivalent to the fact that there always exists at least one unbounded (cf. Theorem 5.8)
orbit Γ on the boundary satisfying ã ∈ w+(Γ) ∪ w−(Γ). I conjecture that this assumption
is redundant, i.e. it holds the following:
Every equilibrium ã one the boundary is attached by at least one unbounded orbit on
the boundary of a, i.e. there exists at least one point x0 ∈ ∂Un(a) \ {ã} satisfying ã ∈
w+(Γ(x0)) ∪ w−(Γ(x0)).
A sketch of the proof of this conjecture can be formulated as follows: Let a1, a2 ∈ F −1({0})
be two nodes (or foci) with a1 being stable and a2 unstable. Set O := (Un(a1) ∩ Un(a2)) ∪
{a1, a2}. This set consists of a1, a2 and all heteroclinic orbits connecting a1 with a2.
Suppose {a1, a2} ⊂

◦
O. One has to proof that this is impossible. More precisely, we do

have either a1 ∈
◦
O, or a2 ∈

◦
O, but not both.

First, we can choose a fixed orbit Γ0 satisfying w+(Γ0) = {a1} and w−(Γ0) = {a2} and a
point z0 ∈ Γ0. Second, we can choose a straight line L through z0 not being tangent to Γ
(cf. [7, Chapter 9.1]). In addition, this line can be chosen such that {a1, a2} ∩ L = ∅. By
the Jordan curve theorem on S2, this line separates the plane in two connected pieces O1

and O2 such that a1 ∈ O1 and a2 ∈ O2. Hence, every orbit Γ ∈ O must cross L at least
once. At this point, the most difficult part must be shown: Every orbit Γ ∈ O must cross
L an odd number of times. But what means „crossing“ in this sense? It means that the
orbit passes through L, i.e. there exists an intersection point p ∈ Γ ∩ L and a small τ > 0
such that Φ(−τ, p) ∈ O1 and Φ(τ, p) ∈ O2. At this point of the proof one has to check if Γ
„lies“ on L, i.e. there exists a τ̃ > 0 with Φ((−τ̃, τ̃), p) ⊂ L. In addition, one has to check,
if there are other possible „crossings“ with L.
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After constructing such a definition of „crossings“, we can define N(x) for all x ∈ O as the
number of such „crossings“ of Γ(x) with L. Of course, we should ensure that N(x) = 0 if
and only if x ∈ {a1, a2}. Here one has to check, if more than finitely many „crossings“ can
occur or if we always have N < ∞. Moreover, these „crossings“ and the associated number
N : O → N ∪ {0} should be defined in a way such that N is continuous. With this N , we
can define analogously N1 and N2 as the number of crossings with the two rays L1 ⊂ L

and L2 ⊂ L with origin z0, i.e. L = L1 ∪ {z0} ∪ L2 and L1 ∩ L2 = ∅. Since z0 is an interior
point of O, it is easy to show that N−1

1 (N) ̸= ∅ and N−1
2 (N) ̸= ∅, i.e. both rays are crossed

by at least one orbit. Moreover, not both rays can be crossed an odd number of times by
one orbit.
Define M : O → {1, 2} such that M(x) = 1 if and only if Γ(x) crosses L1 odd times. We
should verify that M is continuous. In addition, if {a1, a2} ⊂

◦
O, then the set Õ := O\Γ0 ∪

{a1, a2} is open and connected. After defining the two sets Aj := {x ∈ Õ : M(x) = j},
j ∈ {1, 2}, one should check that these sets are both, nonempty and open. Now we have
Õ = A1 ∪ A2. Then, by connectedness of Õ, we conclude that A1 = ∅ or A2 = ∅, which
should be a contradiction.
The proof could be easier, if we deform L in such a way that L∩Γ0 = {z0}, i.e. there exists
only one intersection point of Γ0 with L. In fact, in this case we have (z0 is an interior
point of O) N−1

1 ({1}) ̸= ∅ and N−1
2 ({1}) ̸= ∅. But now the definition of “crossing„ could

be more difficult, since L does not necessarily have to be a straight line.

5.2 The local structure of global sectors

We have already seen at various points that the structure of local elliptic sectors is difficult
to generalize to global sectors, see e.g. Remark 5.2 and the proof of Theorem 5.6, case (iii).
In particular, it is not clear yet what the boundary looks like near an equilibrium with
order at least 2. How many boundary orbits are there, near such an equilibrium? Is the
union of all global sectors near an equilibrium already „everything“ or is there space left
for other topological structures, cf. Remark 4.26 and the outlook at the end of Example
4.28? How many global sectors exists in an equilibrium with order at least 2? What
happens in the special case m = 2? All these questions will be answered in this section.
All results and ideas are my own as there is no reference that I know of, which provides a
rigorous analysis of the global sectors near an equilibrium. Only in [6, Chapter VIII], the
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author analyses this geometrical structure in detail. But as already mentioned in Remark
4.16, this approach is different from mine.

Proposition 5.12
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m ∈ N\{1, 2}.
Then for every global sector U in a there exist two unique unbounded orbits Γ1, Γ2 ∈ ∂U
with the property w+(Γ1) = w−(Γ2) = {a}. In addition, there exists an r > 0 and two
points p1 ∈ Γ1 ∩ ∂Br(a), p2 ∈ Γ2 ∩ ∂Br(a) such that

Br(a) ∩ ∂U = {a} ∪ Γ+(p1) ∪ Γ−(p2). (5.3)

In particular, Γ1 and Γ2 form the boundary of an elliptic sector, i.e. they are possible
characteristic orbits of this elliptic sector.
Furthermore, for all θ ∈ E(F, a) there exists an unbounded orbit Γθ tending to a in the
definite direction θ. Moreover, for all orbits Γ satisfying w+(Γ) = w−(Γ) = {a} there
exists a global sector UΓ in a with Γ ⊂ UΓ, i.e. Γ tends to a in adjacent definite directions
given by E(F, a).

Proof
By Theorem 4.24, there exists a minimal FSD in a with d := 2m − 2 ≥ 4 elliptic sectors.
Let θ1, θ2, θ3 ∈ E(F, a) be three adjacent directions, i.e. θ1 and θ2 as well as θ2 and
θ3 are adjacent. Set U1 := Us(a, θ1, θ2) and U2 := Us(a, θ2, θ3). Assume w.l.o.g. that
cos(arg(F (m)(a)) + θ2(m − 1)) > 0, i.e. the orbits near the ray with angle θ2 tend to a for
t → ∞, cf. Proposition 4.22. The other case is analogous. Since d > 2, we have θ3 ̸= θ1

and thus U1 ∩ U2 = ∅.
By Definition 4.14, there exists an r > 0 and two points E1, E2 ∈ Br(a) such that Γ(E1) ∪
Γ(E2) ⊂ Br(a) ∪ {E1, E2}, Γ(E1) ⊂ U1 and Γ(E2) ⊂ U2. Additionally, we have E1 ̸= E2

and Γ(E1) ∩ Γ(E2) = ∅. Define Ξ as the curve piece of ∂Br(a) from E1 to E2, i.e. Ξ =
(Br(a))(E1, E2). Since the orbits Γ(E1) and Γ(E2) cannot cross each other, the curve

J := Ξ ∪ Γ+(E1) ∪ Γ+(E2) ∪ {a}

is a closed Jordan curve. Let ν : ∂Br(a) → S1 be the outer unit normal of ∂Br(a). By
Definition 4.14 b) (iii) and (iv), we have ⟨F (y), ν(y)⟩ < 0 for all y ∈ Ξ, i.e. between E1

and E2 the vector field points inwards. If we had cos(arg(F (m)(a)) + θ2(m − 1)) < 0, the
vector field would point outwards and a would be reached for t → −∞. Additionally, the
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radius r > 0 can be chosen such that all orbits through a point in Int(J) tend to a for
t → ∞ (with direction θ2).
Furthermore, by openness of U1 and U2 (cf. Theorem 5.6), we have U1 ∩ Int(J) ̸= ∅ and
U2 ∩ Int(J) ̸= ∅. Note that Γ+(E1) ⊂ J ∩ U1 and Γ+(E2) ⊂ J ∩ U2. Since Int(J) is
connected, we conclude that A := Int(J) \ (U1 ∪ U2) is closed with respect to Int(J) and
nonempty. Moreover, for all x ∈ A we have w+(Γ(x)) = {a}.
Suppose that ∂U1 ∩ Int(J) = ∅. Since U1 ∩ Int(J) ̸= ∅, this implies U1 = Int(J) and
thus the contradiction A = U1 \ (U1 ∪ U2) = ∅. Thus ∂U1 ∩ Int(J) ̸= ∅. Of course, the
same argumentation holds for ∂U2, i.e. we also have ∂U2 ∩ A ̸= ∅. In particular, we have
∂U1 ∩ Int(J) ⊂ A and ∂U2 ∩ Int(J) ⊂ A. Choose ξ1 ∈ ∂U1 ∩ Int(J) and ξ2 ∈ ∂U2 ∩ Int(J).
Then, by our above argumentation, w+(Γ(ξ1)) = w+(Γ(ξ2)) = {a}. By Theorem 5.8, Γ(ξ1)
and Γ(ξ2) are unbounded. Hence a ̸∈ w−(Γ(ξ1)) ∪ w−(Γ(ξ2)).
Since θ1, θ2 and θ3 are arbitrary, we can use this argument now between all adjacent el-
liptic sectors. We conclude that the two orbits Γ(ξ1) and Γ(ξ2) can indeed be chosen as
characteristic orbits lying on the boundary of these adjacent elliptic sectors and tend to a

in the definite direction θ2. With these two orbits between each adjacent elliptic sectors,
one can construct a FSD in a. The points p1 and p2 are the intersection points of Γ(ξ1)
and Γ(ξ2) with ∂Br(a).
We conclude the following: For every global sector Us(aθ+, θ−) with two adjacent direc-
tions θ+, θ− ∈ E(F, a) there exist two unbounded orbits Γ1, Γ2 ⊂ ∂Us(aθ+, θ−) satisfying
w+(Γ1) = w−(Γ2) = {a} with definite direction θ+ and θ−. It remains to show that the
following two geometrical structures can not occur:
First, suppose there exists a x ∈ C with w+(Γ(x)) = w−(Γ(x)) = {a} with two definite di-
rections given by E(F, a) not being adjacent. Then, by Proposition 4.22, in Int(Γ(x)∪{a})
there is at least one whole (local) elliptic sector S. In addition, this elliptic sector must be
part of a connected global sector with the same adjacent definite directions. This elliptic
sector has now at least one unbounded orbit on its boundary. But Int(J) is bounded. This
is a contradiction to the connectedness of this global sector. Thus there exist indeed d

global sectors in a, each having exactly one (local) elliptic sector as subset. Furthermore,
all orbits Γ satisfying w+(Γ) = w−(Γ) = {a} tend to a in adjacent definite directions given
by E(F, a).
Second, suppose there exist more than two orbits on the boundary of an arbitrary global
sector in a having nonempty intersection with Br(a). Then there exist at least three un-
bounded boundary orbits tending to a for t → ∞ or t → −∞. In addition, two of these
three orbits must tend to a in the same definite direction η ∈ E(F, a) and the third orbit
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tends to a in a direction η̃ ∈ E(F, a)\{η}. Since the Jordan curve theorem holds also on S2

(cf. [11, Lemma 61.1]), these two orbits separate C in exactly two unbounded nonempty
connecting components. Note that orbits cannot cross each other. Let O be the (unique)
component, where the third orbit does not lie. Now there exists at least one orbit Γ in
the global sector lying completely in O. Note that orbits are always connected. We con-
clude that Γ must tend to a in the same direction η for both time directions. But this is
impossible, since the number cos(arg(F (m)(a)) + η(m − 1)) is either positive, or negative,
cf. Proposition 4.22 and the proof Lemma 4.23. In particular, this proves the uniqueness
of these two boundary orbits in equation 5.3.

