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Programming Exercise 1: Parabolic FEM 2D (16 points)

Solve the 2D heat equation

ut −∆u = f on Ω = (0, 1),

u(t, x) = g(t, x), on Γ = ∂Ω,

u(0, x) = u0(x), ∀x ∈ Ω.

using linear Finite Elements in space. Unlike in 1D, where we have first used the simplified structure
SimpleParabolicFEM1D, we will now in 2D consider directly the full structure ParabolicFEM2D that
allows a time-dependent assembly of stiffness matrix and right-hand side (compare Prog. Ex. 3 on
Sheet 9).
Hence, you will find the following on the homepage:

• TimedepPDE2D: An extension of the class PDE2D that has the member current_time and the
function set_time() to change this variable.

• ParabolicFEM2D: The FEM model class that can solve parabolic PDEs using a general θ-
scheme. As in 1D, we can now assemble time-dependent systems A = Ah(t) and F = bh(t) by
calling in each time step

pde2d.set_time(t);

assemble_A();

• As in 1D, our PDE problem is now called TimedepPoisson2D and is derived from TimedepPDE2D.
Note that all that has changed are the signatures of the internal functions pointers for f and g
– these functions now take two parameters (time and space). They are called with the member
variable current_time and the argument x.
Hence, you can copy everything you have done in Poisson2D and only have to adapt the
function calls of f and d_bc.

Complete the missing parts, so that you can solve a general θ-scheme.

Use your implementation to solve the heat equation for

a) f(t, x) = 1, g(t, x) = 0, u0(x) = 0.

b) f(t, x) = 10, g(t, x) = (1− t)‖x‖1, u0(x) = ‖x‖1.

Visualize your solutions u = u(t, x).
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Hints:

• Mass matrix assembly: The mass matrix Mh is again assembled completely inside the function
ParabolicFEM2D::assemble_M(). As for the stiffness matrix, this assembly is now done on the
reference element, using the formula for integration by substitution:
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∫
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(x)dx =

∫
T̂
Nr(x̂)Ni(x̂)|detS|dx̂.

The integrals can again be computed by hand. Keep in mind that you only have an entry Mi,j if
neither xi nor xj are on the Dirichlet boundary.

• Sparse Matrix: The sparse matrix class has been extended. Look at sparsematrix.h and operators.h
to find the additional operators and functions (e.g. for +, =, multiplication with a scalar, clear the
matrix data etc.).

• Plot script: In order to visualize the solution, you might want to plot a sequence of 3D plots. On
the homepage, you find an example for a gnuplot script that produces such a gif file from data that
has been written by the function ParabolicFEM2D::write_solution_on_grid. In addition to the
data file name, you have to specify the number of timesteps and elements in the grid, as well as the
plot ranges (in the square brackets). This script only works with gnuplot version 4.4 or newer.
Usage: Either call directly from the command line
gnuplot < plot_u_2d_parab.gp
or start gnuplot and then call
gnuplot> load ‘‘plot_u_2d_parab.gp’’

Programming Exercise 2: American Options 1D (19 points)

Compute the value of an American Put option with σ = 0.6, r = 0.06, T = 1, K = 12. Recall
that this means solving the inequality

Vt(S, t) +
σ2

2
S2VSS(S, t) + rSVS(S, t)− rV (S, t) ≤ 0

with V ≥ (K−S). As before, we can transform this to the heat inequality using the transformations

S = Kex, t = T − τ
1
2
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σ2
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)
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)
τ
)
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This leads to the linear complementary problem

yτ − yxx ≥ 0,

y − g ≥ 0

(yτ − yxx)(y − g) = 0

y(x, 0) = g(x, 0),

lim
x→±∞

y(τ, x) = lim
x→±∞

g(τ, x),

where
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}
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}
(Put),

g(τ, x) = exp

{
1
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)
τ

}
max

{
e
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1
2
(q−1)x, 0

}
(Call).

To implement this, use Programming Exercise 3 from Sheet 9 as a starting point. From there, you
will have to do the following steps:
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• Implement the projected SOR method to solve the linear complementary problem. In contrast
to the cg or gmres implementation. you can assume that the SOR algorithm handles only sparse
matrices. Recall that you cannot use the ()-operator on sparse matrices without knowing if
there ist a matrix entry, since you would create a matrix a full matrix in the process. Implement
the SOR algorithm such that it can handle sparse matrices of arbitrary structure!

• Copy the class parabolicfem1d.h and name it parabolicineqfem1d.h. For the linear com-
plimentary problem, we have to make minor changes in the class:

– Add the time-dependent obstacle function g(τ, x).

– Adjust the solve-routine, using e.g. ω = 1.25.

• Adjust the main program.

• Transform the solution back into Black-Scholes coordinates and plot the obstacle, the solution
V (t, S) and the contact point into one plot.
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