300 Years of Optimal Control:
From The Brachystochrone
to the Maximum Principle

Hector J. Sussmann and Jan C. Willems

ptimal control was born in 1697—300 years ago—in Gron-
Oingen, a university town in the north of The Netherlands,
when Johann Bernoulli, professor of mathematics at the local
university from 1695 to 1705, published his solution of the bra-
chystochrone problem. The year before he had challenged his
contemporaries to solve this problem. We will tell the story of
some of the events of 1696 and 1697—when solutions were sub-
mitted by Johann Bernoulli and such other giants as Newton,
Leibniz, Tschirnhaus, Hopital, and Johann’s brother, Jakob
Bernoulli—and then sketch the evolution of this field until it
reached maturity in our century. Since the birth of optimal con-
trol, like all births, did not take place in a vacuum, the historical
context will first be described, by outlining briefly some of the
main ideas and discoveries on curve minimization problems
from classical Greece up to Bernoulli’s time. We will then state
the brachystochrone problem, present Bernoulli’s solution, and
also provide a short nontechnical interlude, dealing with Ber-
noulli’s personality and with his exceptionally gifted family.
Subsequently we will follow the intricate path that has led to the
modern versions of the necessary conditions for a minimum,
from the Euler-Lagrange equations to the work of Legendre and
Weierstrass and, eventually, the maximum principle of optimal
control theory. Finally, we will “close the loop” by returning to
the brachystochrone from the perspective of modern optimal
control.

Our thesis, that the brachystochrone marks the birth of opti-
mal control, is undoubtedly somewhat controversial, and some
readers—especially those who espouse views currently in vogue
about the social construction of reality—might suspect that it is
merely areflection of the professional and nationalistic biases of
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the authors. We gladly plead guilty to most of this charge—and
state for the record that we are both control theorists, and one of
us is a professor at Groningen—asking only that the word
“merely” be stricken out. Our biases may of course explain how

Fig. 1. Johann Bernoulli (1667-1748).
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Fig. 2. The Brachystochrone Problem (Acta Eruditorum, June 1696,
p. 269).

we became interested in this issue, but are not at all relevant to the
merit and validity of our conclusion.

In this article, we will focus on point-to-point optimal control
problems, where the objective is to transfer the state of a dynami-
cal system with minimum cost from one point to another. This
means that we are leaving out the whole area of transversality
conditions, which arise when one considers “set-to-set” prob-
lems. Furthermore, we will not discuss at all the very important
related question of sufficient conditions (and “Hamilton-Jacobi
theory”), as well as the problem of finding optimal controllers,
for example in the form of feedback laws, which is of course also
a central concern of optimal control theory.

Bernoulli’s Challenge

In the June 1696 issue of Acta Eruditorum, Bernoulli posed
the following challenge (see Fig. 2):

Invitation to all mathematicians to solve a new problem.

Ifin avertical plane two points A and B are given, then it is re-
quired to specify the orbit AMB of the movable point M, along
which it, starting from A, and under the influence of its own
weight, arrives at B in the shortest possible time. So that those
who are keen of such matters will be tempted to solve this prob-
lem, is it good to know that it is not, as it may seem, purely specu-
lative and without practical use. Rather it even appears, and this
may be hard to believe, that it is very useful also for other
branches of science than mechanics. In order to avoid a hasty
conclusion, it should be remarked that the straight line is cer-
tainly the line of shortest distance between A and B, but it is not
the one which is traveled in the shortest time. However, the curve
AMB-—which I shall divulge if by the end of this year nobody else
has found it—is very well known among geometers.

Later, at the suggestion of Leibniz, Bernoulli extended the
deadline for the solution until Easter 1697, and on January 1, 1697,
he published the announcement reproduced below, addressed to
The Sharpest Mathematical Minds of the Globe (see Fig. 3).

Before 1696
Similar optimization problems had been studied at least since
the Greeks. The oldest of all is the one of determining the shortest
path joining two points, whose solution—which must have been
well known since very ancient times—is a straight-line segment.
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Next came the isoperimetric problem, also known as Dido’s prob-
lem, inspired by the mythical story told by Virgil (70-19 B.C.) in
the Aeneid about the foundation of Carthage (c. 850 B.C.): the
question is fo find the plane curve of a given length that encloses
the largest possible area. The solution was known by the Greeks to
be the circle, although it took until the 19th century for this to be
proved in a way that meets our contemporary standards of rigor.

Hero (or Heron) of Alexandria' showed in his Catoptrics that
when a light ray emitted by an object is reflected by a mirror, it
follows a path from the object to the eye which is the shortest of
all possible such paths. In Hero’s setting, which involved a single
medium and therefore a constant speed of light, “shortest” was
equivalent to “fastest.” This was no longer the case in the work of
Fermat (1601-1665), who formulated the general principle that
light rays follow the fastest—i.e., minimum time—paths. This ex-
plained not only Hero’s observation about reflection, but also
Snellius’ law of refraction. We shall see that Fermat’s principle
played a crucial role in Bernoulli’s solution of the brachysto-
chrone problem.

While all this was happening in the physics front, some prog-
ress was also made in the understanding of purely mathematical
aspects of curve optimization problems. In particular, Newton
had studied in 1685 the determination of the shape of a body with
minimal drag, which was a true “calculus of variations” problem.
But this remained an isolated piece of work which did not attract
much attention and had no interesting spinoftfs.

1696—1697: The Watershed

The events of 1696 and 1697 were a clear turning point. Ber-
noulli’s 1696 challenge to his colleagues was taken up by the best
mathematical minds of the time. Six mathematicians submitted
solutions to the brachystochrone problem, and not justany six!
Besides Johann’s own solution, there was one by Leibniz, who
called the problem splendid and solved it in a letter to Johann
dated June 16, 1696; another one by Johann’s elder brother
Jakob; one by Tschirnhaus; one by 1'Hopital, and, finally, one by
Newton. Newton’s solution was presented to the Royal Society
on February 24, 1697, and published, anonymously and without
proof, in the Philosophical Transactions. However, the identity
of the author was clear to Bernoulli, since, as he noted, ex ungue
leonem (you can tell the lion by its claws). Johann’s solution was
published in the Acta Eruditorum of May 1697, almost exactly
300 years before this magazine article, and the same issue also
contained Jakob’s solution, reprinted Newton’s anonymous So-
lution, and included the contributions by Tschirnhaus and
I"Hopital, as well as a short note by Leibniz, remarking that he
would not reproduce his own solution, since it was similar to that
of Bernoulli. He also noted who else, in his opinion, could solve
the problem: I’Hopital, Huygens, were he alive, Hudde, if he had
not given up mathematics,” and Newton, if he would take the
trouble.

The solutions of Bernoulli’s problem were as beautiful as
could have been expected given the eminence of the personalities
who took up his challenge and found the correct answer. Moreo-
ver, this work was followed by a period of intense activity on

'Exact dates unknown. Believed by historians to have flourished about 100B.C., al-
though some attribute his optics work to a “Hero the Younger,” who may have lived in
the 7th or 8th century A.D.

