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[Disclaimer: The solution of this exercise sheet is actually shorter than the following formulation
of the questions themselves.]

Exercise 1: General 6-schemes for finite elements

To understand how the Black-Scholes equation can be discretized by means of the finite elements
method, we consider more generally the following parabolic model problem:
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The standard procedure to discretize (1) consists of first discretizing the problem in the space variable
x, and afterwards one discretizes the resulting semi-discrete problem in the time variable ¢.

a) To derive the semi-discrete problem, we make the following separation ansatz
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=1

where u; for i = 1,..., N are assumed to be continuously differentiable. Show that by multi-
plying by ¢; (j =1,..., N), integrating over = from 0 to 1 and finally replacing u in (1) by s,
we obtain the semi-discrete problem
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b) Obviously, (2) is an ordinary differential equation y'(t) = F(t,y(t)) where F : [0,1] x R*™' —
RY is supposed to be Lipschitz continuous. So, if we discretize the time interval [0, 1] by an



equidistant grid {0 = to,t1,...,tm_1,tm = 1} with mesh size At, a full discretization of (1) is
obtained by the so called 6-scheme
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for 6 € [0, 1].
Show that the full discretization of (1) is

{ (M, + 0AtA] u(t,) = [My, — At(1 — 0) Ay u(ty_1) + At [0by(t,) + (1 — 0)ba(t,—1)]

forv=1,...,m (3)

Programming Exercise 1: Elliptic FEM 1D (21 points)
Solve the 1D Poisson problem

—Uyy = f(2) on Q= (0,1),
u(0) = go, u(l) = g1.

using linear Lagrangian Finite Elements (the “hat basis”). On the homepage, you find header files
for the following classes:

e E11lipticFEM1D: Contains the finite element structures, i.e. the 1D mesh, the solution vector,
information about the Dirichlet boundaries etc. Also has a reference to a class that provides
the PDE which we want to solve.

e PDE1D: The (abstract) class for a PDE problem which we want to solve. This is nothing but an
interface, specifying what a PDE problem class should look like. There can never be an object
of this class, but we can derive different classes for different PDEs from this one. The abstract
function assemble_on_element has to be implemented in each of these derived classes, so that
it is guaranteed that this function always exists.

e PoissonlD: One example of a concrete PDE problem. This class provides the assembly of the
Laplace operator on a given finite element (here in 1D specified by the interval boundaries x;,
x;+1). In requires function pointers describing the parameters of the PDE: f for the right hand
side and g for the Dirichlet boundaries (with ¢g(0) = go, g(1) = ¢1).

Moreover, you find a file test_femld.cpp that uses the above classes to set up a Poisson problem
and solve this PDE.

Implement the missing function implementations and solve the problem for f(z) =1, go = g1 = 0,

as well as for f(z) =1, g(z) = —3 (with solution u(z) = —3z?). Plot your solutions u.

Hints:

e Dirichlet boundary conditions: In order to homogenize the problem, we choose a function g € Sy
as g = goto + g1¥n+1. Then ¢g(0) = go, g(1) = g1. The homogeneous equation system Lw = f — Lg
then reads in the discrete space

N
Zu]a(¢]7wl) = (f: '¢2)0 - [gOa(¢07wi) + gla(wN—f—la %)]7 1= 17 v 7N7
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and up = Zjvzl ujy; + g is a solution of the original boundary value problem. Note that most
additional terms goa(to, i), g1a(¥n+1,%;) on the right hand side are zero. Which ones are not?



e Element-wise assembly: Each entry A;;,4,j =1,..., N, in the stiffness matrix Aj can be decom-
posed into the contributions on the individual elements (intervals in 1D):

N
T SR e oY S NER AT

As A 7& 0 only for i,5 € {k,k + 1}, we have to assemble on each interval only the 2 x 2-matrix
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Therefore, we can assemble Ap, by once looping over all intervals, calculating the individual contribu-
tions A(k) and adding them to the corresponding entries in the global stiffness matrix Ap.

