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Preface

Motivation

This book is about the evaluation of input-output relationships in which the out-

put is evaluated as a functional of a field that is the solution of an input-parametrized

partial differential equation (PDE). We will focus on applications in mechanics —

heat and mass transfer, solid mechanics, acoustics, fluid dynamics — but we do

not preclude other domains of inquiry within engineering (e.g., electromagnetics)

or even more broadly within the quantitative disciplines (e.g., finance).

The input-parameter vector typically characterizes the geometric configuration,

the physical or effective properties of the constitutive or phenomenological model,

the boundary conditions and initial conditions, and any loads and sources. The

outputs of interest might be the maximum system temperature, a crack stress

intensity factor, structural resonant frequencies, an acoustic waveguide transmission

loss, or a channel flowrate or pressure drop. Finally, the fields that connect the

input parameters to the outputs can represent a distribution function, temperature

or concentration, displacement, (acoustic) pressure, or velocity.

Our interest is in two particular contexts: the real-time context , and the many-

query context . Both these contexts are crucial to computational engineering and

to more widespread adoption and application of numerical methods for PDEs in

engineering practice.

We first consider the real-time context ; we can also characterize this context

as “deployed” or “in the field” or “embedded.” Typical activities in the real-time

context fall within the broad “Assess, Predict, Act” framework. In the Assess stage

we pursue parameter estimation or inverse analysis — to characterize current state;

in the Predict stage we consider prognosis — to understand possible subsequent

states; and in the Act stage we intervene to achieve our objectives — to influence

realized future state. We now give several examples of these real-time processes;
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note in all cases not all three stages of Assess, Predict, Act are invoked.

(i) Consider a crack in a critical structural component such as a composite-

reinforced concrete support (or an aircraft engine). In the Assess stage we

pursue Non-Destructive Evaluation (NDE) — say by vibration or thermal

transient analysis — to determine the location and configuration of the de-

lamination crack in the support. In the Predict stage we evaluate stress inten-

sity factors to determine the critical load for brittle failure or the anticipated

crack growth due to fatigue. And in the Act stage we modify the installation

or subsequent mission profile to prolong life. In all cases, safety and economics

require rapid and reliable response in the field. (See Part VIII for a detailed

discussion of this particular problem.)

(ii) Consider an “immersed” object such as a tumor (or unexploded ordnance, or

moving military target). In the Assess stage we apply parameter estimation

techniques — say by acoustic or electromagnetic analysis — to determine the

tumor location and geometric and physical characteristics. In the Predict

stage we evaluate the potential lethality of the tumor. And in the Act stage

we steer the intervention — therapy or surgery — to minimize the threat.

Again, the timeliness and reliability of the analysis is all-important to safe

and successful conclusion of the operation.

(iii) Consider heat treatment of a workpiece such as a turbine disk. In the Assess

stage we apply inverse procedures to determine the (effective) heat transfer

coefficients between the workpiece and the quenching bath. In the Predict

stage we evaluate the anticipated residual stresses in the quenched workpiece

for a given annealing schedule. And finally in the Act stage we apply optimal

feedforward or feedback control to modify the annealing schedule in order to

achieve lower residual stresses. For expensive materials, reliable quality for

each workpiece “in process” is critical.
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Clearly there are many other examples from other fields in engineering.

We next consider the many-query context , in which we make many (many) ap-

peals to the input-output evaluation. One example of the many-query context,

directly related to our discussion above, is Robust Assess, Predict, and Act sce-

narios: a parameter estimation, prognosis, and optimization framework in which

we determine and subsequently accommodate all possible model variations — crack

lengths, tumor dimensions, or heat transfer coefficients — consistent with (typically

noisy or uncertain) experimental measurements of system and environmental con-

ditions. This robust framework — a form of uncertainty quantification admittedly

within a restrictive parametric context — requires extensive exploration of param-

eter space to determine and exploit appropriate “possibility regions”; we discuss

this further in Part VIII.

A second important example of the many-query context is multiscale (tempo-

ral, spatial) and multiphysics “multimodels,” in which behavior at a larger scale

must “invoke” many spatial or temporal realizations of behavior at a smaller scale.

Particular illustrative cases include stress intensity factor evaluation [7] within a

crack fatigue growth model [61]; calculation of spatially varying cell properties

[25, 29] within homogenization theory [24] predictions for macroscale composite

properties; assembly and interaction of many similar building blocks [81] in large

(e.g., cardio-vascular) biological networks; or molecular dynamics computations

based on quantum-derived energies/forces [36]. In all these cases, the number of

input-output evaluations is often measured in the tens of thousands.

Both the real-time and many-query contexts present a significant and often

unsurmountable challenge to “classical” numerical techniques such as the finite el-

ement (FE) method. These contexts are often much better served by the reduced

basis approximations and associated a posteriori error estimation techniques de-

scribed in this book. Two important notes that the reader will soon appreciate.
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First, the methods in this book do not replace, but rather build upon and are

measured (as regards accuracy) relative to, a “truth” finite element approximation

[21, 41, 125, 144, 159] — this is not an algorithmic competition, but rather an al-

gorithmic collaboration. Second, the methods in this book are decidedly ill-suited

for the “single-query” or “few-query” context.

Historical Perspective

The development of the Reduced Basis (RB) method can perhaps be viewed

as a response to the imperatives described above. In particular, the two contexts

described represent not only computational challenges, but also computational op-

portunities. We identify two key opportunities that can be gainfully exploited.

(I) In the parametric setting, we restrict our attention to a typically smooth

and rather low-dimensional parametrically induced manifold: the set of fields

engendered as the input varies over the parameter domain; in the case of single

parameter, the parametrically induced manifold is a one-dimensional filament

within the infinite dimensional space which characterizes general solutions to

the PDE. Clearly, generic approximation spaces are unnecessarily rich and

hence unnecessarily expensive within the parametric framework.

(II) In the real-time or many-query contexts, in which the premium is on marginal

cost (or perhaps asymptotic average cost) per input-output evaluation, we

can accept greatly increased pre-processing or “Offline” cost — not tolerable

for a single or few evaluations — in exchange for greatly decreased “Online”

(or deployed) cost for each new/additional input-output evaluation. Clearly,

resource allocation typical for “single-query” investigations will be far from

optimal for many-query and real-time exercises.

We shall view the development of RB methods in terms of these two opportunities.

As always, it is difficult to find all initial sources of a good idea, as good ideas
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tend to be prompted by common stimuli and to simultaneously occur to several

investigators; hence we apologize for any omissions. Initial work on the Reduced

Basis approximation — Galerkin projection on approximation spaces which focus

(typically through Taylor expansions or “snapshots”) on the low-dimensional para-

metrically induced manifold of opportunity (I) — grew out of two related streams of

inquiry: from the need for more effective, and perhaps also more interactive, many-

query design evaluation — [51] considers linear structural examples; and from the

need for more efficient parameter continuation methods — [6, 99, 100, 102, 105, 106]

consider nonlinear structural analysis problems. (Several modal analysis techniques

from this era [95] are also closely related to RB notions.)

The ideas present in these early somewhat domain-specific contexts were soon

extended to (i) general finite-dimensional systems as well as certain classes of PDEs

(and ODEs) [19, 50, 76, 101, 107, 119, 130, 131], and (ii) a variety of different

reduced basis approximation spaces — in particular Taylor and Lagrange [118] and

more recently Hermite [66]. The next decade(s) saw further expansion into different

applications and classes of equations, such as fluid dynamics and the Navier-Stokes

equations [57, 65, 66, 67, 68, 112].

However, in these early methods, the approximation spaces tended to be rather

local and typically rather low-dimensional in parameter (often a single parameter).

In part, this was due to the nature of the applications — parametric continuation.

But it was also due to the absence of a posteriori error estimators and effective sam-

pling procedures. (In fairness, several early papers [103, 104, 105] did indeed discuss

a posteriori error estimation and even adaptive improvement of the RB space; how-

ever, the approach could not be efficiently or rigorously applied to PDEs due to

the computational requirements, the residual norms employed, and the absence of

any stability considerations.) It is clear that in more global, higher-dimensional

parameter domains the reduced basis predictions “far” from any sample points
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can not a priori be trusted, and hence a posteriori error estimators are crucial

to reliability (and ultimately, safe engineering interventions in particular in the

real-time context). It is equally clear that in more global, higher-dimensional —

even three-dimensional — parameter domains simple tensor-product/factorial “de-

signs” are not practicable, and hence sophisticated sampling strategies are crucial

to efficiency.

Much of this book is devoted to (i) recent work on rigorous a posteriori error

estimation and in particular error bounds for outputs of interest [87, 89, 120], and

(ii) effective sampling strategies in particular for higher (than one) dimensional

parameter domains [32, 98, 134, 149]. In fact, as we shall see, the former are a

crucial ingredient in the latter — the inexpensive error bounds permit us first,

to explore much larger subsets of the parameter domain in search of most rep-

resentative or best “snapshots,” and second, to know when we have just enough

basis functions — and hence the simultaneous development of error estimation

and sampling capabilities is not a coincidence. (We note that the greedy sampling

methods described in this book are similar in objective to, but very different in

approach from, more well-known Proper Orthogonal Decomposition (POD) meth-

ods [8, 23, 58, 75, 77, 97, 126, 127, 128, 142, 143, 156] typically applied in the

temporal domain. However, POD economization techniques can be and have suc-

cessfully been applied within the parametric RB context [31, 40, 43, 59, 86]. A

brief comparative study is provided in Part I and again in Part IV.)

Early work certainly exploited the opportunity (II), but not fully. In particular,

and perhaps at least partially because of the difficult nonlinear nature of the initial

applications, early RB approaches did not fully decouple the underlying “truth”

FEM approximation — of very high dimension Nt — from the subsequent reduced

basis projection and evaluation — of very low dimension N . More precisely, most

often the Galerkin stiffness equations for the reduced basis system were generated
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by direct appeal to the high–dimensional “truth” representation: in nuts and bolts

terms, pre- and post-multiplication of the “truth” stiffness system by rectangular

basis matrices. As a result of this expensive projection the computational savings

provided by RB treatment (relative to classical FEM “truth” evaluation) were

typically rather modest [99, 118, 119] despite the very small size of the ultimate

reduced basis stiffness system.

Much of this book is devoted to full decoupling of the “truth” and RB spaces

through Offline-Online procedures: the complexity of the Offline stage depends

on Nt (the dimension of the “truth” finite element space); but the complexity

of the Online stage — in which we respond to a new value of the input param-

eter — depends only on N (the dimension of the reduced basis space) and the

parametric complexity of the operator and data. In essence, we are guaranteed

the accuracy of a high-fidelity finite element model but at the very low cost of a

reduced-order model. In the context of affine parameter dependence, in which the

operator is expressible as the sum of products of parameter-dependent functions

and parameter-independent operators, the Offline-Online idea is quite self-apparent

and indeed has been re-invented often [15, 65, 70, 112]; however, application of the

concept to a posteriori error estimation — note the Online complexity of both the

output and the output error bound calculation must be independent of Nt — is

more involved and more recent [62, 120, 121]. In the case of nonaffine parameter de-

pendence the development of Offline-Online strategies is much less transparent, and

only in the last few years have effective procedures — in effect, efficient methods

for approximate reduction to affine form — been established [18, 54, 135]. Clearly,

Offline-Online procedures are a crucial ingredient in the real-time context.

We note that historically [50] and in this book RB methods have been built

upon, and measured (as regards accuracy) relative to, finite element “truth” dis-

cretizations (or related spectral element approaches [81, 82, 83, 84, 111]) — the
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variational framework provides a very convenient setting for approximation and er-

ror estimation. However there are certainly many good reasons to consider alterna-

tive “truth” settings: a systematic finite volume framework for RB approximation

and a posteriori error estimation is proposed and developed in [60]. We do note

that boundary and integral approximations are less amenable to RB treatment or

at least Offline-Online decompositions, as the inverse operator will typically not be

affine in the parameter.

Scope and Roadmap

We begin with General Preliminaries. The purpose of the General Prelimi-

naries is to recall — in a form relevant to the subsequent development — the

background material on which the rest of the book shall rest. We discuss basic

elements of functional analysis: Hilbert spaces (real and complex); product spaces;

bases; inner products and norms; the Cauchy-Schwarz inequality; linear bounded

forms and dual spaces; the Riez representation theorem; and finally bilinear forms.

We review the fundamental properties associated with bilinear forms — the co-

ercivity and inf-sup stability conditions [9] and the continuity condition — and

introduce associated eigenproblems of computational relevance. And finally we in-

troduce the basic smoothness hypotheses, function spaces, and norms associated

with variational formulation and approximation of second order partial differential

equations. In all cases we consider both the standard definition as well as the (in

most cases, rather self-evident) extension to the parametric context of particular

interest in this book.

Following the General Preliminaries each subsequent Part of this book addresses

a different class of problems. In each case we first identify the abstract formulation

of the problem and then develop particular instantiations (corresponding to par-

ticular equations/physical phenomena) and associated specific examples. We then
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proceed to the formulation and analysis: reduced basis approximation; optimal

sampling procedures; a priori theory; rigorous a posteriori error estimation; and

Offline-Online computational strategies. Finally, in each case we provide software

in the form of MATLAB R©.m files that, given an appropriate “truth” finite element

model provided by the reader implements the methods developed.

In Part I of this book we treat the particularly simple case of Parametrically

Coercive and Compliant Affine Linear Elliptic Problems. This class of problems —

in which each term of the parametric development is independently symmetric posi-

tive semidefinite, and for which furthermore the load/source functional and output

functional coincide — permits a simple exposition of the key ideas of the book:

RB spaces and suitably orthogonalized bases; Galerkin projection and optimality;

greedy quasi-exhaustive sampling procedures; the role of parametric smoothness

in convergence; rigorous and relatively sharp a posteriori error estimation; and

Offline-Online computational strategies. We illustrate this Part of the book with

thermal conduction and linear elasticity examples that involves O(10–20) indepen-

dent parameters [137]. (The reader should guard against disappointment: it is

really only for this simple class of problems, for which lower bounds for stability

constants can be explicitly and readily extracted, that we can entertain so many

parameters.)

In Part II of this book we consider the more general case of Coercive Affine Lin-

ear Elliptic Problems. We no longer require parametric coercivity; we now permit

non-symmetric bilinear forms a; and we now consider arbitrary linear (bounded)

output functionals — and perhaps multiple outputs. At this stage we can also treat,

and we hence we introduce and exercise, the general class of piecewise-affine geomet-

ric and coefficient parametric variations consistent with the requirement of affine

parameter dependence. Physical instantiations include general heat conduction

(the Poisson equation) problems; forced-convection heat transfer (the convection-
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diffusion equation) problems; and general linear elasticity problems. In relation to

Part I, the key new methodological elements are the development of (i) primal-

dual (with adjoint) approximation [115] for RB [120], (ii) an a posteriori theory

of general (non-compliant, and hence “non-energy”) outputs [5, 22, 110] for RB

[120, 139], and (iii) an efficient Offline-Online computational procedure for the

construction of a lower bound for the general coercivity constant [62] required by

our a posteriori estimators.

In Part III of this book we consider the most general case of Non-Coercive

Affine Linear Elliptic Problems (we address the particular stability issues [26, 27]

associated with Saddle Problems, in particular the Stokes equations of incompress-

ible flow [133, 135, 136], in Part VI). Physical instantiations include the ubiquitous

Helmholtz equation relevant to time-harmonic acoustics, elasticity, and electromag-

netics. In this Part we also introduce a special formulation (perforce non-coercive)

for quadratic output functionals [61] — important in such applications as acoustics

and linear elastic fracture theory. In relation to Part II, the key new methodological

elements are the development of (i) discretely stable primal-dual RB approxima-

tions [89], (ii) an efficient Offline-Online computational procedure [62, 139] for

the construction of a lower bound for the general inf-sup constant [9] required by

our a posteriori estimators. (The latter, in essence a lower bound for a singular

value, demands considerable Offline resources and is certainly a limiting factor in

the treatment of higher dimensional parameter spaces: an opportunity for further

work.)

RB-like snapshot ideas (typically enhanced by sophisticated POD sampling vari-

ants) are also common in certain Reduced Order Model (ROM) approaches in the

temporal domain [14, 38, 39, 93, 114, 129, 143, 151, 152]; more recently greedy

sampling approaches have also been considerated in [20]. However, combined “pa-

rameter + time” approaches — essentially the marriage of ROM in time with
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RB in parameter, and sometimes referred to as PROM (Parametric ROM) — are

relatively uncommon [31, 40, 43, 59, 49, 86, 141]. In Part IV of this book we ex-

plore the “parameter + time” paradigm in the important context of Affine Linear

Parabolic Problems such as the heat or diffusion equation and the passive scalar

convection-diffusion equation (also the Black-Sholes equation of derivative theory

[117]). In particular, in Part IV we extend to parabolic PDEs the primal-dual ap-

proximations, greedy sampling strategies, a posteriori error estimation concepts,

and Offline-Online computational strategies developed in Part II for elliptic PDEs

— with particular focus on the accommodation of an “evolution” parameter t

[56, 60, 132]. Two qualifications: we restrict attention to discrete-time parabolic

equations corresponding to simple Euler backward (or Crank-Nicolson) discretiza-

tion of the original continuous PDE; and except briefly (where we permit a weaker

Garding inequality) we only consider parabolic equations associated with coercive

spatial operators.

In Part V of the book we consider the extension, in both the elliptic and

parabolic cases, to nonaffine problems. The strategy is ostensibly simple: reduce

the nonaffine operator and data to approximate affine form, and then apply the

methods developed for affine operators in Parts II, III and IV. However, this re-

duction must be done efficiently in order to avoid a proliferation of parametric

functions and a corresponding degradation of Online response time. The approach

we describe here is based on the Empirical Interpolation Method (EIM) [18]. We

first describe the Empirical Interpolation Method for efficient approximation of

fields which depend (smoothly) on parameters: a collateral RB space for the of-

fending nonaffine coefficient functions; an interpolation system that avoids costly

(Nt-dependent) projections; and several (from less rigorous/simple to completely

rigorous/quite cumbersome) a posteriori error estimators. We then apply the EIM

within the context of RB treatment of elliptic and parabolic PDEs with nonaffine
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coefficient functions [54, 135, 145]; the resulting approximations preserve the usual

Offline-Online efficiency — the complexity of the Online stage is independent of

Nt.

In Part VI of the book we treat several elliptic problems with polynomial non-

linearities. Here our coverage is admittedly somewhat more anecdotal: we can

not uphold our standards of rigor (in a posteriori error estimation) or efficiency

(in Online requirements) for general nonlinear problems; we thus consider several

representative examples that illustrate essential points. First [149], we consider

an elliptic problem with stabilizing cubic nonlinearity [34] . This problem illus-

trates both the possibility and difficulty of efficient RB Galerkin approximation

of (lowish-order) polynomial nonlinearities, and the availability in some very spe-

cial circumstances of a very simple nonlinear a posteriori error theory. Second,

we proceed to the (quadratically nonlinear) Navier-Stokes equations [27, 52, 57] of

incompressible fluid flow; for simplicity we consider here only a single parameter,

the Reynolds number. For the Navier-Stokes equations (and for nonlinear equa-

tions more generally) we can not appeal to any simple monotonicity arguments;

our focus is thus on the computational (quantitative) realization of the general

Brezzi-Rappaz-Raviart (“BRR”) a posteriori theory [28, 34] — and development

of associated sampling procedures — within the reduced basis Offline-Online con-

text [98, 147, 148]. (We also address here the constuction of div-stable [26, 27] RB

(Navier)-Stokes approximations [122, 136].) Third and finally, we consider sym-

metric eigenproblems associated with (say) the Laplacian [10] or linear elasticity

operator: we present formulations for one or two lowest eigenvalues [87] and for

the first “many” eigenvalues (as relevant in quantum chemistry [35, 36]). Here,

implicitly, the interpretation of the BRR theory is unfortunately less compelling

due to the (guaranteed!) multiplicity of often nearby solutions.

In Part VII we consider nonpolynomial nonlinearities (in the operator and also
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output functional) for both elliptic and parabolic PDEs. Our focus is on the ap-

plication/extension of the Empirical Interpolation Method to this important class

of problems [54]: in effect, we expand the nonlinearity in a collateral reduced ba-

sis expansion, the coefficients of which are then obtained by interpolation relative

to the reduced basis approximation of the field variable. We are therefore able

to maintain, albeit with some effort, our usual Offline-Online efficiency — Online

evaluation of the output is independent of Nt. (For alternative approaches to non-

linearities in the ROM context, see [16, 39, 113].) Unfortunately, for this difficult

class of problems we can not provide (efficient) rigorous a posteriori error estima-

tors. (It it thus perhaps not surprising that initial work in RB methods [99, 102],

focused on highly nonlinear problems, did not attempt complete Offline-Online

decoupling or rigorous error estimation.) The trade-off between rigor and model

complexity is inevitable; we hope the reader finds the methods of Part VI useful

despite the lower standards of certainty.

In Part VIII we depart from our usual format and instead consider a real-time

and many-query application of reduced basis approximation and a posteriori er-

ror estimation: robust parameter estimation for systems described by elliptic and

parabolic PDEs — from outputs we wish to deduce inputs [55]. (Other applications

of RB, in particular to optimization and control, can be found in [109, 123].) Our

focus is on the rigorous incorporation of experimental error and numerical (RB)

error bounds in the specification of “possibility regions”: regions of the parame-

ter domain consistent with available (noisy) experimental data. (For well-posed or

“identifiable” [17] systems the possibility region will shrink to the unique value of

the unknown parameter(s) as the experimental error and reduced basis error tend

to zero. However, many interesting “systems” — which should be understood to

comprise the model, the experimental measurements, the unknown inputs, and the

selected outputs — are not identifiable.) In practice, except for special problems,
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these possibility regions can not be constructed except by truly exhaustive and ex-

hausting (even at “reduced basis speed”) calculation; we thus also consider various

efficient procedures for approximating these possibility regions. We consider an

example of transient thermal conduction inverse analysis.

Finally, in Part IX, we discuss briefly two topics on the research frontier. First,

we shall consider the “reduced basis element method” [81, 82, 83, 84]: a marriage

of reduced basis and domain decomposition concepts that permits much greater

parametric complexity and also provides a framework for the integration of multi-

ple models. Second, (at least linear) hyperbolic problems are also ripe for further

development: although there are many issues related to smoothness, stability, and

locality, there are also important proofs-of-concept [60, 111] in both the first order

and second order contexts which demonstrate that RB approximation and a pos-

teriori error estimation can be gainfully applied to hyperbolic equations. For both

topics, we briefly review the current status and identify outstanding challenges.

Intended Audience

We have in mind four audiences. The first audience is professional researchers,

faculty, and graduate students in the area of numerical methods for PDEs: devel-

opers (and analysts) of numerical methods. We hope that the formulations and

theory summarized in our research monograph will provide a good foundation for

further developments in reduced basis methodology and analysis. (We also hope

that the book might be appropriate as a secondary source in a graduate course

on numerical methods for PDEs: the RB framework is a very good laboratory in

which to understand, exercise, and observe many basic aspects of computational

approaches to PDEs.)

The second audience is computational engineers — professionals or graduate

students for which application of computational methods for PDEs plays an es-

sential role: advanced users of numerical methods. It is for this audience (and
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educators, see below) that we hope the software component of the book will prove

useful: a rapid and easy way to apply the reduced basis approximation, greedy sam-

pling, a posteriori error estimation, and Offline-Online approaches described in this

book to problems of interest in the research, development, design/optimization, and

“Assess-Predict-Act” contexts. We do provide one word of caution: the software

we provide is blackbox (actually, only “somewhat” blackbox since the formulations

and theory must be understood to properly invoke and connect the modules) once

the “truth” finite element approximation is appropriately specified; however, the

requisite finite element ingredients can not always be generated by a (third-party)

FE program without access to the source code. Hence we implicitly assume that the

computational engineer is willing and able to take screwdriver (though hopefully

not jackhammer) in hand.

We note that FE packages oriented towards, or based upon, domain decomposi-

tion for definition of problem geometry and coefficients are particularly well suited

to the reduced basis approach. Example of such packages are the MATLAB PDE

Toolbox R© or COMSOL MultiphysicsTM. In this case, it is possible to create the

finite element inputs to the RB software without modification of, or even access

to, the source code — the available assembly and export features suffice. We shall

indicate on several occasions (with the MATLAB PDE Toolbox R© as our vehicle)

the simple and clean interface between a domain-decomposition “cognizant” finite

element package and our own reduced basis software.

The third audience is university engineering educators (and ultimately, as end

users, students). The application of finite element simulations for visualization,

assessment of classical engineering models and approximations, and parameter es-

timation and design/optimization — both in class and as part of homework assign-

ments and projects — has remained quite limited. Of course, complex user inter-

faces are part of the problem. But even more fundamental is the relatively slow

17 March 2, 2007



response time of even very good codes: for an in-class demonstration, one minute

or even 10 seconds for typically just a single parameter value is an eternity; and

even for homework assignments, large operation counts and storage requirements

can quickly obscure the pedagogical point. Clearly, this context can benefit from

a real-time and many-query (many-student) perspective: in particular, we hope

that, with the software we provide, educators can “automatically” and quickly de-

velop very fast — and, thanks to the a posteriori error estimators, reliable and

physically relevant — Online modules for visualization and input-output evalua-

tion of complex problems. However, we do again caution that the professor — or

able-bodied Teaching Assistant — must have access to the necessary finite element

infrastructure in order to develop the “truth” prerequisities.

Our fourth audience is very broad: we hope that our text will become a “coffee-

table” book. In this age of technology, all informed citizens should be acutely

interested in reduced basis approximation and a posteriori error estimation for

parametrized partial differential equations. Perhaps families can organize group

readings so that both young and old can appreciate the content and implications.

Or even better, perhaps each member of the family can purchase his or her own

copy of the book to keep — or to give as thoughtful gifts.
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Chapter 1

Mathematical Foundations

The reader should review Sections 1.1, 1.2, and 1.4 prior to embarking upon Parts I and II,

and additionally Sections 1.3 and 1.5 prior to continuing with Part III.

1.1 Inner Product Spaces

In this section we describe the basic properties of inner product spaces; for more elaboration

on this material, see [2, 71, 79, 96, 108, 158].

1.1.1 Definition

We consider here real linear spaces (see Section 1.5 for the complex case). We first recall that a

space Z is a (real) linear or vector space if, for any α ∈ R, w, v ∈ Z, αw+ v is also an element

of Z. Here R denotes the real numbers — and R+ and R+0 the positive and non-negative

reals; C shall denote the complex numbers; and N0 and N shall denote the natural numbers

including and not including zero. Note that the dimension of Z, which we denote dim(Z), can

be either finite or infinite.

We recall (we restrict attention here to dim(Z) finite) that a basis set for a linear space Z

is a set of (linearly independent) elements zi ∈ Z, 1 ≤ i ≤ dim(Z), such that for all w in Z
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there exists a unique set of real numbers, ωi ∈ R, 1 ≤ i ≤ dim(Z), such that

w =
dim(Z)∑

i=1

ωizi . (1.1)

The choice of basis set is, of course, not unique. We can describe our space in terms of a(ny)

basis set: Z = span{zi, 1 ≤ i ≤ dim(Z)}.

An (real) inner product space Z is a linear space equipped with an inner product (w, v)Z ,

∀ w, v ∈ Z, and induced norm ‖w‖Z =
√

(w,w)Z , ∀ w ∈ Z. An inner product w ∈ Z, v ∈

Z → (w, v)Z ∈ R must satisfy several conditions: (bilinearity) for any α ∈ R, w, v ∈ Z, z ∈ Z,

(αw + v, z)Z = α(w, z)Z + (v, z)Z and (z, αw + v)Z = α(z, w)Z + (z, v)Z ; (symmetry) for any

w, v ∈ Z, (w, v)Z = (v, w)Z ; and (positivity) for all w ∈ Z, (w,w)Z ≥ 0 with equality only for

w = 0. (It directly follows from these conditions on the inner product that ‖ · ‖Z is a valid

norm.) The Cauchy-Schwarz inequality,

|(w, v)Z | ≤ ‖w‖Z‖v‖Z , ∀ w, v ∈ Z, (1.2)

is a direct consequence of the inner product definition.

We recall that a Hilbert space is a complete inner product space [2].

1.1.2 Cartesian Product Spaces

Given two inner product spaces Z1 and Z2, we define the Cartesian product of these spaces as

Z = Z1 × Z2 ≡ {(w1, w2) | w1 ∈ Z1, w2 ∈ Z2}. Given w = (w1, w2) ∈ Z, v = (v1, v2) ∈ Z, we

define

w + v ≡ (w1 + v1, w2 + v2) ; (1.3)

it directly follows that Z is a linear space. We further equip Z with the inner product

(w, v)Z = (w1, v1)Z1 + (w2, v2)Z2 (1.4)

and induced norm

‖w‖Z =
√

(w,w)Z ; (1.5)
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it is readily demonstrated that ( · , · )Z is a valid inner product and hence Z an inner product

space. (Note the choice of inner product is not unique.)

Given a basis set {z1 i}, 1 ≤ i ≤ dim(Z1), for Z1 and a basis set {z2 j}, 1 ≤ j ≤ dim(Z2),

for Z2, we can readily construct a basis set for Z:

Z = span {(z1 i, 0), 1 ≤ i ≤ dim(Z1) ,

(0, z2 j), 1 ≤ j ≤ dim(Z2)} .
(1.6)

It is clear from this identification that dim(Z) = dim(Z1) + dim(Z2).

1.2 Linear and Bilinear Forms

1.2.1 Linear Forms and Dual Spaces

A functional g : Z → R is a linear functional or linear form if, for any α ∈ R, w, v ∈ Z,

g(αw + v) = αg(w) + g(v). A linear form is bounded , or continuous, over Z if

|g(v)| ≤ C‖v‖Z , ∀ v ∈ Z , (1.7)

for some finite real constant C.

We define the dual space (to Z), Z ′, as the space of all linear bounded functionals over Z.

We associate to Z ′ the norm

‖g‖Z′ = sup
v∈Z

g(v)
‖v‖Z

, ∀ g ∈ Z ′ , (1.8)

which we shall often denote the “dual norm.” The Riesz representation theorem states that,

for any g ∈ Z ′, there exists a unique wg ∈ Z such that

(wg, v)Z = g(v), ∀ v ∈ Z . (1.9)

It is direct consequence of (1.9) — we simply insert (1.9) in (1.8) and invoke the Cauchy-

Schwarz inequality (1.2) — that

‖g‖Z′ = ‖wg‖Z . (1.10)

This last result will be invoked extensively as a practical computational tool.
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1.2.2 Bilinear Forms

A form b : Z1 × Z2 → R is a bilinear form if, for any α ∈ R, w, v ∈ Z1, z ∈ Z2, b(αw + v, z) =

αb(w, z) + b(v, z) and for any α ∈ R, z ∈ Z1, w, v ∈ Z2, b(z, αw + v) = αb(z, w) + b(z, v); in

short, a bilinear form is linear in each argument. In the remainder of this subsection we shall

consider the particular (and particularly important) case in which Z1 = Z2 = Z. A bilinear

form b: Z × Z → R is symmetric if, for any w, v ∈ Z, b(w, v) = b(v, w). A bilinear form b:

Z × Z → R is skew-symmetric if, for any w, v ∈ Z, b(w, v) = −b(v, w) (note that for a real

skew-symmetric bilinear form b, b(w,w) = 0). We define the symmetric and skew-symmetric

parts of a general bilinear form b: Z ×Z → R as bS(w, v) = 1/2(b(w, v) + b(v, w)), ∀w, v ∈ Z,

and bSS(w, v) = 1/2(b(w, v)− b(v, w)), ∀ w, v,∈ Z, respectively.

A bilinear form b: Z × Z → R is positive definite if, for any v ∈ Z, b(v, v) (= bS(v, v)) ≥ 0

with equality only for v = 0; a bilinear form b: Z × Z → R is positive semidefinite if, for any

v ∈ Z, b(v, v) ≥ 0. It is clear that an inner product is simply a symmetric positive-definite

(SPD) bilinear form.

We say that a bilinear form b: Z × Z → R is coercive over Z if

α ≡ inf
w∈Z

b(w,w)
‖w‖2Z

(1.11)

is positive. Note that coercivity implicitly involves only the symmetric part of b — we can

replace b in (1.11) with bS. (Of course, many bilinear forms are not coercive: we consider

the more general “inf-sup” stability condition in Section 1.3.) We say that a bilinear form b:

Z × Z → R is continuous over Z if

γ ≡ sup
w∈Z

sup
v∈Z

b(w, v)
‖w‖Z ‖v‖Z

(1.12)

is finite. For a coercive, continuous bilinear form α is denoted the coercivity constant and γ is

denoted the continuity constant.
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1.2.3 Parametric Linear and Bilinear Forms

We first introduce a closed bounded parameter domain D ⊂ RP ; a typical parameter vector,

or P -tuple, in D shall be denoted µ = (µ1, . . . , µP ). We assume that D is suitably regular (for

example, with Lipschitz continuous boundary), though in fact this assumption is typically not

crucial.

We shall say that g : Z×D → R is a parametric linear form if, for all µ ∈ D, g(·;µ) : Z → R

is a linear form. We say that a parametric linear form g is bounded (or continuous) if, for all

µ ∈ D, g( · ;µ) ∈ Z ′. Note that the dual norm of a parametric linear form g, ‖g( · ;µ)‖Z′ , will

of course be a (finite) function of µ over D.

Similarly, we shall say that b : Z1 × Z2 × D → R is a parametric bilinear form if, for all

µ ∈ D, b( · , · ;µ): Z1×Z2 → R is a bilinear form. In the remainder of this subsection we shall

consider the case in which Z1 = Z2 = Z. We say that a parametric bilinear form b: Z×Z → R

is symmetric if b(w, v;µ) = b(v, w;µ), ∀w, v ∈ Z, ∀µ ∈ D. We define the symmetric part of a

general parametric bilinear form b: Z×Z×D → R as bS(w, v;µ) ≡ 1/2(b(w, v;µ)+b(v, w;µ)),

∀ w, v ∈ Z, ∀ µ ∈ D.

We say a parametric bilinear form b: Z × Z ×D → R is coercive over Z if

α(µ) ≡ inf
w∈Z

b(w,w;µ)
‖w‖2Z

(1.13)

is positive for all µ ∈ D; we can then define (0 <) α0 ≡ minµ∈D α(µ). (Recall that D is

closed.) We say a parametric bilinear form b: Z × Z ×D → R is continuous over Z if

γ(µ) ≡ sup
w∈Z

sup
v∈Z

b(w, v;µ)
‖w‖Z‖v‖Z

(1.14)

is finite for all µ ∈ D; we can then define γ0 = maxµ∈D γ(µ) (<∞).
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1.2.4 A Coercivity Eigenproblem

We first observe that we can rewrite (1.13) as

α(µ) ≡ inf
w∈Z

bS(w,w;µ)
‖w‖2Z

. (1.15)

It directly follows from the Rayleigh quotient (1.15) that α(µ) can be expressed as a minimum

eigenvalue. For simplicity of exposition we shall consider the case in which dim(Z) is finite.

We now introduce this “coercivity” symmetric (generalized) eigenproblem associated with

the parametric bilinear form b: Z × Z × D → R: Given µ ∈ D, find (χco, νco)i(µ) ∈ Z × R,

i = 1, . . . ,dim(Z), such that

bS(χco
i (µ), v;µ) = νco

i (µ)(χco
i (µ), v)Z , ∀ v ∈ Z , (1.16)

and

‖χco
i (µ)‖Z = 1 ; (1.17)

recall that bS is the symmetric part of b. We order the eigenvalues in ascending order such

that νco
1 (µ) ≤ νco

2 (µ) ≤ . . . ≤ νco
dim(Z)(µ).

It follows directly from (1.15) and (1.16) that if a is coercive then α(µ) = νco
1 (µ) > 0.

1.2.5 Affine Parameter Dependence

We shall say that the parametric bounded linear form g: Z×D → R is affine in the parameter

if

g(v;µ) =
Qg∑
q=1

Θq
g(µ) gq(v), ∀ v ∈ Z , (1.18)

for some finite Qg; here the Θq
g : D → R, 1 ≤ q ≤ Qg, are (typically very smooth) parameter-

dependent functions, and the gq(v) : Z → R, 1 ≤ q ≤ Qg, are parameter-independent bounded

linear forms. (The term “affine in the parameter” is somewhat of a misnomer, since (1.18) really

constitutes “affine in functions of the parameter”; for brevity, however, we shall abbreviate the

latter by the former.)
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Similarly, we shall say that the parametric bilinear form b: Z1 × Z2 × D → R is affine in

the parameter if

b(w, v;µ) =
Qb∑
q=1

Θq
b(µ) bq(w, v), ∀ w ∈ Z1, ∀ v ∈ Z2 , (1.19)

for some finite Qb; here the Θq
b : D → R, 1 ≤ q ≤ Qb, are (typically very smooth) parameter-

dependent functions, and the aq(w, v): Z1 × Z2 → R, 1 ≤ q ≤ Qb, are parameter-independent

continuous bilinear forms. (Note if b: Z × Z × D is symmetric, we assume that each bq,

1 ≤ q ≤ Qb, is symmetric.) We remark that the representations (1.18),(1.19) are clearly not

unique, though in general there will be minimum Qg, Qb for which such an expansion exists.