Definition 5.13
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m = 2. Let U
be the global sector of F in a. A pair of points (q1, q2) ∈ C2 are separating the global sector
U , if there exist two orbits Γ1, Γ2 ⊂ U satisfying q1 ∈ Int(Γ1 ∪ {a}), q2 ∈ Int(Γ2 ∪ {a}),
Γ1 ⊂ Ext(Γ2) and Γ2 ⊂ Ext(Γ1).

Definition and Proposition 5.14
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m = 2.
Let U be the global sector in a. Then there exists a pair (q1, q2) ∈ C2 separating U with
corresponding orbits Γ1, Γ2 ⊂ U . Define for j ∈ {1, 2} the jth sector component of U (with
respect to (q1, q2)) as

U [j] := {x ∈ U : qj ∈ Int(Γ(x) ∪ {a})} ∪ Int(Γj ∪ {a}) ∪ Γj.

Then it holds that U = U [1] ∪ U [2] and U [1] ∩ U [2] = ∅. Furthermore, the separating points
can be chosen such that U [j] is open and Bρ(a) ∩ U [j] ̸= ∅ for all ρ > 0 and j ∈ {1, 2}.

Proof
Set Jx := Γ(x) ∪ {a}, x ∈ U . By Theorem 4.24, there exists a FSD in a with two (local)
elliptic sectors. By Definition 4.14, there exist r > 0 and two points E1, E2 ∈ ∂Br(a) ∩ U
satisfying Γ(E1) ̸= Γ(E2) and Γ(E1) ∪ Γ(E2) ⊂ Br(a). This implies Int(JE1) ∪ Int(JE2) ⊂
Br(a).
Suppose Γ(E1) ⊂ Int(JE2). Since E1 ∈ Γ(E1), there exists a ε > 0 such that Bε(E1) ⊂
Int(JE2). Since E1 ∈ ∂Br(a), there exists a y ∈ Bε(E1) \ Br(a), e.g. y := E1 + ε

2r
(E1 − a).
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We conclude the contradiction y ∈ Int(JE2) \ Br(a) = ∅. Thus we have Γ(E1) ⊂ Ext(JE2).
Note that Γ(E1) ̸= Γ(E2). Of course, the same argumentation holds for Γ(E2), i.e. we
also have Γ(E2) ⊂ Ext(JE1). Here, we only have to change the roles of E1 and E2.
Furthermore, we have Int(JE1) ̸= ∅ and Int(JE2) ̸= ∅. Note that E1 and E2 are not
equilibria of (4.1). Hence we can choose q1 ∈ Int(Γ(E1)) and q2 ∈ Int(JE2). By setting
Γ1 := Γ(E1) and Γ2 := Γ(E2), we have a pair of separating points. Set A := Int(JE1) ∪
Int(JE2).
Suppose there exists an orbit Γ ⊂ U satisfying {q1, q2} ⊂ Int(Γ ∪ {a}). Then clearly
Int(JE1) ∪ Int(JE2) ⊂ Int(Γ ∪ {a}). But with this property we must have Br(a) ⊂ Int(Γ ∪
{a}). This implies the contradiction a ∈ Int(Γ ∪ {a}).
Suppose there exists an orbit Γ ⊂ U \ A satisfying {q1, q2} ⊂ Ext(Γ ∪ {a}). Then, by the
same argumentation, we would have Br(a) ⊂ Ext(Γ ∪ {a}), i.e. a ∈ Ext(Γ ∪ {a}). This is
also a contradiction.
Hence all orbits Γ ⊂ U \ A satisfy either q1 ∈ Int(Γ ∪ {a}), or q2 ∈ Int(Γ ∪ {a}). This
implies U = U [1] ∪ U [2] and U [1] ∩ U [2] = ∅. Note that x ∈ U [j] clearly implies Γ(x) ⊂ U [j]

with j ∈ {1, 2}.
Set ρ0 := 1

2 min{|a − q1|, |a − q2|} ∈ (0, r). Fix ρ > 0 and j ∈ {1, 2}. We proved
that Γ(Ej) ⊂ U [j]. Since Γ(Ej) ∩ Bρ(a) ̸= ∅, we also have Bρ(a) ∩ U [j] ̸= ∅. Let x ∈
U [j] \ Int(JEj

) be arbitrary. By applying Definition 4.14 b) (iv), there exist two points
ξ+, ξ− ∈ ∂Bρ0(a) ∩ Γ(x) ⊂ Br(a) \ A. Let γx : [0, 1] → C be the closed Jordan curve
consisting of the curve pieces (∂Bρ0(a))(ξ+, ξ−) and (Γ(x))(ξ−, ξ+), i.e. γx traverses Γ(x)
except of the parts in Bρ0 and closes by using the boundary of the circle Bρ0(a). We
choose the path on ∂Bρ0(a) in such a way that qj ∈ Int(γx([0, 1])), i.e. (∂Bρ0(a))(ξ+, ξ−) ⊂
Int(Jx). Since w+(Γ(x)) = w−(Γ(x)) = {a}, there exists, in particular, a T > 0 such
that {Φ(T, x), Φ(−T, x)} ⊂ Bρ0(a) \ A. By applying Definition 4.14 b) (iii), we can choose
this T such that Φ((−∞, −T ], x) ∪ Φ([T, ∞), x) ⊂ Br(a) \ A. This means that the orbit
through x lies in Br(a) at sufficiently large times t ∈ R. Moreover, by openness of the set
Bρ0(a) \ A, there exists a η > 0 such that

{Bη(Φ(T, x)), Bη(Φ(−T, x))} ⊂ Bρ0(a) \ A.

Note that JE1 ∪ JE2 separates Br(a) in exactly four connecting components. By construc-
tion, Φ(T, x) and Φ(−T, x) lie in different connecting components. Let ε̃ > 0 be arbitrary.
By Theorem 5.6 and the continuous dependence on initial conditions, [9, Chapter 2.4,
Theorem 4], there exists a δ > 0 such that Bδ(x) ⊂ U and |Φ(t, y) − Φ(t, x)| < min{η, ε̃}
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for all t ∈ [−T, T ] and y ∈ Bδ(x). We conclude

sup
t∈[0,1]

|γx(t) − γy(t)| < min{η, ε̃} ∀ y ∈ Bδ(x). (5.4)

Actually, on a piece of ∂Bρ0(a) the two curves γx and γy, y ∈ Bδ(x), even coincide. Note
that γy is well-defined, since y ∈ U .
Let y ∈ Bδ(x) be arbitrary. By applying Definition 4.14 b) (iii), we have the following
equivalence: The curve γy satisfies qj ∈ Int(γy([0, 1])) if and only if y ∈ U [j] \ Int(JEj

).
Note that we always have Int(γy([0, 1])) ⊂ Int(Jy). Furthermore, qj ∈ Int(γy([0, 1])) if
and only if the winding number w(y, j) := wind(γy, qj) of γy with respect to qj is ±1,
i.e. |w(y, j)| = 1, cf. [11, Theorem 66.2] and [11, Lemma 66.3]. Choose ε̃ sufficiently
small such that there are no equilibria in {z ∈ C : dist(γy([0, 1]), z) < ε̃} and such that
{z ∈ C : dist(Φ([−T, T ], x), z) < ε̃} ⊂ U . The latter property can be ensured by using the
compactness of Φ([−T, T ], x). Then, by using (5.4), we can find a path homotopy between
γx and γy. Hence, by [11, Lemma 66.1 (b)], we get w(y, j) = w(x, j) and thus y ∈ U [j].
This shows Bδ(x) ⊂ U [j]. If x ∈ Int(JEj

), we clearly have a δ > 0 such that Bδ(x) ⊂ U [j].
Note that Int(JEj

) ⊂ U [j]. Hence U [j] is open.

Corollary 5.15
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m = 2. Let
U be the global sector in a. Then U has at least two connecting components. In particular,
U is not connected.

Proof
By Proposition 5.14, there exists a pair (q1, q2) ∈ C2 separating U such that U [1] and U [2]

are open, U = U [1] ∪ U [2] and U [1] ∩ U [2] = ∅. Moreover, U [1] ̸= ∅ and U [2] ̸= ∅. Hence
(U [1], U [2]) is a separation of U and thus U cannot be connected, i.e. U has at least two
connecting components.

Proposition 5.16
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m = 2. Let
U := Us(a, θ+, θ−), E(F, a) = {θ+, θ−}, be the global sector in a and (q1, q2) ∈ C2 a pair of
points separating U . Then for every j ∈ {1, 2} there exist two unique unbounded orbits
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Γ± ∈ ∂U [j] and r > 0 with two points p± ∈ Γ±∩∂Br(a) such that w+(Γ+) = w−(Γ−) = {a}
and

Br(a) ∩ ∂U [j] = {a} ∪ Γ+(p+) ∪ Γ−(p−). (5.5)

In particular, Γ+ and Γ− form the boundary of an elliptic sector, i.e. they are possible
characteristic orbits of this elliptic sector.

Proof
The proof of this Proposition is quite similar to that of Proposition 5.12. But we have to
change the „separating property“ for the connectedness-argument, since we only have two
definite directions. We construct this by using Definition 5.13.
By Theorem 4.24, we have a FSD in a with two (local) elliptic sectors. Furthermore, there
exist r > 0 and two points E1, E2 ∈ ∂Br(a) such that Γ(E1) ∪ Γ(E2) ⊂ Br(a) ∪ {E1, E2},
Γ(E1) ⊂ U1 and Γ(E2) ⊂ U2. Additionally, we have E1 ̸= E2 and Γ(E1) ∩ Γ(E2) = ∅. Set
A := Br(a) \

(
Int(JE1) ∪ Int(JE2)

)
. This set has two connecting components A± having

nonempty intersection with the ray with angle θ±. The set A+ (and A−, respectively)
has the role of the set Int(J) in the proof of Proposition 5.12. By Proposition 5.14 and
Corollary 5.15, we can use the same argumentation (using the definition of connectedness)
as in the proof of Proposition 5.12 with obvious changes. Note that we clearly have
∂U [j] ⊂ ∂U for all j ∈ {1, 2}, since the boundary of every connecting component of U is
part of the boundary of U . We can conclude that each connecting component cannot be
covered by the two nonempty open sector components of U , i.e. there exist closed sets
Ã± ⊂ A± (they have the role of the set A in the proof of Proposition 5.12). The existence
of Γ± ∈ ∂U [j] and p± ∈ Γ± ∩ ∂Br(a) can be constructed in the same way as in the proof
of Proposition 5.12.
The two excluded geometrical structures at the end of the proof of Proposition 5.12 can
also not occur in our case, since we only have two directions, i.e. all directions are trivially
adjacent in our case.

