
Prof. Dr. Karsten Urban Institute for Numerical Mathematics
Kristina Steih Ulm University

Summer Term 2014

Numerical Finance – C++ Warmup
(Exercise Class April ??, 2014)

Exercise 1: Congruential Generators

a) Let (yn)n∈N ⊂ ZM be a sequence of pseudo random numbers (PRNs) generated by a
linear congruential generators, i.e.

yn+1 = (ayn + b) mod M.

Usually, one is interested in uniformly distributed PRNs on [0, 1], so that usually the
fractions un = yn

M
∈ [0, 1] are considered.

• Show that (un)n∈N fulfills the recurrence un+1 =
(
aun + b

M

)
mod 1, where

z mod 1 := z − bzc.
• Why is it not a good idea to use that equation directly?

b) The so-called Fibonacci sequence is given by

yn+1 = (yn−1 + yn) mod M.

It is one of the examples for bad PRGs. One reason is the following: A reasonable
requirement for a generator is that yn−1 < yn+1 < yn for about one sixth of the time
(as all orderings of the numbers yn−1, yn, yn+1 should be equally probable). Show that
this ordering never occurs for the Fibonacci sequence.

c) One (once) very popular generator, implemented by IBM in 1970, is the RANDU
generator, a linear congruential generator with a = 216 + 3 = 65539, b = 0, y0 odd and
M = 231 = 2147483648.
Show that for un := yn

M
∈ [0, 1), un+2−6un+1 +9un is an integer. What does this imply

for the distribution of triples (un, un+1, un+2) in the unit cube?

Hint: First show that yn+2 = 6yn+1 − 9yn + c · 231 for some c ∈ N.

d) Numbers of the form Mn = 2n − 1 are called Mersenne numbers.

• What are the first 4 Mersenne prime numbers?

• Is M11 a prime number?

Programming Exercise 1: Linear Congruential Generators (10 Points)

There are many different implementations of linear congruential generators. We want to
compare the following two examples:

• RANDU: See Exercise 1(c).

1

• UNIX rand(): standard Unix random number generator.

a = 1103515245, b = 12345 and M = 231.

Implement a linear congruential generator. For both examples, using for example y0 = 1,

a) simulate 30000 uniformly distributed 1-dimensional pseudo-random numbers on [0, 1]
and plot a histogram.

b) simulate 10000 uniformly distributed 3-dimensional pseudo-random vectors on [0, 1]3

and visualize these samples in a 3D plot.

Compare the performance of the generators. Which one would you prefer?

Hints:

• In C/C++, use long long int to avoid floating point exceptions. Usage:

long long int M = 2147483648LL;

• GNUPLOT can plot histograms with the following script:

n = 50 # number of intervals

width = 1./n

bin(x,width) = width*floor(x/width) + width/2.0

plot "data.txt" using (bin($1,width)):(1.0) smooth freq with boxes title "MyData"

• Obtain 3-dimensional vectors by setting u1 =
(y1
M ,

y2
M ,

y3
M

)T
, u2 =

(y4
M ,

y5
M ,

y6
M

)T
, etc.

• 3D vectors can be plotted with GNUPLOT using splot "file", where the file is of the
form

u11 u12 u13

u21 u22 u23

...

Be sure that the terminal type is wxt (set terminal wxt), so that you can rotate the
plot.

Programming Exercise 2: χ2-Test (10 Points)

One possibility to verify if a sequence of independent and identically distributed random
variables t1, . . . , tn follows a certain distribution is the χ2-test: We know that

χ2
(n)

d−→ χ2
m as n→∞,

so that
lim
n→∞

P[χ2
(n) > χm,1−α] = α, (1)

where is χm,1−α the (1− α)-quantile of the χ2-distribution with m degrees of freedom.

a) Show that

χ2
(n)(x1, ..., xn) =

m∑
i=0

B2
i

Ei
− n.

2

b) Implement the computation of the test statistic χ2
(n) for uniformly distributed random

variables. Test whether the sequence of random numbers generated by the RANDU-
algorithm is accepted by the test or not.

Hint: Recall that, knowing (1), the hypothesis that t1, . . . , tn are iid is rejected (at signifi-

cance level α) if χ2
(n) > χm,1−α.

3