1.2.6 Parametric Coercivity

We say that an affine parametric (of necessity, coercive) form b: Z × Z ×D → R,

b(w, v;µ) =
Qb∑
q=1

Θq
b(µ) bq(w, v) (1.20)

is “parametrically coercive” if c ≡ bS (the symmetric part of b) admits an affine development

c(w, v;µ) =
Qc∑
q=1

Θq
c(µ)cq(w, v), ∀ w, v ∈ Z , (1.21)

that satisfies two conditions:

Θq
c(µ) > 0, ∀ µ ∈ D, 1 ≤ q ≤ Qc , (1.22)

and

cq(v, v) ≥ 0, ∀ v ∈ Z, 1 ≤ q ≤ Qc . (1.23)

(Note we shall also suppose that each of the cq, 1 ≤ q ≤ Qc, is symmetric.)

We note that if b is affine then certainly (1.21) exists for the choice Qc = Qb and cq = bqS,

1 ≤ q ≤ Qb. However, this identification is overly restrictive: skew-symmetric components of b

in (1.20) need not appear in the expansion of c, (1.21), and hence the parametric dependence of

the skew-symmetric components of b need not honor (1.22). This generalization is important

in applications such as convection-diffusion in both the elliptic and parabolic contexts.
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1.3 The Inf-Sup Stability “Constant”

1.3.1 Definition

Given a parametric bilinear form b: Z1 × Z2 ×D → R, we define the inf-sup constant [9] as

β(µ) = inf
w∈Z1

sup
v∈Z2

b(w, v;µ)
‖w‖Z1 ‖v‖Z2

. (1.24)

Here Z1 and Z2 are Hilbert spaces with associated inner products and induced norms ( · , · )Z1 ,

‖ · ‖Z1 and ( · , · )Z2 , ‖ · ‖Z2 , respectively. Both the case Z1 = Z2 = Z and Z1 6= Z2 will be of

interest. (We note that for the special case of saddleproblems [26, 27], the inf-sup constant is

defined in a different fashion; we introduce the necessary technology “in vivo” in Part VI.)

Clearly, β(µ) ≥ 0 — a claim to the contrary is readily refuted by changing the sign of the

allegedly supremizing v and invoking bilinearity. However, in general we can not assume that

β(µ) is strictly positive. If there does exist a positive β0 such that

β(µ) ≥ β0, ∀ µ ∈ D , (1.25)

then we shall say that b is “inf-sup stable” over Z1 × Z2 (or, if Z1 = Z2 = Z, over Z).

1.3.2 Supremizing Operator

We next introduce the supremizing operator Tµ: Z1 → Z2 associated with b, defined as

Tµw = arg sup
v∈Z2

b(w, v;µ)
‖v‖Z2

. (1.26)

It is a simple matter to obtain an explicit representation for Tµ: for any w ∈ Z1,

(Tµw, v)Z2 = b(w, v;µ), ∀ v ∈ Z2 ; (1.27)

we observe that Tµ is linear. The equivalence between (1.26) and (1.27) is a direct consequence

of the Cauchy-Schwarz inequality.
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For the case of greatest interest in this book, in which b admits an affine representation

(1.19), we may express Tµw as

Tµw =
Qb∑
q=1

Θq
b(µ) Tqw , (1.28)

where the parameter-independent operators Tq: Z1 → Z2 are given by

(Tqw, v)Z2 = bq(w, v), ∀ v ∈ Z2, 1 ≤ q ≤ Qb . (1.29)

The proof of (1.28) is simple: for any w ∈ Z1, Qb∑
q=1

Θq
b(µ) Tqw, v


Z2

=
Qb∑
q=1

Θq
b(µ)(Tqw, v)Z2

=
Qb∑
q=1

Θq
b(µ) bq(w, v)

= b(w, v;µ)

= (Tµw, v)Z2 ∀ v ∈ Z2 .

(1.30)

This decomposition shall prove useful in developing inf-sup lower bounds.

1.3.3 Alternative Expressions for the Inf-Sup Constant

It follows from (1.24) and (1.26), (1.27) that we may also express β(µ) as

β(µ) = inf
w∈Z1

sup
v∈Z2

b(w, v;µ)
‖w‖Z1 ‖v‖Z2

= inf
w∈Z1

b(w, Tµw;µ)
‖w‖Z1 ‖Tµw‖Z2

= inf
w∈Z1

(Tµw, Tµw)Z2

‖w‖Z1 ‖Tµw‖Z2

= inf
w∈Z1

‖Tµw‖Z2

‖w‖Z1

; (1.31)

in the case Z1 = Z2 = Z we obtain

β(µ) = inf
w∈Z

‖Tµw‖Z

‖w‖Z
. (1.32)

37 March 2, 2007



It follows from the Rayleigh(-like) quotients (1.31) and (1.32) that β(µ) can be readily ex-

pressed in terms of an eigenproblem (see Section 1.3.5).

We conclude here with another useful articulation of the inf-sup constant: for any w ∈ Z1,

there exists a v ∈ Z2 such that

β(µ) ‖w‖Z1 ‖v‖Z2 ≤ b(w, v;µ) . (1.33)

We thus observe that the inf-sup construct is a fashion by which to find energetically “good”

test functions that ensure positivity. It is simple to demonstrate that (1.24) implies (1.33) with

v = Tµw:

b(w, Tµw;µ) ≥ β(µ) ‖w‖Z1 ‖Tµw‖Z2 , ∀ w ∈ Z1 . (1.34)

This will prove quite useful in a priori error analysis.

1.3.4 Alternative Expressions for the Continuity Constant

In fact, we can also express our previously introduced continuity constant (here generalized to

Z1 6= Z2),

γ(µ) = sup
w∈Z1

sup
v∈Z2

b(w, v;µ)
‖w‖Z1 ‖v‖Z2

, (1.35)

in terms of the Tµ operator. In particular, it follows from (1.26), (1.27), and (1.35) that

γ(µ) = sup
w∈Z1

b(w, Tµw)
‖w‖Z1 ‖Tµw‖Z2

= sup
w∈Z1

(Tµw, Tµw)Z2

‖w‖Z2 ‖Tµw‖Z2

= sup
w∈Z1

‖Tµw‖Z2

‖w‖Z2

; (1.36)

for Z1 = Z2 = Z,

γ(µ) = sup
w∈Z

‖Tµw‖Z

‖w‖Z
. (1.37)

The β(µ) and γ(µ) are thus both related to the same associated eigenproblem. We now discuss

this eigenproblem.
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1.3.5 Inf-Sup (and Continuity) Eigenproblem

We conclude from (1.31) and (1.36) that

β2(µ) = inf
w∈Z1

‖Tµw‖2Z2

‖w‖2Z1

, (1.38)

γ2(µ) = sup
w∈Z1

‖Tµw‖2Z2

‖w‖2Z1

, (1.39)

and hence that β2(µ) and γ2(µ) are the minimum and maximum of a Rayleigh quotient. We

can thus identify an associated eigenproblem. For simplicity of exposition we shall consider

the case in which dim(Z1) and dim(Z2) are finite.

We introduce the “inf-sup” symmetric positive semidefinite (generalized) eigenproblem

associated with a parametric bilinear form b: Z1 × Z2 × D → R: Given µ ∈ D, find

(χ, ν)i(µ) ∈ Z1 × R+0, i = 1, . . . ,dim(Z1), such that

(Tµχi(µ), Tµw)Z2 = νi(µ)(χi(µ), w)Z1 , ∀ w ∈ Z1 , (1.40)

and

‖χi(µ)‖Z1 = 1 , (1.41)

where Tµw satisfies (1.27). We order the eigenvalues in ascending order such that 0 ≤

ν1(µ) ≤ ν2(µ) ≤ . . . ≤ νdim(Z1)(µ) (recall that R+ denotes the positive reals and R+0 the

non-negative reals). We recall the usual orthogonality relations: (Tµχi, Tµχj)Z2 = νi(µ)δi j ,

(χi(µ), χj(µ))Z1 = δi j , 1 ≤ i, j ≤ dim(Z1); here δi j is the Kronecker-delta symbol.

It follows directly from (1.40), (1.31), and (1.36) that

β(µ) =
√
ν1(µ) (1.42)

and

γ(µ) =
√
νdim(Z1)(µ) , (1.43)
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corresponding to the square root of the extreme eigenvalues. We can further conclude that the

infimizer of (1.31) is χ1(µ), and that the associated “inner” supremizer is Tµχ1(µ): β2(µ) =

b(χ1(µ), Tµχ1(µ);µ).

We pause to note that the inf-sup parameter is nothing more than a slightly generalized

smallest singular value — a singular value with “attitude.” In particular, if Z1 ≡ Rm and

Z2 ≡ Rn with ( · , · )Z1 , ‖ · ‖Z1 and ( · , · )Z2 , ‖ · ‖Z2 the usual Euclidean inner products/norms,

and b( · , · ;µ) is the inner product associated with a matrix B(µ) ∈ Rn×m, then

β(µ) = inf
w∈Z1

sup
v∈Z2

n∑
i=1

m∑
j=1

vi Bij(µ) wj(
m∑

j=1
w2

j

)1/2(
n∑

i=1
v2
i

)1/2
(1.44)

is simply the smallest singular value of B(µ). (To demonstrate this, we need only note from

(1.44) that (Tµw)i =
∑m

j=1 Bij(µ) wj , and hence that the νi(µ) of (1.36) are the eigenvalues

of BT(µ)B(µ); here T denotes algebraic transpose.) All our “singular value”/inf-sup results

have simple and obvious analogies in the usual linear algebra context [146].

1.3.6 The Coercive Case Revisited

We consider here the relationship between the inf-sup constant and the coercivity constant in

the case in which b: Z ×Z ×D → R is coercive — and hence both β(µ) and α(µ) are positive

and relevant. We immediately note from (1.24) for the choice v = w and (1.13) that

β(µ) ≥ α(µ) , (1.45)

since v = w can never “do better” than the supremizer v = Tµw.

In general, β(µ) 6= α(µ). However, in the case in which b is symmetric, β(µ) = α(µ).

We present the proof in the case in which dim(Z) is finite: ∀ w ∈ Z, (Tµχ
co
1 (µ), Tµw)Z =

bS(χco
1 (µ), Tµw;µ) = νco

1 (χco
1 , Tµw)Z = νco

1 bS(χco
1 , w;µ) = (νco

1 )2(χco
1 , w)Z ; hence νj(µ) =

(νco
1 )2(µ) for some j, and thus β2(µ) = ν1(µ) ≤ (νco

1 (µ))2; therefore, since b is coercive and
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thus νco
1 (µ) > 0, β(µ) ≤ α(µ); but from (1.45) we must obtain equality β(µ) = α(µ). (Note

in the symmetric non-coercive case, we obtain β(µ) = minj∈1,...,dim(Z) |νco
j (µ)|, as expected

from linear algebra.)

1.3.7 Adjoint Operators

We introduce here the operator T †
µ: Z2 → Z1 associated with b: Z1 × Z2 ×D → R as

T †
µv = arg sup

w∈Z1

b(w, v;µ)
‖w‖Z1

. (1.46)

It is readily shown that

(T †
µv, w)Z1 = b(w, v;µ), ∀ w ∈ Z1 ; (1.47)

we observe that T †
µ is linear. It follows directly from (1.27) and (1.47) that

(T †
µv, w)Z1 = (Tµw, v)Z2 , ∀ w ∈ Z1, ∀ v ∈ Z2 , (1.48)

hence the adjoint † notation. Note if b is symmetric, T †
µ = Tµ.

We next define

β†(µ) = inf
v∈Z2

sup
w∈Z1

b(w, v;µ)
‖v‖Z2 ‖w‖Z1

; (1.49)

equivalently,

β†(µ) = inf
v∈Z2

‖T †
µv‖Z1

‖v‖Z2

; (1.50)

equivalently, for all v ∈ Z2 (there exists w = T †
µv such that)

β†(µ) ‖v‖Z2 ‖T †
µv‖Z1 ≤ b(T †

µv, v;µ) . (1.51)

These relations are relevant to the analysis of adjoint problems.

We can also define

γ†(µ) = sup
v∈Z2

sup
w∈Z1

b(w, v;µ)
‖v‖Z2 ‖w‖Z1

; (1.52)
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equivalently,

γ†(µ) = sup
v∈Z2

‖T †
µv‖Z1

‖v‖Z2

. (1.53)

Here γ†(µ) is the adjoint continuity constant.

The case of interest in this book is

dim(Z1) = dim(Z2) and finite ; (1.54)

note if dim(Z1) 6= dim(Z2) then perforce either β(µ) or β†(µ) vanishes. Under the hypotheses

(1.54) and β(µ) > 0 we can readily demonstrate [45] that

β†(µ) = β(µ), γ†(µ) = γ(µ) . (1.55)

We sketch here a proof.

We first note from our eigenproblem (1.40) and relation (1.48) that, ∀v ∈ Z2, (T †
µ(Tµχi(µ)),

T †
µv)Z1 = (Tµχi(µ), Tµ(T †

µv))Z2 = νi(µ)(χi(µ), T †
µv)Z1 = νi(µ)(Tµχi(µ), v)Z2 , 1 ≤ i ≤ dim(Z1);

it thus follows that the eigenproblem associated with the Rayleigh(-like) quotients (1.50),

(1.53) has the dim(Z1) — and since dim(Z2) = dim(Z1), only the dim(Z1) — eigenpairs

(Tµχi(µ)/
√
νi(µ), νi(µ)), 1 ≤ i ≤ dim(Z1) (note if β(µ) > 0 then νi > 0, 1 ≤ i ≤ dim(Z1));

hence β†(µ) =
√
ν1(µ) = β(µ) and γ†(µ) =

√
νdim(Z1)(µ) = γ(µ). We also note for

future reference that the infimizer in (1.49) is Tµχ1(µ) ∈ Z2 with associated supremizer

T †
µTµχ1(µ) ∈ Z1. (In the symmetric case, from the arguments presented in Section 1.3.6,

we know that Tµχ1 is in fact colinear with χ1.)

1.4 Classes of Functions

1.4.1 Field Variables

Scalar and Vector Fields

We first introduce an open bounded domain Ω ∈ Rd, d = 1, 2, or 3; we shall refer to a typical

point in Ω as x = (x1, . . . , xd). We define the canonical basis vectors as ei, 1 ≤ i ≤ d, where
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(say, for d = 2) e1 = (1, 0), e2 = (0, 1). (In general the default, if we do not indicate otherwise,

shall be two spatial dimensions: d = 2.) We consider Lebesgue measure and integration in

Ω. We denote the boundary of Ω by ∂Ω; we shall assume that ∂Ω is (except possibly for the

cameo appearance of a well-behaved crack) Lipschitz continuous.

We shall consider both (here, real) scalar-valued and vector-valued field variables; examples

of the former include temperature or pressure, while examples of the latter include displacement

or velocity. We shall denote by dv the dimension of the field variable: for scalar valued fields,

dv = 1, while for vector-valued fields, dv = d. Thus, given dv, a typical field variable will be

denoted w: Ω → Rdv and written as w(x) = (w1(x), . . . , wdv(x)); for convenience of exposition,

we shall permit both w(x) and w1(x) to represent a scalar field (dv = 1).

We shall denote a multi-index spatial derivate [158] of a scalar (or one component of a

vector) field w as

(Dσw)(x) =
∂σw

∂xσ1
1 · · · ∂xσd

d

, (1.56)

where σ = (σ1, . . . , σd) is an index vector of non-negative integers σ1, . . . , σd; we denote by

|σ| =
∑d

j=1 σj the order of the derivative. We also introduce Id,n as the set of all index vectors

σ ∈ Nd
0 such that |σ| ≤ n. (Recall that N and N0 shall denote the natural numbers excluding

and including zero.) We shall invoke the multi-index notation primarily for |σ| ≥ 2.

Function Spaces

We first introduce the space of continuous functions over Ω ⊂ Rd, C0(Ω). We can then

introduce the spaces Cm(Ω), m ∈ N0,

Cm(Ω) ≡ {w |Dσw ∈ C0(Ω), ∀ σ ∈ Id,m} ; (1.57)

Cm(Ω) is the space of functions for which all derivatives Dσw of order |σ| ≤ m exist and are

continuous over Ω. We shall denote by C∞(Ω) the space of functions w for which Dσw exists

and is continuous for any order |σ|. (Although the domain Ω shall subsequently denote the

43 March 2, 2007



particular spatial domain over which we define our PDE, at present Ω is any bounded open

suitably smooth region in Rd.)

We next introduce the family of Banach spaces Lp(Ω): for 1 ≤ p <∞,

Lp(Ω) ≡
{
w measurable

∣∣∣ ( ∫
Ω
|w|p

)1/p

<∞
}

; (1.58)

the associated Lp(Ω) norm is

‖w‖Lp(Ω) ≡
(∫

Ω
|w|p

)1/p

, ∀ w ∈ Lp(Ω) . (1.59)

We recall that ‖w‖L∞(Ω) should be interpreted as the essential supremum,

‖w‖L∞(Ω) ≡ inf
D

sup
Ω\D

|w| (1.60)

over all sets D of zero measure.

The particular Lebesgue space p = 2 is of central importance. We introduce the (now)

Hilbert space L2(Ω) ≡ {w measurable |
∫
Ωw

2 <∞} equipped with inner product and induced

norm

(w, v)L2(Ω) ≡
∫

Ω
wv, ∀ w, v ∈ L2(Ω) , (1.61)

‖w‖L2(Ω) ≡
√

(w,w)L2(Ω), ∀ w ∈ L2(Ω) . (1.62)

In words, L2(Ω) is the space of all functions w : Ω → R that are square-integrable over Ω. (It

is clear from our definitions that L2(Ω) is an inner product space; it can also be shown that

this space is complete, and hence a Hilbert space [2].)

We next introduce the family of Hilbert spaces, Hm(Ω), m ∈ N0,

Hm(Ω) ≡ {w measurable |Dσw ∈ L2(Ω), ∀σ ∈ Id,m} (1.63)

with inner product and norm

(w, v)Hm(Ω) =
∑

σ∈Id,m

∫
Ω
Dσw Dσv , (1.64)
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and

‖w‖Hm(Ω) =
√

(w,w)Hm(Ω) , (1.65)

respectively; note that the derivatives in (1.63)–(1.65) are to be interpreted in the distributional

sense [79]. These spaces may be generalized in many ways: to fractional and negative m [2];

and to general Lp (p 6= 2) norms — corresponding to the family of Sobolev (Banach) spaces

[2]. However, for our purposes the most intuitive case — non-negative integer m and the L2

norm — shall suffice.

In fact, given our exclusive emphasis on (formulation of) second-order PDEs, we shall

require mostly H0(Ω) = L2(Ω) and H1(Ω). We have already provided details for the former;

we here present the latter. In particular, it follows directly from (1.63) that

H1(Ω) ≡
{
w ∈ L2(Ω)

∣∣∣∣ ∂w∂xi
∈ L2(Ω), 1 ≤ i ≤ d

}
(1.66)

equipped with inner product and induced norm

(w, v)H1(Ω) ≡
∫

Ω
∇w · ∇v + wv, ∀ w, v ∈ H1(Ω), (1.67)

‖w‖H1(Ω) ≡
√

(w,w)H1(Ω), ∀ w ∈ H1(Ω) ; (1.68)

we also introduce the H1 seminorm,

|w|H1(Ω) ≡
∫

Ω
∇w · ∇w, ∀ w ∈ H1(Ω) . (1.69)

Finally, we define the space

H1
0 (Ω) ≡ {v ∈ H1(Ω) | v|∂Ω = 0}; (1.70)

here v|∂Ω denotes the trace of v on the boundary of Ω. We note that for H1
0 (Ω), thanks

to the Poincare-Friedrichs inequality, the seminorm (1.69) in fact constitutes a (alternative,

equivalent) norm: for v ∈ H1
0 (Ω), |v|H1(Ω) = 0 implies v = 0.

The spaces above are defined for the scalar case, dv = 1. However, in all cases we can

construct the corresponding “vector” fields by the Cartesian product recipe of Section 1.1.2.
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We consider here just the particularly important cases of L2(Ω) and H1(Ω): for vector fields

w = (w1, . . . , wdv) ∈ (L2(Ω))dv ,

(L2(Ω))dv ≡ {wi ∈ L2(Ω), 1 ≤ i ≤ dv} , (1.71)

(w, v)L2(Ω) ≡
dv∑
i=1

(wi, vi)L2(Ω)

(
=

dv∑
i=1

∫
wivi

)
, (1.72)

‖w‖L2(Ω) ≡

(
dv∑
i=1

‖wi‖2L2(Ω)

)1/2
=

(
dv∑
i=1

∫
w2

i

)1/2
 ; (1.73)

and for vector fields w = (w1, . . . , wdv) ∈ (H1(Ω))dv ,

(H1(Ω))dv ≡ {wi ∈ H1(Ω), 1 ≤ i ≤ dv} , (1.74)

(w, v)H1(Ω) ≡
dv∑
i=1

(wi, vi)H1(Ω)

(
=

dv∑
i=1

∫
Ω
∇wi · ∇vi + wivi

)
, (1.75)

‖w‖H1(Ω) ≡

(
dv∑
i=1

‖wi‖2H1(Ω)

)1/2
=

(
dv∑
i=1

∫
Ω
|∇wi|2 + w2

i

)1/2
 . (1.76)

We shall let the arguments of the inner products and norms distinquish between the scalar and

vector cases; note in particular that (1.71)–(1.76) are consistent for dv = 1 (or for dv = d).

1.4.2 Parametric Functions

Parameter Domains and Grids

We first recall our closed , bounded , and suitably regular parameter domain D ⊂ RP , a typical

point in which shall be denoted µ = (µ1, . . . , µp). It shall also prove convenient to introduce

Dbox ⊂ RP as the smallest parallel-“P”ped such that D ⊂ Dbox: Dbox ≡ [µmin
1 , µmax

1 ] × · · · ×

[µmin
P , µmax

P ], where

µmin
p = min

µ∈Ω
µp, µmax

p = max
µ∈Ω

µp, 1 ≤ p ≤ P ; (1.77)

we also denote µmin ≡ minp∈{1,...,P} µ
min
p and µmax ≡ maxp∈{1,...,P} µ

max
p . It shall often prove

worthwhile to consider a logarithmic transformation: for µmin > 0, we introduce

µ̂p = lnµp, 1 ≤ p ≤ P ; (1.78)
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we denote by D̂ and D̂box (≡ [lnµmin
1 , lnµmax

1 ] × · · · × [lnµmin
P , lnµmax

P ]) the image of D and

Dbox under the log transformation (1.78).

In the construction, analysis, and assessment of our RB approximations and a posteriori

error estimators we shall often need various grids — finite subsets of D or Dbox. Most commonly

we shall invoke Monte-Carlo samples Glin
[MC;m] and Gln

[MC;m] (note ln and log shall refer to the

logarithm base e and base 10, respectively) for given sample size m ∈ N. To construct Glin
[MC;m]

we draw points uniformly over Dbox,

µp = µmin
p + rand× (µmax

p − µmin
p ), 1 ≤ p ≤ P ,

and reject µ = (µ1, . . . , µP ) 6∈ D; here rand is a random variable uniformly distributed over

[0, 1]. To construct Gln
[MC;m] we draw points

µp = µmin
p exp

{
rand× ln

(
µmax

p

µmin
p

)}
, 1 ≤ p ≤ P ,

and reject µ = (µ1, . . . , µP ) 6∈ D; this procedure in effect creates a uniform distribution over

D̂. Note we may consider Gln
[MC;m] only if µmin > 0.

We also introduce one-dimensional deterministic grids Glin
[z1,z2;m], G

ln
[z1,z2;m]: for z2 ∈ R >

z1 ∈ R (> 0 in the logarithmic case) and m ∈ N,

Glin
[z1,z2;m] =

{
z1 +

i− 1
m− 1

(z2 − z1), 1 ≤ i ≤ m

}
(1.79)

Gln
[z1,z2;m] =

{
z1 exp

{
i− 1
m− 1

ln
(
z2
z1

)}
, 1 ≤ i ≤ m

}
; (1.80)

note ẑi = ln(zi) is equi-distributed for Gln
[z1,z2;m]. We also define grids based on the Chebyshev

Gauss-Lobatto points

Glin, Cheb
[z1,z2;m] =

{
z1 +

1
2

(
1− cosπ

(
i− 1
m− 1

))
(z2 − z1), 1 ≤ i ≤ m

}
, (1.81)

Gln, Cheb
[z1,z2;m] =

{
z1 exp

{
1
2

(
1− cosπ

(
i− 1
m− 1

))
ln
(
z2
z1

)}
, 1 ≤ i ≤ m

}
; (1.82)

which shall prove useful in several comparisons. Note that we can combine our one-dimensional
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grids in tensor product form to create multi-dimensional grids: for example, Glin
[µmin

1 ,µmax
1 ;m]

×

· · · ×Glin
[µmin

P ,µmax
P ;m]

is a grid of mP points over Dbox.

Parametric Scalar and Vector Fields

We now define a parametric scalar (respectively, vector) field w as the application w: Ω×D →

Rdv for dv = 1 (respectively, dv = d); we shall denote this field as w(x;µ).

We shall denote the multi-index parametric (or “sensitivity”) derivative of a scalar (or one

component of a vector) parametric field w(x;µ) as

(Dσw)(x;µ) =
∂σw

∂µσ1
1 · · · ∂µσP

P

(1.83)

where σ = (σ1, . . . , σP ) is an index vector of non-negative integers σ1, . . . , σP ; we denote by

|σ| =
∑P

j=1 σj the order of the derivative. (Of course our definition of parameter derivatives

here parallels the definition of spatial derivatives in Section 1.4.1; subscript σ denotes the

former and superscript σ denotes the latter. We shall have no direct need for space-parameter

cross derivatives.) As before, IP,n denotes the set of all index vectors σ ∈ NP
0 such that |σ| ≤ n.

We shall say that a parametric scalar (or one component of a vector) field w: Ω×D → R

is “separable” over Ω if, for some finite M ,

w(x;µ) =
M∑

j=1

hj(x) gj(µ), ∀ x ∈ Ω, ∀ µ ∈ D , (1.84)

for hj : Ω → R, gj : D → R, 1 ≤ j ≤M . We shall further say that w is x-affine separable over

Ω if additionally each hj(x) is affine in x:

hj(x) = Cj
0 +

d∑
i=1

Cj
i xi, Cj

i ∈ R, 0 ≤ i ≤ d, 1 ≤ j ≤M . (1.85)

The restrictions (1.84),(1.85) shall place an important role in defining admissible geometric

parametrizations.
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Parametric Function Spaces

Although on occasion, in particular as regards convergence theory, it will be important to

“think” of w(x;µ) as x ∈ Ω → w(x; · ) ∈ Z(D) — where Z(D) is a function space over D —

more often we shall think of w(x;µ) as µ ∈ D → w( · ;µ) ∈ Z(Ω) — where Z(Ω) is a function

space over Ω. In the latter case, we shall often abbreviate w( · ;µ) by w(µ).

Given a (say, scalar) function space Z(Ω) — for example, Z(Ω) = H1(Ω) of (1.66) — we

shall define

Cm(D;Z(Ω)) ≡
{
Dσw( · ;µ) ∈ Z(Ω), ∀ σ ∈ IP,m, ∀µ ∈ D

}
. (1.86)

(More precisely, we should require that the derivatives of w in µ exist and are furthermore

continuous as measured in the Z norm.) For instance, if m = 1 (and Z(Ω) = H1(Ω)),

C1(D;H1(Ω)) ≡
{
w( · ;µ) ∈ H1(Ω) and

∂w

∂µp
( · ;µ) ∈ H1(Ω), 1 ≤ p ≤ P, ∀µ ∈ D

}
. (1.87)

Note functions Cm(D;H1(Ω)) for larger m are very smooth in parameter but not (necessarily)

very smooth in space.

1.5 The Complex Case

Our discussion above focuses on real vector spaces. However, we shall also on occasion require

complex vector spaces — most notably in Part III in the context of acoustics problems —

and we thus discuss here the necessary extensions. In general, we treat the complex case

as an “overload” of the real case, with the obvious extension/identification (according to the

development of this section) if R is replaced with C.

We first recall the usual notations. For y ∈ C (a complex number), y = Re y + i Im y,

where Re (respectively, Im) refers to the real (respectively, imaginary) part, and i =
√
−1.

We denote the complex conjugate of y as y = Re y − i Im y, and the modulus of y as |y| =

((Re y)2 + (Im y)2)1/2 = (y y)1/2. We also recall that y can be represented as y = |y|eiϕ for
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ϕ = tan−1(Im y/Re y).

We can readily generate a complex inner product space ZC from a corresponding real inner

product space ZR [108]. We first extend the underlying vector space as ZC = ZR×ZR: for any

two members of ZC, w1 = (Rew1 ∈ ZR, Imw1 ∈ ZR) and w2 = (Rew2 ∈ ZR, Imw2 ∈ ZR),

w1+w2 ≡ (Rew1+Rew2, Imw1+Imw2); for any complex number α ∈ C, αw1 ≡ (ReαRew1−

Imα Imw1, ImαRew1 + Reα Imw1). Finally, our notion of basis (1.1) directly extends to the

complex case, except that now αj ∈ C, 1 ≤ j ≤ dim(Z).

We then introduce our inner product as ( · , · )ZC : ZC × ZC → C as (w1, w2)ZR =

((Rew1,Rew2)ZR + (Imw1, Imw2)ZR , (Imw1,Rew2)ZR − (Rew1, Imw2)ZR); note that now

(w2, w1) = (w1, w2). As usual, our inner product induces a (well-defined) norm ‖w‖ZC which is

real-valued ; furthermore, for our definitions, ‖w‖ZC = ‖|w1|‖ZR . The Cauchy-Schwarz inequal-

ity directly applies, but of course with | · | in (1.2) now interpreted as complex modulus.

We say that a functional g: ZC → C is an antilinear (sloppily, linear, understanding from

C the context) if, for any α ∈ C, w, v ∈ ZC, g(αw + v) = α g(w) + g(v). Our definition of

dual norm, (1.8), still applies, though now we must consider |g(v)| (complex modulus) in the

numerator; (1.9) and (1.10) also still apply — and note that (even in the complex case) there

is no complex modulus in (1.9).

We similarly extend the notion of a bilinear form b. A form b : ZC × ZC → C (or over

VC ×WC) is sesquilinear (sloppily, bilinear, understanding from C the context) if, for given

w ∈ ZC, b(w, v) is antilinear in v, and for given v ∈ ZC, b(w, v) is antilinear in w. We say that

b is symmetric or Hermitian if b(w, v) = b(v, w), ∀w, v ∈ ZC; we define the Hermitian part of

b as bH(w, v) = 1
2(b(w, v) + b(v, w) ), ∀ w, v ∈ ZC.

The discussion of parametric linear and bilinear forms readily extends to the complex case;

note we assume without loss of generality that our parameter remains real, µ ∈ D ⊂ RP . The

notion of affine parameter dependence (1.18), (1.19) is directly applicable to the complex case:
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now, however, Θq
g : D → C, 1 ≤ q ≤ Qq, and the gq, 1 ≤ q ≤ Qg are bounded antilinear

functionals over ZC; similarly, Θq
b : D → C, 1 ≤ q ≤ Qb, and the bq, 1 ≤ q ≤ Qb, are

sesquilinear forms over ZC × ZC.

The inf-sup continuity notions developed in Section 1.3 for the real case, b : W×V ×D → R,

W and V real spaces, directly extend to the complex case, b : W × V × D → C, W and V

complex spaces: we simply consider |b(w, v;µ)| in (1.24) and (1.35). Most importantly, the

definition of Tµw in the complex case remains exactly as in the real case (1.27): no complex

modulus is introduced. As a result neither the expressions for β(µ) and γ(µ) in terms of Tµw

— (1.31) and (1.35), respectively — nor the (now Hermitian) inf-sup eigenproblem (1.40),

(1.41) and associated identifications, (1.42), (1.43), require any modification.

Finally, our discussion of functions in Section 1.4 admits direct extension to the complex

case. For example, given a complex scalar field w : Ω → C, we can readily define Dσw :

Ω → C as Dσ Rew + iDσ Imw and subsequently — following our “complexification” recipe

above — identify

H1(Ω) ≡

{∫
Ω
|w|2 <∞,

∫
Ω

∣∣∣∣ ∂w∂xi

∣∣∣∣2 <∞, 1 ≤ i ≤ d

}

with inner product and norm

(w, v)H1(Ω) ≡
∫

Ω
∇w · ∇v +

∫
Ω
wv ,

‖w‖H1(Ω) ≡
(∫

Ω
|∇w|2 +

∫
Ω
|w|2

)1/2

;

here | · | refers to the complex modulus. Our parametric function spaces (1.86) admit similar

generalization.
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Part I

Parametrically Coercive and
Compliant Affine Linear Elliptic

Problems
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Chapter 2

Abstract Formulation

2.1 Exact Statement

In what follows, the mysterious e refers to “exact” — associated with the exact solution to our

problem for the prescribed mathematical model. (Uncertainties in the mathematical model

are briefly considered in Part VIII.)

2.1.1 Space Xe

In this section we define the function spaces associated with our PDE field variable.

We first recall our (suitably regular) physical domain Ω ∈ Rd with boundary ∂Ω of Sec-

tion 1.4.1; recall that d = 1, 2, or 3 is the spatial dimension. In this Part of the book, we

shall consider only real-valued field variables. However, we shall already consider here both

scalar-valued (e.g., temperature in Poisson problems) and vector-valued (e.g., displacement in

linear elasticity problems) field variables w: Ω → Rdv : we recall that dv denotes the dimension

of the field variable; for scalar-valued fields, dv = 1, while for vector-valued fields, dv = d.

We also introduce (boundary measurable) segments of ∂Ω, ΓD
i , 1 ≤ i ≤ dv, over which we

shall ultimately impose Dirichlet — in our context, essential — boundary conditions on the

components of the field variable.
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We next introduce the scalar spaces Y e
i , 1 ≤ i ≤ dv,

Y e
i ≡ Y e

i (Ω) ≡ {v ∈ H1(Ω) | v|ΓD
i

= 0}, 1 ≤ i ≤ dv ; (2.1)

in general H1
0 (Ω) ⊂ Y e

i ⊂ H1(Ω), and for ΓD
i = ∂Ω, Y e

i = H1
0 (Ω). We then construct the space

in which our vector-valued field variable shall reside as the Cartesian productXe = Y e
1 ×. . . Y e

dv
;

a typical element of Xe shall be denoted w = (w1, . . . , wdv). (Not all problems and in particular

domains/boundary conditions will admit this Cartesian product form; however, Y e provides

sufficient scope for our expositional purposes here. Note that neither our formulation nor the

software provided is in fact restricted to the Cartesian product case.) We equip Xe with an

inner product (w, v)Xe , ∀ w, v,∈ Xe, and induced norm ‖w‖Xe =
√

(w,w)Xe , ∀ w ∈ Xe: any

inner product which induces a norm equivalent to the (H1(Ω))dv norm is permissible; we shall

propose particular candidates below.

We next recall our (suitably regular) closed parameter domain D ∈ RP , a typical parameter

(or input) point, or vector, or P -tuple, in which shall be denoted µ = (µ1, µ2, . . . , µP ). We may

then define our parametric field variable as u ≡ (u1, . . . , udv): D → Xe; here, u(µ) denotes the

field for parameter value µ ∈ D. (It shall also prove convenient on occasion to view the field

variable fully as u: Ω × D → R; in this case, u(x;µ) denotes the value of the field at point

x ∈ Ω for parameter value µ ∈ D.) Note that in the scalar case we shall denote the field either

as u(µ) or as u1(µ); the latter permits general formulas relevant to both the scalar and vector

case.

2.1.2 Parametric Weak Form

We shall first briefly describe the general problem to be addressed in Part II and Part III; we

then impose the restrictions for the class of problems to be addressed here in Part I. We are

given affine parametric linear forms f and ` that are bounded over Xe, and an affine parametric

bilinear form a that is inf-sup stable (with constant β0 > 0) and continuous (with constant γ0)
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over Xe. Then, given µ ∈ D, we find ue(µ) ∈ Xe such that

a(ue(µ), v;µ) = f(v;µ), ∀ v ∈ Xe , (2.2)

and evaluate

se(µ) = `(ue(µ);µ) . (2.3)

Here se is our output of interest, se: D → R is the input (parameter)-output relationship,

and ` is the linear “output” functional which links the input to the output through the field

variable. (In Part II and Part III, we shall consider multiple outputs as well as quadratic

output functionals.)

We recall the interpretation of “affine in parameter” from Section 1.2.5:

`(v;µ) =
Q∑̀
q=1

Θq
`(µ) `q(v), ∀ v ∈ Xe, ∀ µ ∈ D , (2.4)

f(v;µ) =
Qf∑
q=1

Θq
f (µ) f q(v), ∀v ∈ Xe, ∀µ ∈ D , (2.5)

and

a(w, v;µ) =
Qa∑
q=1

Θq
a(µ)aq(w, v), ∀ w, v ∈ Xe,∀µ ∈ D , (2.6)

for finite — and, as we shall see, preferably modest — Q`, Qf , and Qa. We of course implicitly

assume that the Θq
` for 1 ≤ q ≤ Q`, Θq

f for 1 ≤ q ≤ Qf , and Θq
a for 1 ≤ q ≤ Qa are simple

algebraic expressions that can be readily evaluated in O(1) operations. (This is universally true

in all the examples in this book, though we can certainly envision situations where the Θq
a(µ)

are the result of extensive computation — and perhaps even in need of RB approximation!

Such excitement.)

We shall impose two restrictions on the class of problems that we shall treat in Part I.

First, we shall presume that our problem is “compliant” (a term that originates in the solid

mechanics literature [140], to denote the displacement associated with an applied load). A

compliant problem satisfies two conditions on (2.2),(2.3): (i) `( · ;µ) = f( · ;µ), ∀ µ ∈ D
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— the output functional and “load/source” functional are identical, and (ii) a is symmetric.

