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Exercise 1: Variance Reduction Techniques I (Control variates)

Consider a random variable Z with expected value z = E[Z] and variance Var[Z] = σ2
Z . The usual

Monte-Carlo estimator for the z is the empirical mean

ẑ :=
1

N

N∑
i=1

Zi, Zi independent realizations of Z.

As the convergence of Monte-Carlo behaves like
σ2
Z√
N

, the idea of so-called variance reduction tech-
niques is to construct a different estimator with a lower variance.

One possibility is to consider a control variate W with known mean E[W ] = w, variance Var[W ] =
σ2
W , and N independent copies W1, . . . ,WN of W , where we assume that

• Cov(Wi, Zi) = Cov(W,Z) > 0 for all i = 1, . . . , N .

• Wi, Zj are independent for i 6= j.

Instead of ẑ, one then uses the estimator ẑCV as approximation for z, where

ẑCV := ẑ + α(ŵ − w) with ŵ :=
1

N

N∑
i=1

Wi.

a) Show that for all α ∈ R, E[ẑCV ] = z, Var[Z + α(W − w)] = σ2
Z + 2αCov(W,Z) + α2σ2

W and
Var[ẑCV ] = 1

N
(σ2

Z + 2αCov(W,Z) + α2σ2
W ).

b) Show that Var[ẑCV ] attains a global minimum 1
N
σ2
Z(1− ρ2) for α = −Cov(W,Z)

σ2
W

where

ρ :=
Cov(W,Z)√

σ2
Wσ

2
Z

.

Exercise 2: Sparse Grids

The sequence of one-dimensional grids with ni = 2i − 1, i = 1, 2, . . . equidistant points x1, . . . , xni

on [a, b] forms a nested grid. We can use the (open) Newton Cotes formulas to construct a simple
sparse grid. They are given by

ni = 1 : (b− a)f(x1),

ni = 3 :
b− a

3
(2f(x1)− f(x2) + 2f(x3)).

Using these as one-dimensional quadrature formulas Q(1) and Q(2), compute the first two-dimensional
Smolyak Quadrature formula Q(1, 2) on [0, 1]2. What does the grid look like?
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Programming Exercise 1: Variance Reduction Techniques II (10+5* Points)

a) Antithetic variables
Antithetic variables use the fact that if u ∼ U [0, 1] then also ũ := 1 − u ∼ U [0, 1]. Using
u1, ũ1, u2, ũ2, . . . in a simulation might reduce the variance σF if Cov

(
F (u), F (ũ)

)
< 0, as is

the case for example for monotone functions F .
Compute the integral ∫ 1

0

ecxdx

by Monte Carlo integration for different parameters c (e.g. c = 0.5, 1, 2) with and without the
use of antithetic variables and compare the error and the convergence rates. What do you
observe?

b) Control variates
Consider the estimator Z := 1{U2

1+U
2
2≤1} of π

4
where U1, U2 are independent and uniformly

distributed on [0, 1]. As a control variate, consider W := 1{U1+U2≥
√
2} with E[W ] = 1

2
(2−
√

2)2.

(i) Give a geometrical interpretation for Z and W . Are there even better choices for W?

(ii) Estimate π via Monte-Carlo simulation with and without the use of the control variate
W . Compare the error and the convergence rates. As σ2

Z , σ2
W and Cov(W,Z) are not

given, use their empirical estimators to get an approximation for α.

* In at least one of (a) or (b), use the Mersenne Twister (and uniform distribution) from the
C++11 library <random> as PRNs. You will have to add -std=c++11 as compiler option.

Programming Exercise 2: MC vs QMC (8+2* Points)

Compute the integral

I3[f ] =

∫
[0,1]3

x21 x
2
2 x

2
3 dx1dx2dx3,

using

a) Monte Carlo integration,

b) Quasi-Monte Carlo integration, using the Halton sequence.

c) Quasi-Monte Carlo integration, using Sobol numbers (a (t, s)-sequence). You can find a text
file with three-dimensional Sobol numbers on the homepage.

*(It is often recommended to skip the first Sobol numbers, since they are not as evenly distributed as

later ones. One (heuristic) rule is e.g. to skip the first 2n−1 numbers if one uses 2n numbers in the

simulation. Try this for the above example.)

Visually compare all methods by plotting their integration errors and their theoretical convergence
rates.
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