
Dr. Andreas Borchert Institut für Numerische Mathematik
Prof. Dr. Stefan Funken Universität Ulm
Prof. Dr. Karsten Urban Sommersemester 2013
Markus Bantle, Kristina Steih

High Performance Computing – C++ Warmup
(Präsenzübung 15. April 2013)

NOTE: These exercises are meant for you to refresh your C++ knowledge and/or learn
some new things. Don’t worry if you don’t know everything – try the reference pages/
stackoverflow.com / Google / asking the Übungsleiter to obtain the missing information!

You can compile simple C++ programs consisting of one source code file, e.g. example.cpp,
as follows:

1 g++ −Wall example . cpp −o example

This creates an executable binary example which you can run by calling
1 . / example

Exercise 1: The very basics of I/O

a) Write a program that prints “Hello World!” to the command line. Do this (i) without
and (ii) with the use of the line using namespace std;.
• What is the difference?
• Explain the line #include <iostream>.

b) Write a program that prints “Hello 〈name〉!”, where 〈name〉 stands for an arbitrary
name. This name should be a string that is

(i) specified using command line arguments. Make sure that your program prints
a usage message and exits correctly if it is called with the wrong number of
arguments.

(ii) specified during runtime using the standard input stream cin. Make sure that
you check whether reading the name was successful.

c) Write a program that prints “Hello World!” to a text file. The name of this file should
be

(i) specified as a command line argument. Again, remember checking the program
arguments as well as the sucess of opening the text file for writing.

(ii) specified during runtime as testfile_<time>.txt, where <time> is the return
value of the function time.

Keywords: ofstream, stringstream

1

Exercise 2:
Write a program that reads in an integer N > 0 and then finds the first N primes. A
prime number is a number that only has two divisors: one and itself.

Exercise 3: Tic-Tac-Toe
Implement a Tic-Tac-Toe game for two players. The program should always check if the
players’ moves are valid and if one player has won (and then print out who that was).

a) Modify the program so that it is a one player game against the computer (with the
computer making its moves randomly).

b) Modify the program so that anytime the player is about to win (aka, they have 2 of 3
x’s in a row, the computer will block with an o).

Think about a sensible design, using functions and/or class structures.

Exercise 4: The keyword const

a) The following snippet has bugs. Identify them and indicate how to correct them,
without using a computer!

1 class Point{
2 private :
3 int x , y ;
4
5 public :
6 Point (int u , int v) : x (u) , y (v) {}
7
8 int getX () { return x ; }
9 int getY () { return y ; }

10
11 const int∗ getXptr () {return &x ; }
12
13 void s c a l e (int& a) {
14 x ∗= a ;
15 y ∗= a ;
16 }
17
18 } ;
19
20 int main () {
21 const Point myPoint (5 , 3) ;
22
23 int s = 3 ;
24 myPoint . s c a l e (s) ;
25
26 int∗ x = myPoint . getXptr () ;
27 ∗x = 4 ;
28
29 cout << myPoint . getX () << ” ” << myPoint . getY () << endl ;
30 return 0 ;
31 }

2

b) What are the differences between the following function declarations, respectively?

(i) 1 int getX () ;

1 int getX () const ;

(ii) 1 const int∗ getXptr () ;

1 int∗ getXptr () ;

1 int∗ const getXptr () ;

1 int const∗ getXptr () ;

(iii) 1 void s c a l e (int& a) ;

1 void s c a l e (const int& a) ;

Exercise 5: The algorithm sort and function objects

a) What’s the difference between a struct and a class?

b) Background/Explanation:
Several C++ library functions/interfaces permit or require the user to specify a func-
tion of a given type. One important example is the STL algorithm sort:

1 template <class RandomAccessIterator , class Compare>
2 void s o r t (RandomAccessIterator f i r s t , RandomAccessIterator l a s t ,

Compare comp) ;

It sorts a C++ container using a user-specified function comp, which should take two
elements of the container as arguments and return true if the first element should be
sorted before the second one (and false otherwise). If no function comp is given, the
comparison operator < is used.
The following example is taken from www.cplusplus.com/reference/algorithm/sort/:

1 // s o r t a lgor i thm example
2 #include <iostream> // std : : cout
3 #include <algor ithm> // std : : s o r t
4 #include <vector> // std : : vec to r
5
6 bool myfunction (int i , int j) { return (i<j) ; }
7
8 struct myclass {
9 bool operator () (int i , int j) { return (i<j) ;}

10 } myobject ;
11
12 int main () {
13 int myints [] = {32 ,71 ,12 ,45 ,26 ,80 ,53 ,33} ;
14 std : : vector<int> myvector (myints , myints+8) ;
15
16 // us ing d e f a u l t comparison (operator <) :
17 std : : s o r t (myvector . begin () , myvector . begin () +4) ;
18
19 // us ing func t i on as comp
20 std : : s o r t (myvector . begin () +4, myvector . end () , myfunction) ;

3

21
22 // us ing ob j e c t as comp
23 std : : s o r t (myvector . begin () , myvector . end () , myobject) ;
24
25 return 0 ;
26 }

Note that as user you can either specifiy a function (here: my_function) or a class that
has overloaded the operator() (here: myclass). Such a class is called function object,
because you can use it like a function:

1 bool i s s m a l l e r = myobject (3 , 5) ;

The advantage of such an object is that unlike a function, it can carry additional infor-
mation (e.g. member variables) that can be used inside the operator().

Task:
On the homepage you find a version of the class Point from Exercise 4. Of course, in 2D
there are several ways to sort points. Two examples are the following:

x

y

•
•
•

•
•
•

x direction first
x

y

•
•
•

•
•
•

y direction first

Write a function object class PointSorter that has a member variable indicating whether
points should be sorted according to their x- or their y-components and complete the
missing parts in int main().

Exercise 6: Bunnys
Write a program that simulates a bunny colony. Such a colony consists of bunny objects
that each have

• a gender: male/female (random at creation, probability p = 0.5)

• a color: white/brown/black/spotted

• an age : 0-10 (years old)

• a name : randomly chosen at creation from a list of bunny names

• vampire bunny: true/false (decided at creation, probability p = 0.02 to be true)

Simulation rules:

• At program initialization 5 bunnies must be created and given random colors.

• Each turn afterwards the bunnies each age 1 year.

• As long as there is at least one male age 2 or older, for each female bunny in the list
age 2 or older, a new bunny is created in each turn. (So if there was 1 adult male
and 3 adult female bunnies, three new bunnies would be born each turn).

4

• New bunnies born should be the same color as their mother.

• If a bunny becomes older than 10 years, it dies.

• If a vampire bunny is born, then each turn it will change exactly one non-vampire
bunny into a vampire. (If there are two vampire bunnies, two bunnies will be
changed each turn and so on...)

• Vampire bunnies are excluded from regular breeding and do not count as adult
bunnies.

• Vampire bunnies do not die until they reach age 50.

• If the bunny population exceeds 1000 bunnies, a food shortage occurs that kills
exactly half of the bunnies (randomly chosen).

Your program should print a list of all the bunnies in the colony each turn along with
all the bunnies details, sorted by age. The program should also output each turns events
such as

1 Bunny Thumper was born !
2 Bunny Fufu was born !
3 Vampire Bunny Darth Maul was born !
4 Bunny J u l i u s Caesar died !

When all the bunnies have died, the program terminates.

Modify your program so that it runs in real time, with each turn lasting 2 seconds, and
a one second pause between each announement.

Again, think of a sensible design of your program.

5