Together, these two assumptions greatly simplify the formulation (no adjoint is required),

the a priori convergence theory for the output, and the a posteriori error estimation for the

output. Though very restrictive, there are certainly interesting problems which in fact satisfy

the “compliance” requirements.

Second, we shall presume that our bilinear form a is parametrically coercive. To wit, as

described in Section 1.2.6 and specialized here (thanks to compliance) to the case of symmetric

a, we require that (i) the Θq
a(µ), 1 ≤ q ≤ Qa, are non-negative for all µ ∈ D, and (ii) the

aq, 1 ≤ q ≤ Qa, are symmetric semipositive definite (SSPD). This assumption of parametric

coercivity shall greatly simplify the stability lower bound required for our a posteriori error

estimation theory. Though restrictive, there are again interesting problems which do satisfy

the “parametric coercivity” requirements, both in the elliptic but also the parabolic context.

To avoid any confusion, we restate our problem for this Part of the book: Given µ ∈ D,

we find ue(µ) ∈ Xe such that

a(ue(µ), v;µ) = f(v;µ), ∀ v ∈ Xe , (2.7)

and evaluate

se(µ) = f(ue(µ);µ) . (2.8)

Here f is a bounded parametric linear form with affine parameter dependence, (2.5); and a is

a continuous, parametrically coercive bilinear form with affine parameter dependence, (2.6).

It follows from our assumptions and the Lax-Milgram theorem [125] that (2.7), (2.8) admits

a unique solution.
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2.1.3 Inner Products and Norms

Given that a is coercive, we may introduce the usual energy inner product and the induced

energy norm as

(((w, v)))µ = a(w, v;µ), ∀ w, v ∈ Xe , (2.9)

|||w|||µ ≡
√
a(w,w;µ), ∀ w ∈ Xe , (2.10)

respectively; note that these quantities are parameter-dependent . It is clear that (2.9) consti-

tutes a well-defined inner product — and (2.10), as required, an induced norm equivalent to

the H1(Ω) norm (1.76) — thanks to our coercivity and continuity assumptions on a.

We can now specify the inner product and norm associated to Xe. In particular, we shall

choose an energy inner product and norm associated with a specific parameter value µ ∈ D:

(w, v)Xe ≡ (((w, v)))µ (= a(w, v;µ)) , ∀ w, v ∈ Xe , (2.11)

‖w‖Xe ≡ |||w|||µ
(
=
√
a(w,w;µ)

)
, ∀ w ∈ Xe . (2.12)

We address in Chapter 4 how we might choose µ and how this choice affects our numerical

results; we note already here that the choice of norm (and hence of µ) does not affect the RB

output prediction but does affect the sharpness of the RB a posteriori output error bound.

We also consider in Section 4.5 a “multi-inner-product” extension.

Recalling (1.13), we introduce the coercivity constant of a over Xe as

αe(µ) ≡ inf
w∈Xe

a(w,w;µ)
‖w‖2Xe

, (2.13)

which is positive for all µ ∈ D. Similarly, from (1.14), we introduce the continuity constant of

a over Xe as

γe(µ) ≡ sup
w∈Xe

sup
v∈Xe

a(w, v;µ)
‖w‖Xe‖v‖Xe

, (2.14)

which is finite for all µ ∈ D.
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2.2 Examples

In general, we shall consider examples — instantiations of our abstractions — that are intended

to be representative of larger classes of problems (e.g., conduction, acoustics, linear elasticity).

In Part I we shall consider just two model problems: a (steady) heat conduction problem with

conductivities as parameters; and a linear elasticity problem with Young’s moduli as parame-

ters. In fact, (steady, and also unsteady) heat conduction and diffusion problems can very often

be modeled as parametrically coercive problems; we consider several additional parametrically

coercive conduction examples — including the important case of simple (piecewise dilation)

geometric variation/parameters — within the more general framework presented in Part II.

(Also in Part II we present much more extensive examples in linear elasticity; in general — for

more complex constitutive relations and even simple geometric variations — linear elasticity

problems are coercive but not parametrically coercive.)

Note in our Part I discussion it might appear that the prerequisites — such as affine

parameter dependence — for RB treatment can only be verified a posteriori — that there is

no way to a priori frame the general class of problems, and associated parametric dependencies,

amenable to the RB approach. In fact, this is not the case: In Part II we describe the broad

family of PDE operators and in particular geometric and “coefficient” parametric variations to

which the RB method can be applied; we reserve this discussion for Part II since, in general,

most of these problems will not honor the “parametrically coercive and compliant” restrictions

of Part I. Indeed, the purpose of Part I is to introduce all the RB concepts in a particularly

simple context.

2.2.1 Example 1 (Ex1): ThermalBlock

We consider steady heat conduction [94] in a two-dimensional domain, or “block,” Ω =

]0, 1[ × ]0, 1[ , shown in Figure 2.1. The block comprises B1 (in the x1-direction) × B2 (in

the x2-direction) rectangular subblocks/subdomains Ωi, i = 1, . . . , B1B2, each of dimension
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0 1
0

1

Figure 2.1: ThermalBlock Geometry.

1/B1 × 1/B2. For subblock i = B1B2, corresponding to the subdomain ΩB1B2 in the upper

right corner of the domain, the thermal conductivity is unity (our reference); for subblocks

i = 1, . . . , B1B2− 1, corresponding to the subdomains Ωi, i = 1, . . . , B1B2− 1, the normalized

thermal conductivity is denoted κi.

We consider P = B1B2 − 1 parameters: the conductivities. Our parameter vector is

thus given by µ ≡ (µ1, . . . , µP ) ≡ (κ1, . . . , κB1B2−1). We choose for our parameter domain

D = Dbox = [µmin
1 , µmax

1 ] × · · · × [µmin
P , µmax

P ]; we shall take the µmin
p = µmin, 1 ≤ p ≤ P , and

µmax
p = µmin, 1 ≤ p ≤ P ; furthermore, we shall select a “symmetric” interval µmin = 1/

√
µr,

µmax =
√
µr (for 1 < µr <∞) such that µmax/µmin = µr.

Our (scalar) field variable is the temperature: the temperature satisfies Laplace’s equation

in Ω; continuity of temperature and heat flux (the product of the conductivity and the gradient

of the temperature) across subblock interfaces [63]; zero Neumann (zero flux, or insulated)

conditions on the side boundaries; zero Dirichlet (temperature) conditions on the top boundary

Γtop ≡ ΓD; and unity Neumann (imposed unity heat flux into the domain) conditions on the

bottom boundary, or “base,” Γbase.

The output of interest is the average temperature over the base Γbase. Note that here and

in all examples in the book we presume a non-dimensional form in which all unnecessary (i.e.,

redundant) parameters have been removed.
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We recall from Section 2.1.1 that the function space associated with this set of boundary

conditions is given by Xe ≡ {v ∈ H1(Ω) | v|ΓD = 0}: the Dirichlet interface and boundary

conditions are essential; the Neumann interface and boundary conditions are natural. We can

then define our source (and also output) functional

f(v;µ) ≡
∫

Γbase

v, ∀ v ∈ Xe , (2.15)

and our bilinear form

a(w, v;µ) ≡
P∑

p=1

µp

∫
Ωi

∇w · ∇v +
∫

ΩP+1

∇w · ∇v, ∀ w, v ∈ Xe . (2.16)

(Recall that the conductivity of block i = B1B2 = P + 1 — our reference value — is unity.)

Finally, our weak form is then given by the abstract statement of Section 2.1.2, ((2.7),(2.8)).

Armed with our bilinear form, we can now specify our inner product according to the recipe

(2.11) as

(w, v)Xe ≡
P∑

p=1

µp

∫
Ωi

∇w · ∇v +
∫

ΩP=1

∇w · ∇v, ∀ w, v ∈ Xe , (2.17)

for a given value µ ∈ D. In our case we shall take µi = 1, 1 ≤ i ≤ P , corresponding to the

“logarithmic center” of the parameter domain. This choice will be justified in Chapter 4.

We can now readily verify our hypotheses. First, it is standard to confirm [158] that f is

indeed bounded. Second, we readily confirm by inspection that a is symmetric, and by simple

application of the Cauchy Schwarz inequality, that a is coercive,

0 <
1
√
µr
≤ Min (µ1/µ1, . . . , µP /µP , 1) ≤ αe(µ) , (2.18)

and continuous,

γe(µ) ≤ Max (µ1/µ1, . . . , µP /µP , 1) ≤ √µr <∞ ; (2.19)

here Min ( ) (respectively, Max ( )) returns the smallest (respectively, largest) of its argu-

ments. (More detailed coercivity and continuity calculations will be provided in Chapter 4,

Section 4.5.) Third, f is clearly affine in the parameter — in fact, f does not explicitly depend
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Figure 2.2: Multi-material ElasticBlock.

on the parameter, and hence Qf = 1 with Θ1
f (µ) = 1 and f1 = f ; and a is affine in the

parameter for Qa = P + 1 with Θq
a(µ) = µq, 1 ≤ q ≤ P , ΘP+1

a = 1, and

aq(w, v) ≡
∫

Ωi

∇w · ∇v, 1 ≤ i ≤ P + 1 . (2.20)

Fourth, and finally, a is parametrically coercive: Θq
a(µ) > 0, ∀ µ ∈ D, 1 ≤ q ≤ Qa, and

aq(w,w) ≥ 0, ∀ w ∈ Xe, 1 ≤ q ≤ Qa.

2.2.2 Example 2 (Ex2): ElasticBlock

We consider a linear elasticity [44, 78] example in the two-dimensional domain, or “material

block,” Ω = ]0, 1[× ]0, 1[ , shown in Figure 2.2. The block is comprised of B2 square isotropic

subblocks/subdomains Ωi, i = 1, . . . , B2, each of sidelength 1/B. For subblock i = B2, corre-

sponding to the subdomain ΩB2 in the upper right corner of the domain, the Young’s modulus

is unity (our reference); for subblocks i = 1, . . . , B2 − 1, corresponding to the subdomains Ωi,

i = 1, . . . , B2 − 1, the normalized Young’s modulus is Ei. The Poisson’s ratio in all subblocks

is ν = 0.30.

We consider P = B1B2 − 1 parameters: the Young’s moduli. Our parameter vector is

thus given by µ ≡ (µ1, . . . , µP ) ≡ (E1, . . . , EB1B2−1). We choose for our parameter domain

D = Dbox = [µmin
1 , µmax

1 ] × · · · × [µmin
P , µmax

P ]; we shall take the µmin
p = µmin, 1 ≤ p ≤ P , and

µmax
p = µmin, 1 ≤ p ≤ P ; furthermore, we shall select a “symmetric” interval µmin = 1/

√
µr,
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µmax =
√
µr (for 1 < µr <∞) such that µmax/µmin = µr.

Our (vector) field variable u(µ) = (u1(µ), u2(µ)) is the displacement: the displacement sat-

isfies the plane-strain Linear Elasticity equations in Ω; continuity of displacement and stress

across subblock interfaces; zero Neumann (load-free) conditions on the top and bottom bound-

aries; zero Dirichlet (dispacement) conditions on the left boundary ΓD
1 = ΓD

2 = ΓD — the

“structure” is clamped; and inhomogeneous Neumann conditions on the right boundary ΓN

corresponding to unity tension and zero shear.

The output of interest is the integrated horizontal (x1-)displacement over the loaded bound-

ary ΓN ; this corresponds to the eponymous compliant situation.

We recall from Section 2.1.1 that the function space associated with this set of boundary

conditions is given by Xe ≡ {v ∈ (H1(Ω))2 | v|ΓD = 0}: the Dirichlet interface and boundary

conditions are essential; the Neumann interface and boundary conditions are natural. We can

then define our load (and also output) functional

f(v;µ) ≡
∫

ΓN

v1, ∀ v ∈ Xe , (2.21)

and our bilinear form as

a(w, v;µ) ≡
P∑

p=1

µp

∫
ΩP

∂vi

∂xj
Cijkl

∂wk

∂xl
+
∫

ΩP+1

∂vi

∂xj
Cijkl

∂wk

∂xl
, ∀ w, v ∈ Xe . (2.22)

For our isotropic material, the elasticity tensor is given by

Cijkl = λ1δijδkl + λ2 (δikδjl + δilδjk) , (2.23)

where

λ1 =
ν

(1 + ν)(1− 2ν)
, (2.24)

λ2 =
1

2(1 + ν)
, (2.25)

(for ν = 0.30) are the Lamé constants for plane strain. The weak form is then given by ((2.7),

(2.8)).
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The inner product is specified by the recipe (2.11),

(w, v)Xe ≡
P∑

p=1

µp

∫
Ωp

∂vi

∂xj
Cijkl

∂wk

∂xl
+
∫

ΩP+1

∂vi

∂xj
Cijkl

∂wk

∂xl
, ∀ w, v ∈ Xe , (2.26)

for a given µ ∈ D; we choose µp = 1, 1 ≤ p ≤ P .

We can now readily verify our hypotheses. First, it is standard to confirm that f is indeed

bounded. Second, we readily confirm by inspection that a is symmetric, and we further verify

by application of the Korn inequality [48] and Cauchy Schwarz inequality that a is coercive

and continuous, respectively. Third, f is clearly affine in the parameter — in fact, f does not

explicitly depend on the parameter, and hence Qf = 1 with Θ1
f (µ) = 1 and f1 = f ; and a is

affine for Qa = B2 = P + 1 with Θq
a(µ) = µq, 1 ≤ q ≤ P , ΘP+1

a = 1, and

aq(w, v) =
∫

Ωq

∂vi

∂xj
Cijkl

∂wk

∂xl
, 1 ≤ q ≤ P + 1 . (2.27)

Fourth, and finally, a is parametrically coercive: Θq
a(µ) > 0, ∀ µ ∈ D, 1 ≤ q ≤ Qa, and

aq(w,w) ≥ 0, ∀ w ∈ Xe, 1 ≤ q ≤ Qa; as regards the latter, note we only require semipositive-

definiteness, and hence the rigid-body modes are not a concern.

2.3 “Truth” Approximation

In this section we develop the (somewhat Orwellianly named) “truth” approximation. We shall

build our Reduced Basis (RB) approximation on, and measure the error in the reduced basis

approximation relative to, this “truth” approximation. (Historically, the reduced basis method

has always relied on an underlying discrete model, either a directly lumped (algebraic) model

[6, 95, 99] or an approximation to an infinite-dimensional “exact” PDE [50]. We pursue here

the latter.)

2.3.1 Approximation Spaces and Bases

We now introduce a family of conforming approximation spaces XN ⊂ Xe of dimension

dim(XN ) = N ; note N is not only the dimension of the space but also the label for a particular

67 March 2, 2007



approximation in a specified sequence. Within our Cartesian product formulation for vector-

valued field problems we first construct conforming scalar approximation spaces Y Ni
i ⊂ Y e

i of

dimension dim(Y Ni
i ) = Ni, 1 ≤ i ≤ dv. We then form our vector approximation space as the

product of these dv scalar approximation spaces: XN = Y N1
1 × · · · × Y Ndv

dv
and N =

∑dv
i=1Ni.

We now associate to our space a set of basis functions ϕNk ∈ XN , 1 ≤ k ≤ N ; by con-

struction, any member of XN can be represented by a unique linear combination of the

ϕNk , 1 ≤ k ≤ N . Within our Cartesian product formulation for vector-valued field prob-

lems we first associate to our scalar approximation spaces Y Ni
i the basis functions (φNi

i )k′ ,

1 ≤ k′ ≤ Ni for 1 ≤ i ≤ dv. We then form our vector basis as the “sum” of the scalar bases:

ϕNInd (i,k′) = (φNi
i )k′ei, 1 ≤ k′ ≤ Ni, 1 ≤ i ≤ dv; here Ind is a (any) mapping from the double

index onto the single index (e.g., Ind (i, k′) = k′ +
∑i−1

i′=1Ni′).

Finally, we choose the inner products and norms with which to equip XN . Here we simply

inherit the inner products and norms associated with the exact space:

(w, v)XN ≡ (w, v)Xe ≡ a(w, v;µ), ∀ w, v ∈ XN , (2.28)

and

‖w‖XN ≡ ‖w‖Xe ≡
√
a(w,w;µ), ∀w ∈ XN . (2.29)

We note that the definitions of these inner products and induced norms is in fact independent of

N (in the here-assumed absence of quadrature errors) — only the class of admissible functions

grows as we enlarge our approximation space.

From definition (1.13) we introduce the coercivity constant of a over XN as

αN (µ) ≡ inf
w∈XN

a(w,w;µ)
‖w‖2

XN
; (2.30)

similarly, from the definition (1.14) we introduce the continuity constant of a over XN as

γN (µ) ≡ sup
w∈XN

sup
v∈XN

a(w, v;µ)
‖w‖XN ‖v‖XN

. (2.31)

We shall shortly infer various properties of αN (µ) and γN (µ).
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We shall require that our family of truth subspaces XN satisfies the approximation condi-

tion

max
µ∈D

inf
w∈XN

‖u(µ)− w‖Xe → 0 as N →∞ . (2.32)

In words, (2.32) states that, for any ε > 0, there exists an N such that the error in the best fit

to u(µ) in XN is less than or equal to ε for all µ in D. In our examples, these approximation

spaces will most often be linear or quadratic (or bilinear or biquadratic) finite element (FE)

spaces defined over suitable triangulations of Ω. Furthermore, we shall typically consider

associated nodal bases with compact support in Ω. From the perspective of this book, only

certain features of these approximation spaces and associated bases — apart from the usual

efficiency considerations — are important: we highlight these as we proceed.

2.3.2 Galerkin Projection

We can now present our family of approximations to the exact problem. Given µ ∈ D, find

uN (µ) ∈ XN such that

a(uN (µ), v;µ) = f(v;µ), ∀ v ∈ XN , (2.33)

and then evaluate

sN (µ) = f(uN (µ);µ) . (2.34)

This represents a standard Galerkin projection.

We implicitly assume (and it is indeed the case for our two examples of Section 2.2) that

we commit no variational crimes in our Galerkin approximation (2.33),(2.34). For example,

we assume that we represent the exact geometry within our truth approximation (which in

turn largely implies polygonal domains Ω): if not, we would need in Section 2.1 Ωe and in

the current section ΩN . Similarly, we assume that all quadratures are exact: if not, we would

need in Section 2.1 f e and ae and in the current section fN and aN . These variational crimes,

if present, simply represent additional contributions to the error between the exact solution
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and the “truth” upon which we shall build the RB approximation: little modification to the

framework is required. We thus choose not to consider explicitly any variational transgression

in (most of) this book; however, both the methodology developed and the software provided

are non-judgemental — accepting the user’s definition of truth.

Our Galerkin approximation must satisfy certain conditions over XN — in particular,

the same conditions imposed in Section 2.1 on the exact formulation over Xe — on which the

subsequent RB approximation and a posteriori error estimation will depend. For the particular

class of problems of interest in Part I — and our conforming approximation subspaces and

crime-free projection — the Galerkin formulation in fact directly inherits and even improves

upon all the good properties of the exact formulation. The dual norm of f over XN (⊂ Xe) is

bounded by the dual norm of f over Xe; the Galerkin recipe of course preserves symmetry; a

is coercive over XN with (since XN ⊂ X)

αN (µ) ≥ αe(µ), ∀ µ ∈ D ;

a is continuous over XN with (since XN ⊂ X)

γN (µ) ≤ γe(µ), ∀ µ ∈ D ;

our affine expansions for f and a are of course still valid for w, v restricted to XN (⊂ Xe);

and a clearly still satisfies the two conditions for parametric coercivity — note positive semi-

definiteness follows directly from (again) XN ⊂ Xe. Thus, for any N and associated XN , our

Galerkin approximation preserves the “parametrically coercive and compliant affine” property

necessary for the development of Part I.

It directly follows from our hypothesis (2.32) that our Galerkin approximation is convergent:

as N →∞ — recall this refers to a particular suite of approximations — uN (µ) → ue(µ) and

(since f is bounded) sN → se. Thus, for sufficiently large N (and in the absence of precision

issues) we can approximate ue(µ) and se(µ) arbitrarily closely. For future reference we make
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this precise; if we define

εN = max
µ∈D

‖u(µ)− uN (µ)‖Xe ,

then εN → 0 as N →∞.

2.3.3 Algebraic Equations

The development of the algebraic equations induced by the approximation (2.33),(2.34) and

our choice of basis of Section 2.3.1 is standard. In particular, if we expand our solution uN (µ)

as

uN (x;µ) =
N∑

j=1

uNj (µ) ϕNj (x) , (2.35)

then

uN (µ) ≡
[
uN1 (µ) uN2 (µ) · · · uNN (µ)

]T ∈ RN (2.36)

satisfies

AN (µ)uN (µ) = FN (µ) ; (2.37)

the output of interest can then be expressed as

sN (µ) =
(
FN (µ)

)T
uN (µ) . (2.38)

Here superscript T refers to the usual algebraic transpose.

The elements of the stiffness matrix AN (µ) ∈ RN×N are given by

ANi j(µ) = a(ϕNj , ϕ
N
i ;µ), 1 ≤ i, j ≤ N ; (2.39)

the elements of the load/source vector (and, for this compliant case, output vector) FN (µ) ∈

RN are given by

FNi (µ) = f(ϕNi ;µ), 1 ≤ i ≤ N . (2.40)

Of course, by virtue of our assumptions on a, the stiffness matrix AN (µ) is symmetric and

positive definite.
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We now invoke the affine assumption on f , (2.5), and a, (2.6), to express our stiffness

matrix and load/output vector in a form that will subsequently prove quite useful within the

Offline-Online RB context. In particular, it follows directly from (2.6) and (2.39) that

AN (µ) =
Qa∑
q=1

Θq
a(µ)AN q , (2.41)

for AN q ∈ RN×N , 1 ≤ q ≤ Qa, given by

AN q
i j = aq(ϕNj , ϕ

N
i ), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Qa . (2.42)

Similarly, it follows directly from (2.5) and (2.40) that

FN (µ) =
Qf∑
q=1

Θq
f (µ)FN q , (2.43)

for FN q ∈ RN , 1 ≤ q ≤ Qf , given by

FN q
i = f q(ϕNi ), 1 ≤ i ≤ N , 1 ≤ q ≤ Qf . (2.44)

Note that the AN q, 1 ≤ q ≤ Qa, and FN q, 1 ≤ q ≤ Qf , are all parameter-independent .

For completeness we also introduce here another (parameter-independent) matrix XN ∈

RN×N — associated with our inner product — that shall prove quite useful in particular in

the a posteriori error estimation context:

XN
i j = (ϕNj , ϕ

N
i )XN , 1 ≤ i, j ≤ N . (2.45)

For any given two members of XN ,

w =
N∑

j=1

wj ϕ
N
j , (2.46)

and

v =
N∑

j=1

vj ϕ
N
j , (2.47)

the XN -inner product can be calculated as

(w, v)XN =

 N∑
j=1

wj ϕ
N
j ,

N∑
i=1

vi ϕ
N
i


XN

=
N∑

j=1

N∑
i=1

wjvi (ϕNj , ϕ
N
i )XN = wTXN v ,

(2.48)
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where

w ≡ [w1, w2, · · · wN ]T ∈ RN (2.49)

and

v ≡ [v1, v2, · · · vN ]T ∈ RN (2.50)

are the nodal basis coefficient vectors.

This Galerkin approximation will be invoked frequently within the Offline stage of the RB

methodology. We shall refer to “AN -solve(K)” (or “AN -solve” if K = 1) as the operations to

solve K linear systems with matrix AN (µ) (or (AN )T(µ) ) for some given value of µ (and of

course K different right-hand sides) — for example, (2.37) requires AN -solve(1) operations;

we shall refer to “XN -solve(K)” as the operations to solve K linear systems with (parameter-

independent) matrix XN (and of course K different right-hand sides); we shall refer to “AN -

matvec” as the operations to evaluate a matrix-vector product AN (µ)wN (or AN q(µ)wN for

q ∈ {1, . . . , Qa}) or (AN )T(µ)wN for some given wN ∈ RN ; and we shall refer to “XN -inprod”

as the operations — clearly O(N ) in number — required to evaluate an inner product (wN )TvN

for given wN , vN ∈ RN . As we shall see, there will be a proliferation of AN -matvec’s, and

hence we shall strongly prefer “truth” approximation spaces and bases which engender very

sparse stiffness matrices AN (µ) — or at least permit rapid evaluation procedures (for example,

tensor product techniques in the spectral context).

2.3.4 Choice of Nt

We would of course prefer to base the RB approach directly on the exact solution, but this

is not in general possible. As indicated earlier, we shall thus build the RB approximation on,

and measure the reduced basis error relative to, a particular “truth” Galerkin approximation

corresponding to the choice N = Nt(ruth): we find uNt(µ) ∈ XNt such that

a(uNt(µ), v;µ) = f(v;µ), ∀ v ∈ XNt , (2.51)
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and then evaluate the truth output

sNt(µ) = f(uNt(µ);µ) . (2.52)

We must anticipate that Nt will be very large.

In general, Nt must be chosen rather large to achieve reasonable engineering accuracies

εNt : many problems of interest exhibit scale and (three-dimensional) geometric complexity.

Furthermore, Nt must be chosen “worst-case” over D: Offline the RB approximation must be

built on a unique truth representation for all µ ∈ D; and Online, we do not have access to either

an (adaptive) FE error estimation context or human intervention — the “truth” approximation

(and hence Nt) is “frozen.” Finally, Nt must be chosen conservatively: in particular in the real-

time context, errors can have serious and immediate (adverse) consequences.

We must thus formulate a reduced basis approach that is (a) numerically stable asNt →∞,

and (b) computationally efficient as Nt →∞. As regards (a) it is crucial, for example, that we

choose the correct norms consistent with the exact infinite-dimensional formulation. All norms

are of course “equivalent” for a finite-dimensional space: however, the equivalence constants

are dependent on the dimension of the space and not necessarily bounded as Nt → ∞; a

discrete (Euclidean) `2 or even continuous L2 dual norm — rather than the correct H1(Ω)

(equivalent) dual norm — for the residual will lead ultimately to ill-posed and very poor a

posteriori error estimators. As regards (b), it is crucial to ensure that the operation count

(and storage) in the Online stage — for calculation of the reduced basis output prediction and

associated a posteriori output error bound — is independent of Nt. In this way at least the

most crucial performance indicator — marginal response time for input-output evaluation in

the Online Stage — will be insensitive to the richness of the truth approximation. (Of course,

the operation count for the Offline stage will depend on Nt.)

In summary, in the formulation we will present, the “user” can directly and efficiently

monitor and control the accuracy of the very fast reduced basis output relative to the “truth”

(FE) output; but the user can not (at least in the Online stage) rigorously assess or modify the
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accuracy of the “truth” output relative to the exact output. However, at least the Online stage

of the RB formulation is numerically/mathematically and computationally stable as Nt →∞,

and hence the “truth” approximation may be chosen very conservatively — such that the

“exact-truth” error εNt is arguably negligibly small compared to the desired accuracy and the

(as we shall see, controllable) “truth-RB” error. We do not find this state of affairs completely

satisfactory (despite Orwellian attempts at spinning the nomenclature), but at present it is

the best we can offer. So there.

Finally, we close this section with some nomenclature housekeeping. In particular, we have

introduced earlier the “exact” superscript e so that now we can suppress the Nt superscript

— to significantly simplify the presentation of the RB methodology — yet not risk confusion

between the “truth” approximation and the “exact” solution. Thus in what follows the super-

script e shall continue to refer to the exact solution; however, no superscript shall now refer

to the “truth” approximation (except on occasions in which we wish to recall or re-emphasize

the Nt dependence, or specify a particular “truth” approximation in the examples); and, as

we shall see, subscript N shall refer to the reduced basis approximation. Thus X (wherever it

appears), u(µ), and s(µ) shall now be understood as XNt , uNt(µ), and sNt(µ), respectively;

the basis functions ϕk, 1 ≤ k ≤ Nt, shall be understood as ϕNt
k , 1 ≤ k ≤ Nt; u, A, and F

shall be understood as uNt , ANt , and FNt ; Aq, 1 ≤ q ≤ Qa, Fq, 1 ≤ q ≤ Qf , and X shall be

understood as ANtq, 1 ≤ q ≤ Qa, FNtq, 1 ≤ q ≤ Qf , and XN ; and similarly for any future

“truth” quantities introduced in particular in the context of a posteriori error estimation.
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Chapter 3

Reduced Basis Approximation

3.1 Overview

As described in the Preface, the Reduced Basis (RB) approach derives from the Opportunities

(I) and (II). In particular, although u(µ) (≡ uNt(µ)) is a member of the space X (≡ XNt) of

typically very high dimension Nt, in fact u(µ) perforce resides on the parametrically induced

manifold M (≡MNt ≡ {uNt(µ) | µ ∈ D}) ≡ {u(µ) | µ ∈ D} of typically quite low dimension.

It is thus wasteful to express u(µ) as an arbitrary member of (the very general space) X;

rather — presuming M is sufficiently smooth, a point to which we shall return — we should

represent u(µ) in terms of elements of the ad hoc space span{M} — Opportunity (I). (In this

book, ad hoc has a positive connotation.)

The (Lagrange) RB recipe is very simply stated: for any µ ∈ D we approximate u(µ) by

a linear combination of N — typically relatively few — precomputed solutions or “snapshots”

(on MNt) u(µ1) ≡ u1, . . . , u(µN ) ≡ uN . (We present below a more general framework that

also includes both the Taylor [102, 118] and Hermite [66] RB spaces. However, we shall focus

on Lagrange spaces which we contend are perhaps better suited to higher dimensional and more

global parameters spaces.) Of course we immediately incur an initial cost of at least N A-solve

operations (see Section 2.3.3 for nomenclature), and thus the RB approach is clearly ill-suited

to the single-query or few-query situation; however, in the real-time and many-query context
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we readily accept this Offline investment in exchange for future asymptotic or deployed/Online

reductions in marginal cost — Opportunity (II).

In fact, the recipe is less simple than it first appears, and raises many questions:

1. Given a set of parameters µn ∈ D, 1 ≤ n ≤ N , and associated precomputed solutions

u(µn), 1 ≤ n ≤ N , how can we best combine these “snapshots” — or more generally,

any set of N basis functions — to approximate u(µ) and subsequently s(µ) for any given

µ ∈ D? We address this “projection” question in Section 3.2.2.

2. How can we ensure a well-conditioned RB algebraic system — in particular given the

inevitable asymptotic (with increasing N) colinearity of the Lagrange snapshots? We

discuss the necessary constructions and implications in Sections 3.2.1 and 3.2.3, respec-

tively.

3. How can we effect the RB projection such that the Online operation count and storage

is independent of Nt? We consider this computational issue in Section 3.3.

4. How should we optimally, or even just “reasonably,” choose the parameter points µn,

1 ≤ n ≤ N , and associated snapshots onM— or more generally, the best N -dimensional

subspace of X — to provide most rapid convergence of the RB approximation to u(µ)

and hence s(µ) over the entire parameter domain D? We address this “optimal sampling”

question in Section 3.4.

5. Under what hypotheses can we expect the (Lagrange) RB approximation to converge

rapidly to u(µ) and s(µ)? We discuss this question in Sections 3.2.2 and 3.5; at present,

we can only identify the central issues and provide limited theoretical results — substan-

tiated (throughout the book) by significant empirical evidence.

6. Why is RB approximation better than simply connecting the dots — interpolating sNt :

D → R? We consider this question in Section 3.5 as regards approximation, and again

in Chapter 4 in the context of a posteriori error estimation.
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Note that in this Part of the book we address these questions in the context of paramet-

rically coercive compliant problems; however, in many cases the responses remain relevant in

the more general settings described later in the book.

3.2 Galerkin Approximation

3.2.1 Spaces and Bases

RB Spaces

We first specify the maximum dimension of the RB spaces, Nmax. (We shall generally presume

that Nmax is less than the dimension of span{M}.) We then introduce a set of linearly

independent functions

ξn ∈ X, 1 ≤ n ≤ Nmax , (3.1)

in terms of which we define our RB approximation spaces

XN = span{ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax . (3.2)

We presume — in order that our approximation qualify as “reduced basis” — that the ξn are

somehow related to the manifold M. By construction we obtain

XN ⊂ X, dim(XN ) = N, 1 ≤ N ≤ Nmax , (3.3)

and furthermore

X1 ⊂ X2 · · ·XNmax−1 ⊂ XNmax (⊂ X) . (3.4)

We shall extensively exploit the “nested” or hierarchical property, (3.4), to reduce both the

Offline and Online operations and storage.

On occasion we shall consider non-hierarchical RB spaces which we shall denote as Xnh
N ,

1 ≤ n ≤ Nmax:

Xnh
N ⊂ X, dim(Xnh

N ) = N, 1 ≤ N ≤ Nmax ; (3.5)
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these spaces do not lead to particularly efficient RB approximation — in particular as regards

Offline effort and Online storage — and will be invoked primarily in the context of theoretical

discussions.

In the Lagrange RB recipe, we first introduce a set of parameter points

µn ∈ D, 1 ≤ n ≤ Nmax , (3.6)

in terms of which we define our associated RB samples

SN ≡ {µ1, . . . ,µN}, 1 ≤ N ≤ Nmax ; (3.7)

note that these samples are nested — S1 ⊂ S2 · · · ⊂ SNmax−1 ⊂ SNmax ⊂ D. We then introduce

our “snapshots”

un ≡ u(µn), 1 ≤ n ≤ Nmax , (3.8)

(of course in the case of vector-valued fields, u(µn) = (u1(µn), . . . , udv(µ
n)), 1 ≤ n ≤ Nmax)

in terms of which we define our Lagrange RB spaces

WN ≡ span{u(µn), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax ; (3.9)

note that (because the samples SN are nested) these spaces are hierarchical — W1 ⊂ W2

· · ·WNmax−1 ⊂ WNmax (⊂ X ≡ XNt). In some rare cases (primarily for theoretical purposes)

we shall consider non-hierarchical Lagrange spaces: we shall denote the corresponding samples

and spaces as Snh
N and W nh

N , respectively.

The Lagrange spaces WN [118] are a special (but especially important) example of our more

general hierarchical spaces XN for the particular case in which ξn = u(µn), 1 ≤ n ≤ Nmax.

The Taylor and Hermite RB spaces are also (or can also) be particular cases of the general

hierarchical spaces XN : we can generate the Taylor RB spaces [102, 118] by choosing the

ξn as the field and field sensitivity derivatives — derivatives of u(µ) with respect to µ (see

Sections 1.4.2 and 3.5.1) — at a particular parameter point inD; we can generate the “Hermite”

RB spaces [66] — a composite of the Lagrange and Taylor ideas — by choosing the ξn as
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the field and sensitivity derivatives at several points in D. We shall be particularly focused

on Lagrange RB spaces, as these spaces most readily extend to more parameters and larger

parameter domains; however, most aspects of our formulation — in particular the Offline-

Online decompositions and a posteriori error estimation procedures — apply to any hierarchical

RB approximation spaces.

In theory we may choose for our Lagrange sample points (3.6) any set of parameter values

that induce a linearly independent set of snapshots (3.7). In actual practice, the RB samples

SN and associated Lagrange RB spaces WN — as well as Nmax to achieve the desired error

tolerance — are determined by the adaptive procedure described in Section 3.4. This procedure

effectively ensures linear dependence (given our assumption Nmax < dim(span{M}). However,

if in fact the reduced basis spaces are well chosen then the snapshots should approach linear

dependence as N increases [57]. (Of course, the converse is not true: the very poorly chosen

Lagrange sample µ1 ≈ µ2 ≈ · · · ≈ µNmax also generates nearly linearly dependent snapshots.)

To wit, if the space WN can already provide a good approximation to any member of M, then

the next snapshot u(µN+1) will perforce contain “much” of u(µ1), . . . , u(µN ). We therefore

pursue Gram-Schmidt orthogonalization in the (·, ·)X inner product to create a well-conditioned

set of basis functions.

Orthogonal RB Basis

In particular, given the ξn, 1 ≤ n ≤ Nmax, of (3.1) (u(µn), 1 ≤ n ≤ Nmax, of (3.8) in the

Lagrange case), we construct the basis set {ζn}, 1 ≤ n ≤ Nmax, as

ζ1 = ξ1/‖ξ1‖X ;

for n = 2: Nmax

zn = ξn −
n−1∑
m=1

(ξn, ζm)X ζm;

ζn = zn/‖zn‖X ;

end.

(3.10)
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(In the case of vector-valued fields, ζn = (ζn
1 , . . . , ζ

n
dv

), 1 ≤ n ≤ Nmax.) As a result of this

process we obtain the orthogonality condition

(ζn, ζm)X = δn m, 1 ≤ n,m ≤ Nmax , (3.11)

where δn m is the Kronecker-delta symbol. The orthogonality condition (3.11) is imperative

in ensuring a well-conditioned reduced basis algebraic system. (In fact, (3.11) only obtains in

infinite precision: in finite precision, in particular for the higher modes and larger Nmax, (3.11)

will be violated. We can slightly improve the result by full orthogonalization [92, 146]; how-

ever, typically the forward process (3.10) suffices and is more intuitive in subsequent adaptive

sampling procedures.)

We can express our reduced basis spaces as

XN = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax . (3.12)

Equivalently, any wN ∈ XN can be expressed as

wN =
N∑

n=1

wN n ζ
n (3.13)

for unique

wN n ∈ R, 1 ≤ n ≤ N . (3.14)

Note that, due to our orthogonalization, wN n is not (even in the Lagrange case, XN = WN )

the coefficient of the nth snapshot; rather, wN n is the coefficient of the “new” contribution of

the nth snapshot.

Algebraic Representation of RB Basis

Before proceeding we restate the orthogonalization process above in algebraic terms. We first

express our functions in terms of the truth FE approximation basis functions ϕi, 1 ≤ i ≤ Nt.