Hudde became mayor of Amsterdam, and Huygens died in 1695.
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problems of a similar kind, whose origin is directly traceable to
the events of 1696-1697; and in many cases specifically to the
Bernoullis, both intellectually and in terms of personal contacts.
For example, Euler was a student of Bernoulli in Basel, and La-
grange became interested in variational problems by reading
Euler’s works. Froin this research, general techniques eventually
emerged in the work of Euler and Lagrange. So there is no doubt
that something important in the history of mathematics hap-
pened in 1696-1697. For example, D.J. Struik, in [91, p- 392, says
of the articles published in the May 1697 Acta Eruditorum that
“these papers opened the history of a new field, the calculus of
variations.”

Why Optimal Control?

The conventional wisdom holds that optimal contro] the-
ory was born about 40 years ago in the former Soviet Union,
with the work on the “Pontryagin maximum principle” by L..S.
Pontryagin and his group (cf. [8]): Some mathematicians be-
lieve that this new theory was no more than a minor addition to
the classical calculus of variations, essentially involving the
incorporation of inequality constraints. The article by L. Mar-
kus in [6] describes the unenthusiastic reaction at the 1958 In-
ternational Congress of Mathematicians to the announcement
of the maximum principle by the Soviet group. In addition, it
is likely that other, nonmathematical, factors may also have
contributed to the negative reaction. Among these, two rea-
sons clearly stand out: first of all Pontryagin’s personality
and, in particular, his notorious anti-Semitism, and second,
the feeling that many held that the result was primarily in-
tended for military applications.
~ We believe that optimal control is significantly richer and
broader than the calculus of variations, from which it differs in
some fundamental ways, as we now explain.

The calculus of variations deals mainlg with optimization
problems of the following “standard” form™:

minimize / = | "L g(0), (0), £) e,
subject to g(@)=g and ¢(b) =g, (1)

or, equivalently, of the form

minimize 1 = ["L((2). u(2), {)dt,

subject 1o g(e) = 7, a() = & , and d(7) = ()
fora<t<b. 2)

The distinctive feature of these problems is that the minimization
of (1) takes place in the space of “all” curves, so nothing interest-
ing happens on the level of the set of curves under consideration,
and all the nontrivial features of the problem arise because of the
Lagrangian L.

*In what follows, we will discuss the work of several authors from the 17th to the
19th centuries. In the interests of clarity and consistency, we will always use our ownno-
tations and mathematical terminology rather than those of the authors under discussion.
So, for example, the letter L will always stand for the “Lagrangian,” the state variables
will usually—but not always—be called g, and the independént variable—often called x
or y in early papers on the subject—will usually be ¢, and should be thought of as time.
‘We will use dots—and on a few occasions primes, and also d/dt, when we want to differ-
entiate a long expression—to denote differentiation with respect to time (cf. Equation
(12) below for an example of the use of these notations).
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Fig. 3. Johann Bernoulli’s announcement.

Optimal control problems, by contrast, involve a minimiza-
tion over a set Cof curves which is itself determined by some dy-
namical constraints. For example, Cmight be the set of all curves
t — q(¢) that satisfy a differential equation

4(0) = S(4(0), u(0), ) ©)

for some choice of the “control function” ¢t — u(t). Even
more precisely, since it may happen that a member of ¢ does
not uniquely determine the control u that generates it, we
should be talking about trajectory-control pairs (q(-),u(*)).
So in an optimal control problem there are at least two ob-
jects that give the situation interesting structure, namely,
the dynamics f and the functional / to be minimized. In par-
ticular, optimal control theory contains, at the opposite ex-
treme from the calculus of variations, problems where the
“Lagrangian” L is = 1, i.e. completely trivial, and therefore
all the interesting action occurs because of the dynamics f.
Such problems, in which it is désired to minimize
time—i.e., the integral [ of (2) with L = l—among all curves
t—> g(t) that satisfy endpeint constraints as in (2) and are so-
lutions of (3) for some control t — u(r), are called minimum
time problems. Itis in these problems that the difference be-
tween optimal control and the calculus of variations is most
clearly seen, and it is no accident that these were the prob-
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Fig. 4. The Brachystochrone cycloid (Acta Eruditorum, May 1697).

lems that propelled the development of optimal control in the
early 1960s, and that time-optimal control is prominently repre-
sented in today’s research and in modern optimal control text-
books.

Within this framework, we can state the first of our reasons
for claiming that the brachystochrone problem marks the birth
of optimal control: Bernoulli’s problem, as posed in the Acta
Eruditorum, is a true minimum time problem of the kind that is
studied today in optimal control theory. Bernoulli called the
fastest path the brachystochrone (from the Greek words
Bpoyiotog: shortest, and ypovog: time). Moreover, the bra-
chystochrone problem is the first one ever to deal with a dy-
namical behavior and explicitly ask for the optimal selection of
a path. In both the isoperimetric problem and Newton’s minimal
drag problem the curves to be computed are not thought of as
paths of a moving body or particle. Finally, and most impor-
tantly, a large part of the subsequent history of the calculus of
variations can be best understood as the search for the simplest
and most general statement of the necessary conditions for op-
timality, and this statement is provided by the maximum princi-
ple of optimal control theory.

The above reasons are, in our view, compelling arguments in
favor of our claim that 1696 deserves to be called the year of the
birth of optimal control.

Bernoulli’s Solution of the
Brachystochrone Problem

We start by describing Johann’s Bernoulli’s solution.*

Let us first formulate the brachystochrone problem in modern
mathematical language. Choose x and y axes in the plane with the
yaxis pointing downwards. Use (0,0) and (a,b) to denote, respec-
tively, the coordinates of the end points A and B. A path f: [0,T]—
Rz, defined on an interval [0,7], and having components fi(¢),
f2(9), is said to be a feasible trajectory (or feasible path) if

(1) f0) = (0,0), AT) = (a,b), and fis Lipschitz continuous,

(ii) %qu(z)f +‘f2(t)‘2) = gf;(#) for almost all £ € [0,7].

Here g is the gravitational constant. Condition (i) states that the
path fmust start at A and end at B. Condition (ii) reflects conser-
vation of energy: at each instant z, the kinetic energy of the body
must equal the decrease of potential energy due to its loss of
height. (The law that a body which has fallen from a height / has

*Jakob’s solution was quite different from Johann'’s, and at first sight seemed clum-
sier, but in the long run it has turned out to be more akin to the mainstream ideas of the
calculus of variations, Hamilton-Yacobi theory, and dynamic programming, and is there-
fore widely considered to be of great historical importance in the development of opti-
mal control. It will not, however, be discussed here, due to lack of space. Goldstine’s
book [7] gives an excellent account.
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velocity proportional to Vi was due to Galileo, and was well
known in Bernoulli’s time.)

A feasible path f* : [0,T*] — R? is said to be optimal if there
exists no feasible path f: [0,7] — R?for which T<T*. A brachys-
tochrone is a curve in R? traversed by an optimal feasible path,
i.e., a subset B of R? of the form B = xy e R? : there exists e
[0,7*], such that (x,y) = f*(1)} where f* : [0,T*] — R%is an opti-
mal feasible path.

