Beweisung 2.7

Linearer Abb. zwischen endlich-dim. Vektorräumen können durch Matrizen beschrieben.

Ziel: Charakterisieren des Abb. Verhalten von Y

Def 2.8 (Operatornorm)

\[Y : (x, \|x\| \rightarrow (\gamma, \|y\|)) \]

\[\|y\| = \sup \| y(x) \| \gamma \]

\[\|x\|_x = 1 \]
\[= \sup_{x \neq 0} \frac{\| f(x) \|}{\| x \|} = \sup_{\| x \| \leq 1} \frac{\| f(x) \|}{\| x \|} \]

"Rap" für die Verformung der Einheitskugel unter der Abb. 1.
Satzung 2.9

Ein linearer Operator ist beschränkt genau dann wenn stetig.

\[\| Y (x_2) - Y (x_1) \| \leq \| Y \| \cdot \| x_2 - x_1 \| \]

\[\| x_2 - x_1 \| \leq (\text{Lipschitz-stetig}) \]

\(Y \) beschränkt, falls \(\| Y \| \text{ endlich} \)
Für \(X = \mathbb{R}^m \), \(Y = \mathbb{R}^n \) und die
\(Y \)-repräsentierende Matrix
\(B \in \mathbb{R}^{m \times n} \) berechnet man:

\[
\|B\|_{\infty \rightarrow 1} = \max_{i=1, \ldots, m} \sum_{k=1}^{n} |b_{ki}|
\]

(Unten sammeln norm)

\[
\|B\|_{1 \rightarrow \infty} = \max_{i=1, \ldots, m} \sum_{k=1}^{n} |b_{ki}|
\]

(Spartensammeln norm)
\[A \in \mathbb{R}^{m \times n} \]
\[
\|A\|_2 = \sqrt{2 \max (A^T A)}
\] (Spectral norm)

Relative Kondition:

\[\text{Ziel: Schätzen } \frac{\|y(x') - y(x)\|_2}{\|y(x')\|_2} \]

durch \[\frac{\|x' - x\|}{\|x\|} \]
Satz 2.10 (rel. konditionstreu)

Für injektives f gilt

$$
\frac{\|f(x) - f(y)\|}{\|f(x)\|} \leq \max \left(\frac{\|x - y\|}{\|x\|}, \frac{\|x - y\|}{\|y\|}\right)
$$

mit $\max \left(\frac{\|x - y\|}{\|x\|}, \frac{\|x - y\|}{\|y\|}\right)$
Ist L bijektiv gilt

$$\|L^*L\| = \|L\| \cdot \|L^{-1}\|$$

Beispiel 2.11 (Kondition einer Basis)

Sei V n-dimensionalaler Vektorraum und $\Phi = \{\phi_1, \ldots, \phi_n\}$ eine Basis von V. (z. B. Polynomraum)

$L : \mathbb{R}^n \rightarrow V$, $L(a) := \sum_{j=1}^{n} a_j \phi_j$
Da \(F \) Basis ist \(L \) bijektiv.

\[\text{Koditionszahl der Basis} \]

\[1^2 \]

Bemerkung 2.12

1) \(L \) hängt von der Wahl der Norm ab.

2) Falls \(L \) beschränkt ist, ist \(L \) auch für injektives (und nicht surjektives) \(f \) definiert.
da ist \(\|X(t)\|_2 \neq 0 \), dann \(\|X\|_2 = 1 \)

\(Y(t) \) gilt mit für \(t = 0 \).

Anscheinende Bedeutung:

\(Y : \) Verhältnis von Dehnung zu maximalem Flächendruck. Ständige Einheitsleistung unter der Abb. 2 gemessen in der Bielschowsky-Norm \(\|Y\|_2 \).
Abb. 2.13 (Condition)
Beispiel 2.14 (Matrixkondition)

$A \in \mathbb{R}^{m \times n}$ invertierbar

$\|X_p(A)\| = \| A \|_p \| A^{-1} \|_p \ (2.14)$

$p = 1, \ldots, \infty$

Schmittpunkt von Geraden in der Ebene (s. Bsp. 2.1.5)

\[\begin{pmatrix} 3 & 1.001 \\ 6 & 1.992 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1.995 \\ 4.003 \end{pmatrix} \]
Lsg. ist $x = \left(\frac{\cdot}{\cdot} \right)$. Betrachte "Datenstörung" in b:

$$\bar{b} = \begin{pmatrix} 2.002 \\ 4 \end{pmatrix} \Rightarrow \bar{x} = A^{-1} \bar{b}$$