Corollary 5.17
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m ∈ N\ {1}.
Then all global sectors in a are unbounded.
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Proof
Let U be an arbitrary global sector in a. If m = 2, there exists at least one unbounded
orbit Γ ⊂ ∂U , cf. Proposition 5.12. By Proposition 5.16, the same holds for m ≥ 3. Hence
∂U is unbounded. This implies that U is also unbounded.

Proposition 5.18
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m ∈
N \ {1}. Let θ+, θ− ∈ E(F, a) be two adjacent directions. Set U := U(a, θ+, θ−). Then
Int(Γ(x) ∪ {a}) ⊂ U for all x ∈ U . If m = 2, we even have Int(Γ(x) ∪ {a}) ⊂ U [j] for
all x ∈ U [j], j ∈ {1, 2}, with respect to a chosen pair (q1, q2) ∈ C2 separating U with
corresponding orbits Γ1, Γ2 ⊂ U .

Proof
Let x ∈ U be arbitrary. Set J := Γ(x) ∪ {a} and A := F −1({0}) ∩ Int(J). Suppose A ̸= ∅,
i.e. there exists at least one equilibrium ã in Int(J).
Suppose ã is a node, focus or center, i.e. has order 1. The orbit Γ(x) is neither periodic
nor tends to ã, i.e. Γ(x) has empty intersection with the global neighbourhood U in ã. In
addition, if a lay in U , we would have a contradiction to the openness of U , cf. Theorem
5.6. Note that a ∈ ∂Γ(x). Hence, by connectedness of U , we have U ⊂ Int(J), i.e. U is
bounded. This a contradiction to Corollary 5.9.
Suppose ã has order at least 2 and let S be a global sector in ã. Then ∂S consists of ã

and unbounded orbits, cf. Theorem 5.8. But Γ(x) and Γ(a) = {a} are both bounded.
By connectedness of S ∪ ã (cf. Theorem 5.6), we must have S ⊂ Int(J). This is a
contradiction.
We conclude A = ∅. Let y ∈ Int(J) be arbitrary. Then Γ(y) is bounded. If Γ(y) ⊂
Int(J) was periodic, then there would be an equilibrium in Int(Γ(y)). But we clearly have
Int(Γ(y)) ⊂ Int(J), i.e. a contradiction to A = ∅. Hence we can apply Corollary 4.35 to
conclude w+(Γ(y)) ∪ w−(Γ(y)) ⊂ F −1({0}). Since A = ∅, we also have

Int(J) ∩ F −1({0}) = J ∩ F −1({0}) = {a}.

Thus we must have w+(Γ(y)) = w−(Γ(y)) = {a}.
If m = 2, we only have two definite directions and thus automatically y ∈ U . Note that
there exists only one global sector in this case. If m ≥ 3, we can apply Proposition 5.12 to
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conclude the existence of an unbounded orbit Γθ attached to a for all θ ∈ E(F, a). These
orbits separate the plane in disjoint connected sets all having a on its boundary. Since
Int(J) is connected, this set lies in exactly one of these connecting components between
two adjacent definite directions. This implies that there are no other possible definite
directions for Γ(y) in Int(J), i.e. y ̸∈ U . We conclude Int(Γ(x) ∪ {a}) ⊂ U .
Fix j ∈ {1, 2} and assume x ∈ U [j]. Let y ∈ Int(J) be again arbitrary. We have to show
y ∈ U [j]. If y ∈ Int(Γj), there is nothing to show, see the definition in Proposition 5.14.
If y ∈ Ext(Γj), we must have x ∈ Ext(Γj), i.e. y ∈ Int(J) \ Int(Γj). Set j̃ := 1 − j2, i.e.
{j̃} = {1, 2} \ {j}. If we had qj̃ ∈ Int(Γ(y) ∪ {a}), then we would get qj̃ ∈ Int(J), i.e.
x ∈ U [j̃]. This is a contradiction to U [1] ∩ U [2] = ∅, cf. Proposition 5.14. Since we also have
U = U [1] ∪ U [2], we conclude qj ∈ Int(Γ(y) ∪ {a}) and thus y ∈ U [j].

Remark 5.19
Proposition 5.18 shows the assertion stated in Remark 5.2 d). Moreover, it is now clear
why the global sectors are indeed a global point of view of (local) elliptic sectors, if the
order of the equilibrium is at least 3. If the order is 2, the two sector components can be
viewed as the global version of the (local) elliptic sectors. We summarize the following
results:
If m ≥ 3, for every elliptic sector exists a global sector having the elliptic sector as subset
and every orbit in a global sector forms an elliptic sector (or an elliptic region). The global
sector with its two unique boundary orbits near the equilibrium is unique. The elliptic
sector depends on the choice of the characterisic orbits and is not unique. The same holds
for m = 2, if we consider the two sector components of the unique global sector instead of
the 2m − 2 (cf. Theorem 4.24) global sectors.
Furthermore, we can now characterize, whether there exists a „global parabolic region“,
see in particular the remarks at the end of Example 4.28.
If the space near a ray with angle θ between two adjacent elliptic sectors without the
corresponding global sectors (the set A in the proof of Proposition 5.12) consists of exactly
one orbit Γ, then this orbit is the (common) boundary orbit of these two global sectors near
this ray. This orbit is unique and unbounded. In that case, there is no space left between
these two sectors and we do not have such a „global parabolic region“. For example,
this can be observed in Example 4.27. The boundary orbits (the rays) are the common
boundary orbits of any two adjacent global sectors.
If this set A, between two adjacent global sectors, consists of more than one orbit, then
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there does not exist a common boundary orbit. Note that the global sectors (with the
equilibrium) are connected and that the boundary orbits separate the plane in disjoint
connecting components. We have seen that there cannot be another global sector in this
set A. Hence, the space between these two boundary orbits is in some sense a „global
parabolic region“. The orbits in A tend only in one time direction to the equilibrium. For
example, this is the case in Example 4.28 near the ray on the negative ℜ-axis.

Theorem 5.20
Let F ∈ O(C) be entire and a ∈ C an equilibrium of (4.1) with order m ∈ N \ {1}.
Let θ+, θ− ∈ E(F, a) be two adjacent directions. If m ≥ 3, then U := Us(a, θ+, θ−) is
connected, path-connected and simply connected. If m = 2, then the sector components
of U are connected, path-connected and simply connected.

Proof
First, assume m ≥ 3. By Proposition 5.12, there exist two unbounded orbits Γ1, Γ2 ⊂ U
satisfying w+(Γ1) = w−(Γ2) = {a}. In addition, there exists an r > 0 and two points
p1 ∈ Γ1 ∩ ∂Br(a), p2 ∈ Γ2 ∩ ∂Br(a) such that

A := Br(a) ∩ ∂U = {a} ∪ Γ+(p1) ∪ Γ−(p2). (5.6)

Hence the set A looks like a (continuously deformed) “piece of cake„. This set is clearly
connected. Moreover, for all x ∈ U there exists a T > 0 such that Φ((−∞, −T ], x) ∪
Φ([T, ∞), x)} ⊂ A, i.e. every orbit in U reaches the set A for sufficiently large times and
stays there.
Suppose now there exists a separation (U, V ) of U . Since A is connected, we must have
either A ⊂ U , or A ⊂ V (but not both), cf. [11, Lemma 23.2]. Assume w.l.o.g. A ⊂ U .
Since V ̸= ∅, there exists a y ∈ V and a T > 0 such that Φ(T, y) ∈ A. Since Γ(y) is
connected, we conclude, by [11, Theorem 23.3], that also A ⊂ Γ(y) is connected, i.e. we
must have A ⊂ Γ(y) ⊂ U . This leads to the contradiction U ∩ V ̸= ∅. Thus there does
not exist a separation of U and U is connected.
Since U is open (cf. Theorem 5.6), we can apply [19, Proposition 12.25] to conclude the
path-connectedness of U . Constructing a path between two arbitrary points in U is not
straightforward. This is only possible, if we add the point a, cf. part (iii) of the proof of
Theorem 5.6.
Let L ⊂ U be a loop. For every x ∈ L the set Jx := Γ(x) ∪ {a} is a closed Jordan
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curve. Furthermore, by openness of U , for every x ∈ L there exists an r > 0 such that
Br(x) ⊂ U . Analogous to the argumentation at the end of the proof of Theorem 5.6 (i), by
the Jordan curve theorem, there exists a yx ∈ Ext(Jx) ∩ Br(x) satisfying Γ(x) ⊂ Int(Jyx)
and Jx ∩Jyx = {a}. Note that orbits (the equilibrium a included) cannot cross each other.
Hence we can use exactly the same idea as in the proof of Theorem 5.6 (i). One replaces
the periodic orbits Γ(yx), x ∈ U , by the curves Jyx , x ∈ U . Thus we can find a finite open
cover of L and a outermost curve J ⊂ U satisfying a ∈ J and L ⊂ Int(J). By Proposition
5.18, we have Int(J) ⊂ U , which is clearly simply connected. Hence L can be continuously
deformed to a point p ∈ L ⊂ U .
Second, assume m = 2. By Proposition 5.16, we can use the same argumentation for
U [1] and U [2] (instead of U). It follows that the two sector components of U are also
connected, path-connected and simply connected. For the path-connectedness, one uses
[19, Proposition 12.25] also in this case, since the construction of a specific path is not
straightforward.

5.3 Separatrices as boundary orbits of global
neighbourhoods

The last two sections laid the foundation for our third major result: Every orbit on the
boundary of a center or global sector is a so-called separatrix. The boundary of foci
and nodes consist of separatrices and equilibria with attached separatrices. This result is
proven by using the concept of transit times, which are introduced in the following.

Definition 5.21
Let Ω ⊂ C be an open domain and F ∈ O(Ω). Let Γ ⊂ Ω be an arbitrary orbit (not an
equilibrium) of (4.1) and a, b ∈ Γ.

a) The transit time τ(Γ) of Γ is defined as the Lebesgue measure of the maximum
interval of existence of Γ, i.e.

τ(Γ) := λ(I(x))

for an arbitrary x ∈ Γ. The definition does not depend on x. If I(x) ̸= R, we have
τ(Γ) = sup I(x) − inf I(x).
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b) The transit time τ(a, b) from a to b is defined by

τ(a, b) :=
∫

Γ(a,b)

1
F (z) dz.

In this notation Γ(a, b) is the piece of Γ from a to b parameterized as solution of
(4.1). Note that if z0 ∈ Γ, a = Φ(t1, z0) and b = Φ(t2, z0), then τ(a, b) = t2 − t1.
This follows from the definition of the complex line integral.

Lemma 5.22
Let Ω ⊂ C be an open domain, F ∈ O(Ω) and Γ ⊂ Ω an orbit of (4.1). Assume that Γ is
not periodic. Then

τ(Γ) = sup
x,y∈Γ

τ(x, y).