AR AR
AR) = kR KA+ | which can be done “by hand” (cf. lecture).

o Assembly of right-hand side: As for the stiffness matrix, we perform an element-wise assembly
for each entry:
zk—O—l N
fwzo—/f e dz-Z/ i(@)de =3 b, =1, N
k=0

We use the trapezoidal rule to approximate the integrals: bgk) = f(x"')wi(Ik)+f2(x’“+l)wi(x’“+l) (a1 — x)-
(k)

Again, on each interval, we only have to compute the vector b*) := (b,gk), by, _H)T, which is easily done
using the nodal structure of our basis.

e Data structures: The linear system itself is only solved for the unknown coefficients u;, j = 1,..., N
(the so-called degrees of freedom). However, we want a solution representation for all mesh points
{zo,...,xN+1}, including the boundary. The easiest solution (which avoids unnecessary copy op-
erations or separate structures for inner and boundary values) is to just assemble a system of size
(N 4+ 1) x (N 4+ 1) and fill the rows and columns corresponding to Dirichlet boundary points with
ZETos.

For our cg-solver, this causes no problem at all. Note, however, that one usually sets the diagonal
entries A; ; = 1 in the Dirichlet rows/columns, so that the matrix has full rank. This is important for
some solvers and most preconditioners.

e General note: The provided structures are supposed to help you. They are sufficient for the solution
of the exercises. However, if you prefer adding auxiliary functions, operators or variables — feel free
to do so (even if I will probably ask you why).

The material includes classes for dense and sparse matrices as well as the necessary operators. Of
course, you can also use your own classes from Sheet 8.

Programming Exercise 2: Parabolic FEM 1D (21 points)

Solve the 1D heat equation
Up — Uy = f(2) on 2 = (0,1),
u(t,0) = go, u(t,1) = g1, vVt e [0,T],
u(0,x) = ug(x).
using linear Finite Elements in space. Again, you find a header file SimpleParabolicFEM1D on the

homepage. Complete the missing parts, so that you can solve a general §-scheme.

You can assume that the elliptic operator part (here —u,,) as well as the right hand side f are time

independent. What would you have to change in the given structure in order to solve a general
parabolic PDE with time-dependent A = A(t,u) and f = f(t,z)?

Use your implementation to solve the heat equation for f(x) =1, go = g1 = up = 0 as well as for
flz) =g(x) =1, up(x) = (1 — x) + 1. Plot your solutions u = u(t, z) in a 3D plot.



Hints:

e Mass matriz assembly: For the #-scheme we now have to assemble not only the stiffness matrix
Ap, but also the so-called mass matriz Mp. This matrix only depends on the given basis (and
not on any problem-dependent parts), so this assembly can be done completely inside a function
SimpleParabolicFEM1D: :assemble_M(). Again, the integrals can be computed by hand.

Programming Exercise 3*: Black Scholes FEM 1D (6* points)

For the Black-Scholes Equation, we additionally need time-dependent boundary conditions. As they
enter the right hand side of the equation system at each time step, we would like to be able to
perform time-dependent matrix assemblies.

In order to do so, we now change the structure from Programming Exercise 2 in the following way:

e We extend the class PDE1D by a member variable current_time and now call it TimedepPDE1D.
We also need a function set_time() to change that variable.

e The FEM model class is now called ParabolicFEM1D and has an object of type TimedepPDE1D
as member. Note that it looks almost exactly like the SimpleParabolicFEM1D. The only
difference is that we can now call

pdeld.set_time(t);
assemble_AQ);

in each time step inside the #-scheme and obtain assembled variables A = A, (t) and F' = by,(t).

e Our PDE problem is now called TimedepPoisson1D and is derived from TimedepPDE1D. Note
that all that has changed are the signatures of the internal functions pointers for f and g —
these functions now take two parameters (time and space). They are called with the member
variable current_time and the argument x.

You can now copy everything you have done in Programming Exercise 2 into TimedepParabolicFEM1D
and TimedepPoissonlD. The only thing you have to adapt are the functions

e TimedepParabolicFEM1D: :solve() : As A,(¢) and by(t) are now time-dependent, you have to
modify the #-scheme as indicated above to realize the time-dependent assembly.

e TimedepPoissonl1D::assemble_on_element(...) : Replace each former call f(x) by the call
f(current_time,x).

Compile and run the test program test_black_scholes.cpp that sets up the problem for the Eu-
ropean Put from Sheet 8. Plot the solution in a 3D plot.



