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Exercise 1: Higher Order Schemes
Derive the following higher order Taylor scheme:
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Consider only the terms that are not already in the Milstein scheme. Use the fact that one can
replace the integral
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Exercise 2: Multidimensional Schemes
Consider a d-dimensional 1t6 process X (t) = (X1(t),..., X4(¢))T, driven by an m-dimensional
Brownian motion W (t) = (Wy(t), ..., Wy, (t))T, ie. Xy = Xo+ ja(s, X,)ds + ftb(S,Xs)dW(S)
with a : [0, 7] x R — R4, b: [0,T] x R — R¥>™, ' '
Use the multidimensional [to formula to derive the appropriate Euler and Milstein schemes.

Hint:

e Consider each component X; separately, proceed as in Section 6.7 and keep in mind that we neglect
almost all double integrals.
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where Vi, is a random variable with Vi; = —Vj; for | > k and Vj; = +A,, with probability % for I < k.

e Multidimensional It6 Formula: For a d-dim. It6 process X, f : [0,7] x R — R with appropriate
partial derivatives, 3 :=b- b7 and Y (¢) := f(¢, X(¢)), it holds with b; . the i-th row of b
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Programming Exercise 1: Higher Order Schemes (15 + 2 Points)

Consider (again) the European Put from Programming Exercise 1, Sheet 5 (Sy = 20, K = 25,
r =0.02, 0 =04, T = 1.5). For the three methods

e Fuler-Maruyama,
e Milstein,
e the scheme from (1),
compute
(i) the strong errors,
(i) the weak errors w.r.t. the option payoff function,
(iii) the error w.r.t the Black-Scholes option price.

Compare the convergence rates of the errors w.r.t the time discretization, using e.g. M = 10°
Monte-Carlo simulations. What do you see? What is the strong (weak) convergence order of
the Taylor scheme (1)7

*Compare your results for the error of the option price with those obtained for significantly
more MC simulations runs, e.g. M = 10°, M = 107 (note that this may take some time!). What
do you see? What does this imply for the relation between Monte-Carlo and SDE discretization
error?

Programming Exercise 2: Heston Model (13 Points)

As the assumption of constant volatility in the Black-Scholes framework is often not consistent
with market option prices, many models use local or stochastic volatility functions. One example
for a stochastic volatility model is the Heston model, which models the volatility as a mean
reverting square-root diffusion process and in its simplest form looks as follows:

dS(t) = rS(t)dt + /V(©)S(t)dWi (),
AV (t) = a0 — V())dt + /V (O)odWs(t).

Use your results from Exercise 2 to compute the price of a European call with parameters
T=1, K=100,r =0.05 06 =0.3, a = 1.2, § = 0.04 and initial values Sy = 100, V; = 0.04 in
this model,

a) with the Euler scheme,

b) with Milstein.

Hint: W7 and W5 are assumed to be independent. This simplifies the multidimensional schemes
significantly!