Proof
Fix x ∈ Γ. Since Γ is not periodic, the function φx : I(x) → Γ, φx(t) := Φ(t, x), is a
bijection. The inverse function is given by φ−1

x (y) = τ(x, y), y ∈ Γ.
By using this, for all y ∈ Γ there exists ty := τ(x, y) ∈ I(x) such that φx(ty) = y. Thus

τ(Γ) = λ(I(x)) ≥ λ ([0, |ty|]) = |τ(x, y)|.

Since x is arbitrary, we conclude the inequality

τ(Γ) ≥ sup
x,y∈Γ

τ(x, y).

Suppose, this inequality is strict and assume that τ(Γ) < ∞, i.e. the maximum interval
of existence of Γ is bounded in R. By assumption, there exists a ε > 0 such that for all
x, y ∈ Γ we have τ(Γ) − ε > τ(x, y) = φ−1

x (y). For fixed z ∈ Γ there are α < 0 and β > 0
such that I(z) = (α, β). Choose x := φz

(
α + ε

2

)
∈ Γ and x := φz

(
β − ε

2

)
∈ Γ. Since the

flow defines a dynamical system, we conclude the contradiction

φ−1
x (y) = φ−1

x (z) + φ−1
z (y) = −

(
α + ε

2

)
+ β − ε

2 = β − α − ε = τ(Γ) − ε > φ−1
x (y).

Thus such a ε does not exist and the inequality is not strict in the case τ(Γ) < ∞.
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5 Topological structure of global neighbourhoods and separatrices

Assume now τ(Γ) = ∞ and set

M := sup
x,y∈Γ

|τ(x, y)|.

By assumption, 0 ≤ M < ∞. Fix a x ∈ Γ. Since I(x) is unbounded and connected (it
is an interval), there exists t ∈ {M + 1, −(M + 1)} ∩ I(x) ̸= ∅. But now we cleary have
|τ(x, φx(t))| = |t| = M + 1 > M . Hence φx(t) ̸∈ Γ, which is a contradiction to the fact
that φx is a surjection. Thus M = ∞ and the above inequality is not strict also in this
case.

Lemma 5.23
Let F ∈ O(C) be entire, F ̸≡ 0, a ∈ C a center of (4.1) and Γ ⊂ ∂Uc(a) an arbitrary
orbit on the boundary of a. Fix x, y ∈ Γ with τ(x, y) > 0 and ε > 0. Then there exists a
δ ∈ (0, ε] such that Bδ(x) ∩ Bδ(y) = ∅ and for all orbits Λ ⊂ Uc(a) satisfying Bδ(x) ∩ Λ ̸= ∅
and Bδ(y) ∩ Λ ̸= ∅ it hold for all x′ ∈ Bδ(x) ∩ Λ and y′ ∈ Bδ(y) ∩ Λ the inequalities

|τ(x′, y′) − τ(x, y)| < ε (5.7)

and

|Φ(t, x) − Φ(t, x′)| < ε ∀ t ∈ [0, τ(x, y)]. (5.8)

Furthermore, if Bδ(x)∩Λ ̸= ∅ and Bδ(y)∩Λ ̸= ∅, then Bδ(x)∩Γ(z) ̸= ∅ and Bδ(y)∩Γ(z) ̸= ∅
for all z ∈ Ext(Λ) ∩ Uc(a).

Proof
Set K := Γ(x, y) ⊂ ∂Uc(a) as the curve piece of the orbit Γ from x to y. Since K is
compact and F ̸≡ 0, we have

ε0 := inf {dist(K, b) : F (b) = 0}
2 > 0.

Note that the zeros of F cannot lie arbitrarily close to K, see also the argumentation in
the proof of Proposition 4.6.
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Choose ε0 ∈ (0, ε0) sufficiently small and set

O :=
⋃

ξ∈K

Bε0(ξ)

as a small simply connected open neighbourhood of K. The set O looks like an „elongated
tube“ away from the zeros of F . It is homeomorphic to a rectangle in C, if ε0 is sufficiently
small. In addition, K is not periodic and thus homeomorphic to a compact interval in
R. Hence O is indeed simply connected. With this choice, F has no zeros on O and
F −1 ∈ O(O).
Furthermore, we find a δ1 > 0 such that Bδ1(x) ∩ Bδ1(y) = ∅. Note that x ̸= y, since
τ(x, y) ̸= 0. By the continuous dependence on initial conditions, [9, Chapter 2.4, Theorem
4], there exists a δ2 > 0 such that |Φ(t, z) − Φ(t, x)| < min{ε, ε0} for all t ∈ [0, τ(x, y)] and
z ∈ Bδ2(x). Define M := min

z∈O
|f(z)| > 0. Then the number

δ := min
{

ε, ε0, δ1, δ2,
Mε

2

}
> 0.

is sufficiently small for our assertions. In fact, let Λ ⊂ Uc(a) be an arbitrary periodic orbit
with a in its interior such that Bδ(x) ∩ Λ ̸= ∅ and Bδ(y) ∩ Λ ̸= ∅. Let x′ ∈ Bδ(x) ∩ Λ
and y′ ∈ Bδ(y) ∩ Λ be arbitrary. Then equation (5.8) is already satisfied, since δ ≤ δ2.
Set K̃ := Λ(x′, y′) ⊂ ∂Uc(a) as the curve piece of the orbit Λ from x′ to y′. Let Ξ1

be the convex combination (straight connection line) of x and x′. Let Ξ2 be the convex
combination of y′ and y. Since δ ≤ δ2, these convex combinations lie both in Bδ(x) and
Bδ(y), respectively. Note that balls in C are always convex with respect to the Euclidean
metric. By construction and the choice of δ2, the path Ξ := Ξ1 + K̃ + Ξ2 + K is a closed
Jordan curve lying completely in O. Since O is simply connected, Ξ is null-homotopic in
O. By applying Definition 5.21 and the homotopy version of Cauchy’s Integral Theorem,
we conclude

τ(x′, y′) − τ(x, y) =
∫
K̃

F −1 dz −
∫
K

F −1 dz =
∫
Ξ

F −1 dz

︸ ︷︷ ︸
=0

−
∫
Ξ1

F −1 dz −
∫
Ξ2

F −1 dz

and thus

|τ(x′, y′) − τ(x, y)| =

∣∣∣∣∣∣
∫
Ξ1

F −1 dz +
∫
Ξ2

F −1 dz

∣∣∣∣∣∣ ≤ |x − x′|
M

+ |y − y′|
M

<
2δ

M
≤ Mε

M
= ε.
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This proves equation (5.7).
Moreover, let z ∈ Ext(Λ) ∩ Uc(a) be arbitrary. Then K ⊂ Ext(Γ(z)) and K̃ ⊂ Int(Γ(z)).
Since Ξ is periodic and path-connected (as subset of C), there must exist two points
p1, p2 ∈ Γ(z) ∩ (Ξ1 ∪ Ξ2). Since a ∈ Int(Γ(z)) and ∂Uc(a) ⊂ Ext(Γ(z)), p1 and p2 do not
lie both on Ξ1 or Ξ2, i.e. w.l.o.g. p1 ∈ Ξ1 and p2 ∈ Ξ2. Since Ξ1 ⊂ Bδ(x) and Ξ2 ⊂ Bδ(y),
we have p1 ∈ Bδ(x) ∩ Γ(z) ̸= ∅ and p2 ∈ Bδ(y) ∩ Γ(z) ̸= ∅.

Lemma 5.24
Let F ∈ O(C) be entire, F ̸≡ 0 and a ∈ C an equilibrium of (4.1) with order m ∈ N\ {1}.
Assume that either a is a node/focus or m ≥ 2. Let U be the global neighbourhood,
a global sector (with definite directions θ+, θ− ∈ E(F, a) in the case m ≥ 3) or a sector
component (in the case m = 2). Let Γ ⊂ ∂U be an arbitrary orbit of (4.1) not being an
equilibrium. Fix x, y ∈ Γ with τ(x, y) > 0 and ε > 0. Then there exists a δ ∈ (0, ε] such
that Bδ(x) ∩ Bδ(y) = ∅ and for all orbits Λ ⊂ Us(a, θ+, θ−) satisfying Bδ(x) ∩ Λ ̸= ∅ and
Bδ(y) ∩ Λ ̸= ∅ it hold for all x′ ∈ Bδ(x) ∩ Λ and y′ ∈ Bδ(y) ∩ Λ the inequalities

|τ(x′, y′) − τ(x, y)| < ε (5.9)

and

|Φ(t, x) − Φ(t, x′)| < ε ∀ t ∈ [0, τ(x, y)]. (5.10)

Proof
The proof of this Lemma is equal to the proof of Lemma 5.23 with obvious changes. By
Theorem 5.8, it is indeed possible in this case that we have equilibria on the boundary of
U . The assumption that Γ is not an equilibrium ensures ε0 > 0. In particular, Γ ̸= {a} in
the case m ≥ 2. Finally, the same δ is sufficiently small such that the equations (5.9) and
(5.10) hold. For a proof one uses also the homotopy version of Cauchy’s Integral Theorem
for a suitably constructed null-homotopic curve.
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Proposition 5.25
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and a ∈ Ω a center of (4.1).
Let Γ ⊂ Uc(a) be a periodic orbit of (4.1) with a ∈ Int(Γ). Then the period T of Γ is
equal to 2πi

F ′(a) . In particular, T does not depend on the chosen orbit Γ.

Proof
The period T is the transit time over one trip around Γ. We calculate

T =
∫
Γ

1
F (z) dz = 2πi Res

( 1
F

, a
)

= 2πi lim
z→a

z − a

F (z) = 2πi
limz→a

F (z)−F (a)
z−a

= 2πi
F ′(a) .

In the penultimate transformation we used F (a) = 0 and F ′(a) ̸= 0, cf. Corollary 4.25.

Definition 5.26
Let Ω ⊂ C be a simply connected open domain, F ∈ O(Ω) and a ∈ Ω a center of (4.1).
Then the period T (a) of a is defined as the period of an arbitrary orbit in Uc(a), i.e.
T (a) := 2πi

F ′(a) . By Proposition 5.25, this number is well-defined.

Definition 5.27
Let F ∈ O(C) be an entire vector field, Γ an arbitrary orbit of (4.1) and x0 ∈ Γ. If
I(x0) ∩ [0, ∞) ⊂ R is bounded, Γ is called a positive separatrix. If I(x0) ∩ (−∞, 0] ⊂ R is
bounded, Γ is called a negative separatrix. Γ is a separatrix, if it is a positive or negativ
separatrix.