One obvious fact is that the solution cannot always be a
straight line, a possibility that Bernoulli rightly warns against.
For example, consider the extreme case when b = 0. It is easy to
see that it takes finite time to roll from A to B on a half circle,
since it will take finite time to roll from A to the bottom of the cir-
cle, and the same time to climb back up to B. Since, however, the
straight-line segment from A to B is horizontal, the speed of mo-
tion along it vanishes. So, the straight line segment cannot be an
optimal path, because the motion along it takes infinite time.

It turns out that the brachystochrone is a cycloid. It is the
curve described by a point P in a circle that rolls without slipping
on on the x axis, in such a way that P passes through A and then
through B, without hitting the x axis in between. It is easy to see
that this defines the cycloid uniquely (see Fig. 4).

Bernoulli’s ingenious derivation of the brachystochrone has
been the subject of numerous accounts, but since this event plays
a crucial role in our own story, we will outline the proof again.

Bernoulli based his derivation on Fermat’s minimum time
principle. If we imagine for a moment that instead of dealing
with the motion of a moving body we are dealing with a light ray,
condition (ii) above gives us a formula for the “speed of light” ¢
as a function of position: ¢ = \/@ Let us rescale—or, if the

reader so prefers, “change our choice of physical units”—so that
2g = 1. Then our problem is exactly equivalent to that of deter-
mining the light rays—i.e., the minimum-time paths—in a plane
medium where the speed of light ¢ varies continuously as a func-
tion of position according to the formula ¢ = \/; .

It is at least intuitively clear that, if we discretize our problem
by dividing the half-plane into horizontal strips Sk = {(x.y) : yx <y
<yke1 } of height 8, for k=0, 1, ..., where yx = kd, and treating c in
each strip Si as a constant ¢ (by, say, setting cx = M ), then the

light rays for the discretized problem should approach those for

the original problem as § { 0. The light rays of the discretized
problem can be studied using the law of refraction of light.
Clearly, the paths will be straight-line segments within each indi-
vidual strip, and all that needs to be done is to determine how
these rays bend as they cross the boundary between two strips.
The answer is provided by the laws of optics as developed by
Snellius, Fermat, and Huygens.

Snellius had observed that, if two media are separated by a
straight line, and a light ray is refracted at the boundary between
them, then the ratio of the sines of the incidence angles between
the light rays and the normal to the boundary is constant. Fermat
subsequently showed that this is precisely what happens when
light is assumed to follow a minimum-time path. Applying this to
the situation of the two media separated by a horizontal leads to
the following optimization problem. Assume that we have two
points, the first, P, located above, and the second, P2, lying be-
low the boundary. Suppose a light ray travels with speed vy in the
medium above the horizontal line and with speed v2 in the me-
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dium below the line. Of course, when v = vo, this fastest path is
the straight line from P1 to P2. This implies that the fastest path to
travel from P to P, when vi # v2 is a broken line consisting of a
straight line from P; to some point P’ on the boundary, and an-
other straight line from P’ to P2. The problem is thus reduced to
finding the point P’. This, is, however, a simple calculus ques-
tion, and it turns out that the point P’ is determined by the equa-
. 8sin@, vy . sin@, sin6,
tion ——+ = — or, equivalently, =—2
sinf, v, v, v,

This law relating the incidence angles to the velocities of
propagation is due to Huygens, and implies the law of Snellius.
sin@,

will be a constant, since in each strip Sk the speed of our light ray
isy/3,,,. Passing to the limit as § | 0, we conclude that the sine of

Bernoulli used Huygens’ law to conclude that the quantity

the angle © between the tangent to the brachystochrone and the
vertical axis must be proportional to \/; Since

dx 2
N +dy
2 2
M = —L, ie., 1+ y'(x)2 = 9 where
Ky y

sin® = , we find that > = Ky, where K is a

dx* +dy
constant. Then

C= Ki So the curve described by expressing the y-coordinate of

the brachystochrone as a function of its x-coordinate will satisfy
the differential equation

C-An)
Hx) ()

Y(x) =
with Caconstant. The curves given by the parametric equations

c. .
(@) =x, + 3((9 —-sing),

C
0) = S0 cos0),
0<¢p<2rm, 3)

satisfy (4). It is easily seen that these equations specify the cy-
cloid generated by a point P on a circle of diameter C that rolls
without slipping on the horizontal axis, in such a way that P is at
(x0, 0) when ¢ = 0.

The argument that we have presented is Bernoulli’s, and
Equation (4) appears in his paper, followed by the statement
“from which I conclude that the Brachystochrone is the ordinary

Cycloid.” (He actually wrote dy = dx d

, but he was using x
a—x

for the vertical coordinate and y for the horizontal one. Cf. [9], p.
394).

In contemporary mathematics, the symbol Jr usually stands
for the nonnegative square root of r, but it is obvious that Johann
Bernoulli did not have this in mind. What he meant was, clearly,
what we would write as

C - v

Ax) (6)

Yx)==
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or, equivalently,
y(x)(1 + ¥'(x)) = constant . )

In particular, the solution curves should be allowed to have a
negative slope. Buty’ should stay continuous, so that a switching
from a + to a - solution of (6) is not permitted.

Bven with the more accurate rewriting (7), the differential
equation derived by Bernoulli also has spurious solutions, not
given by (5)! Indeed, for any y > 0, the constant function
¥(x) = yis a solution, corresponding to C = . More generally,
one can take an ordinary cycloid given by (5), follow it up to ¢ =
T—so0 that dy/dx = O—then follow the constant solution y(x) = C
for an arbitrary time 7, and then continue with a cycloid given by
(5). Such paths are, indeed, compatible with Huygens’ law of re-
fraction.

It is easily understood that the laws of Spellius and Huygens
cannot explain why a light ray has to bend upward or downwards
once it is horizontal. As such Bernoulli’s argument is certainly
incomplete when the brachystochrone cycloid connecting A and
B first bottoms out before climbing back up to the point B. There is
no reason why it should not proceed horizontally once it has
reached the lowest point. This shortcoming in Bernoulli’s
argument seems to have escaped historians. We shall later see that
the maximum principle does exclude these horizontal motions.

The spurious solutions, and all the other problems, such as the
apparent arbitrariness of the requirement that y’ be continuous,
can be eliminated in a number of ways. For example, one can
prove directly that the spurious trajectories are not optimal, or
one can use, as an alternative to Bernoulli’s method, the calculus
of variations approach, based on the Euler-Lagrange equation
(10) below.

Itis easy to see that the brachystochrone problem can be put in
the “standard” form (1), provided we poszulate5 that it suffices to
consider curves in the x,y plane that are graphs of functions y =
y(x) defined on [0,a]. Then the dynamical constraint (ii)—with
2g = 1, as before—becomes dx? + dy2 =y df, which gives
B N+ dy?