In particular,

ξn(x) =
Nt∑
i=1

ξn
i ϕi(x), 1 ≤ n ≤ Nmax ; (3.15)
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we shall denote the vectors of FE basis coefficients as

ξn ≡ [ξn
1 . . . ξ

n
Nt

]T ∈ RNt , 1 ≤ n ≤ Nmax . (3.16)

Similarly, the orthogonal RB basis functions can be expressed as

ζn(x) =
Nt∑
i=1

ζn
i ϕi(x) ; (3.17)

we denote the vectors of basis coefficients as

ζn ≡ [ζn
1 . . . ζ

n
Nt

]T ∈ RNt , 1 ≤ n ≤ Nmax . (3.18)

We can now succinctly describe the orthogonalization process.

To wit, our algorithm (3.10) can now be expressed as

ζ1 = ξ1/
√

(ξ1)T X ξ1

for n = 2: Nmax

zn = ξn −
n−1∑
m=1

((ξn)T X ζm) ζm;

ζn = zn/
√

(zn)T X zn;

end.

(3.19)

Recall that X is the “inner product” (and induced norm) matrix defined in Chapter 2, (2.45).

Finally, we introduce “basis” matrices ZNt
N ≡ (in our shorthand) ZN ∈ RNt×N , 1 ≤ N ≤

Nmax:

ZN j n = ζn
j , 1 ≤ j ≤ Nt, 1 ≤ n ≤ N, 1 ≤ N ≤ Nmax . (3.20)

In essence, the nth column of ZNmax contains the vector of FE basis coefficients associated

with the nth RB basis function. Note that, thanks to the nested/hierarchical nature of our

RB spaces, Z1 is a principal submatrix of Z2 · · · is a principal submatrix of ZNmax
; clearly, we

shall store only ZNmax
and then extract the ZN , 1 ≤ N ≤ Nmax, submatrices as necessary. We

can express the orthogonality condition (3.11) as

ZT
Nmax

X ZNmax = INmax , (3.21)

where IM is the Identity matrix in RM×M .
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3.2.2 Projection

Not surprisingly, given our hypotheses on a and f (= `), standard Galerkin projection is the

best discretization choice. We look for uXN
(µ) (≡ uNt

XN
(µ)) ∈ XN such that

a(uXN
(µ), v;µ) = f(v;µ), ∀v ∈ XN ; (3.22)

we then evaluate

sXN
(µ) = f(uXN

(µ);µ) . (3.23)

(In the case of vector-valued fields, uXN
(µ) ≡ (u1(µ), . . . , udv(µ))XN

.) In the case of the

Lagrange space — XN = WN — we shall sometimes explicitly label uXN
(µ), sXN

(µ) as

uWN
(µ), sWN

(µ). Furthermore, we shall often abbreviate uXN
(µ), sXN

(µ) or uWN
(µ), sWN

(µ)

as simply uN (µ), sN (µ) in situations in which no ambiguity will arise.

On occasion, and again primarily for theoretical purposes, we will consider non-hierarchical

RB approximations. The statement (3.22),(3.23) shall still apply, however now the weak state-

ment is defined over Xnh
N (or W nh

N in the case of Lagrange spaces). The corresponding RB field

variable and output shall be denoted uXnh
N

(µ), sXnh
N

and uWnh
N

(µ), sWnh
N

in the case of general

non-hierarchical spaces and Lagrange non-hierarchical spaces, respectively. We do not propose

such RB approximations as practical numerical approaches due to the increased Offline and

Online computational effort — and reduced flexibility — associated with these non–hierarchical

approximations. Unless otherwise explicitly stated, our various formulations — in particular

computational procedures — are restricted to hierarchical approximation spaces.

It is clear from our coercivity and continuity hypotheses on a, our conforming reduced basis

space XN ⊂ X, and our assumption of linear independence of snapshots, that (3.22) admits a

unique solution. We can readily demonstrate the usual Galerkin optimality results in

84 March 2, 2007



Proposition 3A. For any µ ∈ D and uN (µ) and sN (µ) satisfying (3.22)–(3.23),

|||uNt(µ)− uN (µ)|||µ = inf
wN∈XN

|||uNt(µ)− wN (µ)|||µ , (3.24)

‖uNt(µ)− uN (µ)‖X ≤

√
γe(µ)
αe(µ)

inf
wN∈XN

‖uNt(µ)− wN‖X , (3.25)

and furthermore

sNt(µ)− sN (µ) = |||uNt(µ)− uN (µ)|||2µ

= inf
wN∈XN

|||uNt(µ)− wN (µ)|||2µ ,
(3.26)

as well as

0 < sNt(µ)− sN (µ) ≤ γe(µ) inf
wN∈XN

‖uNt(µ)− wN (µ)‖2X . (3.27)

Here αe(µ) and γe(µ) are the coercivity and continuity constants defined in (2.13) and (2.14),

respectively.

Proof. The proof is standard [41], but as the result is central we recall the main ingredients.

First, since our reduced basis space is conforming, XN ⊂ XNt , we obtain Galerkin orthogonal-

ity: a(e(µ), v;µ) = 0, ∀ v ∈ XN ; here e(µ) ≡ uNt(µ)− uN (µ) is the error in the reduced basis

field approximation. It follows (recall a is symmetric and coercive) that uN (µ) is in fact the

projection of uNt(µ) in the a(·, ·;µ) ≡ (((·, ·)))µ inner product: the energy norm result (3.24) di-

rectly follows. To obtain the X-norm result (3.25) we then apply the energy-norm bound (3.24)

and coercivity and continuity. To prove the output results (3.26) we invoke compliance and

Galerkin orthogonality — sNt(µ) − sN (µ) = f(e(µ);µ) = a(uNt , e(µ);µ) = a(e(µ), e(µ);µ)

— and then appeal to the energy-norm bound (3.24). Finally, (3.27) follows from (3.26) and

continuity. �

We note that sN (µ) is a lower bound — in fact, since sN (µ) = a(uN , (µ), uN (µ);µ), a positive

lower bounds — for sNt(µ), and that the error in the output is effectively the square of the

error in the field variable. Note also that our proof in fact also applies to non-hierarchical RB

approximation spaces.
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3.2.3 Algebraic Equations

We now apply the standard “variational” procedure to determine the linear algebraic set of

equations associated with our Galerkin procedure (3.22) and basis functions (3.9). In particu-

lar, we first expand

uN (µ) =
N∑

j=1

uN j(µ) ζj . (3.28)

We next insert (3.28) in (3.22) and choose v = ζi, 1 ≤ i ≤ N , as our test functions. We thus

obtain the set of linear algebraic equations

N∑
j=1

a(ζj , ζi;µ) uN j(µ) = f(ζi;µ), 1 ≤ i ≤ N , (3.29)

for the reduced basis coefficients uN j , 1 ≤ j ≤ N . (Note in the case of vector-valued fields, the

single coefficient uN j multiplies all dv components of the jth basis function ζj .) The output

can then be expressed as

sN (µ) =
N∑

j=1

uN j(µ) f(ζj ;µ) . (3.30)

We now express these operations in matrix form.

We first introduce the vector of RB coefficients,

uN (µ) ≡ [uN 1 uN 2 . . . uN N ]T ∈ RN . (3.31)

It then follows from (3.29) that uN (µ) ∈ RN satisfies

AN (µ) u(µ) = FN (µ) , (3.32)

where the stiffness matrix AN (µ) ∈ RN×N and “load” or “source” (and “output”) vector

F ∈ RN are given by

AN i j(µ) = a(ζj , ζi;µ), 1 ≤ i, j ≤ N , (3.33)

and

FN i(µ) = f(ζi;µ), 1 ≤ i ≤ N , (3.34)
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respectively. Finally, the output can now be expressed as

sN (µ) = FT
N (µ) uN (µ) . (3.35)

We recall that T denotes algebraic transpose.

It immediately follows from our assumption of linear independence of the snapshots that

the stiffness matrix AN (µ) is symmetric and positive definite. In fact, we can be more precise

about the conditioning of our system in

Proposition 3B. The condition number of AN (µ) is bounded from above by γe(µ)/αe(µ), the

ratio of the continuity and coercivity constants for the continuous problem.

Proof. We recall that the condition number of a symmetric positive definite matrix is the

ratio of the maximum to minimum eigenvalues of the matrix. To obtain a lower bound for the

smallest eigenvalue of AN (µ) we appeal to coercivity and orthogonality (3.11) to note that

wT
N AN (µ) wN

wT
NwN

=
a

(
N∑

n=1
wN n ζ

n,
N∑

m=1
wN m ζm;µ

)
wT

N wN

≥ αe(µ)

N∑
n=1

N∑
m=1

wN n wN m(ζn, ζm)X

wT
N wN

= αe(µ), ∀ wN ∈ RN ;

(3.36)

we then invoke the Rayleigh quotient to conclude that the smallest eigenvalue of AN (µ) is

greater than αe(µ). Similarly, to obtain an upper bound for the largest eigenvalue of AN (µ)

we apply continuity and orthogonality to write

wT
N AN (µ) wN

wT
N wN

=
a

(
N∑

n=1
wN n ζ

n,
N∑

m=1
wN m ζm;µ

)
wT

N wN

≤ γe(µ)

N∑
n=1

N∑
m=1

wN n wN m(ζn, ζm)X

wT
N wN

= γe(µ), ∀ wN ∈ RN ;

(3.37)

we then invoke the Rayleight quotient to conclude that the largest eigenvalue of AN (µ) is less

than γe(µ). The desired result directly follows. �
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Thus, despite the near linear dependence of the original snapshots, orthogonalization in the

correct inner product recovers a very well-conditioned reduced basis system. (The latter sug-

gests that, for very large N , iterative RB solution strategies might be of interest; however, the

large N limit is obviously of very limited interest.)

3.3 Offline-Online Computational Procedure

3.3.1 Strategy

The reduced basis system (3.32) is clearly of small size — an N × N set of linear equations.

Hence for any new µ ∈ D — once the RB stiffness matrix AN (µ) of (3.32) is formed — uN (µ)

and subsequently sN (µ) can be obtained from (3.32) in O(N3) operations and (3.35) in O(N)

operations, respectively. However, the formation of the reduced basis stiffness matrix AN (µ)

ostensibly requires N ANt-matvec and N2 XNt-inprod operations — or at least O(N2Nt)

operations even for a sparse finite element system. If we permit this outrage, the Online stage

operation count will not be independent of Nt, and the RB approach will be only marginally

better than classical approaches even in the many-query and real-time contexts.

However, we can in fact restore “Online Nt independence” by appeal to our assumption of

affine parameter dependence, (2.5)–(2.6). It follows directly from application of (2.6) to (3.33)

and (2.5) to (3.34) that our stiffness matrix and load vector can be expressed as

a(ζn, ζm;µ) =
Qa∑
q=1

Θq
a(µ) aq(ζn, ζm), 1 ≤ m,n ≤ N , (3.38)

and

f(ζn;µ) =
Qf∑
q=1

Θq
f (µ) f q(ζn), 1 ≤ n ≤ N , (3.39)

respectively. (We already identified an analogous decomposition in the finite element context,

(2.41)–(2.43).) The Offline-Online decomposition is now clear.
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Offline we form the parameter-independent matrices Aq
N ∈ RN×N , 1 ≤ q ≤ Qa,

Aq
N n m = aq(ζn, ζm), 1 ≤ n,m ≤ N, 1 ≤ q ≤ Qa , (3.40)

and parameter-independent vectors Fq
N ∈ RN , 1 ≤ q ≤ Qf ,

Fq
N n = f q(ζn), 1 ≤ n ≤ N, 1 ≤ q ≤ Qf ; (3.41)

the operation count (provided in detail below) will be Nt-dependent — and hence very expen-

sive. Online, for any given µ ∈ D, we then assemble the RB stiffness matrix and load vector

as

AN (µ) =
Qa∑
q=1

Θq
a(µ) Aq

N , (3.42)

and

FN (µ) =
Qf∑
q=1

Θq
f (µ) Fq

N ; (3.43)

the operation count (provided in detail below) and storage will now be Nt-independent — and

hence very inexpensive.

Before discussing the detailed operation count it shall prove convenient to express our RB

matrices and vectors in terms of the corresponding truth FE matrices and vectors: the former

are linked to the latter via the basis matrices ZN , 1 ≤ N ≤ Nmax, of (3.20). In particular,

from (3.33) we obtain

a(ζn, ζm;µ) =
Nt∑
i=1

Nt∑
j=1

ζm
i a(ϕi, ϕj ;µ) ζn

j , 1 ≤ n,m ≤ N , (3.44)

which from (2.39) and (3.20) can be expressed as

AN (µ) = ZT
N A(µ) ZN ; (3.45)

similarly, from (3.40), (2.42), and (3.20) we obtain

Aq
N = ZT

N Aq ZN , 1 ≤ q ≤ Qa . (3.46)

The load vector permits an analogous treatment:

FN (µ) = ZT
N F (µ) ZN , (3.47)
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and

Fq
N = ZT

N Fq ZN , 1 ≤ q ≤ Qf . (3.48)

All these quantities are defined for 1 ≤ N ≤ Nmax.

3.3.2 Operation Count and Storage

We now can succinctly describe the Offline and Online stages and provide associated operation

counts (or at least operations) and storage. In the Offline stage, we must first compute the

matrix ZNmax ∈ RNt×Nmax — Nmax A-solve operations (recall A is shorthand for the FE

stiffness matrix ANt). Next, we must form the RB parameter-independent matrices Aq
Nmax

,

1 ≤ q ≤ Qa, from (3.46) and vectors Fq
Nmax

, 1 ≤ q ≤ Qf , from (3.48) — QaNmax A-matvec,

QaN
2
max X

Nt-inprod, and QfNmax X
Nt-inprod operations, respectively.

The link between the Offline and Online stages is the “permanent storage” of quantities

computed in the Offline stage and then invoked in the Online stage. The items that must be

“permanently” stored, in essence the Online storage, are the Aq
Nmax

, 1 ≤ q ≤ Qa — QaN
2
max

words — and the Fq
Nmax

, 1 ≤ q ≤ Qf — QfNmax words: note the Online storage is independent

of Nt. It is crucial to note that, just as the RB spaces are hierarchical, so too are the reduced

basis matrices (and vectors): for 1 ≤ N ≤ Nmax, the Aq
N , 1 ≤ q ≤ Qa, are principal N × N

submatrices of the Nmax × Nmax matrix Aq
Nmax

, and the Fq
N , 1 ≤ q ≤ Qf , are principal N

subvectors of the Nmax vector Fq
Nmax

. Thus we need only store Aq
Nmax

, 1 ≤ q ≤ Qa, and Fq
Nmax

,

1 ≤ q ≤ Qf , and then simply extract (in the Online stage) the necessary submatrices and

subvectors for the desired N (related to the particular accuracy of interest). The hierarchical

structure greatly reduces the requisite storage — a full factor of Nmax. (The hierarchical

structure can also play a role in efficient Online adaptivity, as described in Chapters 4 and 5.)

In the Online stage, we need only assemble AN (µ) from (3.42) and F (µ) from (3.43)

— QaN
2 and QfN operations, respectively. Subsequently we solve the RB linear algebraic

system (3.32) — O(N3) operations: note that the RB matrix is in general full. (The latter is
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one of many incentives for effective sampling and a posteriori error estimation: given the rapid

increase in computational effort with N , we must find the smallest — or least a small — N that

satisfies our error tolerance. This is discussed further in Section 3.4 and Chapter 4.) Finally,

we evaluate the output from (3.35) — N operations. The critical point is that the operation

count and storage of the Online stage is independent of Nt. This provides the extremely rapid

evaluation µ → sN (µ) — the greatly reduced marginal cost — so crucial in the real-time and

many-query contexts. This Nt-independence of the Online operation count and storage also

permits us to choose our “truth” approximation very conservatively with no penalty in terms

of Online/deployed performance.

3.4 Sampling Strategy

Given hierarchical RB spaces XN , 1 ≤ N ≤ Nmax, we can now efficiently — thanks to the

Offline-Online decomposition of Section 3.3 — and computationally stably — thanks to the

orthonormal basis and Proposition 3B of Section 3.2.3 — determine the “best” combination of

snapshots — thanks to our Galerkin projection and Proposition 3A of Section 3.2.2. However,

it remains to determine good RB spaces.

We shall see in Section 3.5 that, for parametrically (and no doubt also more generally)

coercive problems, it is possible for one-dimensional parameter domains (P = 1) to determine

generic a priori “quasi–hierarchical” (Lagrange) spaces that provide (if not optimal at least)

very rapid convergence. However, in higher parameter dimensions (and for noncoercive prob-

lems), no such recipes are available: note that tensor product approaches are prohibitively

expensive typically even for P = 3 and certainly for larger P , yielding Offline and even Online

complexity and storage that increases exponentially with P . More generally (and even for

P = 1), we prefer ad hoc or “adaptive” and truly hierarchical spaces which — just as the asso-

ciated RB approximation — are automatically tailored to the particular problem of interest.

The latter can yield approximations that are quite efficient even for modestly large P .
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For our discussions below we shall first introduce a “train” sample Ξtrain ≡ {µ1
train, . . . ,µ

ntrain
train }

⊂ D consisting of ntrain distinct parameter points in D: Ξtrain shall be a finite dimensional

surrogate for D; clearly, at least for larger P , we must anticipate that ntrain should be quite

large — in our applications, easily as large as or larger than 106. We also require two quan-

tities related to error control and the size of our RB spaces: εtol,min, the smallest anticipated

truth-RB error tolerance over D (in norms to be specified); and Nmax, an upper limit to the

maximum dimension of the hierarchical RB spaces.

3.4.1 Kolmogorov N -Width

Before embarking on more practical sampling procedures it is useful to establish a bench-

mark — even if abstract and not particularly computable — relative to which we can mea-

sure progress. In particular, related to Question 4 of 3.1, we can ask “What is the best

N -dimensional subspace to approximate u(µ) for all µ ∈ D?” We thus define the Kolmogorov

“N -width” [69, 74, 116] εKol
N :

ε
Kol
N ≡ sup

µ∈Ξtrain

inf
wN∈XKol

N

‖u(µ)− wN‖X , (3.49)

where the optimal “Kolmogorov spaces” XKol
N are given by

XKol
N = arg inf

spaces Xnh
N ⊂X of dimension N

(
sup

µ∈Ξtrain

inf
wN∈Xnh

N

‖u(µ)− wN‖X

)
. (3.50)

(If we wish to ensure that strictly speaking the XKol
N qualify as “proper” RB spaces, we can

replace X in (3.50) with span{M}. However, it is demonstrated in [88] that the resulting

convergence rate is little degraded — not surprising since we anticipate that the objective

function in (3.50) will naturally prefer span{M}.) Roughly, the Kolmogorov N -width indicates

how well we can hope to approximate our field variable given the freedom to choose any

sequence of “RB” approximation subspaces; note in general the XKol
N will not be hierarchical.

More precisely, we note that the Kolmogorov N -width is (here) defined relative to the

“L∞(Ξtrain)” norm in parameter of the X(Ω) norm of the “best fit” to the field variable.
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The former is clearly (desirably) strong — worst-case analysis; the latter is directly related to

the actual RB error from Proposition 3A, (3.25). However, the method is not of any direct

practical value. First, in terms of deliverables, the optimal spaces XKol
N can not be assumed

to be hierarchical. Second, in terms of (Offline) computational expense, (i) the optimization

is combinatorially difficult, and in any event (ii) O(ntrain) ANt-solve are required.

3.4.2 A POD Approach

The Proper Orthogonal Decomposition (POD) or Karhunen-Loève (KL) [72, 80] approach to

sampling [75, 77, 97, 142] is immensely popular in a variety of contexts — turbulent flows [85],

fluid-structure interaction [46], non-linear structural mechanics [73], turbo-machinery flows

[156] — most notably in time-domain Reduced Order Modeling (ROM) [8, 14, 31, 38, 39,

40, 93, 114, 126, 127, 128, 129, 143, 151, 152]. The technique can also be applied within the

parametric context [31, 40, 59, 86], as we now describe.

In particular, we now consider a slightly different space optimization problem, in which we

effectively replace the L∞(Ξtrain) norm of (3.49) with the weaker (discrete) L2(Ξtrain) norm:

ε
POD
N ≡

√
1

ntrain

∑
µ∈Ξtrain

infwN∈XPOD
N

‖u(µ)− wN‖2X , (3.51)

where the optimal “POD spaces” XPOD
N are given by

XPOD
N = arg inf

spaces XN⊂ span {u(µn
train), 1≤n≤ntrain}

(
1

ntrain

∑
µ∈Ξtrain

infwN∈XN
‖u(µ)− wN‖2X

)
.

(3.52)

(Clearly the POD spaces are proper RB spaces defined on span{M}. Note, however, that the

POD spaces are not in general Lagrange, as snapshots can be mixed — arguably an advantage.)

The remarkably beautiful result is that, unlike for the Kolmogorov N -width optimization, the

POD optimization yields hierarchical spaces at non-combinatorial (Offline) cost.

In particular, we can construct the POD spaces through an equivalent symmetric positive

semidefinite eigenproblem [37, 58]. (We apply here the method of “snapshots” since, although
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ntrain will be large, we also anticipate the limit Nt → ∞.) In particular, we first form the

correlation matrix CPOD ∈ Rntrain×ntrain given by

CPOD
i j =

1
ntrain

(
u(µi

train), u(µ
j
train)

)
X
, 1 ≤ i, j ≤ ntrain , (3.53)

which can of course be readily expressed in terms of the FE basis coefficients of the u(µ•
train),

u(µ•
train), as

CPOD
i j =

1
ntrain

(
u(µi

train)
)T X u(µj

train) . (3.54)

We then look for the eigenpairs (ψPOD,k ∈ Rntrain , λPOD,k ∈ R+0), 1 ≤ k ≤ ntrain, satisfying

CPOD ψPOD,k = λPOD,kψPOD,k, (ψPOD,k)T X ψPOD,k = 1 . (3.55)

We arrange the eigenvalues in descending order: λPOD,1 ≥ λPOD,2 ≥ · · ·λPOD,ntrain ≥ 0.

We now identify ΨPOD,k ∈ X, 1 ≤ k ≤ ntrain, as

ΨPOD,k ≡
ntrain∑
m=1

ψPOD,k
m u(µm

train), 1 ≤ k ≤ ntrain ; (3.56)

we further define Nmax as the smallest N such that

(
ε
POD
N ≡

)√√√√ ntrain∑
k=N+1

λPOD,k ≤ εtol,min . (3.57)

We then construct our POD RB spaces as [58]

XPOD
N = span{ΨPOD,n, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax ; (3.58)

in other words, XPOD
N = XN (our general hierarchical spaces) for the particular choice ξn =

ΨPOD,n, 1 ≤ n ≤ N .

We furthermore note from the usual mutual orthogonality properties of symmetric eigen-

problems, and our particular normalization in (3.55), that

(ΨPOD,n,ΨPOD,m)X = δn m, 1 ≤ n,m ≤ ntrain , (3.59)
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and hence (ΨPOD,n ≡) ξn = ζn, 1 ≤ n ≤ Nmax: we automatically obtain the orthonormalization

of Section 3.2.1. It follows that the ZN ∈ RNt×N matrices are given by

ZN j n =
ntrain∑
m=1

ψPOD,n
m uj(µm

train), 1 ≤ j ≤ Nt, 1 ≤ n ≤ N, 1 ≤ N ≤ Nmax , (3.60)

where the uj(µ•
train) are the FE basis coefficients of the u(µ•

train). We can then directly apply

the discrete equations and Offline-Online procedures of Section 3.3.2.

From the point of view of deliverables, the POD improves upon the Kolmogorov framework

by providing hierarchical spaces — at the only slight disadvantage of a slightly weaker norm

over Ξtrain; this constitutes a significant advance. Unfortunately, from the perspective of

Offline expense, although the POD procedure is no longer combinatorial in nature — a major

improvement relative to Kolmogorov — the POD remains extremely expensive: we must still

perform ntrainA
Nt-solve and n2

trainX
Nt-inprod operations just to form CPOD; and we must

subsequently solve the rather large eigenproblem (3.55) (though typically the larger eigenvalues

are well separated).

Not surprisingly, the POD has found most application in the time-domain [8, 154, 155, 157]

— a single dimension — in which ntrain typically remains quite small. (Furthermore, the in-

teractions between the solution at different times is nicely captured by the global nature of

the POD optimization; in this context, the greedy approach described below is not as success-

ful, and hence in the parabolic context we will consider both greedy [53, 56] and combined

greedy-POD [60] concepts.) Application in the parameter domain is more rare [31, 40, 59, 86],

in particular for larger P for which ntrain must be quite large and hence the Offline POD

expense prohibitive. (The latter can be somewhat reduced by a clustering pre-processing of

the snapshots — for example, centroidal Voronoi tesselations [33, 47] — to remove redundant

information from Ξtrain.)
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3.4.3 A Greedy Approach: W ∗
N

For the greedy approach we will describe shortly we shall need a sharp, rigorous, and efficient

bound ∆XN
(µ) for the RB error ‖u(µ) − uXN

(µ)‖X , where uXN
is our RB approximation

associated with the space XN . To quantity sharp and rigorous, we introduce the effectivity

ηN (µ) ≡ ∆XN
(µ)

‖u(µ)− uXN
(µ)‖X

; (3.61)

we then require

1 ≤ ηN (µ) ≤ ηmax,UB, ∀ µ ∈ D, 1 ≤ N ≤ Nmax , (3.62)

where ηmax,UB is finite and independent of N . In essence, the left inequality insists that

∆XN
(µ) is never less than the true error — rigor ; the right inequality insists that ∆XN

(µ)

is not too much larger than the true error — sharpness. To quantify “efficient ,” we require

that in the limit of many evaluations the marginal cost (and hence asymptotic average) cost

to evaluate µ → ∆XN
(µ) is independent of Nt. In Chapter 4 we shall develop error estimators

∆XN
that satisfy all these requirements.

Our greedy procedure is intimately connected to (and thus this subsection is restricted

to) the Lagrange RB approximation subspace WN . We shall denote the particular “optimal”

(nested) samples and (hierarchical) spaces selected by our greedy algorithm as

S∗N ≡ {µ1∗, . . . ,µN∗}, 1 ≤ N ≤ Nmax , (3.63)

and

X∗
N (≡W ∗

N ) = span{u(µ1∗), . . . , u(µN∗)}, 1 ≤ N ≤ Nmax , (3.64)

respectively. The corresponding “optimal” RB approximation will thus be denoted, at least in

this section, as uX∗
N

(µ). (Clearly the “optimal” approximation still depends on, and we will

specify in all cases, the choice of Ξtrain and other algorithmic design variables.)

We presume that we are given some initial N0 ∈ [1, . . . , Nmax], where Nmax is an up-

per bound for Nmax; we are also given an initial sample S∗N0
= {µ1∗, . . . ,µN0∗} and as-
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sociated Lagrange space X∗
N0

= W ∗
N0

= span{u(µn∗), 1 ≤ n ≤ N0}; finally, we specify

our train sample Ξtrain and tolerance εtol,min. (Often we shall set N0 = 1 and choose µ1∗

(say) randomly; however, the flexibility of an “arbitrary” initialization will permit more ad-

vanced sampling sequences, as we discuss below.) We denote the resulting greedy algorithm

Greedy(N0, S
∗
N0
, Ξtrain, εtol,min).

The algorithm proceeds as follows (note we provisionally set Nmax = Nmax):

for N = N0 + 1: Nmax

µN∗ = arg max
µ∈Ξtrain

∆X∗
N−1

(µ);

ε∗N−1 = ∆X∗
N−1

(µN∗);

if ε∗N−1 ≤ εtol,min

Nmax = N − 1;

exit;

end;

S∗N = S∗N−1 ∪ µN∗;

X∗
N = X∗

N−1 + span{u(µN∗)};

end.

(3.65)

We also introduce

ε∗N = max
µ∈Ξtrain

‖u(µ)− uXN
(µ)‖X , 1 ≤ N ≤ Nmax , (3.66)

which measures the maximum true error (not the error bound) for the sequence of greedy

spaces; in actual practice, we never compute ε∗N — except in the theoretical context to un-

derstand the performance of greedy algorithm relative to other approaches. (Note by “exit”

we refer to early termination of the algorithm — when the space is rich enough to achieve the

desired minimum error tolerance.)

From the point of view of deliverables, the greedy algorithm provides both hierarchical

spaces and in the stronger L∞(Ξtrain) norm in parameter — two very important attributes.

Also, as we discuss below, the low cost of the greedy formulation permits a very exhaustive
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search — large ntrain — with corresponding high quality approximation spaces in particular

for P > 1. The greedy approach is admittedly a short-horizon heuristic that will be sub-

optimal with respect to the global (albeit non-hierarchical) Kolmogorov framework; however,

it is demonstrated in [30] that, if εKol
N decreases exponentially and sufficiently rapidly with N ,

then ε∗N will also decrease exponentially with N .

We shall substantiate the good convergence properties of the greedy spaces in numerous

numerical exercises. Typically, or at least in the few test cases we shall report (see Section 3.5.2,

Numerical Results), the short-horizon greedy and global POD approaches will in fact perform

commensurately if measured in comparable norms; as might be expected, each is slightly better

in the “native” norm over Ξtrain which defines the respective objective function — L2(Ξtrain)

for POD, and L∞(Ξtrain) for greedy. The success of the greedy approach certainly originates

at least in part from the absence of interactions between the RB approximations for different

parameter values; in the time-domain context, there are of course interactions between different

times and as a result the greedy algorithm [56] may not perform as well as the more global

POD optimization procedures [60]. We return to this point in Part IV.

From the perspective of Offline cost, the greedy approach is much more efficient than either

the Kolmogorov or POD approaches. This permits either less Offline expense or (typically)

much larger ntrain and hence improved RB approximation spaces and ultimately RB conver-

gence; the effect is particularly pronounced for P > 1. Relative to the Kolmogorov framework,

the sequential greedy “relaxation” is of algebraic rather than of combinatorial complexity.

Relative to the POD framework, the greedy approach replaces most FE “truth” computa-

tions with inexpensive error bound evaluations: we compute truth solutions/snapshots not for

all the points in Ξtrain, as in the POD context, but only for the “winning candidates” µn∗,

1 ≤ n ≤ Nmax; since Nmax � ntrain, the computational savings can be very large. (It is

perhaps also possible, but less obvious how, to incorporate inexpensive error bounds within

the POD context.)
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As we shall elaborate further in Chapter 4, the greedy operation count is roughly (assuming

Qf � Qa)

Nmax A
Nt-solve +Nmax Qa A

Nt-matvec +N2
max Qa X

Nt-inprod

+ X-solve(NmaxQa) + (N2
maxQ

2
a)X

Nt-inprod

+ ntrain O(N4
max +N3

max Q
2
a) ;

(3.67)

the first line relates to RB formation, the second line to error bound formation, and the third

line to the Nmax searches over Ξtrain. (There is also a “short-term” memory requirement of

O(NmaxQaNt) in addition to the “permanent” storage required by the Online stage.) In the

preceding discussion, we have focused on the Nmax A
Nt-solve and (N2

maxQ
2)XNt-inprod of

the greedy (with error bounds) versus the ntrain A
Nt-solve and n2

train X
Nt-inprod of the POD

approach. However, the ntrainO(N4
max +N3

maxQ
2
a) of the greedy, related to searches over Ξtrain,

can also be problematic. There are several ways to mitigate this effect.

First, and perhaps easiest [137, 138] is to first run the greedy with N0 = 1 and a relatively

coarse train sample Ξcoarse
train — Greedy(N0,µ

1∗, Ξcoarse
train , εtol,min) — to obtainN coarse

max and S∗Ncoarse
max

,

X∗
Ncoarse

max
(= W ∗

Ncoarse
max

). We then again run the greedy but now initialized with S∗Ncoarse
max

and the

desired fine train sample Ξfine
train — Greedy(N coarse

max , S∗Ncoarse
max

, Ξfine
train, εtol,min) — to obtain the

“final” Nfine
max and SNfine

max
, X∗

Nfine
max

(= W ∗
Nfine

max
). The hope is to reduce the number of greedy cycles

on the fine train sample: in theory, the coarse sample does the work — many cycles — and the

final sample does the confirmation — a few cycles. Second, it may be possible to even further

reduce the cost associated with the determination of the largest error bound over Ξtrain (or in

fact D) by considering more sophisticated non-ennumerative optimization procedures [32, 20];

however, the error and error bound are highly oscillatory over D, and hence multi-start (or

other global) strategies may limit the possible gains.

3.4.4 A Greedy Approach: W out,∗
N

We now present a form of the greedy approach particularly well-suited to the coercive compliant

case: in particular, we shall replace the error bound for the X norm of Section 3.4.3 with the
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the error bound for the energy norm. We also now include in our formulation positive functions

ωN : D → R, 1 ≤ N ≤ Nmax, that permit non-uniform weighting or “importance” over D.

We shall now need a sharp, rigorous, and efficient bound ∆en
XN

(µ) for the RB error |||u(µ)−

uXN
(µ)|||µ, where uXN

is our RB approximation associated with the space XN ; we note from

Proposition 3A, (3.26), that ∆en
XN

(µ) is also an upper bound for
√
s(µ)− sXN

(µ). To quantity

sharp and rigorous, we introduce the effectivity

ηen
N (µ) ≡

∆en
XN

(µ)
|||u(µ)− uXN

(µ)|||µ

(
=

∆en
XN

(µ)√
s(µ)− sXN

(µ)

)
. (3.68)

We then require

1 ≤ ηen
N (µ) ≤ ηen

max,UB, ∀ µ ∈ D, 1 ≤ N ≤ Nmax , (3.69)

where ηen
max,UB is finite and independent of N . As before, we shall further require that in the

limit of many evaluations the marginal cost (and hence asymptotic average) cost to evaluate

µ → ∆en
XN

(µ) is independent of Nt. In Chapter 4 we shall develop error estimators ∆en
XN

that

satisfy all these requirements.

We shall denote the particular optimal (nested) samples and (hierarchical) spaces selected

by the greedy algorithm as

Sout,∗
N = {µ1 out,∗, . . . ,µN out,∗}, 1 ≤ N ≤ Nmax , (3.70)

and

Xout,∗
N (= W out,∗

N ) = span{u(µ1 out,∗), . . . , u(µN out,∗)}, 1 ≤ N ≤ Nmax , (3.71)

respectively, The corresponding “optimal” RB approximation will thus be denoted, at least in

this section, as uXout,∗
N

. Our algorithm Greedyout(N0, S
out,∗
N0

,Ξtrain, εtol,min, ωN ) then preceeds
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as follows (we provisionally set Nmax = Nmax):

for N = N0 + 1: Nmax

µN out,∗ = arg maxµ∈Ξtrain((ωN−1(µ))−1 ∆en
Xout,∗

N−1

(µ));

εout,∗
N−1 = (ωN−1(µ))−1 ∆en

Xout,∗
N−1

(µN out,∗);

if εout,∗
N−1 ≤ εtol,min

Nmax = N − 1;

exit;

Sout,∗
N = Sout,∗

N−1 ∪ µN out,∗;

Xout,∗
N = Xout,∗

N−1 + span{u(µN out,∗)};

end.

We also define

εout,∗
N = (ωN−1(µ))−1 max

µ∈Ξtrain

|||u(µ)− uXN
(µ)|||µ, 1 ≤ N ≤ Nmax , (3.72)

for purposes of theoretical comparisons.

From the perspective of Offline computational effort, this “output-oriented” optimization

differs little from the X norm-based optimization of Section 3.4.3: the operation counts and

storage for the two algorithms are identical. However, from the perspective of deliverables, we

can expect improved results. In particular, it follows from Proposition 3A, (3.24), that we now

directly control the RB error — since in general the RB approximation (here uXout,∗
N

(µ)) is the

projection of u(µ) in the energy inner product. In fact, it further follows from Proposition 3A,

(3.26), that we will now even directly control the error in the RB output prediction: if we choose

ωN (µ) = 1, we control the absolute error in the output; if we choose ωN (µ) ≡ sXout,∗
N−1

(µ), we

control the relative error in the output — recall that sN (µ) is, in general, a lower bound

for s(µ). In short, we should expect that the resulting “output”-optimized spaces, W out,∗
N ,

should provide even more rapid convergence that the X norm-optimized spaces, W ∗
N , since

our optimization objective is more closely related to the quantity of interest. (Furthermore,

as we shall see in Chapter 4, the bound for the error in the energy norm is sharper than the
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bound for the error in the X norm — ηen
max,UB ≤ ηmax,UB — and hence we might expect a more

accurate optimization process.)

3.5 Approximation Theory

We now have at least some limited confidence that, if a (very) good low-dimensional approx-

imation space exists, then a (at least) good Lagrange RB approximation space can be found

— and constructed with reasonable computational cost by the greedy algorithm. However, we

still do not have any useful, verifiable conditions that indicate when such a low-dimensional

approximation space does indeed exist. A complete a priori framework must include not only

the optimality results of Proposition 3A but also an approximation theory that provides (up-

per bounds for) “best fit” convergence rates in terms of the given data for the problem. Such

a framework can also provide insights into possible best sample distributions or parameter

transformations.

It was recognized in the early theoretical work on Taylor RB approximations [6] that

smoothness in parameter — smoothness of the parametric manifold M — is the essential in-

gredient. (There are some trivial cases — we shall discuss one example below — in which

dim(span{M}) is small and independent of Nt, and the RB approximation will converge very

rapidly for purely “algebraic” reasons; however these results are not of general interest.) In

particular, and in contrast to convergence requirements for FE discretizations, smoothness in

the spatial coordinate is not the crucial element . The early theoretical work on RB Taylor

approximations [118, 102] demonstrates exponential convergence uN → u in some small region

about the parameter point of expansion for sufficiently smooth parametric (coefficient) depen-

dence. Early results for the more difficult case of RB Lagrange approximations [6] are less

complete and — because of norm-equivalence arguments not valid in the infinite–dimensional

case — implicitly limited to finite-dimensional (non-PDE) systems; nevertheless, the funda-

mental link between smoothness in parameter and convergence of the RB approximation was
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clearly established.