Remark 5.28

a) Whether an orbit is a separatrix or not, does not depend on the chosen point x0 in
Definition 5.27. In fact, the boundedness of the maximum interval of existence is
independent of the chosen point on the orbit.

b) Every separatirx must be unbounded and forms a blow-up. In fact, the vector field
is entire and the maximum interval of existence is bounded in at least one time
direction. Hence, the orbit cannot be bounded in this unbounded time direction, cf.
Remark 3.3. Note that ∂C = ∅.
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c) The definition of separatrix lacks consistency in the literature. For our complex
analytic case, Definition 5.27 is suitable. Generally, separatrices are known as the
specific orbits forming the boundary between two regions with different geometry
and topology. As we will demonstrate later in this chapter, our definition aligns with
this commonly accepted notion. A more detailed analysis of this topic and the term
„separatrix“ can be found in [20, Chapter II] and [9, Chapter 3.11]. Additionally, in
[1, Chapter 1.9], the author introduces the definition of different types of sectors (cf.
Definition 4.14) and describes the separatrices as the boundaries of these sectors.

Lemma 5.29
Let F ∈ O(C) be an entire vector field and Γ an arbitrary orbit of (4.1). Then it holds:

a) Γ is a positive and negative separatrix if and only if τ(Γ) < ∞.

b) Γ is a positive separatrix if and only if there exists a x ∈ Γ such that

sup
y∈Γ+(x)

τ(x, y) < ∞.

c) Γ is a negative separatrix if and only if there exists a x̃ ∈ Γ such that

sup
y∈Γ−(x̃)

τ(x̃, y) > −∞.

Proof
The Lebesgue measure of an interval in R is finite if and only if it is bounded. Hence, the
last assertion follows directly by Definition 5.27.
The proof of the first and second assertion works with the same argumentation as in the
proof of Lemma 5.22 with obvious changes. Note that only these y ∈ Γ are relevant, where
τ(x, y) > (<) 0, if we want to show the assertion for positive (negative) separatrices.

Lemma 5.30
Let Ω ⊂ C be an open domain and F ∈ O(Ω), F ̸≡ 0. Then the set A := {Γ(x) : x ∈ Ω}
of all orbits of (4.1) in Ω is countable.
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Proof
At first, note that A is a set of sets. For all x ∈ Ω and y ∈ Γ(x) we have Γ(x) = Γ(y) ⊂ Ω.
Define the set

Ã :=
{
Γ(x) : x ∈ Ω ∩ Q2

}
∪
{
{a} : a ∈ F −1({0})

}
.

Since F ̸≡ 0, there exist at most countably many equilibria in Ω. Furthermore, Q2 is
countable. Hence Ã is countable as union of two countable sets. It remains to show that
A = Ã.
Since Ω ∩ Q2 ⊂ Ω, the first subset relation Ã ⊂ A is obvious. For the second relation,
let Γ ∈ Ã and suppose that Γ ̸∈ Ã. In particular, this implies Γ ⊂ Ω ∩ (R \ Q)2. Let
πj(Γ) be the projection of Γ onto the the jth coordinate, j ∈ {1, 2}. Since πj is continuous
and Γ is connected, we can apply [11, Theorem 23.5] to conclude that πj(Γ) must also be
connected, j ∈ {1, 2}. But for all j ∈ {1, 2} the set πj(Γ) ⊂ R \ Q is only connected, if
πj(Γ) consists of only one point. Hence there exists a point a ∈ Ω such that Γ = {a}.
This implies that Γ must be an equilibrium and a ∈ F −1({0}), i.e. Γ ∈ Ã. This is a
contradiction.

Theorem 5.31 (Separatrix configuration on the boundary of centers)
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C a center of (4.1). Then the boundary of a

consists of at least countably many separatrices, i.e. there exists a index set Q ⊂ N and
separatrices Cn ⊂ ∂Uc(a), n ∈ Q, such that

∂Uc(a) =
⋃

n∈Q
Cn.

Furthermore, the sum of the transit times on the boundary is bounded by the period of
a. More precisely,

∑
n∈Q

τ(Cn) ≤ T (a) = 2πi
F ′(a) . (5.11)

In particular, every orbit on the boundary of a is a positive and negative separatrix.
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Proof
The basic idea follows the proof of [3, Theorem 4.1, step 2].
If ∂Uc(a) = ∅, nothing is to show. So assume that the boundary of a is not empty. Then
Proposition 5.4 ensures that the boundary of a is the union of orbits (without equilibria).
By Lemma 5.30, these orbits can be indexed by a set Q ⊂ N, i.e. the boundary of a consists
of orbits Cn, n ∈ Q. By Theorem 5.8, these orbits are unbounded. In the following, we
proof that they are even positive and negative separatrices. Actually, this result already
implies Theorem 5.8. For this implication one uses [9, Chapter 2.4, Theorem 2].
Let n ∈ Q, ε > 0 and x, y ∈ Cn with τ(x, y) > 0 be fixed. The last condition is possible,
since there are no equilibria on ∂Uc(a), cf. Proposition 5.5. By Lemma 5.23, there exists
a δ ∈ (0, ε] such that for all orbits Λ ⊂ Uc(a) satisfying Bδ(x) ∩ Λ ̸= ∅ and Bδ(y) ∩ Λ ̸= ∅
it holds that

|τ(x′, y′) − τ(x, y)| < ε ∀ x′ ∈ Bδ(x) ∩ Λ, ∀ y′ ∈ Bδ(y) ∩ Λ.

By the continuous dependence on initial conditions, [9, Chapter 2.4, Theorem 4], there
exists a δ̃ ∈ (0, δ] such that |Φ(τ(x, y), z) − y| < δ for all z ∈ Bδ̃(x). Since x lies on the
boundary of a, there exists indeed a point z0 ∈ Bδ̃(x) ∩ Uc(a), i.e. for Λ := Γ(z0) ⊂ Uc(a),
x′ := z0 ∈ Bδ(x) and y′ := Φ(τ(x, y), z0) ∈ Bδ(y) we can apply Lemma 5.23. Since Cn

is unbounded, it cannot be periodic and thus τ(x′, y′) ≤ T (a), cf. Proposition 5.25. We
conclude

|τ(x, y)| ≤ |τ(x′, y′)| + |τ(x, y) − τ(x′, y′)| ≤ T (a) + ε.

Since x and y are arbitrary, it follows by Lemma 5.22

τ(Cn) = sup
x,y∈Cn

τ(x, y) ≤ sup
x,y∈Cn

|τ(x, y)| ≤ sup
x,y∈Cn

T (a) + ε = T (a) + ε

Since ε is arbitrary, we get τ(Cn) ≤ T (a) < ∞, i.e. Cn is a positive and negative separatrix,
cf. Lemma 5.29. And since n is arbitrary, we have proven that the boundary of a consists
only of separatrices.
It remains to show equation (5.11). In the proof of [3, Theorem 4.1] are many inaccuracies
and some mistakes. In particular, it is not ensured that the δi in this proof are small
enough such that the sum of the transit times on the outermost „approximating“ periodic
orbit is indeed bounded by the period of a. Because of this, the following proof is modified
and made by myself.
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Fix ε̃ > 0, N ∈ N \ {1} and Q̃ ⊂ Q with |Q̃| = N , i.e. we fix N ≥ 2 pairwise disjoint
separatrices Cn, n ∈ Q̃. Fix for all n ∈ Q̃ points xn, yn ∈ Cn such that τ(xn, yn) > 0. Set
Kn := Cn(xn, yn), n ∈ Q̃, and

ε0 := min
i,j∈Q̃

dist(Ki, Kj) > 0.

Note that every metric space (like the Euclidean C in our case) satisfies the normality
axiom7, cf. [11, Theorem 32.2], i.e. closed disjoint sets can be separated from each other
by open sets. Because of this, we indeed have ε0 > 0.
For fixed n ∈ Q̃ and ε := min

{
ε0
4 , ε̃

N

}
we can use our above result: There exist δn ∈ (0, ε],

a orbit Λn ⊂ Uc(a) and points x′
n ∈ Bδn(xn) ∩ Λn and y′

n ∈ Bδn(y) ∩ Λn such that Lemma
5.23 can be applied. Since N < ∞, we can apply equation (5.2) to conclude the existence
of a n0 ∈ Q̃ such that Λn0 is the outermost orbit, i.e. Λn ⊂ Int(Λn0) ⊂ Uc(a) for all n ∈ Q̃.
By applying the last result in Lemma 5.23, for all n ∈ Q̃ one can even find two points
x′

n ∈ Bδn(xn) ∩ Λn0 and y′
n ∈ Bδn(y) ∩ Λn0 such that Lemma 5.23 can be applied, i.e. the

equations (5.7) and (5.8) hold.
Set K̃n := Λn0(x′

n, y′
n) and suppose that there exist two indices i, j ∈ Q̃ such that K̃i∩K̃j ̸=

∅. Then {x′
i, y′

i} ∩ K̃j ̸= ∅. Assume x′
i ∈ K̃j. The case y′

i ∈ K̃j can be proven in the same
way. Set t := τ(x′

j, x′
i) > 0 and η1 := Φ(t, xj) ∈ Kj. Then we can use equation (5.8) to

conclude

dist(x′
i, Kj) ≤ |η1 − x′

i| = |Φ(t, xj) − Φ(t, x′
j)| < ε ≤ ε0

4 .

Set η2 := Φ(t, xi) ∈ Ki. Again by equation (5.8), we have

dist(x′
i, Ki) ≤ |η2 − x′

i| = |Φ(t, xi) − Φ(t, x′
i)| < ε ≤ ε0

4 .

By the choice of ε0, both inequalities lead then to the contradiction

ε0 ≤ dist(Ki, Kj) ≤ dist(x′
i, Kj) + dist(x′

i, Ki) = ε0

4 + ε0

4 = ε0

2 .

Thus K̃i ∩ K̃j = ∅ and (cf. Proposition 5.25)

∑
n∈Q̃

τ(x′
n, y′

n) ≤ τ(Λn0) ≤ T (a).

7In the context of topological separation theory and T -spaces this property is sometimes also-called the
T4-axiom.
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By equation (5.7), it follows

∑
n∈Q̃

τ(xn, yn) ≤
∑
n∈Q̃

|τ(x′
n, y′

n)| + |τ(xn, yn) − τ(x′
n, y′

n)|︸ ︷︷ ︸
< ε̃

N

< T (a) + Nε̃

N
= T (a) + ε̃.

Since xn and yn, n ∈ Q̃, are arbitrary, it follows by Lemma 5.22

∑
n∈Q̃

τ(Cn) =
∑
n∈Q̃

sup
xn∈Cn
yn∈Cn

τ(xn, yn) = sup

∑
n∈Q̃

τ(xn, yn) : xn, yn ∈ Cn ∀ n ∈ Q̃

 ≤ T (a) + ε̃

In the second equality we used the fact that for all n ∈ Q̃ the number τ(xn, yn) does not
depend on the choice of xm, ym ∈ Cm, m ∈ Q̃ \ {n}.
Since ε̃ and N are arbitrary, we conclude equation (5.11) for finite index sets. A priori, if Q
is countable (and not finite), the sum of the transit times could depend on the summation
order. Let QN be the set of the first N indices in Q and define

µN :=
∑

n∈QN

τ(Cn).

Then (µN)N∈N ⊂ [0, T (a)] is bounded and strictly monotonously increasing, since transit
times of orbits are always positive. Thus there exists a µ ∈ [0, T (a)] such that µN → µ for
N → ∞. Since all terms of this series are positive, this convergence is absolute. Hence,
by the Levy-Steinitz theorem, the value of the series does not depend on the summation
order and the notation in (5.11) is indeed well-defined. Finally, we conclude

∑
n∈Q

τ(Cn) = lim
N→∞

µN = µ ≤ T (a).