N

dt = I( y, y)dx, where

LO),I/[) - y-l/Z (1 + MZ)I/Z (8)

and we are using x rather than ¢ for the time variable, and writing
for dy/dx. So Bernoulli’s problem becomes that of minimizing

the integral '[:L( (%), 3(x))dxsubject to y(0) =0 and y(a) = b.

This gives the Euler-Lagrange equation
1+ ()" + 29(x)y"(0) =0, ®

which is stronger than (7), since (7) is equivalent to y’ + y’3 +
2yy’y”=0,i.e.,toy’(1 +y’2 +2yy”) =0, whose solutions are those
of (9) plus the spurious solutions found earlier. It is easy to see
that the solutions of the Euler-Lagrange equation (9) are exactly
the curves given by (5), without any extra spurious solutions,
showing that, for the brachystochrone problem, the Euler-
Lagrange method gives better results than Bernoulli’s ap-

*With optimal control, this “postulate” becomes a provable conclusion, cf. “Finale
for Brachystochrone and Control” below.
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proach. (We will see in a later section that optimal control is
even better.)

Bernoulli was originally under the mistaken impression
that the brachystochrone problem was new. However, Leib-
niz knew better: in 1638 Galileo, in his book on the Two New
Sciences, had formulated the brachystochrone problem and
even suggested a solution: he seems to have thought it was a
circle. Galileo had actually shown—correctly—that an arc
of a circle always did better than a straight line—except, of
course, when a = 0.

Bernoulli considered the fact that Galileo had been mistaken
on two counts, by thinking that the catenary was a parabola, and
that the brachystochrone was a circle, as conclusive evidence of
the superiority of differential calculus (or the Nova Methodus as
they called it).

He was thrilled by his discovery that the brachystochrone was
a cycloid. This curve had been introduced by Galileo, who had
given it its name: related to the circle. Huygens had discovered a
remarkable property of the cycloid: itis the only curve such thata
body falling under its own weight is guided by this curve so as to
oscillate with a period that is independent of the initial point
where the body is released. Contrary to what Galileo thought, the
circle has this property only approximately: the period of oscilla-
tion of a pendulum is a function of its amplitude. Therefore, Huy-
gens called this curve, the cycloid, the tautochrone (from
TovTog: equal, and ypovog: time). Bernoulli was amazed and
somewhat puzzled, it seems, by the coincidence that the cycloid
turns out to be both the brachystochrone and the tautochrone, so
that two rather different properties related to the time traveled on
it by a body falling under its own weight led, in the end, to the
same curve. He concluded that nature always arranges things in
the simplest manner, as here, by giving the same curve two differ-
ent properties.

Johann Bernoulli and his Family

We now sketch some of the historical context surrounding the
life and work of Bernoulli. The Bernoullis were a Protestant fam-
ily originally from Antwerp in Flanders. They fled Antwerp in
1583 to escape the religious oppression of the Spanish rulers and,
after spending some time in Frankfurt, finally settled in Basel,
Switzerland, early in the 17th century. Among its members there
were eight mathematicians in three consecutive generations.
Most of them ended up as professors in Basel, but many spent ex-
tensive periods in other universities in Europe. The most promi-
nent of the Bernoullis were Jakob (1654-1705), his younger
brother Johann (1667-1748), the protagonist of our story, and Jo-
hann’s son, Daniel (1700-1782), born in Groningen while his fa-
ther was a professor there. Jakob Bernoulli made important
contributions, in particular, to probability theory. (Bernoulli dis-
tributions are named after him.) Daniel is the discoverer of Ber-
noulli’s law in hydrodynamics, one of the great laws in physics.

At the time that Bernoulli came of age, mathematics was go-
ing through a revolution. In 1684, Leibniz published his first arti-
cle about differential calculus in the Acta Eruditorum. This
article was entitled Nova methodus pro maximis et minimis, item-
que tangentibus, quae nec fractas, nec irrationales quantitas
moratur, & singulare pro illis calculi genus. He showed the
power of the Nova Methodus by finding maxima and minima for
a number of examples much more effectively than had been pos-
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sible before. Johann
and Jakob Bernoulli
were among the first to
master Leibniz’ tech-
nique, and, in 1691,
Johann achieved his
first success by using
the differential calcu-
lus to determine the
catenary, the shape of a
hanging chain. In his
mere mid-20’s, Johann
was hired by the Mar-
quis de I’Hopital, a
French nobleman and
one of the leading
mathematicians of his
time, to teach him the
differential calculus.
While he received a
handsome payment for
his services, he was
bound by contract to let
the Marquis take credit
for the discoveries
made by Johann during
this teaching. Johann always claimed that he was the true discov-

Fig. 5. Johann and Daniel Bernoulli.

erer of I’Hopital’s rule about the limit of % which appeared in the

Marquis’ book, Analyse des Infiniment Petits. His contempo-
raries tended to ignore this claim, since Johann was not known
to be particularly generous to others or objective about his
own achievements. However, in 1922, the original notes of
these lectures were discovered, which brought positive evi-
dence for Johann's claim.

Johann Bernoulli was not an easy person. He often quarreled
openly with his colleagues, and complained about his salary, his
health, his work. In 1695, shortly after taking up the chair in
Groningen that had been offered to him on the recommendation
of Huygens, he vented his disenchantment in a letter to Leibniz,
who had encouraged him to accept the offer: I have not met any of
the practitioners of Algebra, which you consider present in Hol-
land. To the contrary, I have not had the honor of meeting a single
person who would even deserve to be called a “mediocre mathe-
matician.” In the same letter he complained that his teaching
took too much of his time, and that the more progress the students
make, the less progress I make. Bernoulli expressed such politi-
cally incorrect views not only in private letters, but also publicly.
While in Groningen he got into serious difficulties with the local
protestant theologians and clergy, who disapproved of the way
new discoveries in the physical sciences cast doubt on the valid-
ity of revealed truth.

In his disputes with his mathematical colleagues he was unre-
lenting. He was perhaps the most abrasive contender in the bitter
controversy between the English, Newtonian, and the continen-
tal, Leibnizian, schools, regarding the originality and rigor of the
differential calculus. He “was a man of violent likes and dislikes:
Leibniz and Euler were his gods; Newton he positively hated and
greatly underestimated.” ([1], p. 135.) His rivalry with his
brother Jakob became an embarrassment to the scientific com-
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munity, and when in 1699 they were both elected to the Paris
Academy, it was on the explicit condition that they promise to
cease arguing, a promise that of course was not kept. Even more
peculiar was Johann’s rivalry with his own son Daniel, whom he
criticized—for being a Newtonian—and plagiarized—on the
law of hydrodynamics—and of whose success he was allegedly
very jealous. Johann once threw Daniel out of the house for hav-
ing won a French Academy of Sciences prize for which Johann
had also been a candidate, cf. [1], p. 134. Daniel, however, re-
mained dutifully respectful towards his father, but frequently ex-
pressed his misgivings to his friend Euler (a student of Johann in
Basel and a colleague of Daniel in Saint Petersburg).

Fig. 5 is a photograph of a stained glass window of the Acad-
emy Building (the main venue of the university) in Groningen. It
shows Daniel Bernoulli sweetly clutching his father’s robe,
while Johann shows off his brachystochrone.