We would like to develop an a priori approximation theory for the Lagrange case in which

the requisite smoothness can be proven, the norms are consistent with the infinite-dimensional

framework (in anticipation that Nt → ∞), the exponents can be sharply bounded, the con-

stants are independent of N (and perhaps also Nt), and the results are uniform over the entire

(finite) parameter domain D. In what follows we present some first very limited steps in this

direction for a particular class of very simple model problems. However, we first discuss more

generally the smoothness of M.

3.5.1 Smoothness of M: Parametric (or Sensitivity) Derivatives

In this section we proceed formally; however, it is possible to develop the results more rigorously

by explicitly considering the appropriate limiting process. In either the former or the latter

the essential hypotheses — coercivity, continuity, and smoothness of the parameter functions

— are the same. In this section our emphasis is simply on demonstrating the smoothness

in parameter. However, the parametric (or sensitivity) derivatives — already introduced in

general multi-index form in Section 1.4.2 — can also serve many other functions and indeed are

important in their own right: as basis functions within the Taylor [102, 112, 118] and Hermite

[66] RB frameworks; in objective gradients for design, optimization, and parameter estimation

studies; and in fact even in a posteriori error estimators for the non-affine case (Part V). (We

may thus pursue an a priori theory for the convergence of the sensitivity derivatives and not

just an a priori theory by consideration of sensitivity derivatives. We return to the former in

a later chapter: we shall see that even in the Lagrange RB context, the sensitivity derivatives

will converge quite rapidly.)

To begin, we define (∂u/∂µi): D → R, 1 ≤ i ≤ P , as the derivative of u(x;µ) with respect

to the ith component of the parameter µ; we will write either (∂u/∂µi)(µ) or, if we wish to

emphasize the dependence on the spatial coordinate, (∂u/∂µi)(x;µ). We shall assume that our
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functions Θq
a, 1 ≤ q ≤ Qa, and Θq

f , 1 ≤ q ≤ Qf , are all C1(D) (continuously differentiable over

D). It is then standard to (formally) derive the equation for (∂u/∂µi)(µ) by differentiation of

(2.2) [3]: given µ ∈ D (and u(µ) ∈ X), (∂u/∂µi)(µ) ∈ X satisfies

a

(
∂u

∂µ
(µ), v;µ

)
= −

Qa∑
q=1

(
∂Θq

a

∂µi

)
(µ)aq(u(µ), v)+

Qf∑
q=1

(
∂Θq

f

∂µi

)
(µ)f q(v), ∀v ∈ X, 1 ≤ i ≤ P ,

(3.73)

where we have invoked our affine parameter dependence, (2.5) and (2.6). It directly follows

from our coercivity and continuity assumptions on a and f (and differentiability assumptions

on the Θq
a, 1 ≤ q ≤ Qa, and Θq

f , 1 ≤ q ≤ Qf ) that (3.73) admits a unique and stable solution:

it is a simple matter to bound ‖(∂u/∂µi)‖X , 1 ≤ i ≤ P . (In fact, parametric coercivity

provides additional properties both for the sensitivity derivatives and the output variation: we

will explore these further in the context of inverse problems.)

We can now readily derive from (3.73), assuming that our parameter functions Θq
a(µ),

1 ≤ q ≤ Qa, and Θq
f (µ), 1 ≤ q ≤ Qf , are C2(D), the equation for (∂2u/∂µi ∂µj), 1 ≤ i, j ≤ P :

this equation will be very similar to (3.73), except with a greater proliferation of terms on the

right-hand side. It is clear that if our parameter functions Θq
a(µ), 1 ≤ q ≤ Qa, and Θq

f (µ),

1 ≤ q ≤ Qf , are in fact C∞(D) — very often the case in practice — then we can continue this

differentiation process indefinitely, and the sensitivity derivatives of all order are well defined

and bounded in X: u ∈ C∞(D;X) (see Section 1.4.2). As we shall discuss further below,

even if the parametric derivatives remain bounded for any finite order, the magnitude of the

parametric derivatives (in the X norm) will typically increase relatively rapidly with increasing

order — with factorial and exponential terms; the rate at which the derivatives grow will of

course be important in any theoretical analysis, as we shall observe in Section 3.5.2. (We

work here with the “truth” approximation; however, similar results apply to the originating

exact/infinite-dimensional statement.)
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Figure 3.1: ThermalBlock for the particular case B1 = 2, B2 = 1.

3.5.2 A Priori Theory for ThermalBlock (B1 = 2, B2 = 1)

The analysis in this section is a variation — in some cases a specialization, in other cases a

generalization — of the development in [90, 91]. However, the example is important in that it

illustrates many of the key issues in RB approximation, and also motivates general concepts

(such as logarithmic mappings) that will serve throughout our development. Hence we provide

most of the details, even those that appear in somewhat similar form elsewhere.

Preliminaries

We shall consider here the P = 1 ThermalBlock composite corresponding to B1 = 2, B2 = 1

(hence P = 1) as shown in Figure 3.1; see Section 2.2.1 for the complete detailed definition

and interpretation of this problem. (Note that for B1 = 1, B2 = 2, the solution is linear in x2

and independent of x1 in each block: dim(M) = 2, and the RB will reproduce the FE truth

and exact solution for any N ≥ 2.) We recall that for B1 = 2, B2 = 1, our subdomains are

given by Ω1 =]0, 1
2 [× ]0, 1[ (with conductivity µ1) and Ω2 =]12 , 1[× ]0, 1[ (with conductivity 1)

such that Ω = [0, 1]2 = Ω1 ∪ Ω2. Our function space X is a FE truth approximation subspace

of Xe = {v ∈ H1(Ω) |v|ΓD = 0}, where ΓD = Γtop of Figure 3.1.

We further recall that (for P = 1) µ = µ1 ∈ D ≡ [µmin
1 , µmax

1 ] ⊂ R+ for 1/µmin
1 = µmax

1 /1 =

√
µr; the extent of the parameter domain is thus given by µmax

1 /µmin
1 = µr. It shall also prove
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convenient to introduce a mapped parameter µ̂ ∈ D̂, where µ̂ = τ(µ1) for

τ(z) ≡ ln(z), ∀ z ∈ D , (3.74)

and hence D̂ = [lnµmin
1 , lnµmax

1 ]. This logarithmic mapping is important not just for this simple

model problem but also more generally for many coercive problems with (multi-) parameter

domains of significant extent.

Our problem statement is then: given µ1 ∈ D, find u(µ1) ∈ X that satisfies

µ1a
1(u(µ1), v) + a2(u(µ1), v) = f(v), ∀ v ∈ X , (3.75)

and evaluate

s(µ1) = f(u(µ1)) . (3.76)

Here

aq(w, v) =
∫

Ωq

∇w · ∇v, ∀ w, v ∈ X, 1 ≤ q ≤ 2 , (3.77)

and

f(v) =
∫

Γbase

v, ∀ v ∈ X ; (3.78)

recall that in Ex1 our linear form is parameter-independent.

We choose for our inner product a( · , · ;µ1 ref = 1), and hence

(w, v)X = a1(w, v) + a2(w, v), ∀ w, v ∈ X , (3.79)

or

(w, v)X ≡
∫

Ω
∇w · ∇v, ∀ w, v ∈ X . (3.80)

We observe that ‖ · ‖X = | · |H1(Ω); the H1-seminorm is in fact a norm over X thanks to the

non-zero Direchlet segment ΓD = Γtop.

We next introduce an equivalent parameter-mapped problem: given µ̂ ∈ D̂, find û(µ̂) ∈ X

such that

eµ̂ a1(û(µ̂), v) + a2(û(µ̂), v) = f(v), ∀ v ∈ X , (3.81)
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and evaluate

ŝ(µ̂) = f(û(µ̂)) . (3.82)

It will also prove convenient to write (3.81) as

(û(µ̂), v)X + (eµ̂ − 1) a1(û(µ̂), v) = f(v), ∀ v ∈ X . (3.83)

Clearly, u(µ1) = û(τ(µ1)) and û(µ̂) = u(τ−1(µ̂)).

We next introduce a useful symmetric positive semidefinite generalized eigenproblem: find

(ΥNt
i , λNt

i ) ∈ (X,R+0), 1 ≤ i ≤ Nt, such that

a1(ΥNt
i , v) = λNt

i (ΥNt
i , v)X , ∀ v ∈ X, and ‖ΥNt

i ‖X = 1 . (3.84)

We order our eigenvalues as 0 ≤ λNt
i ≤ . . . ≤ λNt

Nt
≤ 1; we define Λ ≡ [0, 1] as the range of the

eigenvalues. (It is a simple matter to demonstrate that λNt
Nt

= maxw∈X(
∫
Ω1
|∇w|2/

∫
Ω1∪Ω2

|∇w|2)

≤ 1 and that furthermore λNt
Nt
→ 1 as Nt →∞.) From the usual arguments we conclude that

(ΥNt
i ,ΥNt

j )X = δi j , 1 ≤ i, j ≤ Nt, (3.85)

and

a1(ΥNt
i ,ΥNt

j ) = λNt
i δi j , 1 ≤ i, j ≤ Nt , (3.86)

and that furthermore

X = span{Υi, 1 ≤ i ≤ Nt} ; (3.87)

the Υi constitute an orthonormal basis for X.

It is then simple to derive from (3.83) and (3.85), (3.86) that

û(µ̂) (≡ ûNt(µ̂)) =
Nt∑
i=1

fNt
i ΥNt

i g(µ̂, λNt
i ) , (3.88)

where fNt
i = f(ΥNt

i ), 1 ≤ i ≤ Nt, and g: D̂ × Λ → R+ is given by

g(z, σ) =
1

1− σ + σez
. (3.89)
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We also observe that

|||û(µ̂)|||τ−1(µ̂) ≡

( Nt∑
i=1

(fNt
i )2 g(µ̂, λi)

)1/2

, (3.90)

since

(ΥNt
i ,ΥNt

j )X + (eµ̂ − 1) a1(ΥNt
i ,ΥNt

j ) =
δi j

g(µ̂, λi)
, 1 ≤ i, j ≤ Nt ,

from our orthogonality relations.

Before proceeding to the main result we require the preparatory

Lemma 3C. For j ∈ N0,

sup
z∈ bD sup

σ∈Λ

1
g(z, σ)

|(∂jg)(z, σ)| ≤ 2jj! , (3.91)

where (∂jg)(z, σ) refers to the jth-derivative of g with respect to the first argument.

Proof. It is readily shown [90] that

(∂jg)(z, σ) =
j+1∑
k=1

βj
k(1− σ)k−1 gk(z, σ) (3.92)

and hence
1

g(z, σ)
|(∂jg)(z, σ)| =

∣∣∣∣∣
j+1∑
k=1

βj
k(1− σ)k−1 gk−1(z, σ)

∣∣∣∣∣ . (3.93)

The coefficients βj
k satisfy the recurrence

βj+1
k = −k βj

k + k βj
k−1, 1 ≤ k ≤ j + 1 , (3.94)

βj+1
j+2 = (j + 1)βj

j+1 , (3.95)

with initial condition β0
1 = 1. (We also specify βj

0 = 0 for all j.)

It immediately follows from (3.94), (3.95) that

Sj =
j+1∑
k=1

|βj
k| (3.96)

satisfies

Sj+1 ≤ 2(j + 1) Sj , (3.97)
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and since S0 = 1,

Sj ≤ 2j j! . (3.98)

Thus from (3.98) and (3.89)

sup
z∈ bD sup

σ∈Λ

∣∣∣∣∣
j+1∑
k=1

βj
k (1− σ)k−1 gk−1(z, σ)

∣∣∣∣∣
≤ 2j j! sup

k=1,...,j+1
sup
z∈ bD sup

σ∈Λ

(1− σ)k−1

((1− σ) + σez)k−1

≤ 2j j! . (3.99)

The desired result directly follows from (3.93) and (3.99). �

The growth in the derivatives of g can be related to the growth in the sensitivity derivatives

of u.

Convergence Analysis

We next introduce the samples Snh
N = Gln

[µmin
1 ,µmax

1 ;N ]
(see Section 1.4.2),

Snh
N =

{
(µ1)n

N ≡ e{ln µmin
1 +(n−1)δN}, 1 ≤ n ≤ N

}
, 2 ≤ N ≤ Nmax , (3.100)

where

δN =
lnµr

N − 1
; (3.101)

note that

µ̂n
N = τ((µ1)n

N ) = lnµmin
1 +

(n− 1)
N − 1

(
lnµmax

1 − lnµmin
1

)
, 1 ≤ n ≤ N, 2 ≤ N ≤ Nmax ,

(3.102)

and hence our sample points are equidistributed in µ̂ — µ̂n
N − µ̂n−1

N = δN , 2 ≤ n ≤ N . (The

sample points bear a subscript N as the samples are not nested; however, where no (additional)

confusion shall be created, we shall suppress the superscript.) We then define the associated

RB Lagrange spaces

Xnh
N ≡W nh

N ≡ span {u(µn
N ), 1 ≤ n ≤ N} , 2 ≤ N ≤ Nmax . (3.103)
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Although the W nh
N are not hierarchical, obviously W nh

2 ⊂ W nh
3 ⊂ W nh

5 ⊂ W nh
9 ⊂ · · · ; in any

event, we do not propose these spaces as practical approximations. The corresponding RB

field and output approximations, (3.28), (3.30), shall be denoted uWnh
N

and sWnh
N

, respectively.

Given our relation (3.88), we note that

u((µ1)n
N ) = û (τ ((µ1)n

N )) =
Nt∑
i=1

fNt
i ΥNt

i g
(
µ̂n

N , λ
Nt
i

)
. (3.104)

We next introduce, for any given Ĉn: D̂ → R, 1 ≤ n ≤ N , the function g̃N : D̂ × Λ → R given

by

g̃N (µ̂, σ) =
N∑

n=1

Ĉn(µ̂) g(µ̂n
N , σ) . (3.105)

It then follows from (3.88) and (3.105) that the function ŵN : D̂ → R given by

ŵN (µ̂) =
Nt∑
i=1

fNt
i ΥNt

i g̃N (µ̂, λNt
i ) (3.106)

is a member of our RB space W nh
N .

We shall subsequently choose polynomial interpolants for out “best-fit” functions g̃N ; we

thus introduce the basic results here. Given a function h ∈ C0(D), and positive integers i and

M such that i + M ≤ N + 1, we defined Ii
N,Mh as the unique (M − 1)th-order polynomial

satisfying (Ii
N,Mh)(µ̂

i+m−1
N ) = h(µ̂i+m−1

N ), 1 ≤ m ≤M .

We further introduce the Lagrange basis functions Li;m
N,M , 1 ≤ m ≤M : Li;m

N,M is the unique

(M − 1)th-order polynomial satisfying Li;m
N,M (µ̂i+m′−1

N ) = δm m′ , 1 ≤ m,m′ ≤ M . We can then

express our interpolant as

(Ii
N,Mh)(µ̂) =

M∑
m=1

Li;m
N,M (µ̂) h(µ̂i+m−1

N ) (3.107)

for any µ̂ ∈ D̂. Note that Ii
N,M is, of course, polynomial; however Ii

N,M ◦ τ is not polynomial.

We now recall the basic remainder results of Lagrange interpolation (particularized to our

case of interest) [42, 124]: for h ∈ CM (D̂),

|h(µ̂)− (Ii
N,Mh)(µ̂)| ≤ ((M − 1)δN )M

M !

(
sup
y∈ bD h(M)(y)

)
, (3.108)
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for any µ̂ ∈ [µ̂i
N , µ̂

i+M−1
N ]; here h(m) is the mth-derivative of h. (Note that, from (3.102),

(M − 1)δN is the length of the interval [µ̂i
N , µ̂

i+M−1
N ].)

We now turn to the main result in

Proposition 3D. Assume

lnµr = ln
(
µmax

1

µmin
1

)
>

1
2e

(3.109)

(in fact, just a technical convenience) and

N ≥ Ncrit ≡ 1 + [2e lnµr]+ , (3.110)

where for arg ∈ R the function [arg]+ (respectively, [arg]−) shall denote the smallest integer

≥ arg (respectively, the largest integer ≤ arg). Then

|||uNt(µ1)− uWnh
N

(µ1)|||µ
|||uNt(µ1)|||µ

≤ e
− (N−1)

(Ncrit−1) , ∀ µ1 ∈ D , (3.111)

and
sNt(µ1)− sWnh

N
(µ1)

sNt(µ1)
≤ e

− 2(N−1)
(Ncrit−1) , ∀ µ1 ∈ D , (3.112)

for W nh
N defined in (3.103).

Proof. We first note that for any ŵN (µ̂) ∈W nh
N of the form (3.106) we can write

|||û(µ̂)− ŵN (µ̂)|||τ−1(µ̂)

|||û(µ̂)|||τ−1µ̂
=


Nt∑
i=1

(
fNt

i

)2 (
g
(
µ̂, λNt

i

)
− g̃N

(
µ̂, λNt

i

))2
/
g
(
µ̂, λNt

i

)
Nt∑
i=1

(
fNt

i

)2
/
g
(
µ̂, λNt

i

)


1/2

≤ sup
z∈ bD sup

σ∈Λ

1
g(z, σ)

|g(z, σ)− g̃N (z, σ)| , ∀ µ̂ ∈ D̂ . (3.113)

We now choose g̃N (µ̂, σ) judiciously.

In particular, given any µ̂ ∈ D̂, we identify M (2 ≤ M ≤ N) contiguous sample points

µ̂
i∗(µ̂)
N , . . . , µ̂

i∗(µ̂)+M−1
N and an associated “enclosing” interval J µ̂

M ≡ [µ̂i∗(µ̂)
N , µ̂

i∗(µ̂)+M−1
N ] of

length (M−1)δN (in µ̂) such that µ̂ ∈ J µ̂
M . There are obviously many possible choices for i∗(µ̂):

for our “crude” purposes here, any choice suffices; we take i∗(µ̂) to be the smallest i such that,
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for the given M , µ̂ ∈ [µ̂i
N , µ̂

i+M−1
N ]. We then take g̃N (µ̂, σ) ≡ g̃∗N,M (µ̂, σ) ≡

(
Ii∗(µ̂)

N,M g( · , σ)
)
(µ̂).

We must and can confirm that, as necessary, g̃∗N,M (µ̂, σ) has the form (3.105): we directly iden-

tify from (3.107) that (i) Ĉn = 0 for n < i∗(µ̂) and n > i∗(µ̂), and (ii) Ĉn = L
i∗(µ̂);n−i∗(µ̂)+1
N,M (µ̂)

for i∗(µ̂) ≤ n ≤ i∗(µ̂) +M − 1.

It directly follows from the standard Lagrange interpolant remainder formula (3.108) and

Lemma 3C that, if we define

B∗(N,M) ≡ sup
z∈ bD sup

σ∈Λ

1
g(z, σ)

|g(z, σ)− g̃∗N,M (z, σ)| (3.114)

then

B∗(N,M) ≤ (2(M − 1)δN )M . (3.115)

It remains to select the optimal — or at least a good suboptimal — M that minimizes (2(M −

1)δN )M for M ∈ {2, . . . , N}. For simplicity, we shall first relax this problem and look for

M ∈ [2, N ] ⊂ R such that (2(M − 1)δN )M is suitably small.

It is readily demonstrated that the function (2r)r/δN — motivated by the identification

“r ≈ (M − 1)δN” — attains the global minimum of e−
“

1
2eδN

”
= e

−
“

N−1
2e ln µr

”
≤ e

−
“

N−1
Ncrit−1

”
over

all r ∈ [0,∞[ for ropt = 1/2e. We thus choose

Mopt = 1 +
ropt

δN
; (3.116)

note that Mopt ≥ 2 (respectively, Mopt ≤ N) thanks to our condition on N , (3.110) (respec-

tively, our condition on µr, (3.109)). Thus, since 2(Mopt − 1)δN = 2ropt,

(2(Mopt − 1)δN )Mopt−1 = (2ropt)
ropt
δN ≤ e

−
“

N−1
Ncrit−1

”
. (3.117)

It remains only to address the integer nature of M .

In particular, we shall now choose Mopt = [Mopt]−, the largest integer ≤Mopt. Clearly, 2 ≤

Mopt ≤ N , as required. Furthermore, (i) since Mopt ≤Mopt, 2(Mopt − 1)δN < 2(Mopt − 1)δN

(= 1
e < 1), and (ii) from the definition of [ ]−, Mopt > Mopt − 1. Thus,

(2(Mopt − 1)δN )Mopt ≤ (2(Mopt − 1)δN )Mopt−1 ≤ e
−

“
N−1

Ncrit−1

”
. (3.118)
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We thus conclude from (3.113), (3.114), (3.115), and (3.118) that, under the hypotheses of the

Proposition 3D, for any µ1 ∈ D, there exists a function wN (µ1) (= ŵN (τ(µ1)) such that

|||uNt(µ1)− wN (µ1)|||µ
|||uNt(µ1)|||µ

≤ e
−

“
N−1

Ncrit−1

”
. (3.119)

The energy result (3.111) then directly follows from (3.119) and Proposition 3A, (3.24); the out-

put result (3.112) directly follows from sNt(µ1) = |||uNt(µ1)|||2µ, (3.119), and Proposition 3A,

(3.26). �

As anticipated, given the smooth nature of the parametric dependence and hence the underly-

ing parametric manifold M, we achieve exponential convergence. (Note we do not exploit any

smoothness in space.) We also observe that our constants related to the convergence rate —

in particular Ncrit — are independent of Nt.

We can also demonstrate

Corollary 3E. For any N ∈ N, N ≥ 2,

sNt(µ1)− sWnh
N

(µ1)

sNt(µ1)
≤ (B∗(N,N))2, ∀ µ1 ∈ D , (3.120)

for the RB space W nh
N given in (3.103) and B∗(N,M = N) defined in (3.114). (Note for

M = N , g̃∗N,M ( · , σ) ≡ (I1
N,N g( · , σ) is simply the (N − 1)th-order Lagrangian interpolant of

g( · , σ) through the µ̂i
N , 1 ≤ i ≤ N .)

Proof. The result directly follows from (3.113) and (3.114) of Proposition 3D, sNt(µ1) =

|||uNt(µ1)|||2µ, and (3.26) of Proposition 3A. �

This Corollary is of interest for two reasons. First, we expect the bound (3.120) to be con-

siderably sharper than (3.112), and hence to better demonstrate the reason for rapid RB

convergence — smoothness in parameter. (Of course, (3.120) is really only a pseudo-a priori

result; we will simply evaluate B∗(N,N) numerically.) Second, the result is valid for all N

(≥ 2), and in particular for the small N of practical relevance. Indeed, the bound should not

be good for larger N .
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We make several comments motivated by the proof of Proposition 3D. First, we note the

rather small — in fact, logarithmic — effect of the extent of the parameter domain, µr, on the

exponential convergence rate. Although the proof does suggest that the best approximation

might include (with significant weight) only some set of snapshots in the vicinity of any par-

ticular µ1 ∈ D, the active region (related to ropt in the proof) is O(1) in lnµ1; furthermore,

the optimal Galerkin approximation will no doubt appeal to all N snapshots. In short, the RB

approximation is global and high order, and can efficiently treat global parameter domains.

Second, the logarithmic transformation suggested by the proof — and in fact responsible for

the weak dependence of the convergence rate on µr — is more generally relevant: a good pre-

processing transformation prior to generation of (say, train) samples. The logarithmic distri-

bution can be motivated intuitively: in our problem, µ1 and 1/µ1 enter in a symmetric fashion

— we can consider a1(u(µ1), v) + (1/µ1)a2(u(µ1), v) rather than µ1a
1(u(µ1), v) + a2(u(µ1), v).

As we shall see, the Θq(µ) are often of the form µ. or 1/µ. (even in the presence of geometric

parameters), and hence the log argument is rather broadly applicable. (Note our results of

Proposition 3D are not sensitive to small perturbations in the logarithmic samples [90, 91].)

Our observations here are generally true not only for parametrically coercive problems but also

for more general coercive problems.

Given the smoothness in parameter and our construction of Proposition 3D, we might

ask why we can not simply directly interpolate our field variable u (and even our output) in

µ1. We consider this question in greater detail in the next section in the context of higher

parameter dimensions. But we emphasize already here, for P = 1, the power of the Galerkin

recipe. In particular, our candidate best fit in the proof of Proposition 3D and Corollary 3E

is, as already noted, not polynomial in µ1 but rather polynomial in ln(µ1) — not necessarily

an obvious choice a priori . Notwithstanding, it follows from Proposition 3A, (3.24), that the

Galerkin procedure provably will do better than this candidate “best fit” and in fact perforce

choose the best (in the energy norm) linear combination of snapshots. We anticipate that (at
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Figure 3.2: The relative error in the output over Ξ0
train for sWnh

N
: the actual error (∗) and the

pseudo-a priori bound of Corollary 3E (♦).

least in the energy norm) the “constructed” sub-optimality of any proposed interpolant will,

in general, be trumped by the “automatic” Galerkin optimality of Proposition 3A.

Numerical Results

We now present some numerical results for our model problem to better understand the im-

plications of Proposition 3D and Corollary 3E and the sampling discussions of Section 3.4.

We consider here the case µr = 100 corresponding to µmin
1 = 0.1 and µmax

1 = 10.0 — a very

extensive variation in the parameter. Most of our results will be based on a train sample

Ξ0
train = Gln

[µmin
1 ,µmax

1 ;10,000]
(see Section 1.4.2).

We plot in Figure 3.2 (i) the maximum over Ξ0
train of |s(µ1)− sWnh

N
(µ1)|/s(µ1), the relative

error in the output for the (non-hierarchical) RB approximation spaceW nh
N of (3.103) associated

with the “optimal” log sample Snh
N of (3.100), and (ii) the pseudo-a priori bound for |s(µ1)−

sWnh
N

(µ1)|/s(µ1) of Corollary 3E, corresponding to (numerical computation of) (3.114) for the

particular caseM = N . Note for (i) we consider a P1 finite element approximation of dimension

Nt = 1024.

We observe that the RB output approximation converges exponentially and rapidly. We
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also note that — as must be the case from Proposition 3A, (3.26) — the Galerkin approxima-

tion is indeed better than the interpolant as measured in the energy norm: the actual output

error is considerably smaller than (B∗(N,N))2. Nevertheless, (B∗(N,N))2 constitutes a rea-

sonable bound, and we thus conclude that the basic premise that informs the construction of

Proposition 3D and Corollary 3E is valid: the RB method provides a framework for high order

approximation in a smooth parametric variable.

However, the a priori bound for |s(µ1) − sWnh
N

(µ1)|/s(µ1) of Proposition 3D, (3.112), is

unfortunately not “practically” relevant. In particular, Ncrit = 26 (for µmax
1 /µmin

1 = µr = 100)

is much too pessimistic: the threshold resolution Ncrit of (3.110) is thus much too stringent —

“off the plot” in Figure 3.2; and the convergence exponent −2/(Ncrit − 1) of (3.112) is much

too small — an order of magnitude too conservative. The culprit is clearly our overly crude

bound for B∗(N,Mopt).

We next compare in Figure 3.3(a) the error in the output as a function of N for two different

RB approximations: (i) the maximum over Ξ0
train of |s(µ1)−sWnh

N
(µ1)|/s(µ1), and (ii) (εout,∗

N )2

of (3.72) for Greedyout(N0 = 1, µ1 out,∗
1 = 1, Ξ0

train, εtol,min, ωN (µ1) =
√
sN (µ1)), (which from

(3.26) is a bound for) the maximum over Ξ0
train of |s(µ1)− sW out,∗

N
(µ1)|/s(µ1). (We obtain very

similar results if we calculate the maximum errors over an independent test sample Ξtest ∈ D

rather than over Ξ0
train — since ntrain � N .)

We observe that the hierarchical greedy RB approximation — the true (practical) RB

approximation — behaves roughly as well as the non-hierarchical approximation associated

with the presumably optimal logarithmic samples: the greedy selection procedure correctly

identifies nested samples for which the Galerkin procedure can provide very rapid convergence.

We conclude that, fortunately, we do not need to exploit special information or parameter

tranformations to achieve (in practice) rapid RB convergence.

However, the ln sample is not just an artifact of the proof of Proposition 3D. We present in
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Figure 3.3: (a) The relative error in the output over Ξ0
train as a function of N for sWnh

N
(∗) and

sW out,∗
N

(◦). (b) The logarithmic sample Snh
N (∗) and the greedy sample Sout,∗

N (◦) for N = 6;
the greedy points are re-ordered to facilitate comparison.

Figure 3.3(b) the logarithmic sample Snh
N and the greedy sample Sout,∗

N for N = 6. Clearly, the

two samples are somewhat similar. There is a way in which we can exploit (and have exploited)

the ln distribution in a non-binding fashion: through importance sampling as reflected in

Ξ0
train. In general, the greedy result will be insensitive to Ξtrain if Ξtrain is sufficiently “dense”

in D; however, the ln choice (rather than lin) for Ξtrain can be important in higher parameter

dimensions (see Section 3.5.3) in reducing ntrain — and hence Offline expense — at constant

RB “quality.”

The truth approximation in Figure 3.3(a) is a P1 finite element approximation of dimension

Nt = 1024 over a uniform triangulation. (Note for this problem the dimension of M is in fact

the number of degrees of freedom on the interface Ω1∩Ω2, or roughly
√
Nt.) We already know

that our bound of Proposition 3D is independent of Nt, and hence we expect (and observe) very

little change in |sNt(µ1)−sWnh
N

(µ1)|/sNt(µ1) as we vary Nt. Furthermore, the spaces generated

by our greedy process are also quite insensitive to Nt: we present in Figure 3.4 (εout,∗
N )2 (for

Greedyout(1, µ1 out,∗
1 = 1, Ξ0

train, εtol,min, ωN (µ1) =
√
sN (µ1))) as a function of N but now for

the different truth approximations Nt = 64, Nt = 256, Nt = 1024, and Nt = 4096. We observe

that the greedy convergence curve is little effected by Nt for Nt sufficiently large: the RB
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Figure 3.4: Ouput error measure (εout,∗
N )2 for Greedyout(1, µ1 out,∗

1 = 1, Ξ0
train, εtol,min,

ωN (µ1) =
√
sN (µ1)) as a function of N for different Nt: Nt = 64 (♦); Nt = 256 (◦);

Nt = 1024 (�); Nt = 4096 (×).

approach provides a stable approximation to uNt as Nt →∞. (Note that for Nt too small we

can, for larger N , exhaust spanM — somewhat apparent in Figure 3.4 for Nt = 64; we shall

further explore this phenomenon, for a richer multi-parameter problem, in Section 3.5.3.)

Finally, we take the opportunity for this rather simple (P = 1) model problem to compare

the greedy and POD approaches. (For larger P , the computational cost of the POD approach

is typically prohibitive.) In order to be able to provide a more meaningful comparison, we

now consider the non-output greedy algorithm of Section 3.4.3 such that both the greedy

optimization and the POD are defined with respect to an X-norm objective. We now consider

a smaller training sample Ξ1
train = Gln

[µmin
1 ,µmax

1 ;500]
. For our truth approximation, we take

Nt = 1024.
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We can envision computing eight quantities

(i) max
µ∈Ξ1

train

‖u(µ)− uW ∗
N

(µ)‖X ,

(ii)

√√√√ 1
ntrain

∑
µ∈Ξ1

train

‖u(µ)− uW ∗
N

(µ)‖2X ,

(iii) max
µ∈Ξ1

train

inf
wN∈W ∗

N

‖u(µ)− wN‖X ,

(iv)

√√√√ 1
ntrain

∑
µ∈Ξ1

train

inf
wN∈W ∗

N

‖u(µ)− wN‖2X ,

(v) max
µ∈Ξ1

train

‖u(µ)− uXPOD
N

(µ)‖X ,

(vi)

√√√√ 1
ntrain

∑
µ∈Ξ1

train

‖u(µ)− uXPOD
N

(µ)‖2X ,

(vii) max
µ∈Ξ1

train

inf
wN∈XPOD

N

‖u(µ)− wN‖X ,

(viii)

√√√√ 1
ntrain

∑
µ∈Ξ1

train

inf
wN∈XPOD

N

‖u(µ)− wN‖2X .

(3.121)

We make several observations.

First, we note that (i) ≥ (ii), (iii) ≥ (iv), (v) ≥ (vi), and (vii) ≥ (viii): the L∞(Ξ1
train)

is stronger than the L2(Ξ1
train)-norm. Second, we note that (i) ≥ (iii), (ii) ≥ (iv), (v) ≥(vii),

and (vi) ≥ (viii): the error in the RB Galerkin approximation of u(µ) measured in the X-norm

will always be greater than the error in the X-projection of u(µ) measured in the X-norm.

Third, we note that (iv)≥ (viii): from (3.52), the POD is optimal in the L2(Ξ1
train)-“projection”

metric. We have verified that all of our numerical results do in fact honor these sets of relations.

As already introduced, the “native” quantities associated with the greedy and POD sam-

pling strategies are (3.121) (i) = ε∗N of (3.66) and (3.121) (viii)= ε
POD
N of (3.51), respectively.

These quantities are not computationally directly comparable: ε
POD
N is defined relative to
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Figure 3.5: Error measures for the greedy and POD RB approximations. We present results
for the L∞(Ξ1

train)-norm: (3.121) (i) greedy (∗) and (3.121) (v) POD (◦). We also present
results for the L2(Ξ1

train)-norm: (3.121) (ii) greedy (♦) and (3.121) (vi) POD (×).

a weaker norm over Ξ1
train and with respect to the projection — and is therefore “favored.”

Hence we instead compare, in Figure 3.5, (i) with (v) and (ii) with (vi). As might be expected,

the greedy and POD each perform slightly better in the norms over Ξ1
train which inform the

respective objective function/optimization problems. The advantage of the greedy approach

is perhaps the stronger norm but, much more importantly, the computational efficiency: we

can readily consider very large ntrain with relatively little increase in Offline cost; this will be

particularly advantageous in higher parameter dimensions.

3.5.3 Higher Parameter Dimensions

For P = 1 the theory is thus in some sense rather complete: clearly, we can extend the proof of

Proposition 3D to more general a1 (and, in fact, to more general ( · , ·)X) [90, 91]. However, for

P > 1, the state of affairs is much less satisfactory: not only can we not construct a meaningful

or practically relevant a priori theory, but in fact we can not even readily understand the rapid

convergence observed numerically. Part of the issue is the more general problem of interpolation

in higher dimensional spaces; and part of the issue is the particular problems associated with

analysis of partial differential equations.
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In particular, it might not be overly difficult to extend the theory for P = 1 to tensor-

product samples and spaces for P > 1 — for example, in P = 2, SN=N1N2 = Gln
[µmin

1 ,µmax
1 ;N1]

×

Gln
[µmin

2 ,µmax
2 ;N2]

. (Unfortunately) these spaces are clearly prohibitively/exponentially expensive

both Offline and Online for larger P — the convergence rate with N degrades very rapidly

with P . (Fortunately) the greedy sampling process generates non-tensor-product samples

that provide very rapid convergence — the convergence rate with N appears to depend only

weakly on P . However, the latter is based on observation and not theory: we can not quantify

the conditions under which rapid convergence must obtain; rapid convergence remains largely

a mystery. (Perhaps one might envision an analysis similar to Proposition 3D defined over

curves in D — essentially an arc-length representation of our parametrization. However, the

construction of sufficiently smooth curves is not at all self-evident.)

We do provide here some of the empirical evidence which suggests that, at least for some

problems, RB approximation is viable for modest P — several parameters — and in some

cases even “large” P — O(10). We consider the ThermalBlock problem of Section 2.2.1 with

B1 = B2 = 3 and hence P = 8; the particular situation is depicted in Figure 2.1. As before, we

consider the parameter range µr = 100. We choose for our truth solution a P1 finite element

approximation of dimension Nt over a uniform triangulation. For our training sample we shall

consider both Ξln
train = Gln

[MC;ntrain] and Ξlin
train = Glin

[MC;ntrain].

We plot in Figure 3.6(a) (εout,∗
N )2 for Greedyout(1,µ1 out,∗ = (1, . . . , 1), Ξln

train, εtol,min, ωN (µ)

=
√
sN (µ)) as a function of N for ntrain = 500, 1000, 5000, 10000, and in Figure 3.6(b) (εout,∗

N )2

for Greedyout(1,µ1 out,∗ = (1, . . . , 1), Ξlin
train, εtol,min, ωN (µ) =

√
sN (µ)) as a function of N for

ntrain = 500, 1000, 5000, 10000. (In both cases, Nt = 661.) We observe that in both the ln and

lin cases the results are sensitive to ntrain for smaller ntrain; however, the ln sample approaches

a roughly ntrain-independent asymptote — a better and more reliable RB approximation —

more quickly than the lin sample. (Note that we now calculate and present εout,∗
N rather than

εout,∗
N — as in actual practice.)
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Figure 3.6: Output measure (εout,∗
N )2 for Greedyout(1,µ1 out,∗ = (1, . . . , 1), Ξtrain, εtol,min,

ωN (µ) =
√
sN (µ)) as a function of N for (a) Ξtrain = Gln

[MC;ntrain], and (b) Ξtrain = Glin
[MC;ntrain],

for different ntrain: ntrain = 500 (—); ntrain = 1000 (—); ntrain = 5000 (—); ntrain = 10000
(—).