We summarize, that the choice of ε and ε0 ensures the correctness of [3, Theorem 4.1].

Theorem 5.32 (Separatrix configuration on the boundary of nodes and foci)
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C a node or focus of (4.1). Assume that ∂Un(a)∩
F −1({0}) does no have isolated points in ∂Un(a), i.e. for all ã ∈ ∂Un(a)∩F −1({0}) and all
ρ > 0 it holds that (Bρ(ã) ∩ ∂Un(a)) \ {ã} ̸= ∅. Then the path-connecting components of
∂Un(a) can be indexed by a at most countable index set Q ⊂ N, i.e. the path-connecting
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components {Cn}n∈Q satisfy

∂Un(a) =
⋃

n∈Q
Cn. (5.12)

Furthermore, for all n ∈ Q the set Cn ⊂ ∂Un(a) is of one of the following types:

(i) The set Cn consists of exactly one equilibrium an and one attached separatrix C [1]
n .

This separatrix is positive (negative) if and only if a is stable (unstable).

(ii) The set Cn consists of exactly one equilibrium an and two attached separatrices C [1]
n

and C [2]
n . Both separatrices are positive (negative) if and only if a is stable (unstable).

(iii) The set Cn consists of exactly one separatrix C [1]
n . This separatrix is positive (nega-

tive) if and only if a is stable (unstable).

Proof
In the following, many ideas and arguments are similar to these in the proof of Theorem
5.31. The basic idea follows the proof of [3, Theorem 4.3, step 6].
By Theorem 5.8 and Lemma 5.30, the boundary of a consists of at least countably many
unbounded orbits and countably many nodes and foci. Since all orbits are clearly path-
connected, the number of path-connecting components of ∂Un(a) does not exceed the
number of all orbits and equilibria in C. This proves the existence of a at most countable
index set Q ⊂ N such that the path-connecting-components {Cn}n∈Q indeed satisfy equa-
tion (5.12).
From now on, assume that a is stable. The unstable case can be proven analogously by
reversing the direction of time. Let n ∈ Q be arbitrarily fixed.
First, assume that there exists an equilibrium an ∈ Cn. Since a is stable, an ∈ ∂Un(a) must
be unstable, i.e. an is reached with negative time. Since all orbits in Cn attached to an are
unbounded, there cannot be heteroclinic orbits, i.e. an must be the only equilibrium in
Cn. In addition, since orbits cannot cross each other, all orbit in Cn must be attached to
Cn. Suppose that there are at least three unbounded orbits lying on ∂Un(a) and reaching
an with t → −∞. Since the Jordan curve theorem holds also on S2 (cf. [11, Lemma 61.1]),
these orbits separate C in exactly three unbounded nonempty connecting components. In
addition, Un(a) is connected (cf. Theorem 5.6), i.e. lies in exactly one of these connecting
components. But now at least one of these three unbounded orbits does not lie on the
boundary of a. This is a contradiction. Since ∂Un(a) ∩ F −1({0}) does no have isolated
points in ∂Un(a), this case corresponds to (i) and (ii).
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5 Topological structure of global neighbourhoods and separatrices

Second, assume that Cn ∩ F −1({0}) = ∅, i.e. there are no equilibria in Cn. Since orbits
cannot cross each other, Cn ̸= ∅ must consist of exactly one unbounded orbit. This leads
to (iii). Thus is remains to show that the orbits in the cases (i), (ii) and (iii) are not only
unbounded, but even separatrices.
Assume that Cn is of type (i), i.e. Cn = {an} ∪ C [1]

n , where an is an unstable node or focus
and C [1]

n ⊂ ∂Un(a) an unbounded orbit satisfying w−(C [1]
n ) = {an}. We have to show that

C [1]
n is a positive separatrix. Choose r1, r2 > 0 small enough such that B2r1(a) ⊂ Un(a),

Br2(an) ∩ F −1({0}) = ∅, Br1(a) ∩ Br2(an) = ∅, w+(Γ(z1)) = {a} for all z1 ∈ Br1(a) and
w+(Γ(z2)) = {an} for all z2 ∈ B2r2(z2), cf. Definition 4.1. Moreover, assume that r1 and r2

are sufficiently small such that Br1(a) and Br2(an) are positively and negatively invariant,
respectively. Set

b1 := min {|F (z)| : z ∈ ∂Br1(a)} > 0

and

b2 := min {|F (z)| : z ∈ ∂Br2(an)} > 0.

Since an ∈ ∂Un(a), there exists a z2 ∈ Un(a) ∩ Br2(an) ̸= ∅. Set Ξ := Γ(z2). Then Ξ is a
heteroclinic orbit connecting an and a, i.e. w+(Ξ) = {a} and w−(Ξ) = {an}. In particular,
there exist points p1 ∈ Ξ ∩ ∂Br1(a) ̸= ∅ and p2 ∈ Ξ ∩ ∂Br2(an) ̸= ∅. Define the number

M := τ(p2, p1) + 2π
b2r1 + b1r2

b1b2
> 0.

Choose x ∈ ∂Br2(an) ∩ C [1]
n ̸= ∅ and let y ∈ Γ+(x) \ {x} be arbitrary. We will show

that τ(x, y) ≤ M . Let ε ∈ (0, min{r1, r2}) be arbitrary. By Lemma 5.24, there exists a
δ ∈ (0, ε] such that Bδ(x) ∩ Bδ(y) = ∅ and for all orbits Λ ⊂ Un(a) satisfying Bδ(x) ∩ Λ ̸= ∅
and Bδ(y) ∩ Λ ̸= ∅ it holds that

|τ(x′, y′) − τ(x, y)| < ε ∀ x′ ∈ Bδ(x) ∩ Λ, ∀ y′ ∈ Bδ(y) ∩ Λ. (5.13)

and

|Φ(t, x) − Φ(t, x′)| < ε ∀ t ∈ [0, τ(x, y)]. (5.14)

By the continuous dependence on initial conditions, [9, Chapter 2.4, Theorem 4], there
exists a δ̃ ∈ (0, δ] such that |Φ(τ(x, y), z)−y| < δ for all z ∈ Bδ̃(x). Since x ∈ ∂Un(a), there
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5 Topological structure of global neighbourhoods and separatrices

exists indeed a point z0 ∈ Bδ̃(x) ∩ Un(a) ∩ ∂Br2(an).8 Hence, by choosing Λ := Γ(z0) ⊂
Un(a), x′ := z0 ∈ Bδ(x) and y′ := Φ(τ(x, y), z0) ∈ Bδ(y), we can apply the above result
and have the property z0 ∈ B2r2(an) ∩ Un(a), i.e. Λ is also a heteroclinic orbit connecting
an and a. In particular, there exists a point p̃ ∈ ∂Br1(a) ∩ Λ ̸= ∅.
Let Λ1 be the piece of ∂Br1(a) connecting p̃ with p1 and Λ2 be the piece of ∂Br2(an)
connecting p2 with x′. For both curves, there are two possible directions (clockwise and
counterclockwise). The direction of Λ1 does not matter, since both pieces lie completely
in Un(a). We choose the direction of Λ2 in such a way that x ̸∈ Λ2, i.e. Λ2 ⊂ Un(a).
We conclude, by construction, that Λ̃ := Λ + Λ1 − Ξ + Λ2 is a closed Jordan-Curve lying
completely in Un(a). Moreover, since B2r1(a) ⊂ Un(a) and |y − y′| ≤ ε < r1, we have
y′ ∈ Λ. Note that we ensure this without the radius r1 depending on the choice of y. By
Theorem 5.10, Un(a) is simply connected and thus Λ̃ is null-homotopic in Un(a). By the
homotopy version of Cauchy’s Integral Theorem, we conclude the estimation

τ(x′, y′) ≤ τ(x′, p̃) =
∫
Λ

F −1 dz =
∫
Λ̃

F −1 dz

︸ ︷︷ ︸
=0

−
∫

Λ1

F −1 dz +
∫
Ξ

F −1 dz −
∫

Λ2

F −1 dz

≤ |τ(p1, p2)| + L(Ξ1) max
z∈∂Br1 (a)

1
|F (z)|︸ ︷︷ ︸

≤b−1
1

+L(Ξ2) max
z∈∂Br2 (an)

1
|F (z)|︸ ︷︷ ︸

≤b−1
2

≤ τ(p2, p1) + 2πr1

b1
+ 2πr2

b2
= M .

and thus

τ(x, y) ≤ |τ(x′, y′)| + |τ(x, y) − τ(x′, y′)| ≤ M + ε.

Here we used that Λ1 ⊂ ∂Br1(a) and Λ2 ⊂ ∂Br2(an) imply L(Λ1) ≤ 2πr1 and L(Λ2) ≤ 2πr2,
respectively, where L(Λj) is the length of Λj, j ∈ {1, 2}. Since y and ε are arbitrary, it
follows

sup
y∈Γ+(x)

τ(x, y) ≤ sup
y∈Γ+(x)

M = M < ∞.

Note that M does not depend on the choice of ε and y. By Lemma 5.29, we conclude that
C [1]

n is indeed a positive separatrix.

8The property z0 ∈ ∂Br2(an) can be ensured, if we choose x ∈ ∂Br2(an) ∩ C
[1]
n in such a way that for all

ρ ∈ (0, r2) we have (Bρ(x) ∩ ∂Br2(an)) \ C
[1]
n ̸= ∅. This can be ensured, if r2 is small enough.

87



5 Topological structure of global neighbourhoods and separatrices

If Cn is of type (ii), we can use this argument twice, once for C [1]
n and once for C [2]

n . Hence
it remains to show, that the orbit C [1]

n is a positive and negative separatrix, if Cn is of type
(iii).
Since we do not have a second equilibrium lying on Cn, we have do modify our above
argument. As in our above argumentation, there exists an r > 0 such that B2r(a) ⊂ Un(a)
and w+(Γ(z)) = {a} for all z ∈ Br(a). Fix x ∈ C [1]

n and let y ∈ Γ+(x) \ {x} be arbitrary.
Set

ε0 := inf {dist (B2r(a), ζ) : ζ ∈ Cn} > 0.