At the occasion of the 300th anniversary of the appointment
of Bernoulli and the discovery of the brachystochrone, the Uni-
versity of Groningen erected the monument shown in Fig. 6. It
consists of an artist’s rendering of the brachystochrone, with the
circle that generates the cycloid. In the background, one can see
the building of the mathematics department, where the second
author of this article has his office.

Euler, Lagrange, Legendre

With the work of Johann and Jakob Bernoulli, Leibniz,
Tschirnhaus, Newton, and I’ Hopital on the brachystochrone, op-
timal control got off to a spectacular start. Let us now look at
some critical events in its later evolution.

The next chapter of our tale is the work of Euler (1707-1793)
and Lagrange (1736-1813). Leonhard Euler entered the Univer-
sity of Basel at the age of 13, and became a student of Bernoulli,
who gave him private lessons once a week. In Basel, he worked
on isoperimetric problems in 1732 and 1736. In 1744 he pub-
lished his book The Method of Finding Plane Curves that Show
Some Property of Maximum or Minimum, where he gave a gen-
eral procedure for writing down what became known as Euler’s
equation.

And then Lagrange entered the stage. In H. Goldstine’s words
(71, p- 110.):

On 12 August 1755 a 19-year-old Ludovico de la Grange
Tournier of Turin, wrote Euler a brief letter to which was at-
tached an appendix containing mathematical details of a very
beautiful and revolutionary idea. He saw how to eliminate from
Euler's methods the tedium and need for geometrical insight and
to reduce the entire process to a quite analytic machine or appa-
ratus, which could turn out the necessary condition of Euler and
more, almost automatically. This basic idea of Lagrange ushered
in a new epoch in the calculus of variations. Indeed, after seeing
Lagrange's work, Euler dropped his own method, espoused that
of Lagrange, and renamed the subject the calculus of variations.

In the summary to his first paper using variations, Euler says
“Even though the author of this [Euler] had meditated a long
time and had revealed to friends his desire yet the glory of first
discoverywas reserved to the very penetrating geometer of Turin
LA GRANGE, who having used analysis alone, has clearly at-
tained the same solution which the author had deduced by geo-
metrical considerations.”

Lagrange derived the necessary condition
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doL_ar
dtog  og’ (10)
known today as the “Euler-Lagrange equation.” (This was not his
notation. The symbol o for partial derivative was first used by
Legendre in 1786.)

Equation (10) makes perfect sense and is a necessary condi-
tion for optimality for a vector-valued variable ¢ as well as for a
scalar one. It can be written as a system:

i aL = Eé 1= n
drdg  dq'’ T (11)
Alternatively, we can regard Equation (10) as a vector identity, in
which ¢ = (¢!, ..., ¢") is an n-dimensional vector, and a—L, %
dg 9g
stand for the n-tuples E)_Ll s oL , a—Ll, s E).L . A modern
dg' 0g")\dg 9"

mathematician might be troubled by the use of ¢ both as an “inde-
pendent variable” and as a function of time evaluated along a tra-
jectory, and might prefer to write (10) as

d|oL . oL .

LI, 40, 1) | ==(g(0), &1), 1), i=1,..,m,
& 200000 | = a0, 0. ) .
where the Lagrangian L(q, u. 1) is a function on R**! ie. afunc-
tion of g € R", u € R", ¢ € R. This makes it clear that to compute

the Ieft-hand side of (10) one first evaluates S—L “treating ¢ as an
q

independent variable,” then plugs in ¢(1) and ¢( ¢ for ¢, ¢, and fi-
nally differentiates with respect to f.

The Euler-Lagrange system (10)—or (12)—only gave condi-
tions for stationarity, i.e.. for the first variation of / to be zero. The
next natural step was to look at the second variation, and this was
done by Legendre (1752-1833), who found an additional neces-
sary condition for aminimum, His condition. derived for the sca-
lar case, is

d’L

% (4(8),4(6), 1) =0 (i.e., %(q(t), q(0), 1) = O} .

13)

Fig. 6. The Brachystochrone Monument.
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With an appropriate reinterpretation, Legendre’s condition
(13) is also necessary in the vector case: all we have to do is
read (13) as asserting that the Hessian matrix

(2 @000

has to be nonnegative definite.

I1<i,j<n

The First Fork in the Road: Hamilton

At this point, we are close to the first and most critical fork in
the road, involving the work of W.R. Hamilton (1805-1865).Ina
sense, the issue at stake will seem rather trivial, just a matter of
rewriting the Euler-Lagrange system in a different formalism.
However, sometimes formalisms can make a tremendous differ-
ence. To understand what happened and what could have hap-
pened but did not, let us try to make sense of the two necessary
conditions for a minimum that have been presented so far. We
have the Euler-Lagrange equation (10) and the Legendre condi-
tion (13). The Legendre condition is clearly the second-order
necessary condition for a minimum of a function, namely, L(g(),
u, t) as a function of u, but (10) does not look at all like the first-
order condition for a minimum of that same function. It is natural
to ask whether there might be a way to relate the two conditions.
Is it possible that both can be expressed as necessary conditions
for a minimum of one and the same function? The answer is yes,
and understanding how this is done leads straight to optimal con-
trol theory, the maximum principle, and far-reaching generaliza-
tions of the classical theory. But before we get there, let us tell the
story of how Hamilton almost got there himself, but missed, and
Weierstrass got even closer, but missed as well.

Let us look at another way of writing (10). Suppose a curve ¢
> g() is a solution of (10). Define a function H(qg, u, p, t) of three
vector variables g, u, p in R", and of ¢ € R, by letting

H(g, u,p.)=<p,u>-L{q, u, t) 14)
Then define
oL .
) =—(q(1), (1), t) .
)=S0, 00, 1) )
. oH ‘
It is then clear that — = u, so along our curve g(¢):
/4
dq oH .
—()=—ql0),ql?), pl2). 1) .
0= S0 400 0. ) »
Also, 8_H = —%, so (12), with p(¢) defined by (15), says that
dg  dq
dp oH .
(1) =——(q(9), 4(2), /1), 1) .
0=~ (40. 40,70, ) -
Finally, _BE =p- %, so (15) says:
du ou
oH .
S (). 1D 1) = 0. "
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The system of equations (16), (17), (18), usually written more
concisely as

dq _OH dp_ 3H OH _,

di dp  di oq  u

19

is exactly equivalent to (10), provided that H is defined as in (14).
We will call the function H the “control Hamiltonian,” and re-
fer to (19) as the control Hamiltonian form of the Euler-Lagrange
equations. In our view, Formula (14) is the definition that Hamil-
ton should have given for the Hamiltonian, and Equations (19)
are “Hamilton’s equations as he should have written them.”
What Hamilton actually wrote was (in our notation, not his)

dg _0M dp  9H
dt 9p  dt dg (20)
where #H(g, p, 1) is a function of p,q and r alone, defined by the for-
mula #(q, p,t)=(p, §)— I(q, g, t ), which resembles (14), but is
not at all the same. The difference is that in Hamilton’s defini-
tion, ¢ is supposed to be treated not as an independent variable,
but as a function of g, p, ¢, defined implicitly by the equation

JaL, .
r=-(4.4.1).

dq #3))
It is easy to see that, if the map (q, ¢,1) — (g, p, t) defined by
(21) can be inverted, i.e., if we can “solve (21) for ¢ as a function
of g, p, 1,” then (20) is equivalent to (19). Indeed, it is clear that
Hgq, p, ©) = H(g, u(g, p, 1), t), where u = u(g, p, t) satisfies

Ss(q, u,1). So

Wi _aH o ou
d¢ Odg Odu dg

(22)
Since aa—il[(q, u,t) = 0for u = u(g, p, 1), we see that %jq{— = ?qul

along solutions of (19), and then the first equation of (20) holds
as well. Similarly, the second equation of (20) also holds. The
converse is also easily proved.

