
Prof. Dr. Karsten Urban Institute for Numerical Mathematics
Kristina Steih Ulm University

Summer Term 2014

Numerical Finance – C++ Warmup
(Exercise Class April 25, 2014)

NOTE: These exercises are meant for you to refresh your C++ knowledge and/or learn
some new things. Don’t worry if you don’t know everything – try the reference pages/
stackoverflow.com / Google / asking the Übungsleiter to obtain the missing information!

You can compile simple C++ programs consisting of one source code file, e.g. example.cpp,
as follows:

1 g++ −Wall example . cpp −o example

This creates an executable binary example which you can run by calling
1 . / example

Exercise 1: The very basics of I/O

a) Write a program that prints “Hello World!” to the command line. Do this (i) without
and (ii) with the use of the line using namespace std;.
• What is the difference?
• Explain the line #include <iostream>.

b) Write a program that prints “Hello 〈name〉!”, where 〈name〉 stands for an arbitrary
name. This name should be a string that is

(i) specified using command line arguments. Make sure that your program prints
a usage message and exits correctly if it is called with the wrong number of
arguments.

(ii) specified during runtime using the standard input stream cin. Make sure that
you check whether reading the name was successful.

c) Write a program that prints “Hello World!” to a text file. The name of this file should
be

(i) specified as a command line argument. Again, remember checking the program
arguments as well as the sucess of opening the text file for writing.

(ii) specified during runtime as testfile_<time>.txt, where <time> is the return
value of the function time.

Keywords: ofstream, stringstream

1

Exercise 2:
Write a program that reads in an integer N > 0 and then finds the first N primes. A
prime number is a number that only has two divisors: one and itself.

Exercise 3:
Write a program that loops indefinitely. In each iteration of the loop, read in an integer
N (declared as an int) and write N5 to the standard output if N is nonnegative and
divisible by 5, otherwise write −1. Use the ternary operator (?:) to accomplish this.
(Hint: the modulus operator may be useful.)

a) Modify the code from so that if the condition fails, nothing is printed. Use an if
and a continue command (instead of the ternary operator) to accomplish this.

b) Modify the code to let the user break out of the loop by entering -10 or any negative
number. Before the program exits, output the string ”Goodbye!”.

Exercise 4:
What does this snippet do? Find out withouth using a computer – try a few examples
with small numbers on paper if you’re stuck.

1 // bob and do le are i n t e g e r s
2 int accumulator = 0 ;
3 while (true) {
4 i f (do l e == 0) break ;
5 accumulator += ((do le % 2 == 1) ? bob : 0) ;
6 do l e /= 2 ;
7 bob ∗= 2 ;
8 }
9 cout << accumulator << endl ;

Exercise 5: Tic-Tac-Toe
Implement a Tic-Tac-Toe game for two players. The program should always check if the
players’ moves are valid and if one player has won (and then print out who that was).

a) Modify the program so that it is a one player game against the computer (with the
computer making its moves randomly).

b) Modify the program so that anytime the player is about to win (aka, they have 2 of 3
x’s in a row, the computer will block with an o).

Think about a sensible design, using functions and/or class structures.

2

Exercise 6: The keyword const

a) The following snippet has bugs. Identify them and indicate how to correct them,
without using a computer!

1 class Point{
2 private :
3 int x , y ;
4
5 public :
6 Point (int u , int v) : x (u) , y (v) {}
7
8 int getX () { return x ; }
9 int getY () { return y ; }

10
11 const int∗ getXptr () {return &x ; }
12
13 void s c a l e (int& a) {
14 x ∗= a ;
15 y ∗= a ;
16 }
17
18 } ;
19
20 int main () {
21 const Point myPoint (5 , 3) ;
22
23 int s = 3 ;
24 myPoint . s c a l e (s) ;
25
26 int∗ x = myPoint . getXptr () ;
27 ∗x = 4 ;
28
29 cout << myPoint . getX () << ” ” << myPoint . getY () << endl ;
30 return 0 ;
31 }

b) What are the differences between the following function declarations, respectively?

(i) 1 int getX () ;

1 int getX () const ;

(ii) 1 const int∗ getXptr () ;

1 int∗ getXptr () ;

1 int∗ const getXptr () ;

1 int const∗ getXptr () ;

(iii) 1 void s c a l e (int& a) ;

1 void s c a l e (const int& a) ;

3

Exercise 7: Bunnys
Write a program that simulates a bunny colony. Such a colony consists of bunny objects
that each have

• a gender: male/female (random at creation, probability p = 0.5)

• a color: white/brown/black/spotted

• an age : 0-10 (years old)

• a name : randomly chosen at creation from a list of bunny names

• vampire bunny: true/false (decided at creation, probability p = 0.02 to be true)

Simulation rules:

• At program initialization 5 bunnies must be created and given random colors.

• Each turn afterwards the bunnies each age 1 year.

• As long as there is at least one male age 2 or older, for each female bunny in the list
age 2 or older, a new bunny is created in each turn. (So if there was 1 adult male
and 3 adult female bunnies, three new bunnies would be born each turn).

• New bunnies born should be the same color as their mother.

• If a bunny becomes older than 10 years, it dies.

• If a vampire bunny is born, then each turn it will change exactly one non-vampire
bunny into a vampire. (If there are two vampire bunnies, two bunnies will be
changed each turn and so on...)

• Vampire bunnies are excluded from regular breeding and do not count as adult
bunnies.

• Vampire bunnies do not die until they reach age 50.

• If the bunny population exceeds 1000 bunnies, a food shortage occurs that kills
exactly half of the bunnies (randomly chosen).

Your program should print a list of all the bunnies in the colony each turn along with
all the bunnies details, sorted by age. The program should also output each turns events
such as

1 Bunny Thumper was born !
2 Bunny Fufu was born !
3 Vampire Bunny Darth Maul was born !
4 Bunny J u l i u s Caesar died !

When all the bunnies have died, the program terminates.

Modify your program so that it runs in real time, with each turn lasting 2 seconds, and
a one second pause between each announement.

Again, think of a sensible design of your program.

4