Choose a transversal L through x with length ℓ < ε0, cf. [7, Bemerkung 9.1.2, 1.]. Since
x ∈ ∂Un(a), there exists a p2 ∈ L ∩ Un(a) ̸= ∅. By the choice of ε0, there exists a
p1 ∈ Γ+(p2) ∩ ∂Br(a). Let ε ∈ (0, ℓ) be arbitrary. As in our above argumentation, there
exist δ ∈ (0, ε] and z0 ∈ Bδ(x)∩Un(a)∩L such that we can apply Lemma 5.24 by choosing
Λ := Γ(z0) ⊂ Un(a), x′ := z0 ∈ Bδ(x) and y′ := Φ(τ(x, y), z0) ∈ Bδ(y), i.e. the equations
(5.9) and (5.10) are satisfied. In particular, there exists a point p̃ ∈ Γ+(z0) ∩ ∂Br(a).
Let Λ1 be the piece of ∂Br1(a) connecting p̃ with p1 and Λ2 be the piece of L connecting
p2 with x′. The direction of Λ1 does not matter and the direction of Λ2 is already unique,
since L is a straight line. Again by construction, the curve Λ̃ := Λ+Λ1 −Ξ+Λ2 is a closed
Jordan-Curve lying completely in Un(a). Hence we can use exactly the same argument as
above. The upper bound is in this case given by

M := τ(p2, p1) + 2πr

b1
+ ℓ

b2

with b1 := min {|F (z)| : z ∈ ∂Br(a)} > 0 and b2 := min {|F (z)| : z ∈ L} > 0. Note that
F −1({0}) ∩ L = ∅, cf. [7, Bemerkung 9.1.2, 2.]. Our bound M does not depend on the
choice of ε and y also in this case. Since y and ε are arbitrary, we conclude again, by
applying Lemma 5.29, that C [1]

n is a positive separatrix.

Remark 5.33

a) There are several possibilities to connect the chosen „approximating“ orbit Λ with
Ξ by a curve lying completely in the simply connected set Un(a). I used only two
geometric objects: The boundary of circles and straight lines (transversals). If the
length is small enough, one could also use transversals also for type (i) in Theorem
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5 Topological structure of global neighbourhoods and separatrices

5.32. Using circles for type (iii) is more difficult, since we have no information about
the behavior of the orbits lying outside of Un(a) and going through this circle. The
boundary orbit may belong to the boundary of a center, an elliptic sector, or to other
as yet unknown geometric structures. Note that the global neighbourhoods are the
maximum extent of influence of an equilibrium.

b) In [3, Theorem 4.3], the author additionally claims that the separatrix in case (iii)
in Theorem 5.32 is positive as well as negative, independent of the stability of a.
But he does not provide a proof of this result. In fact, it is not straightforward to
modify the last part of our proof to show the same property for y ∈ Γ−(x). Note
that Λ tends only for exactly one time direction to the equilibrium a.

Example 5.34
In this example we want to visualize the results of Theorem 5.32. Define the polynomial
F : C → C by F (x) := x2 − 1 = (x − 1)(x + 1), F ∈ O(C). This is a polynomial of degree
2 having two zeros a± := ±1 of order m := 1. These zeros are both nodes, this can be
proven by applying Theorem 4.3.
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Figure 5.1: Phase portrait of system (4.1) with F (x) = x2 − 1
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5 Topological structure of global neighbourhoods and separatrices

We verify that the boundary configuration of both equilibria satisfies in this case Q = {1}.
Moreover, we have ∂Un(1) = {−1} ∪ (−∞, −1) and ∂Un(−1) = {1} ∪ (1, ∞), respectively.
Hence the boundary orbit is in both cases the green straight line lying on the other side
of the ℜ-axis. By Theorem 5.32, we conclude, that the green orbits are separatrices.

Theorem 5.35 (Separatrix configuration on the boundary of global sectors)
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C an equilibrium of (4.1) with order m ∈
N \ {1, 2}. Let θ+, θ− ∈ E(F, a) be two arbitrary adjacent directions. Then the boundary
of a with respect to θ := (θ+, θ−) consists of a, two characteristic unbounded separatrices
Γ1, Γ2 satisfying w+(Γ1) = w−(Γ2) = {a} and at least countably many separatrices, i.e.
there exists a index set Q ⊂ N and separatrices Cn ⊂ ∂Us(a, θ), n ∈ Q, such that

∂Us(a, θ) = {a} ∪ Γ1 ∪ Γ2 ∪
⋃

n∈Q
Cn. (5.15)

In particular, Γ1 is a negative and Γ2 is a positive separatrix. Furthermore, for every
n ∈ Q the orbit Cn is a positive and negative separatrix.

Proof
In the following, many ideas and arguments are similar to these in the proof of Theorem
5.31. The basic idea follows the proof of [3, Theorem 4.2, step 8].
As in the proof of Theorem 5.31, we can indeed find a countable index set Q such that
(5.15) holds. In particular, equation (5.3) ensure that Γ1 and Γ2 exist and are unique. It
remains to show that Γ1 is a negative, Γ2 a positive and for every n ∈ Q the orbit Cn a
positive and negative separatrix.
By Proposition 5.12, there exists r > 0 and p1, p2 ∈ ∂Br(a) such that (5.3) holds. In
particular, in ∂Us(a, θ) ∩ Br(a) there are no other unbounded orbits than Γ1 and Γ2 and
we have Br(a) ∩ F −1({0}) = {a}. Set

b := min
{
|F (z)| : z ∈ ∂B r

2
(a)
}

> 0.

Note that z 7→ |F (z)| is continuous and ∂B r
2
(a) compact. By Lemma 5.29, for the first

two assertions it remains to show that

sup
y∈Γ−(p1)

τ(p1, y) > −∞
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5 Topological structure of global neighbourhoods and separatrices

and

sup
y∈Γ+(p2)

τ(p2, y) < ∞.

Let y ∈ Γ+(p2) \ {p2} and ε ∈ (0, r
2) be arbitrary. The argument for Γ−(p1)) is analogous,

one only has to switch the time direction. By Lemma 5.24, there exists a δ ∈ (0, ε] such
that Bδ(p2) ∩ Bδ(y) = ∅ and for all orbits Λ ⊂ Us(a, θ) satisfying Bδ(p2) ∩ Λ ̸= ∅ and
Bδ(y) ∩ Λ ̸= ∅ it holds that

|τ(x′, y′) − τ(p2, y)| < ε ∀ x′ ∈ Bδ(p2) ∩ Λ, ∀ y′ ∈ Bδ(y) ∩ Λ.

By the continuous dependence on initial conditions, [9, Chapter 2.4, Theorem 4], there
exists a δ̃ ∈ (0, δ] such that |Φ(τ(p2, y), z) − y| < δ for all z ∈ Bδ̃(x). Since p2 ∈ ∂Us(a, θ),
there exists indeed a point z0 ∈ Bδ̃(p2) ∩ Us(a, θ), i.e. for Λ := Γ(z0) ⊂ Uc(a), x′ := z0 ∈
Bδ(x) and y′ := Φ(τ(p2, y), z0) ∈ Bδ(y) we can apply the above result.
Since δ ≤ ε ≤ r

2 , we have x′, y′ ̸∈ B r
2
(a), i.e. Λ crosses ∂B r

2
(a) at two points p̃1 and

p̃2 such that Λ(x′, y′) ⊂ Λ(p̃1, p̃2). Here we use the properties (iii) and (iv) of Definition
4.14 b). Let Ξ be the curve piece of ∂B r

2
(a) from p̃1 to p̃2 lying completely in Us(a, θ),

i.e. Ξ = (∂B r
2
(a))(p̃2, p̃1). More precisely, Ξ is passed counterclockwise, if Us(a, θ) has

clockwise direction and vice versa. Now, the curve Ξ̃ := Λ(p̃1, p̃2) + Ξ is a closed Jordan
curve lying completely in Us(a, θ). By Theorem 5.20, Us(a, θ) is simply connected and thus
Ξ̃ is null-homotopic in Us(a, θ). By the homotopy version of Cauchy’s Integral Theorem,
we conclude

τ(x′, y′) ≤ τ(p̃1, p̃2) =
∫
Ξ̃

F −1 dz

︸ ︷︷ ︸
=0

−
∫
Ξ

F −1 dz ≤
∫
Ξ

|F −1| dz ≤ L(Ξ) max
z∈Ξ

1
|F (z)| ≤ πr

b
.

and thus

|τ(p2, y)| ≤ |τ(x′, y′)| + |τ(p2, y) − τ(x′, y′)| ≤ πr

b
+ ε.

Here we used that Ξ ⊂ ∂B r
2
(a) implies L(Ξ) ≤ 2πr

2 = πr, where L(Ξ) is the length of Ξ.
Since y and ε are arbitrary, it follows

sup
y∈Γ+(p2)

τ(p2, y) ≤ sup
y∈Γ+(p2)

πr

b
= πr

b
< ∞.
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This proves the first and second assertion. By Lemma 5.22, for the third assertion it
remains to show that

sup
x,y∈Cn

|τ(x, y)| < ∞ ∀ n ∈ Q.

Let n ∈ Q and x, y ∈ Cn be arbitrary. We have to show that there exists a constant M > 0
independent of n, x and y such that |τ(x, y)| ≤ M . We use exactly the same idea as before.
We apply Lemma 5.24 and construct a closed Jordan curve that approximates on the one
hand the part of the orbit Cn from x to y and lies on the other hand on ∂B r

2
(a). In

particular, by applying equation (5.3), the properties x, y ̸∈ Br(a) and thus x′, y′ ̸∈ B r
2
(a)

are satisfied. We conclude that we can choose the same upper bound M := πr
b

.

Theorem 5.36
Let F ∈ O(C), F ̸≡ 0, be entire and a ∈ C an equilibrium of (4.1) with order m = 2.
Let U be the unique global sector and (q1, q2) ∈ C2 a pair of points separating U with
corresponding orbits Γ1, Γ2 ⊂ U . Let j ∈ {1, 2} be arbitrary. Then U [j] consists of a, two
characteristic unbounded separatrices Γ+, Γ− satisfying w+(Γ+) = w−(Γ−) = {a} and at
least countably many separatrices, i.e. there exists a index set Q ⊂ N and separatrices
Cn ⊂ ∂U [j], n ∈ Q, such that

∂U [j] = {a} ∪ Γ+ ∪ Γ− ∪
⋃

n∈Q
Cn.

In particular, Γ+ is a negative and Γ− is a positive separatrix. Furthermore, for every
n ∈ Q the orbit Cn is a positive and negative separatrix.

Proof
The proof of this Theorem works in the same way as the proof of Theorem 5.35 with
obvious changes. Section 5.2 ensures that sector components U [1] and U [2] of U have the
same properties as the global sectors of an equilibrium with order at least 3, cf. Proposition
5.14, 5.16 and 5.18. In particular, Theorem 5.20 ensures that both sector components are
simply connected.
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Example 5.37
In this example we want to visualize the results of Theorem 5.35. Define the polynomial
F : C → C by F (x) := x2(x−1)2, F ∈ O(C). This is a polynomial of degree 4 having two
zeros a1 := 0 and a2 := 1, both of order m := 2. By Theorem 4.24, there exists a minimal
FSD in both equilibria. In addition, both equilibria have two elliptic sectors and thus two
(global) sector components. But in this example, the area between these two equilibria
appears in some sense not intuitive.
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Figure 5.2: Phase portrait of system (4.1) with F (x) = x2(x − 1)2

One can calculate that all rays of the FSD lie on the ℜ-axis, i.e. we have

E(F, a1) = E(F, a2) = {0, π} .