It should be clear from the above discussion that the Hamilto-
nian reformulation of the Euler-Lagrange equations in terms of
the “control Hamiltonian™ is at least as natural as the classical
one, and perhaps even simpler. Moreover, the control formula-
tion has at least one obvious advantage, namely,

(A1) the control version of the Hamilton equations is equiva-

lent to the Euler-Lagrange system under completely general con-
ditions, whereas the classical version only makes sense when the
transformation (21) can be inverted, at least locally, to solve for ¢
as a function of q, p, t.
We now show that (A1) is not the only advantage of the control
view over the classical one. To see this, we must take another look
at Legendre’s condition (13). Since H(g, u, p, f) is equal to -L(q, u,
t) plus a linear function of u, (13) is completely equivalent to
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aaf (e, (D), pl0), 1) <0,
3

ie., ;{? (q(1), 4(2), p(2), 1) < 0.

(23)
Now let us write (23) side by side with the third equation of (19):

OH

2
of 8H<0.
Ju

=
i

0 and

24

and let us stare at the result for a few seconds.

These equations unmistakably suggest something! Clearly,
what has to be going on here is that H must have a maximum as a
function of u. So we state this as a conjecture.

CONJECTURE M: besides (19) (or the equivalent form (10)),
an additional necessary condition for optimality is that H(q(t), u,
p(t), t), as a function of u, have a maximum at é]( t) for each t.

Notice that Conjecture M is a natural consequence of rewrit-
ing Hamilton’s equations “as Hamilton should have done it,” and
it is reasonable to guess that, if Hamilton had actually done it,
then he himself, or some other 19th century mathematician,
would have written (24) and be led by it to the conjecture. On the
other hand, it is only by using the Hamiltonian of (14), as op-
posed to Hamilton’s own form of the Hamiltonian, that one can
see that the Legendre condition has to do with the sign of the sec-
ond u-derivative of a function of u whose first u-derivative has ro
vanish. This function cannot be L itself, because the first order
conditions do not say that —gé = 0. Nor can it be Hamilton’s Ha-

U
miltonian #H, which isn’t even a function of u. Only the use of the
“control” Hamiltonian leads naturally to Conjecture M.

It turns out that Conjecture M is true, and that once its truth is
known then vast generalizations are possible. But before we get
there, we must move to the next chapter in our tale, and discuss
the work of Weierstrass, who essentially discovered and proved
Conjecture M, but did it using a language that obscured the sim-
plicity of the result, and for that reason missed some profound
implications of his discovery.

The Second Fork in the Road: Weierstrass
Weierstrass (1815-1897) considered the problem of minimiz-

ing an integral  of the form / = J’)L(q( 5), §(s) )ds for Lagrangi-

ans Lsuch that L g, § ) is positively homogeneous with respect to
the velocity g (that is, L q,0q ) = ol(q, ¢} for all ¢, ¢ and all

>0 ) and does not depend on time. (As will become clear soon, we
have a good reason for using s rather than ¢ as the “time” variable
in the expression for 1.)

In a sense, one can always make this assumption on L “with-
out loss of generality,” by defining a new function A(g, ¢, u, T) =7
L(qo, u/7, t), and think of 7 as a new ¢ variable, say qo, and of T as
a;i, where s is a new time variable, or “pseudotime,” not to be

/s
confused with the true time variable r. However, “without loss of
generality” is a dangerous phrase, and does not at all entail “with-
out loss of insight.” We shall argue below that this restriction, in
conjunction with the dominant view that Hamilton’s equations
had to be written in the form (20), may have served to conceal
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from Weierstrass the true meaning and the far-reaching implica-
tions of the new condition he discovered.
Weierstrass introduced the “excess function”

_ 2 _
e(g, u, u) = L(g. u)——a—]i(q, u)u, 25)

depending on three sets of independent variables g, u, and . He
then proved his side condition: For a curve s— q+(s) to be a solu-
tion of the minimization problem, the function € has to be > 0
when evaluated for q = q+(s), u = ¢.(s), and a completely arbi-
trary u.

Weierstrass derived this side condition by comparing the vef-
erence curve g+ with other curves g(-) that are “small perturba-
tions” of g+, in the sense that g(s) is close to g«(s) for all s but g( s)
need not be close to ¢.( s). Since Weierstrass’ condition involves
comparing L(g+(s), u) for u close to q*( s), with L(g+(s), u) near an
arbitrary value u of u, possibly very far from ¢.( s), it is obvious
that variations g with “large” values of ¢ are needed.

Notice that, for Lagrangians with the homogeneity property

of Weierstrass, L(q,u) = %(q,u)-u, so Weierstrass could
u

equally well have written his excess function as
— _, oL —
e(g, u, ) =1(q, u)—a(q, u)-u

(00~ yeu).

(26)
Using p = %(q, u) as in (15), we see that
e(g.u, 4) = (Ug, )= (p. u) ~(Ua W= (p. 1) . 27y
which the reader will immediately recognize as
e(g, u, )= H(q,u, p)~H(g, u, p) , (28)

where H is our “control Hamiltonian.” So Weierstrass’ condition,
expressed in terms of the control Hamiltonian, simply says that
(MAX) along an optimal curve t — g«1t), if we define p(t) via
(15), then for everyt, the value u = q*( t) must maximize the (con-
trol) Hamiltonian H(q+(t), u, p(t), t) as a function of u.
In Weierstrass’ formulation, the condition was stated in terms of
the excess function, for the special Lagrangians satisfying his ho-
mogeneity assumption. In that case the resulting H is independent
of time, as in our equation (28). But, if one rewrites Weierstrass’s
condition as we have done, in terms of H, then one can take a gen-
eral Lagrangian, transform the minimization problem into one in
Weierstrass’s form, write the Weierstrass condition in the form
(MAX) (so in particular H is independent of time) and then undo
the transformation and go back to the original problem. The result
is (MAX), as written, with the control Hamiltonian of the original
problem. So the Weierstrass condition, if reformulated as in
(MAX), is valid for a/l problems, with exactly the same statement.
Moreover, (MAX) can be simplified considerably. Indeed,
the requirement that p(¢) be defined via (15) is now redundant: if
H(q(®), u, p(1), 1), regarded as a function of u, has a maximum at
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w= (1), then %_H(q(;),q(r), p(£). 1) has to vanish, s0 p(1)
u
has to be given by (15). Moreover, the vanishing of
%—H(q(t), a(1), p(1), t)isalso one of the conditions of (19). So
u

we can state (19) and (MAX) together:

(NCO) If a curve t = q(t) is a solution of the minimization prob-
lem (1), then there has to exist a function t — p(t) such that the
Sfollowing three conditions hold for all t:

(1) = "’a—’;(w), i), 1. 1) «

e,
p(l) = 39 (q(l), q(t), p(t), t) ’ (29)

H(q(0), 4(0), p(2), 1) = m:le(q(l‘), u, p2), 1) - 30
As a version of the necessary conditions for optimality, (NCO)
encapsulates in one single statement the combined power of the
Euler-Lagrange necessary conditions and the Weierstrass side
condition as well, of course, as the Legendre condition, which
obviously follows from (MAX). Notice the elegance and econ-
omy of language achieved by this unified statement: there is no
need to bring in an extra entity called the “excess function.” Nor
does one need to include a formula specifying how p(¢) is de-
fined, since (30) does this automatically. So the addition of the
new Weierstrass condition to the three equations of (19) results in
a new set of three, rather than four, conditions, a set much “sim-
pler than the sum of its parts.” Notice moreover that (MAX)—or,
more precisely, the Weierstrass side condition part of
(MAX)—is exactly Conjecture M. So we can surmise at this
point that (MAX), as stated, probably could have been discov-
ered soon after the work of Hamilton, since it is strongly sug-
gested by (24), and almost certainly by Weierstrass, if only
Hamilton’s equations had been written in the form (14), (19).

So, we can now add two new items to our list of advantages of
the “control formulation” of Hamilton’s equations over the clas-
sical one:

(A2) Using the control Hamiltonian, it would have been an
obvious next step to write Legendre’s condition in “Hamiltonian
form,” as in (24), and this would have led immediately to the for-
mulation of Conjecture M, a proof of which would then have been
found soon after.

(A3) With the control Hamiltonian, Weierstrass’s side condi-
tion becomes much simpler, does not require the introduction of
an “excess function,” and can be combined with the Hamilton
equations into an elegant unified formulation (NCO) of the nec-
essary conditions for optimality.

But this is by no means the end of our story. There is much
more to the new formulation (NCO) than just elegance and sim-
plicity. If you compare (NCO) with all the other necessary con-
ditions that we had written earlier, a remarkable new fact
becomes apparent. Quite amazingly, the derivatives with re-
spect to the u variable are gone. All the earlier equations in-
volved u-derivatives of L or of H, and even if we use the
classical version (20) of Hamilton’s equations, which involves
no functions of u and therefore no u-derivatives, the fact re-
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mains that in order to get to (20), we first have to solve (21),
which does involve a u-derivative.

Now, if our necessary conditions for optimality can be stated
without any references to u-derivatives, we can apply the well-
known Principle of Mathematical Guessing®, which in the case
at hand suggests that the existence of the u-derivative of L is not
needed. Then there is no longer any reason to insist that the range
of values of u be the whole space: any subset of R” would do,
since the minimization that occurs in (30) makes sense over any
set. This leads us to
CONJECTUREM2: (NCO) should still be a necessary condition
for optimality even for problems where § is restricted to belong to
some subset U of R", and L(q, u, t) is not required to be differenti-
able with respect to u.

Now that we have liberated ourselves from the constraint that
L be differentiable with respect to u, it ought to be possible for
u—i.e., ¢—to be anything, and (NCO) will still work. Once this
is understood, the next natural step is to apply the Principle of
Mathematical Guessing once again and allow § to be even “more
arbitrary,” for example a general function of some other variable
u, and of ¢ and 1. So, instead of letting g be u, we can write ¢ = f(q,
u, 1) for a general function f{g, u, 7). In that case, the expression
<p, u>—i.e. <p, ¢>—that occurs in (14) should of course be re-
placed by <p, flg, u, £)>. This leads us to
CONJECTUREM3: (NCO) should still be anecessary condition
Sfor optimality even for problems where q is restricted to satisfy a
differential equation g = f{(q, u, t), with the “control function” t—
u(t) taking values in some set U and allowed to be a “completely
arbitrary” U-valued function of t, and the Hamiltonian H now
being defined by

H(Q? u, p, t):<p7ﬂq’ u, t)>'L(q’ u, t) (31)

Those readers who are familiar with optimal control theory
will, of course, have recognized Conjecture M3 as being essen-
tially the same thing as the celebrated “Pontryagin maximum
principle.”

And we hope to have convinced all readers, even those who
are not control theorists, that (NCO) is a very natural conclusion.
1t should be clear from our discussion that (NCO) could have
been guessed almost immediately from “Hamilton’s equations
as Hamilton should have written them,” together with the Legen-
dre condition, and would have been an almost obvious conjec-
ture to make once the Weierstrass side condition is known, if only
the “correct” Hamiltonian formalism, as in (14) and (19), had
been used all along.

The Maximum Principle

So far, we have shown that Conjecture M3 is almost forced on
us if one looks at the classical condition from the right perspec-
tive and with the right formalism, but we have not yet said
whether it is actually true, nor have we given any indication as to
how one might go about proving it.

It turns out, however, that Conjecture M3, as stated, is not
true, as can be seen from simple examples, but only a minor
modification is needed to make it true. All we have to do is intro-

®If a statement is proved under some specific restrictions but turns out not to involve
these restrictions at all, chances are that the restrictions are not needed and the statement
is valid even without them.
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duce a new p-variable po—the “abnormal multiplier”7~and
write the Hamiltonian as

H(q’ u, p, pov t) = <p5f(q7 u, t)> - P L(CI» u, t) (32)
Everything we have done until now corresponded to taking po =
1. We now impose, instead, the weaker requirement that p, = 0
(i.e., pois a constant) and po = 0. We then observe that, if we use
this new H rather than the old one, then the three conditions of
(NCO) are always satisfied if we make the trivial choice
p(t) = 0,po=0. So, our new conditions will give nothing inter-
esting unless we impose a further nontriviality condition, stating
that this possibility is excluded.

With Conjecture M3 adjusted with the introduction of the ab-
normal multiplier po, we have finally reached the justly cele-
brated Maximum Principle:

(MP) For the problem of minimizing a functional

I= J.abL(q(t), u(t), t)dt subject to a dynamical constraint (3),

and endpoint constraints g( a) = g, q(b) = g, with the parame-
ter u belonging to a set U, the variable q taking values in R"—or
in aopen subset Q of R"—and the time interval [a,b] fixed, a nec-
essary condition for a function t — u«(t) on [a, b] and a corre-
sponding solution t w> q«(t) of (3) to solve the minimization
problem is that there exist a function t — px(t) € R" and a con-
stant pp 2 0 such that

(NT) (p=(D), po) # (0,0) for all t € [a, b];
(HS)a.(1) = %;—?{—(E*(t))and—p*(z) = %—Z(E*(Z))forte [a,bl;

(MC)H(E(1)) = max,, H(q2), u, pt), py. t)forte [a,b],
where we have written E.(t) = (q*(t), u(t), p(t), py. t), and

the Hamiltonian H(q, u, p, po, t) is given by (32).