The good news is that even for P larger the greedy sampling procedure can provide what

appears to be rapidly convergent approximations: we achieve a relative output accuracy of

0.01% over a fine sample inD with onlyN ∼= 40. The bad news is that in P = 8 dimensions even

ntrain = 10,000 is in fact very small — “on average” about 3 points per parameter dimension

— and hence we can not be certain that there are not (many!) points in D for which the error

remains quite large. The latter highlights the necessity of our a posteriori error estimators of

the next section, which will permit us to at least verify Online that any particular prediction

is accurate . . . or not. (It is not true either in the greedy or the POD contexts that the error

over Ξtrain is the error over D — though this is often incorrectly presumed.)

We present in Figure 3.7 the ln training sample results of Figure 3.6(a) for the particular

case of ntrain = 500 but now for Nt = 178, Nt = 453, Nt = 661, Nt = 1737, Nt = 2545, and

Nt = 6808. We again recall that the dimension of M is in fact not Nt but rather the number

of degrees of freedom on the block interfaces; we can detect this effect for the smaller Nt and

larger N — we “exhaust” M. We observe very little effect of (sufficiently large) Nt on the RB

convergence results; we confirm that the RB approach provides a stable approximation to uNt

as Nt →∞.
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Figure 3.7: Output measure (εout,∗
N )2 for Greedyout(1,µ1 out,∗ = (1, . . . , 1), Ξln

train, εtol,min,

ωN (µ) =
√
sN (µ)) for different Nt: Nt = 137 (- - -); Nt = 453 (- - -); Nt = 661 (—);

Nt = 1737 (—); Nt = 2545 (—); Nt = 6808 (—).

It is clear from a comparison of the ThermalBlock results of Figure 3.6(a) and Figure 3.3(a)

that the dimension (at fixed accuracy) of the RB approximation space for B1B2 = 9 is certainly

larger than the dimension of the RB approximation space for B1B2 = 2. (Note however, that

in Figure 3.3(a) we report the actual error whereas in Figure 3.6(a) we report the (much less

expensive) error bound; hence Figure 3.6(a) is a bit pessimistic.) Nevertheless, the growth in

requisite RB dimension is in fact quite modest given the much more significant growth in the

number of parameters. The even more demanding case of B1 = B2 = 5 is considered in [137]:

again, the effect of increased P is noticeable but rather modest.

In general, parametrically coercive problems and in particular compliant parametrically

coercive problems exhibit many special properties. For example, for the ThermalBlock problem

— for which furthermore the Θq
a, 1 ≤ q ≤ Qa, are linear in µ — the output is monotonically

decreasing in each parameter. However, the field variable associated with the ThermalBlock

problem can in fact exhibit rather rich behavior [137], and hence the rapid RB convergence we

observe would not appear to be trivial.

We emphasize that it is the field variable which must be (smooth and) well approximated

by the RB approach; the scalar output is then “derivative.” It is passage through the field
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variable which — through Galerkin orthogonality, error estimation, and the greedy procedure

— arguably endows the RB approach with the very rapid and verifiable convergence properties

for larger P . We can certainly also entertain a much simpler “connect-the-dots” approach:

direct approximation of s: D → R. However, we contend that connect-the-dots — unlike the

RB approach — is simply not viable in higher parameter dimensions: tensor product grids

are patently infeasible and scattered data approximations [64, 153] are typically rather poorly

convergent. We further contend that connect-the-dots — unlike the RB approach — does

not admit any rigorous and efficient a posteriori error estimation procedure: in particular

for smaller N , the output does not carry sufficient residual or stability information. Thus as

regards both efficiency and reliability the RB approach is preferred. (Another justification is

simply that we like the RB approach better — and presumably so does any reader that has

persevered this far in the book.)

In fact, even for P = 1, connect-the-dots is not obviously better than RB. We consider

(i) (N − 1)th-order polynomial interpolation of s(µ1) on the points GCheb,lin

[µmin
1 ,µmax

1 ;N ]
(see Sec-

tion 1.4.2), (ii) (N − 1)th-order polynomial interpolation of s(µ1) on the points GCheb,ln

[µmin
1 ,µmax

1 ;N ]
,

and (iii) (N − 1)th-order interpolation of ŝ(µ̂) = s(eµ̂) on the points GCheb,lin

[ln µmin
1 ,ln µmax

1 ;N ]
. Note

that (ii) and (iii) are not equivalent, even though in µ1 the (abscissa, ordinate) interpolation

pairs are identical: (ii) is polynomial in µ1, while (iii) is polynomial in lnµ1 (in fact, the

output associated with our best-fit surrogate of Corollary 3E).

In Figure 3.8 we plot the maximum over a sample Ξtest = Gln
[MC,1000] of the relative output

error (the output error normalized by s(µ1)) for these three interpolants as well as for the

greedy RB approximation reported in Figure 3.3(a). In fact, the RB approximation is roughly

as accurate as the (two better of the three) interpolants. (Note that Proposition 3A does not in

any way preclude an output interpolant that is occasionally or even always better than the RB

prediction: (3.26) should not be interpreted as optimality of the output.) Since the cost of the

polynomial interpolation is only N2 (compared to N3 for the RB), connect-the-dots is arguably
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Figure 3.8: Relative output error over Ξtest for the “connect-the-dots” interpolants (i) (�),
(ii) (×), (iii) (∗), as well as the greedy RB approximation (♦) of Figure 3.3a.

more efficient for this simple P = 1 problem. However, this conclusion is specious: first, for

P > 1 the situation is much different; and second, even for P = 1, without a rigorous and

inexpensive a posteriori error estimator (in the Online stage), we can not choose N rationally

and in particular minimally to ensure the desired accuracy. We now turn to the subject of RB

a posteriori error estimation.
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Chapter 4

A Posteriori Error Estimation

4.1 Motivation and Requirements

Effective a posteriori error bounds for the quantity of interest — our output — are crucial both

for the efficiency and the reliability of RB approximations. As regards efficiency (related to

the concept of “adaptivity” within the FE context), error bounds play a role in both the Offline

and Online stages. In the greedy algorithms, the application of error bounds (as surrogates

for the actual error) permits significantly larger training samples at greatly reduced Offline

computational cost. These more extensive training samples in turn engender RB approxima-

tions which provide higher accuracy at greatly reduced Online computational cost. The error

bounds also serve directly in the Online stage — to find the smallest RB dimension N that

achieves the requisite accuracy — to further optimize Online performance. In short, a poste-

riori error estimation permits us to (inexpensively) control the error which in turn permits us

to minimize the computational effort.

As regards reliability , it is clear that our Offline sampling procedures can not be exhaustive:

for larger parameter dimensions P there will be large “parts” of the parameter set D that

remain unexplored — the output error uncharacterized; we must admit that we will only

encounter most parameter values in D Online. (In the POD context, εPOD
N is often reported as

the “error” over D): εPOD
N is not the error over D, but rather the error over Ξtrain. Similarly,
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in the greedy context, ε∗N is not the error (bound) over D, but rather the error (bound) over

Ξtrain.) Our a posteriori estimation procedures ensure that we can rigorously and efficiently

bound the output error in the Online (deployed/application) stage — for any given “new”

µ ∈ D. We can thus be sure that constraints are satisfied, feasibility (and safety/failure)

conditions are verified, and prognoses are valid: real-time or design decisions are endowed with

the full assurances of the “truth” solution. In short, a posteriori error bounds permit us to

confidently — with certainty — exploit the rapid predictive power of the RB approximation.

We should emphasize that a posteriori output error bounds are particularly important for

RB approximations. First, RB approximations are ad hoc: each problem is different as regards

discretization. Second, RB approximations are typically pre-asymptotic: we will choose N

quite small — before any “tail” in the convergence rate. And third, the RB basis functions can

not be directly related to any spatial or temporal scales: physical intuition is of little value.

And fourth and finally, the RB approach is typically applied in the real-time context: there

is no time for Offline verification; errors are immediately manifested and often in deleterious

ways. There is, thus, even greater need for a posteriori error estimation in the RB context

than in the much more studied FE context [4, 5, 12, 11, 13, 22].

Our motivations for error estimation in turn place requirements on our error bounds. First,

the error bounds must be rigorous — valid for all N and for all parameter values in the parame-

ter domain D: non-rigorous error “indicators” may suffice for adaptivity, but not for reliability.

Second, the bounds must be reasonably sharp: an overly conservative error bound can yield

ineffcient approximations (N too large) or suboptimal engineering results (unnecessary safety

margins); design should be dictated by the output and not the output error. And third, the

bounds must be very efficient : the Online operation count and storage to compute the RB

error bounds — the marginal or asymptotic cost — must be independent of Nt (and hopefully

commensurate with the cost associated with the RB output prediction). We do re-emphasize

here that our RB error bounds are defined relative to the underlying “truth” FE approxima-
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tion; however, we also recall that the RB Online cost is independent of Nt, and hence the truth

approximation can and should be chosen conservatively.

4.2 Coercivity Lower Bound

4.2.1 Preliminaries

The material in this particular subsection will have broader application within the book (in

particular, in Part IV on parabolic problems), and we thus consider a slightly larger family

of bilinear forms. In particular, we shall now permit a non-symmetric parametrically coercive

bilinear form b: X × X × D → R. (We choose the notation b rather than a since we will

sometimes require stability lower bounds for forms other than our PDE form a; however, in

most cases, b = a.)

We shall, however, continue to assume that b is coercive and continuous,

0 <
(
αNt(µ) ≡

)
α(µ) = inf

w∈X

bS(w,w;µ)
‖w‖2X

, ∀ µ ∈ D , (4.1)

and

sup
w∈X

sup
v∈X

|b(w, v;µ)|
‖w‖X ‖v‖X

= γ(µ)
(
≡ γNt(µ)

)
<∞, ∀ µ ∈ D , (4.2)

respectively. Recall that bS(w, v;µ) = 1
2(b(w, v;µ) + b(v, w;µ)) is the symmetric part of b.

Given that b need not be symmetric, we must slightly generalize our choice of X inner

product and norm. In particular, given a µ ∈ D, we now define

(w, v)X ≡ bS(w, v;µ), ∀ w, v ∈ X , (4.3)

and hence

‖w‖X = b
1/2
S (w,w, ;µ), ∀ w ∈ X ; (4.4)

note since b is coercive, bS(w, v;µ) is indeed a well-defined inner product. Clearly (4.4) reduces

to our earlier definition (2.12) in the case (of interest in Part I) in which b (= a) is symmetric.
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As before, we continue to assume that b is parametrically coercive; however, since now

b 6= bS, we must recall our more careful definition of parametric coercivity. We first define

c(w, v;µ) ≡ bS(w, v;µ), ∀w, v,∈ X, ∀µ ∈ D. Since b is affine, c perforce also admits an affine

(symmetric) decomposition,

c(w, v;µ) =
Qc∑
q=1

Θq
c(µ) cq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D , (4.5)

with cq(w, v) = cq(v, w), ∀w, v ∈ X, 1 ≤ q ≤ Qc. We then say that b is parametrically coercive

if

Θq
c(µ) > 0, ∀ µ ∈ D, 1 ≤ q ≤ Qc , (4.6)

and

cq(w,w) ≥ 0, ∀ w ∈ X, 1 5 q ≤ Qc . (4.7)

Note that the parametric coercivity condition is defined in terms of c ≡ bS, not b: there can be

skew-symmetric components to b that need not honor our “positivity conditions” (4.6),(4.7) —

a classical and important example is the (steady or unsteady) convection diffusion equation.

We observe that if b is symmetric, then (we may choose) Qb = Qc, Θq
b(µ) = Θq

c, 1 ≤ q ≤ Qb,

and bq(w, v) = cq(w, v), ∀ w, v ∈ X, 1 ≤ q ≤ Qb. It follows that

Θq
b(µ) > 0, ∀ µ ∈ D, 1 ≤ q ≤ Qb , (4.8)

and

bq(w,w) ≥ 0, ∀ w ∈ X, 1 ≤ q ≤ Qb . (4.9)

Note the bq(w, v), 1 ≤ q ≤ Qb, are symmetric positive semidefinite bilinear forms and thus the

Cauchy-Schwarz inequality is applicable: |bq(w, v)| ≤ (bq(w,w))1/2 (bq(v, v))1/2, ∀ w, v ∈ X,

1 ≤ q ≤ Qb.

4.2.2 The “min Θ” Approach

We shall now develop a positive lower bound for the coercivity “constant,” 0 < αLB(µ) ≤

αNt(µ), ∀µ ∈ D. This lower bound is required — a computational ingredient in our a posteriori
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error bounds. (Indeed, as we shall see, the critical simplification afforded by the hypothesis

of parametric coercivity is the existence of an explicitly constructed and calculated coercivity

lower bound.) For the case of a symmetric — as in the compliant problems of Part I — we

shall also develop a finite upper bound for the continuity “constant,” γNt(µ) ≤ γUB(µ) <∞,

∀ µ ∈ D. This upper bound is more elective — typically only a theoretical clarification in our

effectivity discussions.

We now introduce a (readily evaluated) function Θmin,µ
bS

: D → R+, defined by

Θmin,µ
bS

(µ) = min
q∈{1,...,Qc}

Θq
c(µ)

Θq
c(µ)

. (4.10)

We can then demonstrate

Lemma 4A. For b parametrically coercive,

0 < Θmin,µ
bS

(µ) ≤ αNt(µ), ∀ µ ∈ D , (4.11)

for Θmin,µ
bS

defined in (4.10).

Proof. We note that (for c = bS),

c(w,w;µ) =
Qc∑
q=1

Θq
c(µ) cq(w,w)

=
Qc∑
q=1

Θq
c(µ)

Θq
c(µ)

Θq
c(µ) cq(w,w)

≥
(

min
q∈{1,...,Qc}

Θq
c(µ)

Θq
c(µ)

)
bS(w,w;µ)

= Θmin,µ
bS

(µ)‖w‖2X , ∀ w ∈ X, ∀ µ ∈ D , (4.12)

from our positivity conditions and choice of norm. Hence

α(µ) ≡ inf
w∈X

c(w,w;µ)
‖w‖2X

≥ Θmin,µ
bS

(µ) > 0, ∀ µ ∈ D , (4.13)

as desired. �
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We may thus choose

αLB(µ) ≡ Θmin,µ
bS

(µ) (4.14)

as our “minΘ” coercivity constant lower bound. We shall need to compute αLB = Θmin,µ
bS

(µ)

to evaluate the error bounds of the next section. Clearly, the Online complexity is O(Qb) —

typically negligible. (Recall that we generally assume that the Θq
b , 1 ≤ q ≤ Qb, are simple

algebraic expressions.)

We now further assume that b is symmetric. We may then define

Θmax,µ
bS

(µ) = max
q∈{1,...,Qb}

Θq
b(µ)

Θq
b(µ)

, (4.15)

and, for future reference

θµ(µ) ≡
Θmax,µ

bS
(µ)

Θmin,µ
bS

(µ)
. (4.16)

We can then prove

Lemma 4B. For b parametrically coercive and symmetric,

γNt(µ) ≤ Θmax,µ
bS

(µ) <∞, ∀ µ ∈ D , (4.17)

for Θmax,µ
b (µ) defined in (4.15).

Proof. We note that

b(w, v;µ) =
Qb∑
q=1

Θq
b(µ) aq(w, v)

=
Qb∑
q=1

Θq
b(µ)

Θq
b(µ)

Θq
b(µ) bq(w, v)

≤
(

max
q∈{1,...,Qb}

Θq
b(µ)

Θq
b(µ)

) Qb∑
q=1

Θq
b(µ) |bq(w, v)|

≤ Θmax,µ
bS

(µ)
Qb∑
q=1

(
Θq

b(µ) bq(w,w)
)1/2 (Θq

b(µ) bq(v, v)
)1/2

≤ Θmax,µ
bS

(µ) ‖w‖X ‖v‖X ∀ w, v ∈ X , (4.18)
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from our positivity conditions, application (twice) of the Cauchy-Schwarz inequality, and our

choice of norm. Hence

γ(µ) = sup
w∈X

sup
v∈X

b(w, v;µ)
‖w‖X ‖v‖X

≤ Θmax,µ
bS

(µ) <∞, ∀ µ ∈ D , (4.19)

as desired. �

We may thus choose

γUB(µ) ≡ Θmax,µ
bS

(µ) . (4.20)

(as our “maxΘ” continuity upper bound).

We emphasize that Lemma 4A and Lemma 4B are restricted to parametrically coercive

and parametrically coercive symmetric forms, respectively. Furthermore, the results presented

here are only directly applicable to the particular choice of inner product (w, v)X ≡ bS(w, v;µ),

though this restriction is readily relaxed.

4.3 A Posteriori Error Estimators

Note that in this section we re-place ourselves in the compliant (and hence a symmetric)

framework of Part I.

4.3.1 Prerequisites

The central equation in a posteriori theory is the error residual relationship. In particular,

it follows from the problem statements for uNt(µ), (2.51), and uN (µ), (3.22), that the error

(eNt(µ) ≡) e(µ) ≡ uNt(µ)− uN (µ) ∈ X (≡ XNt) satisfies

a(e(µ), v;µ) = rN (v;µ), ∀ v ∈ X . (4.21)

Here r(v;µ) ∈ X ′ (the dual space to X) is the residual,

r(v;µ) ≡ f(v;µ)− a(uN (µ), v;µ), ∀ v ∈ X . (4.22)
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(Indeed, (4.21) directly follows from (4.22), f(v;µ) = a(u(µ), v;µ), ∀ v ∈ X, bilinearity of a,

and the definition of e(µ).)

It shall prove convenient to introduce the Riesz representation of r(v;µ), ê(µ) ∈ X: from

Section 1.2.1 of Chapter 1, ê(µ) ∈ X satisfies

(ê(µ), v)X = r(v;µ), ∀ v ∈ X . (4.23)

We can thus also write the error residual equation as

a(e(µ), v;µ) = (ê(µ), v)X , ∀ v ∈ X . (4.24)

(We note that for our choice of inner product (2.28), ê(µ) = e(µ).)

It also follows from (1.8) (see Section 1.2.1) that

‖r( · ;µ)‖X′ ≡ sup
v∈X

r(v;µ)
‖v‖X

= ‖ê(µ)‖X ; (4.25)

the evaluation of the dual norm of the residual through the Riesz representation is central to

the Offline-Online procedures to be developed in Section 4.4 below.

It may appear that, since u(µ) and e(µ) satisfy very similar equations — the same operator

with different right-hand sides — it would be just as easy to find u(µ) as e(µ). The critical

(though trivial) point is that we can be much more “relaxed” in our treatment of the error: a

bound for the field u(µ) or output s(µ) good to 100% is patently useless; however, a bound

for the error e(µ) or s(µ)− sN (µ) good to 100% (or even 500%) is quite useful.

4.3.2 Energy and Output Error Bounds

We define error estimators for the energy norm, output, and “relative” output as

∆en
N (µ) ≡ ‖ê(µ)‖X

α
1/2
LB (µ)

, (4.26a)

∆s
N (µ) ≡

‖ê(µ)‖2X
αLB(µ)

,
(
= (∆en

N (µ))2
)
, (4.26b)
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and

∆s,rel
N (µ) ≡

‖ê(µ)‖2X
αLB(µ) sN (µ)

,

(
=

∆s
N (µ)

sN (µ)

)
, (4.26c)

respectively. Here ‖ê(µ)‖X is the dual norm of the residual, as defined in (4.25), and αLB(µ) ≡

Θmin,µ
aS (µ) of (4.10) (for b = a). (Note in Chapter 3 we denote ∆en

N (µ) by the more explicit

label ∆en
XN

(µ) to emphasize (in the greedy algorithm) the particular RB space.)

We next introduce the effectivities associated with these error estimators:

ηen
N (µ) ≡

∆en
N (µ)

|||e(µ)|||µ
, (4.27a)

ηs
N (µ) ≡

∆s
N (µ)

s(µ)− sN (µ)
, (4.27b)

and

ηs,rel
N (µ) ≡

∆s,rel
N (µ)

(s(µ)− sN (µ)) /s(µ)
. (4.27c)

Clearly, the effectivities are a measure of the quality of the proposed estimator: for rigor, we

shall insist upon effectivities ≥ 1; for sharpness, we desire effectivities as close to unity as

possible.

We can then prove (recall we remain here in the parametrically coercive compliant and

hence symmetric framework)

Proposition 4C. For any N = 1, . . . , Nmax, the effectivities (4.27a) and (4.27b) satisfy

1 ≤ ηen
N (µ) ≤

√
θµ(µ), ∀ µ ∈ D , (4.28a)

1 ≤ ηs
N (µ) ≤ θµ(µ), ∀ µ ∈ D , (4.28b)

respectively. Furthermore, for ∆s,rel
N (µ) ≤ 1, the effectivity (4.27c) satisfies

1 ≤ ηs,rel
N (µ) ≤ 2θµ(µ) ; (4.28c)

in fact, the left inquality in (4.28c) is valid for all µ ∈ D and for all N = 1, . . . , Nmax.
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Proof. It follows directly from (4.24) for v = e(µ) and the Cauchy-Schwarz inequality that

|||e(µ)|||2µ ≤ ‖ê(µ)‖X ‖e(µ)‖X . (4.29)

But from coercivity and Lemma 4A α
1/2
LB (µ) ‖e(µ)‖X ≤ a1/2(e(µ), e(µ);µ) ≡ |||e(µ)|||µ, and

hence from (4.29), (4.26a), and (4.27a) |||e(µ)|||µ ≤ ∆en
N (µ) or ηen

N (µ) ≥ 1. We now again

consider (4.24) — but now for v = ê(µ) — and the Cauchy-Schwarz inequality to obtain

‖ê(µ)‖2X ≤ |||ê(µ)|||µ |||e(µ)|||µ . (4.30)

But from continuity and Lemma 4B |||ê(µ)|||µ ≤ γ
1/2
UB (µ) ‖ê(µ)‖X , and hence ∆en

N (µ) ≡

α
−1/2
LB (µ)‖ê(µ)‖X ≤ α

−1/2
LB (µ)γ1/2

UB (µ) |||e(µ)|||µ, or ηen
N (µ) ≤

√
γUB(µ)/αLB(µ) . Thus, recall-

ing (4.16) and(4.20), (4.28a) is proven.

Next we know from Proposition 3A that s(µ) − sN (µ) = |||e(µ)|||2µ, and hence since

∆s
N (µ) = (∆en

N (µ))2

ηs
N (µ) ≡

∆s
N (µ)

s(µ)− sN (µ)
=

(∆en
N (µ))2

|||e(µ)|||2µ
= (ηen

N (µ))2 ; (4.31)

(4.28b) directly follows from (4.28a) and (4.31).

Finally, since ∆s,rel
N (µ) = ∆s

N (µ)/sN (µ),

ηs,rel
N (µ) = (s(µ)/sN (µ)) ηs

N (µ) . (4.32)

But we know from Proposition 3A that sN (µ) ≤ s(µ), which with (4.28b) proves the left

inequality in (4.28c) for all µ ∈ D and for all N = 1, . . . , Nmax. If we now further expand

s(µ)/sN (µ) = 1+((s(µ)− sN (µ))/sN (µ)) ≤ 1+∆s,rel
N (µ) (since s(µ)− sN (µ) ≤ ∆s

N (µ) from

(4.28b), and ∆s,rel
N (µ) = ∆s

N (µ)/sN (µ)) we recover from (4.32) and (4.28b) the right inequality

in (4.28c) under our (verifiable) hypothesis ∆s,rel
N (µ) ≤ 1. �

Note that αLB(µ) and γUB(µ) in Proposition 4C refer to Θmin,µ
aS (µ) and Θmax,µ

a (µ), respectively.

We conclude from Proposition 4C that the estimators ∆en
N (µ), ∆s

N (µ), and ∆s,rel
N (µ) are

in fact rigorous upper bounds for the RB error in the energy norm, the RB output error, and
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the RB relative output error, respectively. Furthermore, the effectivity of the energy-norm

and output error estimators is bounded from above independent of N . We shall return to a

more quantitative discussion of the estimator effectivities — and associated implications — in

subsequent sections.

4.3.3 X-Norm Error Bounds

Although our bounds on the output are arguably the most relevant, it will also prove useful

(e.g., in visualization contexts) to provide a certificate of fidelity for the full field variable u(µ)

in a norm which is independent of µ. Towards that end, we introduce the error estimators for

the X-norm and relative X-norm,

∆N (µ) ≡ ‖ê(µ)‖X

αLB(µ)
, (4.33a)

∆rel
N (µ) ≡ 2

‖ê(µ)‖X

αUB(µ) ‖uN (µ)‖X
, (4.33b)

respectively, and associated effectivities,

ηN (µ) ≡ ∆N (µ)
‖e(µ)‖X

, (4.34a)

and

ηrel
N (µ) ≡

∆rel
N (µ)

(‖e(µ)‖X/‖u(µ)‖X)
. (4.34b)

Again, our goal is effectivities ≥ 1 but very close to 1.

We can then prove

Proposition 4D. For any N = 1, . . . , Nmax, the effectivity (4.34a) satisfies

1 ≤ ηN (µ) ≤ θµ(µ), ∀ µ ∈ D . (4.35)

Furthermore, for ∆rel
N (µ) ≤ 1 the effectivity (4.34b) satisfies

1 ≤ ηrel
N (µ) ≤ 3θµ(µ) ; (4.36)

note in this case even the left inequality is conditional.
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Proof. The left inequality of (4.35) follows directly from (4.28a) of Proposition 4C, |||e(µ)|||2µ ≥

αLB(µ) ‖e(µ)‖2X , and the definition of ∆N (µ), (4.33a); the right inequality of (4.35) follows

directly from (4.28a) of Proposition 4C, |||e(µ)|||µ ≤ γ
1/2
UB (µ)‖e(µ)‖X , the definition of ∆N (µ)

in (4.33a) and (4.16).

To demonstrate (4.36), we first note that

ηrel
N (µ) = 2

‖u(µ)‖X

‖uN (µ)‖X
ηN (µ) = 2

(
1 +

‖u(µ)‖X − ‖uN (µ)‖X

‖uN (µ)‖X

)
ηN (µ) . (4.37)

We then observe that, since
∣∣‖u(µ)‖X −‖uN (µ)‖X

∣∣/‖uN (µ)‖ ≤ ‖u(µ)−uN (µ)‖X/‖uN (µ)‖ ≤

1
2∆rel

N (µ) (from (4.34a), (4.35), (4.33a), and (4.33b)) ≤ 1
2 (from our verifiable hypothesis),

1
2
≤ 1 +

‖u(µ)‖X − ‖uN (µ)‖X

‖uN (µ)‖X
≤ 3

2
. (4.38)

The result (4.36) then directly follows from (4.35), (4.37), and (4.38). �

(Note we can improve the effectivity upper bound of (4.36) (by different choices of prefactors)

but at the expense of a more restrictive hypothesis on ∆rel
N (µ).) Not surprisingly (given the

a priori result of Proposition 3A), we lose a factor of
√
θµ(µ) in the X-norm result (4.35),

relative to the energy norm result, (4.28a).

4.3.4 Measures and Implications of Sharpness

To begin, we introduce a test sample Ξtest ⊂ D of size ntest. Then for ( • =) “en”, “s,” “s, rel,”

or “rel,” we define the maximum effectivity and the average effectivity as

η•N,max ≡ max
µ∈Ξtest

η•N (µ) , (4.39)

and

η•N,ave ≡
1

ntest

∑
µ∈Ξtest

η•N (µ) , (4.40)

respectively. Clearly, η•N,max measures worst-case behavior, and η•N,ave measures “expected”

behavior. (We may also consider median behavior if we wish to further reduce the effect of

outliers.)
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It follows from Proposition 4C that (say, for the absolute output error)

ηs
N,max ≤ max

µ∈Ξtest

θµ(µ) ≤ max
µ∈D

θµ(µ) ≡ ηs
max,UB . (4.41)

This upper bound is independent of N , and hence the error bounds are well-defined as N

increases. Furthermore, and perhaps even more importantly, our upper bound is independent

of Nt, the dimension of the truth approximation: our error bounds are stable as Nt →∞; this

reflects the proper choice of norm consistent with the exact (continuous) formulation, H1(Ω).

However, ηs
max,UB can be quite large, as we shall see in our examples. (In some cases — P small

— we can improve the effectivity with “multi-point” inner products; we discuss this extension

in Section 4.5.)

We make several comments. First, in many cases, the upper bound is quite pessimistic due

to the various inequalities and associated “worst-case” alignment assumptions in the proofs

of Proposition 4C; we provide some numerical evidence shortly. Second, within the (often)

exponentially convergent RB context, effectivities of O(10) or even O(100) — anathema in the

FE context — are not too unacceptable: the increased N ′ required to satisfy εstol = ∆s
N (µ) will

be only modestly larger than the N ′′ required to satisfy εstol = s(µ)− sN ′′(µ). For example, if

we assume that s(µ) − sN (µ) = C1e
−C2N , N ′ − N ′′ ≤ (ln ηs

max,UB)/C2: the effect is additive

and logarithmic in the effectivity.

We also note that the max effectivity is not always the most relevant measure of perfor-

mance. In particular, in the greedy algorithm, it is certainly important that the large errors

are accurately predicted; however, the smaller errors play no role in the selection process.

More generally, it is typically the larger errors that will be of greatest concern in applications.

We thus introduce an alternative estimator performance measure, the “ratio of maxima”: the

ratio of the maximum predicted error to the maximum actual error. (In contrast, η•N,max is

the maximum of the ratio of the predicted error to the actual error.)

We give here the “ratio of maxima” definition for • = s (though the other norms admit
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analogous measures). To wit, we define

ρs
err,N =

max
µ∈Ξtest

∆s
N (µ)

max
µ∈Ξtest

(s(µ)− sN (µ))
. (4.42)

As already motivated, this measure is particularly significant within the Greedyout algorithm

of Section 3.4.4: if we take Ξtest ≡ Ξtrain, then we directly obtain (for absolute error —

ωN (µ) = 1)

εout,∗
N

εout,∗
N

=
√
ρs
err,N . (4.43)

Hence, as anticipated, if ρs
err,N is reasonably close to unity — and even if ηs

N,max is very large

— our error bound is a good surrogate for the true error in the greedy selection process.

(Of course, ρs
err,N ∼ O(1) does not necessarily imply that ∆s

N and s(µ) − sN (µ) attain these

maxima at the same point in D.)

4.3.5 Numerical Results: ThermalBlock

We consider here the ThermalBlock problem, Ex1 of Section 2.2.1.

P = 1 Parameter

We first investigate the case B1 = 2, B2 = 1, and hence P = 1, analyzed from an a priori

perspective in Section 3.5.2. As before, 1/µmin
1 = µmax

1 =
√
µr = 10 and hence µmax

1 /µmin
1 =

µr = 100. For our inner product, we choose µ1 = 1: it is precisely for our error estimators

that the choice of µ is important; as we shall see (in Section 4.5), µ = 1 — the “logarithmic

center” of D — is in fact optimal. For the truth discretization, we take Nt = 256: we confirm,

per the theory, that the effectivities are insensitive to Nt for sufficiently large Nt.

Our RB approximation is generated by a Greedyout approach: we take ωN (µ) = ω(µ) = 1

(in this section for convenience we focus on absolute output errors since the effectivity results

are unconditional and hence more succinctly described); and we choose Ξtrain = Gln
[MC;104] —
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ntrain = 104 is certainly adequate for a single parameter. Hence our RB approximation is given

by Greedyout(N0 = 1, µ1 out,∗
1 = 1, Ξtrain, εtol,min, ωN (µ1) = 1).

For this case, it is simple to derive (recall µ1 = 1) that

θµ(µ1) = Max
(

1
µ1
, µ1

)
; (4.44)

clearly,

θµ(µ1) ≤
√
µr, ∀ µ1 ∈ D . (4.45)

It can then be shown that (for ntest →∞) for N = 1, . . . , Nmax

ηs
N,ave(µ1) ≤ ηs

ave,UB ≡
2(
√
µr − 1)
lnµr

, ∀ µ1 ∈ D , (4.46)

and that furthermore (directly from (4.41) and (4.45))

ηs
N,max(µ1) ≤ ηs

max,UB ≡
√
µr, ∀ µ1 ∈ D . (4.47)

As expected, the bounds are independent of N (and Nt), and ηs
ave,UB is less than ηs

max,UB. Note

also the relatively weak dependence of both ηs
ave,UB and ηs

max,UB on the extent of the parameter

domain, µr.

We present in Table 4.1 ∆s
N,max = maxµ∈Ξtest ∆s

N (µ), ηs
N,ave, η

s
N,max, and ρs

err,N as a func-

tion of N ; for these results we choose Ξtest = Gln
[MC;104]. We observe that ηs

N,ave ≤ ηs
ave,UB =

7.81, and that furthermore our theoretical upper bound is not overly pessimistic. Similarly, we

obtain ηs
N,max ≤ ηs

max,UB = 10, and again note that our theoretical bound is (unfortunately)

quite sharp. Finally, we note that ρs
err,N ≤ ηs

N,max, as must be the case from the respective

definitions (4.41), (4.42) of these two metrics; ρs
err,N is in fact quite close to unity for all N .

P = 8 Parameters

We now investigate the case B1 = 3, B2 = 3, and hence P = 8, analyzed from an (empirical)

a priori perspective in Section 3.5.3. As before, 1/µmin
i = µmax

i =
√
µr (= 10), 1 ≤ i ≤ P ,

and hence µmax
i /µmin

i = µr (= 100), 1 ≤ i ≤ P ; we take µi = 1, 1 ≤ i ≤ P , the “optimality”
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N ∆s
N,max ηs

N,ave ηs
N,max ρs

err,N

1 7.2084e+00 2.3417 3.3305 3.2508
2 4.5371e−01 2.4858 3.6850 1.5630
3 6.9652e−04 6.2195 9.8551 3.4143
4 1.3744e−07 3.3219 7.2632 2.1666
5 3.1140e−11 6.0789 7.0453 2.1823

Table 4.1: Ex1, ThermalBlock for B1 = 2, B2 = 1, (P = 1): output error bounds and
effectivities.

of which shall be analyzed in Section 4.5. For our truth approximation we take Nt = 661; we

again confirm that the effectivities are insensitive to Nt.

Our RB approximation is generated by a Greedyout approach for ωN (µ) = ω(µ) = 1

(absolute output error) and Ξtrain = Gln
[MC;106]. (Note ntrain = 106 is really too small to

completely characterize the error over D; however we can and will of course always confirm

the accuracy (for any given µ) Online via ∆s
N (µ).) Hence our RB approximation is given by

Greedyout(N0 = 1, µ1 out,∗ = (1, . . . , 1), Ξtrain, εtol,min, ωN (µ) = 1).

For this case, we can derive (recall µ = (1, . . . , 1)) that

θµ(µ) = Max
[
1, 1

µ1
, 1

µ2
, . . . , 1

µP

]
×Max

[
1, µ1, . . . , µP

]
; (4.48)

hence,

θµ(µ) ≤ µr, ∀ µ ∈ D . (4.49)

It is no longer simple to derive an upper bound for ηs
N,ave. However, it is clear that for

N = 1, . . . , Nmax,

ηs
max(µ) ≤ ηs

max,UB ≡ µr, ∀ µ ∈ D . (4.50)

Note the stronger dependence on µr in the P > 1 case.

We present in Table 4.2 ∆s
N,max = maxµ∈Ξtest ∆s

N (µ), ηs
N,ave, η

s
N,max, and ρs

err,N as a

function of N ; for these results we choose for our test sample Ξtest = Gln
[MC;106] — again too

small, but adequate for our purposes here. We observe that ηs
N,max ≤ µr = 100; unfortunately,

the theoretical bound is reasonably tight, and hence ηs
N,max is quite large. However, ρs

err,N , the
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N ∆s
N,max ηs

N,ave ηs
N,max ρs

err,N

5 8.2199e+00 5.6395 28.5220 7.5180
10 2.2036e+00 6.7067 31.2850 4.8877
15 8.2560e−01 7.4207 32.9266 11.5448
20 2.0020e−01 7.5587 37.3024 11.8552
25 7.1300e−02 7.9920 36.6976 18.7523
30 1.5100e−02 12.1138 62.2537 18.3489
35 5.2000e−03 16.4900 84.2649 32.1640
40 1.2000e−03 14.4598 73.1151 25.9760
45 3.0000e−04 10.0536 56.6545 14.9053
50 1.0000e−04 10.2566 57.5113 22.4168
55 3.0000e−05 9.3783 60.7000 13.8695
60 1.0000e−05 8.0103 43.3108 14.7932
65 6.0000e−06 7.5970 53.7690 15.2386
70 2.0000e−06 8.4598 36.5435 10.4904
75 6.0000e−07 7.6310 31.7752 13.1075
80 8.0000e−08 7.3846 37.4073 12.6413
85 1.0000e−08 7.5917 38.8586 12.8422
90 5.0000e−09 8.6520 57.9131 9.7080
95 1.0000e−09 8.8307 62.0965 15.4785

Table 4.2: Ex1, ThermalBlock for B1 = 3, B2 = 3, (P = 8): output error bounds and
effectivities.

arguably more relevant metric, is considerably smaller than ηs
N,max: as expected (and as can

be confirmed by a scatter plot of ηs
N (µ) vs. s(µ)−sN (µ) for µ ∈ Ξtest), the largest effectivities

are associated with the smaller errors. Furthermore, the effect of overestimation is reasonably

small given the rapid convergence of the RB approximation. (For example, the N ′ required

to achieve ∆s
N ′,max = 0.01 is N ′ = 33; the N ′′ required to achieve maxµ∈Ξtest s(µ) − sN (µ)

(= ∆s
N ′′,max/ρ

s
err,N ) = 0.01 is only modestly smaller, N ′′ = 23.)