Moreover, these blue rays are also orbits of (4.1). It appears that there are three elliptical
sectors each. Upon closer inspection, however, it becomes apparent that the orbits „be-
tween“ the two equilibria are heteroclinic. They tend to a1 and a2 in the definite direction
given by the middle blue connecting line between a1 and a2. In particular, one can show
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that the following holds true: For all x ∈ {z ∈ C : ℜ(z) < 0, ℑ(z) ̸= 0} there exists a
T ∈ R such that Φ(T, x) ∈ {z ∈ C : ℜ(z) > 0, ℑ(z) ̸= 0}. By symmetry of the orbits, the
same holds true for the right side: For all x ∈ {z ∈ C : ℜ(z) > 1, ℑ(z) ̸= 0} there exists a
T ∈ R such that Φ(T, x) ∈ {z ∈ C : ℜ(z) < 1, ℑ(z) ̸= 0}.
In this example, the region between the two equilibria is a „global parabolic region“ with
exclusively heteroclinic orbits. In particular, except of the two equilibria and the bound-
ary separatrices there should only be either homoclinic (as part of one of the four sector
components), or heteroclinic (as part of the „global parabolic region“) orbits.
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In summary, it can be stated that Planar Analytic Dynamical Systems provide a rich
quantitative and qualitative theory. First, existence and uniqueness of solutions can be
guaranteed for any dimension of the differential equation, regardless of whether the time
variable is real or complex, cf. Theorems 3.2 and 3.8.
For two-dimensional analytic differential equations, the phase portrait can be described
both locally and globally based on the equilibria of the system. The analysis, geometry,
and topology of the phase space can all be described in detail. In particular, we are able
to show the local existence of a minimal finite sectorial decomposition that exclusively
consists of elliptic sectors, cf. Theorem 4.24. But this special structure cannot be easily
transferred to the global case, more precisely, we have seen examples where parts of a
(local) elliptic sector are not part of the corresponding global sector, cf. Examples 4.28
and 5.37. Nevertheless, global sectors and sector components can be viewed as a global
point of view on elliptic sectors, cf. Remarks 5.2 and 5.19.
Furthermore, many geometric structures have been excluded for holomorphic vector fields,
including hyperbolic sectors, saddle points and limit cycles, cf. Theorems 4.3, 4.24 and
4.34. The latter result ensures a more specific description of the limit sets of bounded orbits
as a generalization of the Theorem of Poincare-Bendixson, cf. Corollary 4.35. Another
crucial result is the existence of a countable separatrix configuration on the boundary of
global neighborhoods and global sectors, cf. Theorems 5.31, 5.32 and 5.35. Based on these
findings, many further research questions and unsolved problems arise. Some of these are
presented in the following.

Throughout this work, it was often pointed out how the qualitative analysis of the phase
space can be even more precise and which areas of the phase space have not yet been
investigated,. These include, in particular, the parabolic areas between elliptic sectors (cf.
Remark 5.19), the areas outside the maximum extent of influence of equilibria (cf. Remark
5.33 a)), and the global structure of the boundary of nodes and foci near nodes and foci on
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such boundaries (cf. Remark 5.11). Specifically, one can extend and proof my conjectures
and ideas formulated in Remark 5.11.

The question also arises as to how separatrices can be characterized. We are able to
show that certain orbits are separatrices, but is this already the complete picture? When
considering a larger section of the phase portrait of the function in Example 4.28, it can be
conjectured that this is not the case. Hence, to gain an even better understanding of phase
portraits of holomorphic vector fields, a more precise characterization of separatrices will
be necessary.
One theory that attempts to do this is the theory of so-called Newton flows with real-
and complex-valued time, cf. [21], [22] and [23]. There is a direct connection between
the qualitative properties of the phase space of a flow and its corresponding Newton flow.
Moreover, considering a dynamical system on the Poincare Sphere also leads to noteworthy
and crucial results on the position of separatrices, cf. [9, Chapter 3.10], [24, Theorem 3.6]
and [25].
All in all, these theories use the existence and uniqueness in complex time, cf. Theorem
3.8. Hence, the question arises as to how the two phase portraits of a dynamical system,
one with complex-valued time and one with real-valued time, are related. What happens
when a complex-valued function is restricted to real time? Does this restriction coincide
with the (unique) solution of the real-valued dynamical system? Can certain properties of
complex-valued solutions of a dynamical system provide information about the position of
separatrices in the phase portrait with real time? Additional literature on these questions
includes [24, Chapter 5], [26] and [27]. Furthermore, many conjectures and approaches
can be found in [28].

Given the importance of the meromorphic vector fields in the theories and papers dis-
cussed, it is now the logical next step to reformulate the existing results in this thesis for
meromorphic (instead of holomorphic) vector fields. Some first results and attempts can
be found in [2] and [3]. The greatest difficulty in doing so may be that poles generate
punctured, and therefore not simply connected, sets on which the investigated vector field
is holomorphic. Note that this was always a fundamental condition for the result in this
work. This difficulty is not solved yet, see for example the conjecture formulated after the
proof of [2, Theorem 3.3].

Finally, there is one more important application field for this thesis: The location of zeros
of the holomorphic Riemann ξ-function significantly influences the position of separatrices
in the phase space generated by this function, viewed as a vector field. For this reason,
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many authors come to the following conclusion: If we can characterize the position of
separatrices of the ξ-flow sufficiently well, statements can be made about the position of
zeros and thus about the truth of the Riemann hypothesis.
Moreover, understanding the structure of the separatrices for the complex-valued Newton
flow of the Riemann ξ-function might yield insight into the location of the ξ-zeros via
topology and geometry of the solution manifold, cf. Remark 3.5 and [24, Chapter 5].
Additional numerical results about the zeros of the Riemann ξ- and ζ-function can be
found in [29], [30]. Furthermore, in [27] many interesting and consequential results on the
position of these zeros are formulated, but not proved rigorously.

97



Bibliography

[1] F. Dumortier, J. Llibre, and J. C. Artés, Qualitative theory of planar differential
systems. Springer, 2006.

[2] K. A. Broughan, “Holomorphic flows on simply connected regions have no limit cy-
cles,” Meccanica, vol. 38, no. 6, pp. 699–709, 2003.

[3] K. A. Broughan, “The structure of sectors of zeros of entire flows,” Topology Proceed-
ings, vol. 27, no. 2, pp. 379–394, 2003.

[4] L. Hormander, An introduction to complex analysis in several variables. Elsevier,
1973.

[5] V. Scheidemann, Introduction to complex analysis in several variables. Springer, 2005.

[6] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory
of Second-Order Dynamic Systems. John Wiley & Sons, 1973.

[7] J. Prüss and M. Wilke, Gewöhnliche Differentialgleichungen und dynamische Systeme.
Springer, 2010.

[8] Y. Ilyashenko, S. Yakovenko, et al., Lectures on analytic differential equations, vol. 86.
American Mathematical Soc., 2008.

[9] L. Perko, Differential equations and dynamical systems. Springer, 3 ed., 1990.

[10] E. Hille, Ordinary differential equations in the complex domain. Courier Corporation,
1997.

[11] J. R. Munkres, Topology, vol. 2. Prentice Hall Upper Saddle River, 2000.

[12] A. Hatcher, Algebraic topology. Tsinghua University Press Ltd., 2005.

[13] C. Jordan, Cours d’analyse de l’École polytechnique, vol. 1. Gauthier-Villars et fils,
1893.

98



Bibliography

[14] W. Rudin, “Real and complex analysis,” McGraw-Hill International Editions: Math-
ematics Series, 1987.

[15] W. Kühnel, Differentialgeometrie, vol. 2003. Springer, 1999.

[16] M. Izydorek, S. Rybicki, and Z. Szafraniec, “A note on the poincaré-bendixson index
theorem,” Kodai Mathematical Journal, vol. 19, no. 2, pp. 145–156, 1996.

[17] I. Bendixson, “Sur les courbes définies par des équations différentielles,” Acta Math-
ematica, vol. 24, pp. 1–88, 1901.

[18] H. Dulac, “Sur les cycles limites,” Bulletin de la Société Mathématique de France,
vol. 51, pp. 45–188, 1923.

[19] W. A. Sutherland, Introduction to metric and topological spaces. Oxford University
Press, 2009.

[20] L. Markus, “Global structure of ordinary differential equations in the plane,” Trans-
actions of the American Mathematical Society, vol. 76, no. 1, pp. 127–148, 1954.

[21] H. T. Jongen, P. Jonker, and F. Twilt, The continuous, desingularized Newton method
for meromorphic functions. Springer, 1989.

[22] H. E. Benzinger, “Julia sets and differential equations,” Proceedings of the American
Mathematical Society, vol. 117, no. 4, pp. 939–946, 1993.

[23] H. E. Benzinger, “Plane autonomous systems with rational vector fields,” Transac-
tions of the American Mathematical Society, pp. 465–484, 1991.

[24] M. Heitel and D. Lebiedz, “On analytical and topological properties of separatrices in
1-d holomorphic dynamical systems and complex-time newton flows,” arXiv preprint
arXiv:1911.10963, 2019.

[25] L. F. Gouveia, G. Rondón, and P. da Silva, “On planar holomorphic systems,” arXiv
preprint arXiv:2201.04159, 2022.

[26] J. Dietrich and D. Lebiedz, “A spectral view on slow invariant manifolds in complex-
time dynamical systems,” arXiv preprint arXiv:1912.00748, 2019.

[27] W. P. Schleich, I. Bezděková, M. B. Kim, P. C. Abbott, H. Maier, H. L. Montgomery,
and J. W. Neuberger, “Equivalent formulations of the riemann hypothesis based on
lines of constant phase,” Physica Scripta, vol. 93, no. 6, 2018.

99



Bibliography

[28] D. Lebiedz, “Holomorphic hamiltonian ξ-flow and riemann zeros,” arXiv preprint
arXiv:2006.09165, 2020.

[29] K. A. Broughan, “The holomorphic flow of riemann’s function ξ(z),” Nonlinearity,
vol. 18, no. 3, pp. 1269–1294, 2005.

[30] K. Broughan and A. Barnett, “Linear law for the logarithms of the riemann periods at
simple critical zeta zeros,” Mathematics of computation, vol. 75, no. 254, pp. 891–902,
2006.

100



Ehrenwörtliche Erklärung

Ich, Nicolas Kainz, erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selb-
ständig verfasst habe. Die aus fremden Quellen direkt oder indirekt übernommenen
Gedanken sind als solche kenntlich gemacht. Außerdem erkläre ich, dass ich die in der
Satzung der Universität Ulm zur Sicherung guter wissenschaftlicher Praxis in der jeweils
gültigen Fassung festgelegten Grundsätze eingehalten habe.

Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen haben wird.

Ulm, den 19. März 2023

Nicolas Kainz

101


	List of Figures
	Introduction
	Some common notations
	Solution Theory for Analytic Ordinary Differential Equations
	Solutions with real time
	Solutions with complex time

	Equilibria and their local topological characteristics
	Geometry of equilibria with vanishing derivative
	Index Theory
	Sectorial decomposition of equilibria
	The non-existence of limit cycles

	Topological structure of global neighbourhoods and separatrices
	The global neighbourhood of equilibria
	The local structure of global sectors
	Separatrices as boundary orbits of global neighbourhoods

	Conclusion and Outlook
	Bibliography

