Numerik 2 SS 2012

Übungsblatt 5 (Abgabe: Freitag, 29.06.2012 um 8 Uhr **vor** der Übung.)

Aufgabe 12 (Approximation von $\sqrt{2}$ mittels Interpolation)

(9 Punkte)

a) Berechnen Sie eine Näherung für $\sqrt{2}$ mit Hilfe der Lagrangeschen Interpolationsformel: Werten Sie dafür zunächst die Funktion $f(x) = 2^x$ an den Stellen $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$ aus und stellen Sie das Lagrange Interpolationspolynom

$$P_n(x) = \sum_{j=0}^n f(x_j)l_{j,n}(x)$$

Universität Ulm

explizit dar. Werten Sie dieses Polynom anschliessend an der Stelle $x=\frac{1}{2}$ aus.

b) An das Ergebnis aus Teilaufgabe a) kann man bequemer gelangen:

Um das zu den Stützstellen x_j (mit $x_j \neq x_k$ für $j \neq k$) eindeutig bestimmte Interpolationspolynoms an einer festen Stelle x auszuwerten, dient der Algorithmus von Neville:

$$\begin{array}{lcl} P_{i,0}(x) & := & f(x_i) \\ \\ P_{i,k}(x) & := & P_{i,k-1}(x) + \frac{x-x_i}{x_i-x_{i-k}} (P_{i,k-1}(x) - P_{i-1,k-1}(x)) \end{array}$$

für $0 \le k \le n$ und $k \le i \le n$

- i) Berechnen Sie für $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$ den Wert des Interpolationspolynoms and der Stelle $x = \frac{1}{2}$.
- ii) Da Sie mit der Näherung nicht zufrieden sind, nehmen Sie als zusätzliche Stützstellen $x_4 = -2$ und $x_5 = 3$ hinzu und berechnen erneut eine (hoffentlich) bessere Näherung.

Aufgabe 13 (Interpolation nach Newton)

(6 Punkte)

- a) Berechnen Sie für $f(x) = \frac{1}{1+x^2}$ das Interpolationspolynom zu den Stützstellen $x_0 = -1$, $x_1 = 0$, und $x_2 = 1$ mit Hilfe der Newtonschen Interpolationsform.
- b) Die Stützstellen werden um $x_3=-2$ und $x_4=2$ erweitert. Berechnen Sie das Interpolationspolynom zu den Stützstellen $x_0,...,x_4$.

Aufgabe 14 (Hermite interpolation)

(9+6 Punkte)

For $f(x) = \cos(x)$ let P(x) be the Hermite polynomial interpolating f(x) at the points $x_i = 0, 0, 0, 0, \pi, \pi$, i.e.

$$P(0) = f(0), P'(0) = f'(0), P''(0) = f''(0), P'''(0) = f'''(0), P(\pi) = f(\pi), P'(\pi) = f'(\pi).$$

- a) Find P(x).
- b) Derive an error bound which holds in the interval $[0, \pi]$.

This exercise has to be written in LATEX.