In Section 4.5 we shall consider an improvement upon the results presented here. At the

same time, we can better understand the “best” choice for µ to minimize the effectivity and

hence sharpen the bounds. However, we must first address the issue of Offline-Online effort.
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4.4 Offline-Online Computational Procedures

The error bounds of the previous section are of no utility without an accompanying Offline-

Online computational approach.

4.4.1 Ingredients

Dual Norm of Residual

The computationally crucial component of all the error bounds of the previous section is

‖ê(µ)‖X , the dual norm of the residual. To develop an Offline-Online procedure, we first

expand the residual (4.22) as

r(v;µ) =
Qf∑
q=1

Θq
f (µ) f q(v)−

Qa∑
q=1

N∑
n=1

Θq
a(µ) uN n(µ) aq(ζn, v), ∀ v ∈ X ; (4.51)

(4.51) follows directly from our affine assumption (4.5) and our RB representation (3.28). It

is clear r(v;µ) can be expressed as a sum of

QN ≡ Qf +QaN (4.52)

products of parameter-dependent functions and parameter-independent linear functionals.

To render this identification more apparent, we define EN : D → RQN as

EN (µ) =
(

Θ1
f (µ), . . . ,ΘQf

f (µ) ,

Θ1
a(µ) uN 1(µ), . . . ,ΘQa

a (µ) uN 1(µ) ,

Θ1
a(µ) uN 2(µ), . . . ,ΘQa

a (µ) uN 2(µ) ,

...

Θ1
a(µ) uN N (µ), . . . ,ΘQa

a (µ) uN N (µ)
)T

(4.53)
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and hN ∈ (X ′)QN as

hN (v) =
(
f1(v), . . . , fQf (v) ,

−a1(ζ1, v), . . . ,−aQa(ζ1, v) ,

−a1(ζ2, v), . . . ,−aQa(ζ2, v) ,

...

−a1(ζN , v), . . . ,−aQa(ζN , v)
)T

.

(4.54)

We may then write, from (4.51), (4.53), and (4.54),

r(v;µ) =
QN∑
n=1

EN n(µ) hN n(v), ∀ v ∈ X , (4.55)

where EN = (EN 1, . . . , EN QN
)T and hN = (hN 1, . . . , hN QN

)T.

It follows directly from (4.55) and (4.23) that ê(µ) ∈ X satisfies

(ê(µ), v)X =
QN∑
n=1

EN n(µ) hN n(v), ∀ v ∈ X , (4.56)

and hence that

ê(µ) =
QN∑
n=1

EN n(µ) ĝN n , (4.57)

where

(ĝN n, v)X = hN n(v), ∀ v ∈ X, 1 ≤ n ≤ QN . (4.58)

The ĝN n, 1 ≤ n ≤ QN , hence satisfy parameter-independent scalar (or vector) Poisson-like (or

elasticity-like) problems.

We can now readily construct ‖ê(µ)‖2X from (4.56) as

‖ê(µ)‖2X =
QN∑
n=1

QN∑
m=1

EN n(µ) EN m(µ) (ĝN n, ĝN m)X . (4.59)

We thus introduce GN ∈ RQN×QN as

GN n m = (ĝN n, ĝN m) , 1 ≤ n,m ≤ QN , (4.60)
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in terms of which we can express the dual norm of the residual as

‖ê(µ)‖X =

(
QN∑
n=1

QN∑
m=1

EN n(µ) EN m(µ) GN n m

) 1
2

(4.61)

(or, in matrix form, as ‖ê(µ)‖X = (ET
N (µ) GN EN (µ))1/2).

Before proceeding, we provide a more explicit representation of GN . To begin we note that,

for any v =
∑Nt

i=1 vi ϕi ∈ X,

hN (v) = HT
N v , (4.62)

where HN ∈ RNt×N is given by

HN i n = hN n(ϕi), 1 ≤ i ≤ Nt, 1 ≤ n ≤ N . (4.63)

(Recall that {ϕi}1≤i≤Nt is the basis set for our FE truth approximation space.) It is then

readily derived from (4.58), (4.63), and (2.45) that

GN = HT
N X−1 HN , 1 ≤ n,m ≤ QN ; (4.64)

recall X = XNt is our truth “inner product” matrix.

The Offline-Online decomposition is now clear. In the Offline stage we form the parameter-

independent quantity GN via (4.64). Then, in the Online stage, given any “new” value of µ

— and Θq
f (µ), 1 ≤ q ≤ Qf , Θq

a(µ), 1 ≤ q ≤ Qa, uN n(µ), 1 ≤ n ≤ N , and hence EN (µ)

— we simply perform the sum (4.61): the Online operation count is Q2
N = (Qf + QaN)2

and clearly independent of Nt. We provide more details and analysis of the Offline-Online

procedure below.

Stability Factors and Normalizations

In addition to ‖ê(µ)‖X , our error bounds require computation of αLB(µ) of Section 4.2; typ-

ically no Offline effort, and only O(Qa) operations Online — and hence negligible. (Note,

however, that for problems that are not parametrically coercive, the stability constant lower
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bound is far from trivial computationally: we address this in Part II (for general coercive

operators) and in Part III (for non-coercive operators).)

We must also compute, for the relative measures, the normalizations sN (µ) and ‖uN (µ)‖X .

Since sN (µ) is already provided by the Online RB procedure (of Section 3.3), only ‖uN (µ)‖X

is “new.” To compute ‖uN (µ)‖X we need only note that

‖uN (µ)‖X = a
1
2 (uN (µ), uN (µ);µ)

=
(
uT

N (µ)AN (µ) uN (µ)
) 1

2

=
(
uT

N (µ) XN uN (µ)
) 1

2 ,

(4.65)

where XN ∈ RN×N is the RB X-inner product matrix

XN ≡ ZN XNt ZN . (4.66)

The Offline-Online decomposition is apparent. In the Offline stage we form the parameter-

independent RB inner-product matrix, XN ∈ RN×N . Then, in the Online stage, given any

“new” value µ, we need only perform the inner product (4.65): the Online operation count is

N2, and clearly independent of Nt.

4.4.2 Operation Count and Storage

We can now succinctly describe the Offline and Online stage and provide associated operation

counts and storage. In the Offline stage, we must first form the HNmax
∈ RNt×QNmax —

(essentially) QaNmax ANt-matvecs and QNmaxNt “temporary” (more precisely, Offline-only)

storage. We next find X−1 HNmax
— XNt-solve(QNmax) operations and QNmaxNt “temporary”

(more precisely, Offline-only) storage. Finally, we form GNmax
= HT

Nmax
(X−1 HNmax

) — Q2
Nmax

XN -inprods.

It is clear that, for the Offline stage to be efficient (as possible), we must exploit two

properties: first, because of the large number (Q2
Nmax

) of matrix vector products, we must take

advantage of the sparsity in the truth FE stiffness matrix (or other artifices permitting rapid
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“action”); second, because of the large number (QNmax) of “X” solves, we must take advantage

of the parameter-independent nature of X — for example, in the direct context, we effect in a

pre-processing step a minimum-fill-in re-ordering [124] followed by a Cholesky decomposition.

The link between the Offline and Online stages is the “permanent” storage of quantities

computed in the Offline stage and then invoked in the Online stage. The item to be stored,

in essense the Online storage, is GNmax
∈ RQNmax×QNmax — (Qf +QaNmax)2 words. We again

emphasize the importance of our hierarchical RB approximation: for any given N (given our

judicious ordering (4.53), (4.54)), GN is the (QN ×QN ) principal submatrix of GNmax
; we thus

need only compute and store GNmax
in the Offline stage, and then extract the requisite GN in

the Online stage.

In the Online stage, given any “new” µ (and the RB solution uN (µ)) we need only evaluate

the inner product (4.61) — Q2
N = (Qf + QaN)2 operations. The crucial point, as always, is

that the Online operation count and storage — not only for uN (µ) and sN (µ) but now also for

the error bound ∆s
N (µ) (from ‖ê(µ)‖X) — is independent of Nt: we can thus provide real-time

and reliable prediction. As a corollary of our Nt-independent marginal cost we note that the

average cost to evaluate ∆s
N (µ) over a sample Ξtrain of size ntrain is independent of Nt as

ntrain →∞: this provides the search efficiency required by the greedy algorithm.

If we compare the Online cost to evaluate sN (µ) — essentially N3 + QaN
2 — to the

Online cost to evaluate ∆s
N (µ) — essentially Q2

aN
2 — we conclude that for N small ∆s

N (µ)

will dominate (due to the Q2
a scaling) whereas for N large sN (µ) will dominate (due to the N3

scaling). In actual practice, for reasonably high accuracy, the costs of sN (µ) and ∆N (µ) are

typically commensurate — at least for Qa not too large.

Finally, we close with a brief note on round-off effects. We note that each term in the

sum (4.61) is in fact O(1), and thus — given that ‖ê(µ)‖X is small (for larger N) — there is

significant cancellation. We conclude that for ‖ê(µ)‖2X ∼ machine precision the dual norm of
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the residual will no longer be reliable. Fortunately, for this complicant case, ∆s
N (µ) ∼ ‖ê(µ)‖2X ,

and hence the round-off errors generated by the superposition/summation will only be observed

for academically (i.e., ridiculously) small errors. However, this will be somewhat less the case

for the non-compliant problems treated in Part II and Part III.

4.4.3 “Modalities”

There are two fashions in which we exploit our error bounds.

The first fashion is in the Offline stage, in the Greedy algorithms, as discussed in Sec-

tions 3.4.3 and 3.4.4. In this case we take advantage of the Nt-independent average cost

µ → ∆s
N (µ) in the limit of many queries. We have already provided the greedy operation

count in Section 3.4.3, (3.67). From Section 4.4.2 we now understand the contributions from

the error bound: the second line of (3.67) — due to formation of H and G; and the O(Q2
aN

3
max)

(in fact, O(Q2
NN

3
max)) term — due to evaluation of ∆s

N over Ξtrain for 1 ≤ N ≤ Nmax.

The second fashion is in the Online stage. In particular, given any desired output accuracy

εdes ≥ εtol,min and any particular new value of µ, we would like to obtain sN (µ) such that

s(µ) − sN (µ) ≤ εdes. (We consider the absolute error; a similar procedure applies to relative

error.) Ideally, we would search for the smaller N , N∗(µ, εdes), such that ∆s
N (µ) ≤ εdes. In

practice, to ensure that the search costs do not predominate, we settle for the following sup-

optimal “coarse” result. We first set N0 to be the smallest N such that ε∗N ≤ εdes for all

N ′ ≥ N (a simple search of Nmax entries), and compute ∆s
N0(µ). If ∆s

N0(µ) ≤ εdes, we choose

N = N0, evaluate sN0(µ) and terminate; if ∆s
N0(µ) > εdes, we set N ′ = N0 + ∆N and repeat

the “check and increment” process. (Typically, ∆N is chosen propositional to Nmax −N0.) It

is possible that s(µ)− sNmax(µ) ≥ εdes ≥ εtol,min (since Ξtrain is not exhaustive); at that point

we can either re-assess our requirements, or return to the Offline stage).
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4.5 Extension: Multiple Inner Products

We briefly illustrate an effectivity improvement relevant to the small-P case. (The computa-

tional and storage cost for higher P is prohibitive.) The improvement is effected through the

introduction of multiple inner products [150]: the focus is on the output effectivity; for the

output bound, the inner product is a means to an end — and hence can be optimized. We

shall also better understand the role of µ.

The idea is very simple (we consider here only the absolute output error). We first introduce

a sample VK = {µ1 ∈ D, . . . ,µK ∈ D} of K points in D; to each point in VK we then associate

an inner product,

(w, v)X,k = a(w, v;µk), ∀ w, v ∈ X, 1 ≤ k ≤ K . (4.67)

Our earlier formulation of course corresponds to K = 1, µ = µ1.

It is then possible, following the development of the preceding sections, to create K (pos-

sible) error bounds for s(µ)− sN (µ),

∆s
N,k(µ) ≡

‖êk(µ)‖2X,k

αLB,k(µ)
1 ≤ k ≤ K , (4.68)

where êk(µ) ∈ X, 1 ≤ k ≤ K, satisfies

(êk(µ), v)X,k = r(v;µ), ∀ v ∈ X, (4.69)

for r(v;µ) defined in (4.22), and

αLB,k(µ) ≡ Θmin,µk

aS
(µ) , (4.70)

for Θmin,µ
aS defined in (4.10).

We then introduce the effectivities

ηs
N,k(µ) ≡

∆s
N,k(µ)

s(µ)− sN (µ)
, 1 ≤ k ≤ K . (4.71)
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It directly follows from Proposition 4C that, for 1 ≤ N ≤ Nmax,

1 ≤ ηs
N,k(µ) ≤ θµk

(µ), ∀ µ ∈ D , (4.72)

for θµ(µ) defined in (4.15).

We now define our new error bound as

∆s
N (µ) = ∆s

N,k∗(µ) , (4.73)

where k∗: D → {1, . . . ,K} is some indicator function that, given a µ, finds the best candidate

error bound amongst the K possibilities. There are several possibilities for the indicator

strategy k∗.

A first option (O1) is some “explicit rule”: some simple partition of D into K subdomains

Dk such that k∗(µ ∈ Dk) = k; for example,

k∗(µ) = arg min
k∈{1,...,K}

|µ− µk| , (4.74)

where | · | denotes the Euclidean norm in RP . A second option (O2), arguably the best, is to

choose

k∗(µ) = arg min
k∈{1,...,K}

θµk
(µ) ; (4.75)

in essence, we select the error bound which minimizes the effectivity upper bound (4.28b). A

third option (O3), best in sharpness but more Online-expensive, is to choose

k∗(µ) = arg min
k∈{1,...,K}

∆s
N,k(µ) ; (4.76)

in essence, we first compute all K error bounds and then select the error bound which is

smallest (and hence sharpest).

The downside to this approach is, of course, cost: the Offline operation count and the

Online storage scale linearly with K. The method is thus only really viable for rather modest

K and hence rather modest P . The good news is that, for modest K, for O1 and O2 the

Online operation count is insensitive to K: the evaluation of ‖êk∗(µ)‖X,k∗(µ) dominates the
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simple optimization (4.74) or (4.75). (For O3 the Online operation count scales linearly with

K, and in this sense O3 is less desirable than O2; O2 arguably offers the best balance between

sharpness and cost.)

As a simple example we consider the ThermalBlock problem, Ex1, for B1 = 2, B2 = 1,

and hence P = 1. We consider 1/µmin
1 =

√
µr, µmax

1 =
√
µr such that µmax

1 /µmin
1 = µr. We

recall that, for a single inner product “at” µ1 = 1, ηs
N,max = µ

1/2
r . We now consider a grid

Gln
[µmin

1 ,µmax
1 ;K+1]

= [z1, . . . , zK+1]; we then set

lnµk
1 =

1
2

(ln zk + ln zk+1) , 1 ≤ k ≤ K . (4.77)

It is a simple matter to derive

θµk
(µ1) = Max

(
µk

1

µ1
,
µ1

µk
1

)
, (4.78)

and to further conclude (consider µ1 = zk+1, say)

min
k∈{1,...,K}

max
µ1∈D

θµk
(µ1) = (

√
µr)

1
K . (4.79)

It thus follows that, with O2, we obtain

ηs
N,max ≤ (

√
µr)

1
K

(
= e

1
2K

ln µr

)
. (4.80)

Note this reduces to our earlier results for P = 1 from Section 4.3.5:

ηs
N,max ≤

√
µr for Gln

[µmin
1 ,µmax

1 ;2]
= [lnµmin

1 , lnµmin
1 ] ,

(and hence µ1
1 = 1 for µmin

1 = 1/
√
µr, µmax

1 =
√
µr).

We thus observe that we can (say) control ηs
N,max ≤ 10 if we choose K = [lnµr/2 ln 10]+

(recall [ ]+ rounds up to the nearest integer). Hence even for µr = 106 — µmin
1 = 10−3

to µmax
1 = 103 — we require only K = 6 inner products: the crucial point is that K (at

fixed effectivity) scales logarithmically with µr. This result is quite general in fact for both

parametrically coercive and coercive problems given the typical parametric coefficient depen-

dence encountered. Unfortunately, to obtain a similar result for P > 1 we require roughly
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[lnµr/ ln 10]P+ inner products, and hence — as advertised earlier — the approach is limited

to rather small P , or at least to problems with significant ranges in only a few parameter

directions.

We make one final point on optimality for the P = 1 case. It is clear from the relation

(4.78), which is valid for any set of point VK ≡ {µ1, . . . ,µK}, that the set of points (4.77)

in fact minimizes maxµ1∈D mink∈{1,...,K} θ
µk

(µ1). Thus, for K = 1, we see that µ1 = 1 (for

µmax
1 = 1/µmin

1 =
√
µr) is indeed optimal “in the O2 sense.”
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Chapter 5

Software Guide

5.1 Introduction

5.1.1 Overview

We introduce in this chapter the MIT-copyright software that we provide. (For description

of another RB-related software system, see [121].) This software is intended to serve several

functions: first, to facilitate the implementation of the methods described in Chapters 3 and

4 — primarily for “users” of the methodology; and second, to facilitate understanding and

extension of the methods described in Chapters 3 and 4 — primarily for “developers” of the

methodology. The former need not proceed further than the required MATLAB R© scripts,

command-line functions calls, and associated INs and OUTs. The latter can choose to delve

into — and adapt and modify to their ends — our MATLAB R© .m codes: in all cases, we

provide source code. (Note to distinguish between our problem inputs µ and outputs s(µ)

and the necessary MATLAB R© .m code arguments and returned quantities we shall refer to the

MATLAB variables as “INs” and “OUTs”, respectively.)

The software we discuss in this chapter is limited to the abstraction of Part I (i.e., Chap-

ter 2). We shall provide software in subsequent Parts of the book to treat the increasingly

general abstractions that we consider. The software for all Parts is very similar as regards both

general structure and (user-supplied) INs and OUTs; hence, once the reader has understood
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the software for (the particularly simple abstraction of) Part I, the reader will have largely

mastered — at least from a pragmatic perspective — the software for all the Parts.

The requirements upon the user are fivefold: (i) any reasonable laptop or desktop —

obviously performance will depend on CPU speed and memory/cache size; (ii) MATLAB R©

Version 6.5 or greater installed (no special toolkits are needed for the software of Part I,

although the PDE Toolbox R© can certainly be useful); (iii) a thorough understanding of the

abstraction of Chapter 2 — for reduction/expression of the user’s problem of interest to the

requisite form; (iv) a good high-level understanding of the numerical methods of Chapters 3

and 4; and (v) access to and sufficient familiarity with FE software (and underlying theory) —

for development/specification of the “truth” approximation for the user’s problem of interest in

the necessary “affine” representation (Section 2.1.2). As regards (iii), our software will verify

compliance and parametric coercivity; however, it is in the interest of the user to confirm these

properties before investing further effort. As regards (iv), it is sufficient (e.g., for “users”) to

understand the significance of the numerical quantities (e.g., sN , N , εout,∗
N , ∆s

N (µ)): detailed

knowledge of the theory and algorithms is not required; we provide pointers back to the

necessary definitions as reminders.

As regards (v), the INs required by our RB software can be generated by any FE code

the user may prefer; often, access to the FE source code may be necessary in order to gen-

erate the required affine decomposition, (2.41)–(2.43). We note that FE packages oriented

towards, or based upon, domain decomposition for definition of problem geometry and coef-

ficients are particularly well suited to the reduced basis approach. One example of such a

package is the MATLAB PDE Toolbox R© (http://www.mathworks.com): in this case, it is

possible to create the finite element inputs to the RB software without modification of, or

even access to, the source code — the available export features suffice. Another example is

COMSOL MultiphysicsTM (http://www.comsol.com), which provides scripts for exporting

data and structures in MATLAB R©.
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In Section 5.1.2 we provide instructions for download and installation of the software. In

Section 5.2 we briefly recall our ThermalBlock example for the particular case of B1 = 3 and

B2 = 1: this problem will serve in Chapter 5 as the “Example” by which we describe the soft-

ware process. In Section 5.2 we also illustrate the simple “interface” between the FE MATLAB

PDE Toolbox R© and our own RB software. In Section 5.3 we summarize the three essential

Steps for (personal fullfillment and) the development and exercise of RB approximations and a

posteriori error estimators for a new problem: Step1, Problem Definition; Step2, Offline Stage;

and Step3, Online Stage. In Section 5.4 we provide templates for the data entry process for the

development of a new problem: in Section 5.4.1 we consider creation of a new problem from

“scratch”; in Section 5.4.2 we consider “offline” adaptivity through Greedy restarts. Finally,

in Section 5.5 we provide a small reference manual: the contents of the data structures, and

the INs and OUTs associated with each of the essential software routines.

User actions are highlighted in blue text for easy identification.

5.1.2 Software Installation

The user should first create a directory named rbMIT System with a subdirectory named

rbMIT Library and a subdirectory named rbMIT Aux; see Figure 5.1 for a schematic. (In

what follows, we shall refer to directory and folder interchangeably; we shall denote the direc-

tory/folder hierarchy in the usual fashion — for example \rbMIT System\rbMIT Library.)

The user should then download from our website location

http://augustine.mit.edu/methodology/software/rbMIT System

the directories rbMIT Library PartI V1 and rbMIT Aux PartI V1 to a temporary location

on the user’s computer; the user should then move the contents of the directory — not the

directory — rbMIT Library PartI V1 (respectively, rbMIT Aux PartI V1) to \rbMIT System

\rbMIT Library (respectively, \rbMIT System\rbMIT Aux).
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rbMIT_System

rbMIT_Library rbMIT_AuxTBch5Ex LE

Figure 5.1: Directory structure.

A similar procedure will be followed for (i) any updates with corrections/enhancements,

rbMIT Library PartI Vy and rbMIT Aux PartI Vy, and (ii) all software additions for the ca-

pabilities of the later Parts, rbMIT Library Partx Vy and rbMIT Aux Partx Vy: in all cases,

the user should overwrite any older files with the new files in order for rbMIT Library and

rbMIT Aux to remain “current” and “supported”; hence, all user-customized software should

be stored in other directories. We will make all attempts to ensure backward-compatibility of

all user-specified data and functions.

Software License, Terms and Conditions

By virtue of downloading and installing the Software, the user accepts the following terms and

conditions:

Software License

rbMIT System Software Copyright MIT 2006–07

Henceforth, Software shall refer to the rbMIT System software package: the contents of the

rbMIT Library, rbMIT Aux folders, and rbMIT WorkedProblems.

This License governs use of all accompanying Software, and your download and/or use of

the Software constitutes acceptance of this License.

You may use this Software for any non-commercial purpose, subject to the restrictions in

this License. Some purposes which can be non-commercial are teaching and academic research.
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You may not use or distribute this Software or any derivative works in any form for com-

mercial purposes. Examples of commercial purposes would be licensing, leasing, or selling the

Software, or distributing the Software for use with commercial products.

You may modify this Software and distribute the modified Software for non-commercial

purposes; however, you may not grant rights to the Software or derivative works that are

broader than those provided by this License. For example, you may not distribute modifications

of the Software under terms that would permit commercial use.

In return, we require that you agree:

• not to remove any copyright or other notices from the Software;

• that if you distribute the Software in source or object form, you will include a verbatim

copy of this License;

• that if you distribute derivative works of the Software in source code form you do so only

under a license that includes all of the provisions of this License, and if you distribute

derivative works of the Software solely in object form you do so only under a license that

complies with this License;

• that if you have modified the Software or created derivative works, and distribute such

modifications or derivative works, you will cause the modified files to carry prominent

notices so that recipients know that they are not receiving the original Software;

• that the Software comes “as is”, with no warranties: this means no expressed, implied, or

statutory warranty, including without limitation warranties of merchantability or fitness

for a particular purpose or any warranty of title or non-infringement; you must pass this

disclaimer on whenever you distribute the Software or derivative works;

• that neither MIT nor the authors will be liable for any damages related to the Software

or this License, including direct, indirect, special, consequential, or incidental damages;
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you must pass this limitation of liability on whenever you distribute the Software or

derivative works;

• that your rights under the License end automatically if you breach the License in any

way;

• that MIT reserves all rights not expressly granted to you in this License.

(Note: The wording of this license agreement is derived from a Microsoft Shared Source license

agreement.)

5.2 An Example

5.2.1 Statement

We consider the ThermalBlock problem (Ex1) introduced in Section 2.2.1 for the particular

case B1 = 3, B2 = 1. The case B1 = 3, B2 = 1 is ideal as the example (henceforth “Example”)

for Chapter 5 by which to illustrate the data entry requirements and processes: sufficiently

simple to easily present all the necessary INs and OUTs; yet sufficiently non-degenerate to

exercise most all of the important capabilities. (As regards the latter, we choose B1 = 3 (and

hence P = 2 parameters) rather than B1 = 2 of Section 3.5.2 (and hence P = 1 parameters)

in order to illustrate the multi -parameter case.)

Figure 5.2 depicts the geometry. We recall that for B1 = 3, B2 = 1, our P + 1 = B1B2 = 3

subdomain blocks are given by Ω1 = ]0, 1
3 [× ]0, 1[ (with conductivity µ1), Ω2 = ]13 ,

2
3 [× ]0, 1[

(with conductivity µ2), and Ω3 =]23 , 1[× ]0, 1[ (with conductivity unity) such that Ω = [0, 1]2 =

Ω1 ∪Ω2 ∪Ω3. The exact space is given by Xe ≡ {v ∈ H1(Ω) | v|ΓD = 0} where ΓD ≡ Γtop. We

further recall that µ = (µ1, µ2) ∈ D = Dbox ≡ [µmin
1 , µmax

1 ] × [µmin
2 , µmax

2 ] ⊂ RP=2; we shall

choose µmin
1 = µmin

2 = µmin = 0.1 and µmax
1 = µmax

2 = µmax = 10.
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0 1
0

1

Figure 5.2: Thermal Block for B1 = 3, B2 = 1.

Our parametric bilinear and linear forms a and f are then given by

a(w, v;µ) ≡ µ1

∫
Ω1

∇w · ∇v + µ2

∫
Ω2

∇w · ∇v +
∫

Ω3

∇w · ∇v, ∀ w, v ∈ Xe , (5.1)

f(v) =
∫

Γbase

v, ∀ v ∈ Xe , (5.2)

where Γbase is the bottom boundary of Ω. We thus identify the affine representation (2.5),

(2.6) for Qa = 3 with Θ1
a = µ1, a1(w, v) =

∫
Ω1 ∇w · ∇v, Θ2

a = µ2, a2(w, v) =
∫
Ω2 ∇w · ∇v,

Θ3
a = 1, a3(w, v) =

∫
Ω3 ∇w · ∇v, and Qf = 1 with Θ1

f = 1, f1(v) =
∫
Γbase

v. For our inner

product (2.17) we shall choose µ = (1, 1), and hence

(w, v)Xe ≡
∫

Ω
∇w · ∇v, ∀ w, v ∈ Xe ; (5.3)

recall from Chapter 4 that our choice of inner product will not affect the accuracy of our RB

output prediction but will affect the effectivity of our RB output error bound.

We shall take for our truth approximation the linear FE approximation over the triangu-

lation of Figure 5.3: XNt is of dimension Nt = 689. (In fact, for this intentionally very simple

model problem, Nt even for high FE accuracy will be quite small. The example is intended

to illustrate the software, not motivate or justify the RB approach.) We note for optimal FE

convergence that element boundaries should (and do) coincide with discontinuities in transport

coefficients; as we shall observe, this alignment is even more imperative in the RB context —

to facilitate the affine decomposition of the FE stiffness matrices.
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1

Figure 5.3: The mesh for the TBCh5Ex problem: dim(XNt) = Nt = 689. The magenta lines
denote domain and subdomain boundaries.

We can now define the FE stiffness “submatrices” associated with our affine decomposition

(2.16), (2.41), as

ANt q
i j =

∫
Ωq

∇ϕNt
j · ∇ϕNt

i , 1 ≤ i, j ≤ Nt, 1 ≤ q ≤ Qa , (5.4)

where the {ϕNt
i }i=1,...,Nt are the nodal basis functions associated with XN . It is clear from

Figure 5.3 that, for q = 1, . . . , Qa = 3, ANt q contains contributions only from triangles in Ωq;

note by construction each triangle is only associated with a single subdomain. We can also

define our FE load/output vector as

FNt 1
i =

∫
Γbase

ϕNt
i , 1 ≤ i ≤ Nt ; (5.5)

recall that Qf = 1.

In actual practice we would typically construct the FE submatrices and vectors by direct

stiffness assembly, cycling in turn over the elements of the triangulation restricted to each

subdomain. We thus see the important role of domain decomposition in (the FE precursors

to) the affine RB framework: in the current example the domain decomposition is naturally

associated with heterogeneous coefficients (or “physical properties”); in later Parts, the domain

decomposition is naturally induced by the geometric variations.
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5.2.2 “Sing Along”

The user may wish to intervalize the instructions in this chapter by “singing along” with the

Example. Towards that end, the user should first create a directory \rbMIT System\TBch5Ex.

The user should then copy all the contents of \rbMIT System\RB Aux\TBch5Ex Aux to

\rbMIT System\TBch5Ex.

To sing along, the user should now stay in — and work from — the \rbMIT System\TBch5Ex

directory. The user will find that, at each stage of the input process, the necessary scripts

and or functions are available in \rbMIT System\TBch5Ex. The user can thus (i) read the

script/functions to confirm understanding, (ii) execute the requisite commands as indicated

in Chapter 5, and finally (iii) inspect the outputs to verify correct performance.

Before proceeding to Section 5.3, the user must define and load the finite element matrices

and vectors A FE 1, A FE 2, A FE 3, and F FE 1. There are two options. Either the user can

simply load the matrices and vector already provided in our file TBCh5ExFE,

>> load TBCh5ExFE

or the user can proceed to Section 5.2.3 and build these matrices with MATLAB PDE Toolbox R©.

(Obviously, the latter is an option only if the user has the PDE Toolbox R© installed.)

5.2.3 MATLAB PDE Toolbox R© Implementation

For the current example, we can enlist the MATLAB PDE ToolBox R© to build A FE 1 = ANt1,

A FE 2 = ANt2, A FE 3 = ANt3, and F FE 1 = FNt1. As MATLAB R© variables, A FE 1,

A FE 2, and A FE 3 are each sparse Nt × Nt arrays, and F FE 1 is a sparse Nt × 1 array

(vector); recall the importance of recognizing and exploiting sparsity in the truth operators.

For packages such as MATLAB PDE Toolbox R© that are cognizant of the domain decom-

position underlying the property (and more generally, geometry) definition, it is often a simple

matter to extract the affine decomposition matrices and vectors required by the RB method.
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For example, to obtain the matrix A FE 1 we invoke the standard tools to form the “full”

stiffness matrix but with Θ1
a artificially set to unity and Θq

a, 2 ≤ q ≤ Qa, artificially set to zero;

applying this “trick” in turn to each subdomain we thus create, in Qa “full” stiffness matrix

formations, all the necessary A FE q, 1 ≤ q ≤ Qa. A similar procedure applies to the load (in

this case, just F FE 1). Often, no access to FE source is required.

The particular commands required to effect this procedure are readily available in the GUI

of the MATLAB PDE Toolbox R© package. First, the geometry, mesh, boundary conditions, and

PDE coefficients are specified (our script now in \rbMIT System\TBCh5Ex\TBCh5Ex PDE Tool.m);

next, the quantities are exported to the MATLAB workspace; finally, the M -functions such as

assempde, assema, assemb (our script now in \rbMIT System\TBCh5Ex\TBCh5Ex assemble.m)

are invoked to assemble the necessary matrices and vectors. (For a quick guide to the MATLAB

PDE Toolbox R©, see [1].)

We now explicity indicate the steps for our particular example.

The user should first call

>>TBCh5Ex PDE Tool

at the MATLAB command-line level. This script opens the MATLAB PDE Toolbox R© GUI

and specifies the geometry, mesh, and PDE structure, coefficients, and boundary conditions.

(At this level the user can access all the capabilities provided inside the Toolbox.) Next, from

the Boundary Menu and Mesh Menu select

Export Decomposed Geometry, Boundary Cond’s and Export Mesh,

respectively. For each operation a confirmation – clicking on the button “OK” – is needed.

(Note when closing the ToolBox window, the user can indicate “No” to saving any changes.)

Once the user has successfully exported the geometry, boundary conditions, and mesh into

the MATLAB R© workspace, the user should run the script

>>TBCh5Ex PDE assemble

164 March 2, 2007



which creates the file TBCh5ExFE abinitio with A FE 1, A FE 2, A FE 3, and F FE 1.

The user should then load

>>TBCh5ExFE abinitio

to bring A FE 1, A FE 2, A FE 3, and F FE 1 into the MATLAB R© workspace.

5.3 Problem Creation: Summary

The user should first give the new problem a unique name, *PROBNAME. We emphasize that

*PROBNAME is symbolic for — to be replaced/read everywhere it occurs— as the actual problem

name (e.g., for our Example, *PROBNAME ⇒ TBCh5Ex). Note that except for *PROBNAME all

other (parts of) the MATLAB R© .mat and .m file specifications are universal for all problems.

The user should then create the directory \rbMIT System\*PROBNAME: this directory will

contain the necessary data and functions required to define the problem and subsequently

construct and evaluate the RB approximations and associated a posteriori error estimators.

We indicate the directory structure in Figure 5.1 for the case of two problems: *PROBNAME ⇒

TBCh5Ex (the directory for which has already been created in Section 5.2.2), and say *PROBNAME

⇒ LE (for Linear Elasticity).

We now describe the development and exercise of RB approximations and a posteriori er-

ror estimators for a new problem. There are three steps: Step1, Problem Definition; Step2,

Offline Stage; and Step3, Online Stage. The first two Steps are performed once (for each new

problem); the last Step is of course executed many times.

• In Step1, \*PROBNAME\*PROBNAME PROBDEF.mat is created by the user; a function related

to the definition of the parameter domain, \*PROBNAME\*PROBNAME InsideOutsideD.m,

and a function related to the parametric dependence of the bilinear and linear forms,

\*PROBNAME\*PROBNAME Get Theta q.m, must also be specified by the user.

165 March 2, 2007



• In Step2, \*PROBNAME\*PROBNAME OFFLINE.mat and \*PROBNAME\*PROBNAME ONLINE.mat

are created by the user and our function \rbMIT Library\Greedy parcoer compliant.m;

the latter is an implementation of the Greedyout algorithm of Section 3.4.4.

(Note \*PROBNAME\*PROBNAME OFFLINE.mat contains data that can serve both (i) to re-

fine a RB approximation, as described in Section 5.4.2, and (ii) to pursue more advanced

“collateral” activities such as visualization.)

• In Step3, the real-time output and error bound are computed by a *PROBNAME-specific

instantiation of our “RB Online Evaluator” function \rbMIT Library\Online parcoer

compliant.m; the latter is an implementation of the Online procedures of Sections 3.3

and 4.4.

We present in Figure 5.4 an overview of the key software and data ingredients in the problem

creation process.

In Section 5.4 we provide problem creation templates for the data entry process: the

detailed sequence of definitions and commands that must be executed to develop and execute

a new problem. In Section 5.5 we supplement the templates with a small reference manual: we

describe (i) the contents of the datafiles *PROBNAME PROBDEF.mat, *PROBNAME OFFLINE.mat,

and *PROBNAME ONLINE.mat, (ii) the requisite INs and OUTs for the (user-supplied) functions

*PROBNAME InsideOutsideD.m and *PROBNAME Get Theta q.m, and (iii) the INs and OUTs,

and Error Messages/Diagnostics, for the ( rbMIT Library-provided) functions Greedy parcoer

compliant.m and Online parcoer compliant.m.
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rbMIT_System
(with MATLAB     Version 6.5 or newer)R

Step1 — Problem Definition

Offline

Step2 — RB Construction

*PROBNAME_PROBDEF *PROBNAME_OFFLINE

*PROBNAME_Step2_parcoer_compliant

Greedy_parcoer_compliant

*PROBNAME_ONLINE

Step3 — RB Online Evaluator 

Online (Many Times)

FE matrices and vectors

*PROBNAME_Step1_parcoer_compliant

*PROBNAME_PROBDEF *PROBNAME_OFFLINE

*PROBNAME_Online

*PROBNAME_Online_mq
or

OUTPUT and ERROR BOUND

greedy algorithm initialization

parameters and affine decomposition

Figure 5.4: rbMIT System Flow Chart.
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5.4 Problem Creation: Templates

There are two cases to consider: creation of a new problem from scratch (Section 5.4.1); and

modification of an existing problem (Section 5.4.2).

In some cases the user must directly enter command-line instructions; in such cases (as

in Section 5.2.3), we precede these user inputs with the MATLAB R© prompt >>. However,

most of the data entry is through templates-cum-MATLAB R© scripts; in particular, there is

a script for Step1 and a script for Step2. As our templates are actual MATLAB R© .m scripts

(to be executed), we perforce adopt the usual MATLAB R© notational conventions: any text

not preceded by the comment indications % or enclosed by the block comment delimiters %{

and %} will be evaluated. We shall denote by ? the problem-specific numerical inputs to be

provided by the user; for each requested quantity ? we shall include comment that provides

the general definition. In a very few cases, we shall write for part of the user input — not the

actual data ? but rather (typically) a subscript or superscript limit — VALUE(Arg): the user

should replace VALUE(Arg) with the numerical value of the symbolic variable Arg for the user’s

particular problem *PROBNAME. Hence in the scripts the user should search for (predominantly)

? but also (a few) VALUE expressions.

In Step1 (and to a lesser extent Step3), the user must also invoke the editor to create several

user-supplied functions in \*PROBNAME. We provide templates for these functions.