Man berechnet

$$A^{-1} = -\frac{\Lambda}{0.015} \begin{pmatrix} 1.957 & -1.001 \\ -6 & 3 \end{pmatrix}$$

und $\bar{x} = \begin{pmatrix} 0.4004 \\ 0.1 \end{pmatrix}$
in der $\| \cdot \|_{\infty}$ - Norm gilt:

\[
\frac{\| \bar{y} - y \|_{\infty}}{\| y \|_{\infty}} \approx 7.5 \cdot 10^{-4} \quad (\text{Datenstörung})
\]

\[
\frac{\| x - x \|_{\infty}}{\| x \|_{\infty}} = 1.8 \quad (\text{Risikotoleranz})
\]

Sowie

\[
\mathcal{E}(A) = \| A \|_{\infty} \cdot \| A^{-1} \|_{\infty} \approx 4.738.7
\]
3) Ist $X = \mathbb{R}^n$, $Y = \mathbb{R}$ und ein nichtlineares $f : X \to Y$, das differenzierbar ist, gilt:

$$\frac{f(\tilde{x}) - f(x)}{\tilde{x} - x} \leq \|f'(x)\|_{\infty} \cdot \frac{\|\tilde{x} - x\|}{\|x\|}$$

$$\frac{1}{2} \sum_{j=1}^{\infty} \left| \frac{x_j - x_j^*}{x_j} \right| \leq 3 \|f'(x)\|_{\infty} \cdot \frac{\|x - \tilde{x}\|}{\|x\|}$$
\[J_{200}(x) = \max_{j=1, \ldots, n} \left| \frac{\partial f}{\partial x_j} \cdot \frac{x_j}{f(x_j)} \right| \]

(das sieht man mit Hilfe von Taylorentwicklung 1. Ordnung)

Kondition der Addition

\[f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad x = (x_1, x_2) \mapsto f(x) := x_1 + x_2 \]

\[\frac{\partial f}{\partial x_j} \cdot \frac{x_j}{f(x)} = \frac{x_j}{x_1 + x_2}, \quad j = 1, 2 \]
\[K_{oo} (\zeta) = \max \left\{ \left| \frac{x_1}{x_1 + x_2} \right|, \left| \frac{x_2}{x_2 + x_2} \right| \right\} \]

(2.15)

Haben \(x_1, x_2 \) gleiche Vorzeichen:
\[K_{oo} (\zeta) \leq 1 \]

Falls \(x_1 \neq -x_2 \), so kann
\[K_{oo} (\zeta) \) sehr groß werden! \)

(s. Auslöschung in Kap. 3)
Kap. 3 Numerische Zahlendarstellung

und Gleitpunktarithmetik

Darstellung einer reellen Zahl

\[x = \pm \left(\sum_{j=1}^{\infty} d_j 5^{-j} \right) \cdot 5^e \ (3.1) \]

wähle \(e \) so, dass \(d_1 \neq 0 \)

Rechnerdarstellung ist und die
(Raschienzahlen)

→ normisierte Gleitpunktarstellung

\[x = f \cdot 10^e \]
5: Grundzahl (Basis) des gewählten Zahlensystems (z.B. dezimal, binär)

\[1 \leq c \leq R \quad (\text{Exponent}) \]

\[f : + 0.0. \ldots \text{d} \quad \text{dn} \]

\[d_j \in \{0,1, \ldots, b-1\} \]

\[f : \text{Nulltisse} \]

\[\text{m} : \text{Nulltissenlänge} \]

Reduziert verarbeitet weitere Tabelle über Reduktionsabbildung
\[f_k : \mathbb{R} \to M(b, +, \cdot, \mathbb{R}) \]

