Angewandte Numerik 1

Sommersemester 2012

Übungsblatt 1 - Abgabe: 03.05.2012 nach der Vorlesung

Webseite zur Vorlesung:

http://www.uni-ulm.de/mawi/mawi-numerik/lehre/sommersemester-2012/vorlesung-angewandte-numerik-1.html

Aufgabe 1. (2 + 2 Punkte)

i) Zeigen Sie folgende Abschätzung ("Untere Dreiecksgleichung"), welche besagt, dass jede Norm eine Lipschitz-stetige Abbildung mit Lipschitz-Konstante eins vom jeweiligen Vektorraum in \mathbb{R} ist:

$$|||v|| - ||w||| \le ||v - w||, \quad v, w \in V, \quad (||\cdot|| : V \to \mathbb{R})$$

ii) Sei

$$A = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Berechnen Sie $||A||_{\infty}$, $||A||_1$ und $||A||_2$.

Aufgabe 2. (2 + 4 Punkte)

Zeigen Sie, dass durch

i)
$$||x||_{\infty} := \max_{i=1,\dots,n} |x_i|, \quad x \in \mathbb{K}^n, \quad (\infty\text{-Norm})$$

ii)
$$||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \langle x, x \rangle^{1/2}, \quad x \in \mathbb{K}^n,$$
 (Euklidische Norm)

Normen auf \mathbb{K}^n definiert sind.

Hinweis: Nehmen Sie für ii) die Cauchy-Schwarzsche Ungleichung zu Hilfe!

Aufgabe 3. (2+2+3) Punkte

Gegeben seien zwei Geraden G_1, G_2 im \mathbb{R}^2 .

$$G_1 = \{(y_1, y_2) \in \mathbb{R}^2; a_{11}y_1 + a_{12}y_2 = x_1\}$$

 $G_2 = \{(y_1, y_2) \in \mathbb{R}^2; a_{21}y_1 + a_{22}y_2 = x_2\}$

i) Bestimmen Sie den Schnittpunkt der beiden Geraden für $x=(x_1,x_2)^T\in\mathbb{R}^2$ und Koeffizienten $a_{i,j},i,j=1,2$ als Lösung des entsprechenden Gleichungssystems. Nehmen Sie hierzu an, dass die Matrix

$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

regulär ist.

- ii) Gehen Sie davon aus, dass es eine Störung $\varepsilon > 0$ in den Eingabedaten x gibt. Geben Sie jeweils eine möglichst einfache Kombination der a_{ij} und x an, so dass sich ein gut/schlecht konditioniertes Problem ergibt. Skizzieren Sie den Sachverhalt mit den gewählten Werten.
- iii) Sei $f: X \to Y$ mit $X = Y = \mathbb{R}^2$ und $f(x) = y = A^{-1}x$ $(x \in X, y \in Y, A \in \mathbb{R}^{2 \times 2})$. Gehen Sie davon aus, dass es eine Störung $\varepsilon > 0$ in den Eingabedaten $x = (x_1, x_2)^{\top}$ gibt:

$$\tilde{x} = \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} = \begin{pmatrix} x_1 + \varepsilon \\ x_2 \end{pmatrix}.$$

Berechnen Sie das Verhältnis des absoluten Ausgabefehlers zum absoluten Eingabefehler (=,,absolute Kondition")

$$\frac{\|\Delta y\|_{Y}}{\|\Delta x\|_{X}} = \frac{\|\tilde{y} - y\|_{Y}}{\|\tilde{x} - x\|_{X}}$$

des allgemeinen Schnittpunkt-Problems. Bestimmen Sie anschliessend die absolute Kondition für die beiden Matrizen aus Teil ii).

Verwenden Sie hierbei die Maximumsnorm $||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$.

Aufgabe 4. (6 Punkte)

Seien $x, y \in \mathbb{R}$ exakte Eingaben und \tilde{x}, \tilde{y} gestörte Eingaben mit

$$\tilde{x} := x(1 + \delta_x), \quad \tilde{y} := y(1 + \delta_y).$$

Hierbei seien die relativen Fehler

$$\delta_x = \frac{\tilde{x} - x}{x}, \quad \delta_y = \frac{\tilde{y} - y}{y}$$

klein, d.h. $0 < |\delta_x|, |\delta_y| \le \text{eps}$ (eps = Maschinengenauigkeit). Zeigen Sie, dass für eps $\le \frac{1}{2}$ der Faktor

$$\delta := \frac{f(\tilde{x}, \tilde{y}) - f(x, y)}{f(x, y)}$$

bei der Division $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{x}{y}$ von der Grössenordnung $|\delta| = \mathcal{O}(\text{eps})$ ist.

Tipp: Verwenden Sie hierbei, dass für den Wert der geometrischen Reihe im Konvergenzfall $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ gilt.