We caution that the user should proceed in sequence from Step1 to Step2 to Step3: backing

up can lead to severe tire damage. Thus if at any Step an error arises we recommend that the

user delete *PROBNAME PROBDEF.mat, *PROBNAME OFFLINE.mat, and *PROBNAME ONLINE.mat

and recommence with Step1. As our scripts perform most of the typing for the user, data

entry is relatively painless; and in the case of an error, correction is particularly simple — only

the offending data/line of the script need be rectified.
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5.4.1 “Tabula Rasa”: Creation of a New Problem from Scratch

Step1, Problem Definition

Initialize . First, in the directory rbMIT System\*PROBNAME, the user should create a new

file *PROBNAME Step1 parcoer compliant.m. Second, the user should copy the contents of the

script \rbMIT Aux\Step1 parcoer compliant.m to this new file \rbMIT System\*PROBNAME

\*PROBNAME Step1 parcoer compliant.m. Third, in \rbMIT System\*PROBNAME\*PROBNAME

Step1 parcoer compliant.m the user should replace all occurrences of the string USERPROB

with the actual name of the new problem *PROBNAME (not the string ‘*PROBNAME’ !): a sim-

ple initial global find/replace and save. Finally, the user should then set the directory to

\rbMIT System\*PROBNAME for all of Step1.

Note for the Example the user has already created \rbMIT System\TBCh5Ex and further-

more \rbMIT System\TBCh5Ex\TBCh5Ex Step1 parcoer compliant should already exist; see

Section 5.2.2.

Edit and Execute Step1 Script . We include the initialized Step1 script *PROBNAME Step1

parcoer compliant here for easy reference. (Note the dummy USERPROB in the master Step1

script of \rbMIT Aux has already been replaced with the actual name of the user’s new problem,

*PROBNAME, in the Step1 script of \*PROBNAME listed below.)

-----BEGIN: *PROBNAME Step1 parcoer compliant.m-----

% Script *PROBNAME_Step1_parcoer.m: Copyright MIT 2007.

% Fill PROBDEF structure.

*PROBNAME_PROBDEF.P = ? % scalar $P$, the number of parameters

*PROBNAME_PROBDEF.mu_min = ? % $1\times P$ vector $[\mu^\min_1,\mu^\min_2,\ldots,\mu^\min_P]$ that defines lower limit of ${\cal D}_{box}{$

*PROBNAME_PROBDEF.mu_max = ? % $1\times P$ vector $[\mu^\max_1,\mu^\max_2,\ldots,\mu^\min_P]$ that defines upper limit of ${\cal D}_{box}$

*PROBNAME_PROBDEF.mu_bar = ? % $1\times P$ vector $\overline{\bfmu} \in {\cal D}$ which defines inner product/norm

*PROBNAME_PROBDEF.Q_affine.a = ? % scalar $Q_a$

*PROBNAME_PROBDEF.Q_affine.f = ? % scalar $Q_f$

save *PROBNAME_PROBDEF *PROBNAME_PROBDEF; % save *PROBNAME_PROBDEF structure to file *PROBNAME_PROBDEF.mat

% First enter the FEM matrices.

*PROBNAME_OFFLINE.FEM.matrix.Aq{1} = ?; % ${cal N}_t \times {\cal N}_t$ sparse array $\underline{\mathbb{A}}^{{\cal N}_t\,1}$

*PROBNAME_OFFLINE.FEM.matrix.Aq{2} = ?; % ${cal N}_t \times {\cal N}_t$ sparse array $\underline{\mathbb{A}}^{{\cal N}_t\,2}$

...the user

...should cut and paste

...the requisite number of lines

*PROBNAME_OFFLINE.FEM.matrix.Aq{VALUE(Q_a)} = ?; % ${cal N}_t \times {\cal N}_t$ sparse array $\underline{\mathbb{A}}^{{\cal N}_t\,{Q_a}}$

% Note the FE equations are solved by Cholesky decomposition and forward-/back-substitution;

% the equations and unknowns are first re-ordered by the MATLABR routine symamd to minimize fill-in

% during the Cholesky process.

%

% Next enter the FEM vectors.

*PROBNAME_OFFLINE.FEM.matrix.Fq{1} = ?; % ${cal N}_t \times 1$ sparse array $\underline{\mathbb{F}}^{{\cal N}_t\,1}$
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*PROBNAME_OFFLINE.FEM.matrix.Fq{2} = ?; % ${cal N}_t \times 1$ sparse array $\underline{\mathbb{F}}^{{\cal N}_t\,2}$

...the user

...should cut and paste

...the requisite number of lines

*PROBNAME_OFFLINE.FEM.matrix.Fq{VALUE(Q_f)} = ?; %${cal N}_t \times 1$ sparse array $\underline{\mathbb{F}}^{{\cal N}_t\,{Q_f}}$

save *PROBNAME_OFFLINE *PROBNAME_OFFLINE; % save *PROBNAME_OFFLINE structure (so far) to file *PROBNAME_OFFLINE.mat

-----END: *PROBNAME Step1 parcoer compliant.m-----

The user should next edit the script \rbMIT System\*PROBNAME\*PROBNAME Step1 parcoer

compliant.m given above: replace the ? (and occasional VALUE(Arg)) with the data associ-

ated with the new problem *PROBNAME. The user should then execute the resulting script

>>*PROBNAME Step1 parcoer compliant

from the \*PROBNAME (\TBCh5Ex for the Example) directory.

Define User-Supplied Functions. The user should now create the two functions \*PROB

NAME\*PROBNAME InsideOutsideD.m and \*PROBNAME\*PROBNAME Get Theta q.m. We include

templates USERPROB InsideOutsideD.m and USERPROB Get Theta q.m in \rbMIT Aux: the

user should copy the contents of these files to \*PROBNAME\*PROBNAME InsideOutsideD.m

and \*PROBNAME\*PROBNAME Get Theta q.m, respectively; the user should then replace all oc-

currences of the dummy USERPROB label with *PROBNAME in both files. Finally the user should

then modify the “logic” to match the requirements of *PROBNAME. (Recall that for the Example

the necessary functions should already exist in rbMIT System\TBCh5Ex.)

Description of the function\*PROBNAME\*PROBNAME InsideOutsideD.m.

The specifications for the function

[InsideBoolean] = *PROBNAME InsideOutsideD(*PROBNAME PROBDEF, muvectorvalue)

are

(i) INs:

(a) *PROBNAME PROBDEF: A structure — *PROBNAME PROBDEF; the *PROBNAME PROBDEF.P
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scalar and *PROBNAME PROBDEF.mu min and *PROBNAME PROBDEF.mu max vectors might

prove helpful to the user. (For simplicity, in the function definition, the argument

*PROBNAME PROBDEF can of course be replaced with a dummy argument such as

PROBDEF or DEF.)

(b) muvectorvalue: An M ×P array — a set of parameter vectors µm ∈ RP , 1 ≤ m ≤

M , where each µm is a 1× P array.

(ii) OUT:

InsideBoolean =
{

0 if µm 6∈ D for any m in {1, . . . ,M}
1 if µm ∈ D for all m in {1, . . . ,M} .

In essence, *PROBNAME InsideOutsideD is the characteristic function associated with D: it is

called by our \rbMIT Library functions as [InsideBoolean] = *PROBNAME InsideOutsideD

(PROBNAME PROBDEF, muvectorvalue).

For the template provided (shown below already inizialized to *PROBNAME), we consider

D ≡ Dbox ≡ [µmin
1 , µmax

1 ]× . . .× [µmin
P , µmax

P ]:

----BEGIN \RB Aux\*PROBNAME InsideOutsideD.m-----

function [InsideBoolean] = *PROBNAME_InsideOutsideD(PROBDEF, muvectorvalue);

InsideBoolean = 1; % set inside Boolean to 1

nummupts=size(muvectorvalue,1); % nummupts=M

for p = 1:PROBDEF.P; % to test each parameter component

for m= 1:nummupts % to test all parameter vectors

if(muvectorvalue(m, p) < PROBDEF.mu_min(p))

InsideBoolean = 0; % Outside D_box from below

return;

end;

if(muvectorvalue(m, p) > PROBDEF.mu_max(p))

InsideBoolean = 0; % Outside D_box from above

return;

end;

end;

end;

----END \RB Aux\*PROBNAME InsideOutsideD.m----

We emphasize that the above directly applies to any problem for which D ≡ Dbox (including

our example, TBCh5Ex); however, if D 6≡ Dbox the user must substitute the more complex logic

associated with the particular parameter domain of interest.
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Description of the function\*PROBNAME\*PROBNAME Get Theta q.m.

The specifications for the function

[Thetavectorvalue] = *PROBNAME Get Theta q (*PROBNAME PROBDEF, muvectorvalue)

are

(i) INs:

(a) *PROBNAME PROBDEF: A structure — *PROBNAME PROBDEF; the *PROBNAME PROBDEF.

Q affine.a and *PROBNAME PROBDEF.Q affine.f scalars might prove helpful to the

user. (For simplicity, in the function definition, the argument *PROBNAME PROBDEF

can of course be replaced with a dummy argument such as PROBDEF or DEF.)

(b) muvectorvalue: AnM×P array — a set of parameter vectors µm ∈ RP , 1 ≤ m ≤M ,

where each µm is a 1× P array.

(ii) OUT:

Thetavectorvalue: An M × (Qa + Qf ) array — a set of coefficient vectors [Θ1
a(µm)

Θ2
a(µm) · · ·ΘQa

a (µm) Θ1
f (µm) Θ2

f (µm) · · ·ΘQf

f (µm)], 1 ≤ m ≤M , where each coefficient

vector is a 1× (Qa +Qf ) array.

In essence, *PROBNAME Get Theta q encapsulates the parameter dependence of the bilinear and

linear form for the problem *PROBNAME.

For the template (shown below already initialized to *PROBNAME) we provide:

----BEGIN *PROBNAME\*PROBNAME Get Theta q.m----

function [Thetavectorvalue] = *PROBNAME_Get_Theta_q(DEF, muvectorvalue);

nummupts=size(muvectorvalue,1); % nummupts=M

for m=1:nummupts

% First compute the Theta_a^q, 1 \le q \le Q_a.

Thetavectorvalue(m,1) = ? ;

% for example, if Theta_a^1=\mu_2*\mu_3, then ? is muvectorvalue(m,2)*muvectorvalue(m,3);

% ...then the user should cut and paste the requisite number of line

Thetavectorvalue(m,VALUE(Q_a)) = ?;

% Now compute the Theta_f^q, 1 \le q \le Q_f.

Thetavectorvalue(m,VALUE(Q_a+1)) = ?;
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% for example, if Theta_f^1=1/\mu_4, ? is 1./muvectorvalue(m,4)

% ...then the user should cut and paste the requisite number of line

Thetavectorvalue(m,VALUE(Q_a+Q_f)) = ?;

% this corresponds to Theta_f^{Q_f}

end

----END *PROBNAME\*PROBNAME Get Theta q.m----

We note that the user should remember to use “;” to suppress printing in *PROBNAME Inside

OutsideD and in particular in *PROBNAME Get Theta q, as otherwise during the Greedy process

there will be (much) unnecessary data sent to the screen.

Step2, Offline Stage

Initialize . The user should first copy the script \rbMIT System\rbMIT Aux\Step2 parcoer

compliant.m to the file \rbMIT System\*PROBNAME\*PROBNAME Step2 parcoer compliant.m.

Then, in \rbMIT System\PROBNAME\PROBNAME Step2 parcoer compliant.m the user should

replace all occurrences of USERPROB with the actual name of the new problem, *PROBNAME

— a simple initial global find/replace and save. The user should then set the directory to

\rbMIT System\*PROBNAME (\rbMIT System\TBCh5Ex for the Example) for all of Step2.

Note for the Example the user has already created \rbMIT System\TBCh5Ex and further-

more \rbMIT System\TBCh5Ex\TBCh5Ex Step2 parcoer compliant should already exist; see

Section 5.2.2.

Edit and Execute Step2 Script . We include the initialized Step2 script *PROBNAME Step2

parcoer compliant here for easy reference. (Note the dummy USERPROB in the master Step2

script of \rbMIT Aux has already been replaced with the actual name of the user’s new problem,

*PROBNAME, in the Step2 script of \*PROBNAME listed below.)

----BEGIN: *PROBNAME Step2 parcoer compliant.m----

% Script *PROBNAME_Step2_parcoer_compliant.m: Copyright MIT 2007.

% Enter control parameters for Greedy^{out,*} generation of space.

load *PROBNAME_OFFLINE

% First address generation of the sample $\Xi_{train}$.

*PROBNAME_OFFLINE.space.sample.newflg = ?

% 1 $\Rightarrow$ create new sample $\Xi_{train}$; 0 $\Rightarrow$ use existing sample (previously created) $Xi_{train}$

*PROBNAME_OFFLINE.space.sample.densityflg = ?

% 0 $\Rightarrow$ random with uniform density in $\bfmu$; 1 $\Rightarrow$ random with uniform density in $\ln(\bfmu)$ (requires $\mu_{\min} >0$)
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*PROBNAME_OFFLINE.space.sample.size = ? % positive integer $n_{train}$ --- size of $\Xi_{train}$

% Next provide weighting, tolerance,and limits.

*PROBNAME_OFFLINE.space.absrelflg = ? % 0 $\Rightarrow \omega_N = 1$ (absolute output error); 1 $\Rightarrow \omega_N = s_N$ (relative output error)

*PROBNAME_OFFLINE.space.tol = ? % positive real $\varepsilon_{tol,\min}$ --- anticipated smallest desired (absolute or relative) output error

*PROBNAME_OFFLINE.space.Nbarmax = ? % positive integer $\overline{N}_{\max}$ --- upper limit on dimension of (largest) RB space

*PROBNAME_OFFLINE.space.restartflg= 0 % 0 normal running, 1 only if a re-start

% beyond this line no more user input required

save *PROBNAME_OFFLINE *PROBNAME_OFFLINE; % save final *PROBNAME_OFFLINE structure inputs to file *PROBNAME_OFFLINE.mat

% Create ONLINE structure (to which Greedy^{out,*} will supply quantities required for the Online stage).

if (*PROBNAME_OFFLINE.space.restartflg == 0)

*PROBNAME_ONLINE.space = [ ]; % no problem-specific (user) inputs required

else

load *PROBNAME_ONLINE

end

save *PROBNAME_ONLINE *PROBNAME_ONLINE; % save (currently empty) *PROBNAME_ONLINE structure to file *PROBNAME_ONLINE.mat

% Load the problem data required by the Greedy algorithm.

load *PROBNAME_PROBDEF;

load *PROBNAME_OFFLINE;

load *PROBNAME_ONLINE;

% Note the ‘‘load" is a good precaution --- and a necessity if the new problem creation spans several sessions in any case ---

% to ensure complete and correct data in the workspace.

% Call the Greedy routine (which resides in \rbMIT_System\rbMIT_Library).

addpath(’../rbMIT_Library’)

[*PROBNAME_PROBDEF, *PROBNAME_OFFLINE, *PROBNAME_ONLINE] = Greedy_parcoer_compliant(...

...*PROBNAME_PROBDEF, *PROBNAME_OFFLINE, *PROBNAME_ONLINE, @*PROBNAME_InsideOutsideD, @*PROBNAME_Get_Theta_q);

% Display the ‘‘user--readable" outputs of the Greedy algorithm. (Note the Greedy code produces many ‘‘non--user--readable" OUTs

% (saved to the OFFLINE and ONLINE structures and corresponding .mat files) that are needed for (i) ‘‘Inherited" problem

% creation (see Section 5.4.2), and of course (ii) the Online RB output and error bound evaluation s--- Step3 below.

save *PROBNAME_PROBDEF *PROBNAME_PROBDEF;

save *PROBNAME_OFFLINE *PROBNAME_OFFLINE;

save *PROBNAME_ONLINE *PROBNAME_ONLINE;

*PROBNAME_ONLINE.space.Nmax % scalar --- the value of $N_{\max}$

*PROBNAME_ONLINE.space.eps_out_star % $1 \times N_{\max}$ vector --- $\varepsilon^{out,\ast}(N), 1 \le N \le N_{\max}$

semilogy(1:size(*PROBNAME_ONLINE.space.eps_out_star,2), *PROBNAME_ONLINE.space.eps_out_star, ’o’)

title(’Offline Adaptive Sampling’)

xlabel(’N’)

ylabel(’\epsilon^{out,*}’)

% Note if the Greedy algorithm terminates ‘‘normally" then either *PROBNAME_ONLINE.space.Nmax = Nbarmax or

% *PROBNAME_ONLINE.space.eps_out_star(Nmax) $\le \varepsilon_{tol,\min}$.

% (We consider non-normal termination and associated error messages and remedies in Sections 5.4.2 and 5.5.)

%

----END *PROBNAME Step2 parcoer compliant.m----

The user should then edit the script rbMIT System\*PROBNAME\*PROBNAME Step2

parcoer compliant.m — replace the ? with the data associated with the new problem

*PROBNAME — and then execute the resulting script

>> *PROBNAME Step2 parcoer compliant

from the \rbMIT System\*PROBNAME directory.

The user should be aware that the script *PROBNAME Step2 parcoer compliant fixes also

the path to let MATLAB find functions in the directory \rbMIT System\rbMIT Library while

working in the directory rbMIT System\*PROBNAME. If you have problems or error messages

check the path in *PROBNAME Step2 parcoer compliant to be sure your operating system is

recognizing the correct root. (LINUX machines use “/”, WINDOWS machines generally use
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“\” or both.)

Step3, Online Stage

Initialize . The user should set the directory to \rbMIT System\*PROBNAME (\rbMIT System

\TBCh5Ex for the Example). The user should also

>>addpath(’../rbMIT Library’)

in order to access the RB Online Evaluator. (In fact, the more experienced user can run

the RB Online Evaluator from any directory: the user need only establish paths not only to

\rbMIT System\RB Library but also to \rbMIT System\*PROBNAME.)

The user should copy the script \rbMIT System\rbMIT Aux\USERPROB Online.m to the file

\rbMIT System\*PROBNAME\*PROBNAME Online.m; then, in \rbMIT System\*PROBNAME\*PROB

NAME Online.m the user should replace all occurrences of USERPROB with the actual name of the

new problem, *PROBNAME: a simple initial global find/replace and save. Note *PROBNAME Online

is a *PROBNAME-specific “shorthand” that invokes the general RB Online Evaluator.

The user should then also copy the script \rbMIT System\rbMIT Aux\USERPROB Online mq.m

to the file \rbMIT System\*PROBNAME\*PROBNAME Online mq.m; then, in \rbMIT System\*PROB

NAME\*PROBNAME Online mq.m the user should replace all occurrences of USERPROB with the ac-

tual name of the new problem, *PROBNAME. Note *PROBNAME Online mq.m is a problem-specific

shorthand for the multi-query version of the RB Online Evaluator.

Note for the Example, the functions TBCh5Ex Online and TBCh5Ex Online mq should al-

ready exist in the \rbMIT System\TBCh5Ex directory.

At the beginning of any session, the user should load the necessary data after declaring the

variables as global (so that the Online Evaluator can be called more succintly):

>>clear *PROBNAME PROBDEF;

>>clear *PROBNAME ONLINE;

>>global *PROBNAME PROBDEF;
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>>global *PROBNAME ONLINE;

>>load *PROBNAME PROBDEF;

>>load *PROBNAME ONLINE;

Note once the data from these structures is in the MATLAB workspace (and as long as the data

is not subsequently deleted or compromised) there is no need to reload the data before each

Online evaluation; indeed, unnecessary reloading will greatly degrade the Online performance.

Evaluate the RB Output and Error Bound . The user (from the \rbMIT System\*PROB

NAME directory) should then call the RB Online Evaluator

>>[sN, DeltaN] = *PROBNAME Online (muvectorvalue, N, epsdes)

to obtain true output and error bound.

We indicate here INs and OUTs.

(i) INs

(a) muvectorvalue: A 1× P real vector — the µ ∈ D of interest.

(b) N: A non-negative integer — the dimension N of the RB approximation space.

(c) epsdes: A non-negative real scalar — εdes, the desired (maximum acceptable) out-

put error, sNt(µ)− sN (µ).

(ii) OUTs:

(a) sN: A scalar — the RB output prediction, sN (µ).

(b) DeltaN: A scalar — the RB a posteriori output error bound, ∆.
N (µ); the absolute

(. = s) or relative (. = s,rel) error is reported depending on the user specifi-

cation of *PROBNAME OFFLINE.space.absrelflg (also automatically stored in

*PROBNAME ONLINE.space.absrelflg).

As described in greater detail in Section 4.4.3, the two inputs N and epsdes can serve in

two different “modes”: if N > 0, and epsdes is set to zero, then *PROBNAME Online returns
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sN (µ) and ∆.
N (µ). If N =0, then *PROBNAME Online returns sN∗(µ) and ∆.

N∗(µ) where N∗ is

the smallest N ′ such that ∆.
N ′ ≤ epsdes (in actual fact, we settle for an efficiently calculated

slightly sub-optimal result, per Section 4.4.3).

Multiple Queries. To extract the output for a range of parameters we provide also a

multi-query RB Online Evaluator. In particular the routine below permits rapid presentation

of sN (µ) for variation of “one parameter component at a time.” Initialization proceeds as

indicated above. The user should then call

>>*PROBNAME Online mq (mu index, mu min, mu max, muvectorvalue, N, epsdes)

to obtain the desired plot.

We indicate the INs and OUTs.

(i) INs:

(a) mu index: Integer — index i ∈ {1, . . . , P} of the parameter component we wish to

vary.

(b) mu minplt: Scalar — minimum plotted value for the parameter to be varied; µmin
mu index ≤

mu minplt

≤ µmax
mu index.

(c) mu maxplt: Scalar — maximum plotted value for the parameter to be varied;

µmin
mu index ≤ mu maxplt ≤ µmax

mu index.

(d) muvectorvalue: A 1×P real vector — the value of µ ∈ D of all the fixed parameter

component µj , 1 ≤ j ≤ P, j 6= mu index; the value of the varying component

µmu index should be set to unity.

(e) N: A non-negative integer — the dimension N of the RB approximation space.

(f ) epsdes: A positive scalar — εdes, the desired (maximum acceptable) output error,

sNt(µ)− sN (µ).

Note N and epsdes play the same role as in the single query case.
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(ii) OUTs:

sN: We plot the RB output prediction, sN (µ), as function of µmu index in the desired

range and for the prescribed N or the desired epsdes. In the plot we also report

DeltaN, the RB a posteriori output error bound, ∆s
N (µ).

5.4.2 Greedy Restarts: “Offline Adaptivity”

There are many scenarios in which we might wish to modify a problem: we may wish to

change Greedy specifications (of interest for a variety of reasons, as elaborated upon below); we

may wish to change the specification of the parameter domain, D (of interest in incorporating

“feedback” from an application such as optimization or parameter estimation); we may wish to

change the specification of the truth approximation (of interest in development — rapid testing

on a coarse truth approximation followed by production on a fine truth approximation). In

almost all scenarios we can re-use most or all of the problem definition; and in many scenarios,

we can take good advantage of the existing RB approximation and a posteriori error estimation

data — a “restart” (of the Greedy algorithm).

We shall focus here on a change to the Greedy specifications. This need can arise for a

variety of reasons:

R1 The initial Greedy terminates prematurely (a computer crash or a user ^C [Ctrl+C]) such

that neither the error tolerance εtol,min or the RB dimension limit Nbarmax is reached;

the user now wishes to recover/continue the calculation. (Note that the Greedy code

checkpoints — saves results at intermediate steps in recovery files that are only deleted

at the successful completion of a run).

R2 The initial Nbarmax is too small to achieve the desired εtol,min; the user now wishes to

expend — or only now has access to — greater resources to reach the requisite accuracy.

R3 The application is more demanding or sensitive than anticipated; the user decides that
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a higher accuracy RB output approximation is needed.

R4 The Online RB predictions systematically present an output error larger than εtol,min:

the user decides to refine the initial train sample Ξtrain. (Or the user intentionally first

performs a Greedy algorithm over a coarse Ξcoarse
train in order to reduce Offline computational

cost, and now wishes to consider Ξfine
train (see Section 3.4.4).)

In all these cases we can re-use both the problem definition and also all the existing RB

approximation and a posteriori error estimation data: a “restart.” (Recall from Section 3.4.4

that our Greedy algorithm is defined relative to any initial sample and associated RB space

and basis: it is this restart feature that we exercise here.)

Step1 should not be re-executed: this assures compatibility of the original PROBDEF with

all subsequent RB approximations. Our focus is thus on Step2. Note that once Step2 has been

re-executed, Step3 proceeds exactly as in Section 5.4.1.

Note that the user may wish to save copies of *PROBNAME OFFLINE and *PROBNAME ONLINE

before embarking on a restart (and similarly for the results of a restart before embarking

on a subsequent restart). In this fashion the entire set of refinements remains available and

uncorrupted.

We now proceed to indicate the modifications to the Step2 script in each of the cases R1–R4

above.

R1 . To start a recovery procedure the Greedy algorithm must have at least generated samples

and completed the first cycle. In the event of a fatal crash, the user must first recover data

from temporary files saved as OFFLINE recovery.mat and ONLINE recovery.mat.

>>load OFFLINE recovery OFFLINE

>>load ONLINE recovery ONLINE

>>*PROBNAME OFFLINE=OFFLINE

>>*PROBNAME ONLINE=ONLINE

179 March 2, 2007



>>save *PROBNAME OFFLINE

>>save *PROBNAME ONLINE

in order restore the RB structures. The Step2 script should now be modified per the below

and then re-executed.

----begin modifications to *PROBNAME Step2 parcoer compliant.m----

*PROBNAME OFFLINE.space.sample.newflg = 0

% use the existing sample from earlier and

% continue the Greedy (hopefully) to conclusion

*PROBNAME OFFLINE.space.restartflg= 1

% 1 indicates a Greedy restart

----end modifications to *PROBNAME Step2 parcoer compliant compliant.m----

R2 . The Step2 script should be modified per the below and then re-executed.

----begin modifications to *PROBNAME Step2 parcoer compliant.m----

*PROBNAME OFFLINE.space.sample.newflg = 0

% use the existing sample from earlier

...

*PROBNAME OFFLINE.space.Nbarmax = ?

% but now increase the upper limit for the number of

% Greedy cycles to (hopefully) achieve the desired εtol,min

*PROBNAME OFFLINE.sample.restartflg= 1

% 1 indicates a Greedy restart

----end modifications to *PROBNAME Step2 parcoer compliant.m----

R3 . The Step2 script should be modified per the below and then re-executed.

----begin modifications to *PROBNAME Step2 parcoer compliant.m----

*PROBNAME OFFLINE.space.sample.newflg = 0
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% use the existing sample from earlier

*PROBNAME.OFFLINE.space.tol = ?

% but with a tighter tolerance/higher accuracy requirement

*PROBNAME OFFLINE.space.restartflg= 1

% 1 indicates a Greedy restart

----end modifications to *PROBNAME Step2 parcoer compliant.m----

R4 . The Step2 script should be modified per the below and then re-executed.

----begin modifications to *PROBNAME Step2 parcoer compliant.m----

*PROBNAME OFFLINE.space.sample.newflg = 1

% use a new sample

*PROBNAME OFFLINE.space.sample.size = ?

% with a larger number of points ntrain than earlier

*PROBNAME OFFLINE.sample.restartflg= 1

% 1 indicates a Greedy restart

----end modifications to *PROBNAME Step2 parcoer compliant.m----

5.5 Problem Creation: Reference Manual

5.5.1 Datafiles

We present in Table 5.1 the contents of the structures (we omit here the *PROBNAME prefix)

PROBDEF, OFFLINE, and ONLINE stored in the files PROBDEF.mat, OFFLINE.mat, and ONLINE.mat.

For each structure we indicate (by column): the names of the variables (e.g., PROBDEF.Q affine a);

the type of MATLAB R© data (e.g., scalar); the mathematical symbol in the text, (e.g., Qa);

the Section(s) and or equation(s) which precisely define the quantity (e.g Chapter 2); and

finally the source of the data. For the latter, we abbreviate “u” for user, “G” for the

Greedy parcoer compliant code, and “G∗” for an internal function called by Greedy.
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Name Type Math Symbol-Sec.(eq.) Source
PROBDEF.Q affine a scalar Qa - 2.1.2 u
PROBDEF.Q affine f scalar Qf - 2.1.2 u

PROBDEF.P scalar P - 1.2.3 u
PROBDEF.mu min 1× P µmin - 1.4.2 u
PROBDEF.mu max 1× P µmax - 1.4.2 u
PROBDEF.mu bar 1× P µ̄ - 2.1.2 u

PROBDEF.check.Qa flag 1× (Qa) . - 1.2.6 G∗

PROBDEF.check.Aq flag 1× (Qa) . - 1.2.6 G∗

OFFLINE.FEM.matrix.Aq Qa ×Nt ×Nt (sparse) AN q - (2.42) u
OFFLINE.FEM.matrix.Fq Qf ×Nt (sparse) FN q - (2.44) u

OFFLINE.FEM.matrix.Xnorm Nt ×Nt (Cholesky)1 XN - (2.45) G
OFFLINE.FEM.matrix.HT Nt ×Nt (sparse) . - . G

OFFLINE.space.restartflg scalar (flag: 0− 1) . - . u
OFFLINE.space.sample.newflg scalar (flag: 0− 1) . - . u

OFFLINE.space.sample.densityflg scalar (flag: 0− 1) . - 1.4.2 u
OFFLINE.space.sample.size scalar ntrain - 3.4 u
OFFLINE.space.absrelflg scalar (flag: 0− 1) . - 3.4.4 u

OFFLINE.space.tol scalar εtol,min - 3.4.4 u
OFFLINE.space.Nbar scalar N - 3.4.4 u
OFFLINE.space.Nmax scalar Nmax - 3.4.4 G

OFFLINE.space.sample.mu samples ntrain × P Ξtrain - 2.1.2 G∗

OFFLINE.space.sample.sample in basis 1× ntrain . - . G
OFFLINE.space.Z Nt ×Nmax ZN - 3.2.1 G∗

OFFLINE.space.matrix.Zqf Nt × 1 - G∗

OFFLINE.space.matrix.Zqa Nt ×N - G∗

ONLINE.space.absrelflg scalar (flag: 0− 1) . - 3.4.4 G
ONLINE.space.Mus Nmax × P SN - 3.4.4 G

ONLINE.space.basisInds (flag) 1× ntrain . - . G
ONLINE.space.eps out star 1×Nmax εout,∗

N - 3.4.4 G
ONLINE.space.Nmax scalar Nmax - 3.4.4 G

ONLINE.RB.matrix.Zqfprime Fq 1× 1 - G∗

ONLINE.RB.matrix.Zqfprime Aq Z 1×Nmax - G∗

ONLINE.RB.matrix.Aqn Qa ×Nmax ×Nmax Aq
N - (3.40) G∗

ONLINE.RB.matrix.Zqaprime Aq Z Nmax ×Nmax - G∗

ONLINE.RB.matrix.FN Qf ×Nmax × 1 Fq
N - (3.41) G∗

ONLINE.RB.matrix.X norm rb Nmax ×Nmax XN - (4.66) G

Table 5.1: Data Files.1When Cholesky factorization is performed we store in Xnorm just the upper triangular
factor (H); denoting by HT the transpose of H, XNt =HT*H. Note the Greedy infers XNt from the ANtq and µ.
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5.5.2 Codes

(See Section 5.4.1 for user-defined functions.)

Description of the function Greedy parcoer compliant.

IN’s and OUT’s. We present in Table 5.2 the IN’s and OUT’s for Greedy parcoer

compliant: in the first column we list all the elements of PROBDEF, OFFLINE, and ONLINE

(already defined in Section 5.5.1), and in the second column we indicate “IN” or “OUT.”

Note that some of the elements — such as the RB basis functions and the RB matrices —

of OFFLINE and ONLINE can be either IN’s or IN’s and OUT’s: if we create a problem from

“scratch,” these elements are OUT’s; if we modify a problem via restart (see Section 5.4.2),

these updated elements are IN’s and OUT’s. Service internal variables are denoted with “S”.

Diagnostics. We present in Table 5.3 the diagnostics available: the first column is the

error message; the second column the probable causes of the error; and the third column the

possible remedies.

Description of the function Online parcoer compliant.

IN’s and OUT’s. We present in Table 5.4 the structure (and functions) IN’s and OUT’s

for Online rbMIT parcoer compliant (called by *PROBNAME Online): in the first column we

list all the elements of PROBDEF, OFFLINE, and ONLINE (already defined in Section 5.5.1), and

in the second column we indicate “IN” or “OUT.” In Table 5.5 we present the “runtime” (non-

structure) IN’s and OUT’s for Online rbMIT parcoer compliant: in the first column we list

first the IN’s and then the OUT’s; in the subsequent columns we indicate the type of data, the

mathematical symbol in the text, and the Section(s) and or equation(s) which precisely define

the quantity.
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Name IN/OUT
PROBDEF.Q affine a IN
PROBDEF.Q affine f IN

PROBDEF.P IN
PROBDEF.mu min IN
PROBDEF.mu max IN
PROBDEF.mu bar IN

PROBDEF.check.Qa S
PROBDEF.check.Aq S

OFFLINE.FEM.matrix.Aq IN
OFFLINE.FEM.matrix.Fq IN

OFFLINE.FEM.matrix.Xnorm S
OFFLINE.FEM.matrix.HT S
OFFLINE.FEM.matrixflg IN

OFFLINE.space.sample.newflg IN
OFFLINE.space.sample.densityflg IN

OFFLINE.space.sample.size IN
OFFLINE.space.absrelflg IN

OFFLINE.space.tol IN
OFFLINE.space.Nbar IN
OFFLINE.space.N S

OFFLINE.space.Nmax OUT/IN
OFFLINE.space.sample.mu samples S

OFFLINE.space.sample.sample in basis OUT/IN
OFFLINE.space.Z S

OFFLINE.space.matrix.Zqf S
OFFLINE.space.matrix.Zqa S
ONLINE.space.absrelflg OUT

ONLINE.space.Mus OUT/IN
ONLINE.space.theta a OUT/IN
ONLINE.space.theta f OUT/IN

ONLINE.space.basisInds OUT/IN
ONLINE.space.eps out star OUT/IN

ONLINE.space.Nmax OUT
ONLINE.RB.matrix.Zqfprime Fq OUT
ONLINE.RB.matrix.Zqfprime Aq Z OUT

ONLINE.RB.matrix.Aqn OUT/IN
ONLINE.RB.matrix.Zqaprime Aq Z OUT

ONLINE.RB.matrix.FN OUT/IN
ONLINE.RB.matrix.X norm rb OUT/IN

InsideOutsideD IN
Get Theta q IN

Table 5.2: Greedy Specifications.
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Error Message Cause Possible Remedies
all mu min have to be > 0.0 requesting a log distribution set mu min> 0

of sample with mu min< 0
parameters are defined error during sample check parameter range

incorrectly generation
all theta coefficients have to be > 0: Θq

a < 0 check Θq
a’s or go to Part II

parametric coercivity is lost if Θq
a’s are correct

matrices Aq should be symmetric one of the matrices is check Aq’s or go to Part II
Aq{q} is not symmetric for q=? not symmetric if Aq’s are correct
matrices Aq should be positive one of the matrices is check Aq’s or go to Part II
semi-def.: Aq{q} has negative not positive semi-def. if Aq’s are correct

eigenvalues for q=?
increase Nbarmax or reduce the tolerance Nbarmax is too small re-start the Greedy

or tol is too strict with a greater Nbarmax
or change tol

Table 5.3: Greedy Diagnostics.

As described in greater detail in Section 4.4.3, the two inputs N and epsdes can serve in

two different “modes”: if N > 0, and epsdes is set to zero, then *PROBNAME Online returns

sN (µ) and ∆.
N (µ). If N =0, then *PROBNAME Online returns s.

N∗(µ) and ∆.
N∗(µ) where N∗

is the smallest N ′ such that ∆.
N ′ ≤ epsdes (in actual fact, we settle for an efficiently cal-

culated slightly sub-optimal result, per Section 4.4.3). (As indicated in Table 5.5, . = s for

ONLINE.space.absrelflg = 0 and . = s, rel for ONLINE.space.absrelflg = 1.)

Diagnostics. We present in Table 5.6 the diagnostics available: the first column is the

error message; the second column the probable causes of the error; and the third column the

possible remedies.
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Name IN/OUT
PROBDEF.Q affine a IN
PROBDEF.Q affine f IN

PROBDEF.P IN
PROBDEF.mu min IN
PROBDEF.mu max IN

ONLINE.space.absrelflg IN
ONLINE.space.eps out star IN

ONLINE.space.Nmax IN
ONLINE.RB.matrix.Zqfprime Fq IN
ONLINE.RB.matrix.Zqfprime Aq Z IN

ONLINE.RB.matrix.Aqn IN
ONLINE.RB.matrix.Zqaprime Aq Z IN

ONLINE.RB.matrix.FN IN
ONLINE.RB.matrix.X norm rb IN

InsideOutsideD IN
Get Theta q IN

Table 5.4: Online Specifications: Structures.

Name Type Math Symbol - Sec.(eq.)
muvectorvalue 1× P µ - 1.2.3

N scalar N - 3.2
epsdes scalar εdes - 3.4.4
sN scalar sN (µ) - (3.35)

DeltaN scalar ∆.
N (µ) - 4.3

Table 5.5: Online Specifications: Runtime.

Error Message Cause Possible Remedies
parameter value is out of range µ 6∈ D check muvectorvalue

size of reduced basis space should be N input is too large reduce N so
smaller than Nmax that N<=Nmax

epsdes is too small for given to get the desidered epsdes, enrich the basis
RB approximation Nmax is not sufficient or reduce epsdes

Table 5.6: Online Diagnostics.
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