Randbedingung:
\[f_k(k) = \begin{cases} \left(\sum_{j=1}^{\infty} a_j \cdot b^j \right) \cdot b^k \quad d_{m+n} \leq \frac{b}{2} \\ \left(\sum_{j=1}^{\infty} a_j \cdot b^j + b^{-m} \right) \cdot b^k \quad d_{m+n} \geq \frac{b}{2} \end{cases} \]

\[\rightarrow \text{kleinste mögliche Zahl} \]
\[x_{\text{min}} = 0.1000... \cdot b^k = b^{k-1} \]

\[\rightarrow \text{größte mögliche Zahl} \]
\[x_{\text{max}} = 0.aaa... \cdot b^k = (1 - b^{-m}) / b \]
\[a = \frac{b}{2} - 1 \]
\(|x| < x_{\text{min}} \rightarrow f(x) = 0\)

\(|x| > x_{\text{max}} \rightarrow f(x) = \infty \text{ (overflow)}\)

\[|f(x) - x| \leq \frac{b^m}{2} b^e \quad \text{(absolute)}\]

(3.2)

\[\left| \frac{f(x) - x}{x} \right| \leq \frac{b^m}{2} b^e = \frac{b^{1-m}}{2} (\text{relative})\]

\[\text{PS: } = \frac{b^{1-m}}{2} \text{ (Machine range}} = c_d (\text{relative})\]
\[\varepsilon \in \mathbb{F} \exists \delta > 0 \mid f(t + \delta) > 1 \]

Für \(|t| \leq \varepsilon \) gilt

\[f(t) = x(1 + \varepsilon) \] (3.3)

§ 3.1 Gleitpunktarithmetik

Algorithmus: "Folge arithmetischer Operationen". Verknüpfung von Maschinenzahlen liefert nicht notwendig wieder eine Maschinenzahl.
Beispiel: \[b = 16, \quad m = 3 \]

\[0.346 \cdot 10^2 + 0.785 \cdot 10^2 = 0.113 \cdot 10^3 + 0.113 \cdot 10^3 \]

Ersetzte die übrigen arithmetischen Operationen durch Gleitpunktoperationen (Pseudoarithmetik). \(\Box \)

\[\forall \in \{+, -, \times, \div, 3\} \]

Führe über die tiefsten Kuppen hinweg weitere Stellen mit genauer Rechnung.
\[x \Box g = f \wedge (x \lor y) \quad (3.4) \]

\[w \lor z \] (3.3) \quad \text{Anmerkung:}

\[x \Box g = (x \lor y) \lor (y + z) \]

Eigenschaften:

\((3.4) \) nicht mehr gültig für eine Sequenz von Operationen
- Assoziativität und Distributivität

glehen verloren

Bsp. \(b = 10, m = 3 \)

Nach dem Schema \(x = 0.653 \cdot 10^4 \)

\(y = 0.100 \cdot 10^7 \)

\(z = 0.400 \cdot 10^7 \)

\((x + y) + z = (y + z) + x = 6535 \) (exakt)

\(x + y = 0.653 \cdot 10^4 \)

\((x + y) \oplus z = 0.653 \cdot 10^4 \)
\[a_2 : \]

\[y \oplus z = 0.500 \cdot 10^2 \]

\[(y \oplus z) \oplus x = 0.660 \cdot 10^4 = \text{fl}(x + y + z) \]

\[(3.5) \text{: } \text{Nobels Fehler einer Operation ist im Rahmen von eps} \]

Frage: Fehlerpropagation im Algorithmus

\([-\) Stabilität des Algorithmus]
Algorithmus heißt stabil, falls die Fehler in der "Größenordnung" der inverenlichen Fehler liegen (Kondition des Problems)

Beispiel 3.6 (Auslöschung, $b=10$

\[x = 0.73553 \quad y = 0.73441 \quad e_s = \frac{1}{2 \cdot 10^{-2}} \]
\[x - y = 0.00122 \]
\[e = f_k(x) = 0.736 \quad \bar{y} = f_k(y) = 0.734 \]
$$|\delta x| = 0.500 \times 10^{-3}$$

$$|\delta y| = 0.500 \times 10^{-3}$$

$$\frac{\text{Left error} \left| (\bar{x} - \bar{y}) - (x - y) \right|}{x - y}$$

$$= \left| \frac{0.002 - 0.00122}{0.00122} \right| = 0.64$$

$$\gg \delta x, \delta y$$
Stimmen die folgenden Tiefen bei Subtraktion zwei Fehler überraschend steigt der Fehler im Resultat mit dem Faktor 5^t

\Rightarrow Subtraktion ähnliche große Zahlen ist instabil!