Conditions (NT), (HS), and (MC) are known, respectively, as the
nontriviality condition, the Hamiltonian system, and the minimi-
zation condirion. Notice that (HS) is just a restatement of (29),
with the new H, and (MC) is a restatement of (30). The second
equation of (HS) is called the adjoint equation. A trajectory-
control pair (g, u=) for which there exist p+, po with the proper-
ties of (MP) is called an extremal.

Finally, we remark that for classical calculus of variations
problems (MP) yields exactly the same conclusion as (NCO). In-
deed, in this case it is possible to exclude the possibility that pg =
0, and (MMP) reduces to (NCO). So (MP), as stated, is a true gener-
alization of the necessary conditions (NCO), which covers many
cases that cannot be handled by means of the classical calculus of
variations.

We conclude by presenting the analogue of (MP) for prob-
lems with a variable time interval:

(MP?) For a minimization problem of the kind discussed in
(MP), but with the time interval [a, b] not fixed in advance, as-
suming that fand L do not depend on t, the necessary conditions
are exactly the same as those of (MP), plus the extra requirement
that H(q+(1),ux(),p+(t),po) = 0.

Statement (MP’) applies in particular to minimum time problems,
i.e., problems where L = 1.

"The need for the abnormal multiplier had already been noticed by Bolza in
1913, cf. [3].
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From Principle to Theorem

Our discussion so far has dealt only with the formal aspect of
the necessary conditions for optimality. In order to get real
mathematical theorems, we have to be accurate as to the techni-
cal assumptions on L, f, and U, the exact statement of the prob-
lem, and the precise meaning of the conclusions.

The results of the previous sections, from the Euler-Lagrange
equation to the maximum principle, should be regarded as prin-
ciples rather than theorems. For us, a principle is a generator of
theorems, a not yet completely precise statement that can be
made into a theorem by filling in the technical details and making
all the definitions and conditions completely precise. The result-
ing theorems are versions of the principle. Usually, the choice of
technical conditions can be made in more than one way, so a
“principle” has more than one version.

In some cases, a “principle” becomes identified in the minds
of mathematicians with its first published rigorous version. This
has happened to some extent in the case of the maximum princi-
ple, because the book [8], where the result was first presented, al-
ready contains a rigorous version. We contend, however, that this
version does not exhaust the full power of the principle, and the
work of stating and proving stronger and more general versions
is still very much in progress.

Regarding the necessary conditions for optimality, while the
discovery of new and more general formal conditions pro-
gressed, rigorous versions of the formal results were derived at
various stages of the process, using in each case the mathemati-
cal tools available at the time.

The first rigorous version of the maximum principle appears
in the book [8]. This “classical” version was then improved by
other authors. We choose to quote a version appearing in L.D.
Berkovitz’s 1974 book [2].

“Letf L e be the components of f, and write f Ofor L. It is
assumed that the 7, for i =0, ..., m, are defined on Q x Up x [a, b],
where Q, Up are open subsets of R”, R™, respectively. Moreover,
each function g+ f'(g, u, ?) is required to be of class C! with re-
spectto g foreach (u, 1) € Upx[a, b], and eachmap (u, ) = f i(q,
u, ) has to be Borel measurable for each fixed g € Q. The set U'is
a subset of Up. An admissible controlis amap [a, b]— u(t)e U
such that for every compact subset X of Q there is an integrable
function ¢t >  @k(¢) that the bound

7. u(0). )]+ giq"(q,um,t)

Kx[a,blandalli=0, ..., m. For a general class U of U-valued
functions on [a, b], and g, ¢ € O, let us use C(‘U g, é) to denote
the set of all pairs ( (), u(-) ) such that u(-) € U, g( -} is a solu-

tion of (3) (i.e., () is an absolutely continuous curve [a, b] = Q
such that (3) holds for almost every #), g(a) = g, and ¢(b) = 4.
Use aUqgm to denote the class of all admissible controls. Then the
optimization problem is that of minimizing the integral

I= JjL(q(t), u(t), t)dt in the class (U, g, 4 ). The conclu-

sion of the theorem is that of (MP), with p= absolutely continu-
ous, and the adjoint equation and the maximization condition
holding almost everywhere.”

The proof of this first version of the maximum principle is
rather long, and we will not even sketch it here. Since then,
stronger versions have been obtained by weakening the hy-

such

< @g(7)holdsforall(g,1) e
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pothesis of the first version, or strengthening the conclusions, or
both.

One important improvement of the classical version resulted
from the use of nonsmooth analysis (cf. Clarke [4, 5]). While these
“nonsmooth” generalizations were being developed, other authors
pursued a different direction, for very smooth systems. They ob-
served that one could get stronger results by allowing a class of
variations richer than that used in the classical proof. One can then
obtain “high-order necessary conditions for optimality.” In addi-
tion, a third direction developed in which (MP) is formulated not
for controlled differential equations ¢ = f{q, u, t), but for differ-
ential inclusions g € F(q, t), where F is a set-valued map (cf. for
example [5]). The results referred to are proved by different meth-
ods and cannot be combined into a single theorem. We will not at-
tempt to explain why this is so, because to do it we would have to
discuss in detail the proofs of these theorems, showing thatin each
case one uses a different construction, and these constructions
cannot be combined into a single one valid on the whole interval.
But it is a fact that, due to this incompatibility of the various
proofs, a single theorem covering all cases and combining
them—that is, applying to “hybrid” problems as above—ap-
peared, until a few years ago, to be beyond reach. Recently, how-
ever, one of us (Sussmann [10-12]) has obtained a general version
of (MP) that contains all the above results, applies to some new
cases as well, and actually covers the “hybrid” case.

Finale for Brachystochrone and Control
We conclude by returning to the brachystochrone problem,
this time from the perspective of optimal control theory.
We can formulate Bernoulli’s question as an optimal control
problem in the x,y plane, whose dynamics are given by

i=uflyl, y=wil.

where the control is a 2-dimensional vector (1, v) taking values in
the set U = (1, v) : W =1.

The Hamiltonian H(x, y, u, v, p, g, po, ¢) is then given (using o
=sgny) by the formula H = ( pu+ pzv)\/a; — p,» and the appli-

(33)

cation of (NCO) gives the conditions

u= —Ii s v & »
r |p (34)
where | pl =/ p/ + p;, as well as the differential equations
; . put pyv 0L|pl
)2 =0, D= O ——=—=——=.
1 i 2oy 2ay (35)

Notice that|p( #)| # 0. Indeed, (MP*) tells us that /= 0. So jpl =0
would imply pg = 0, contradicting (NT).)

If the constant p| vanishes, then x = 0, so we geta vertical line.
Otherwise, x is continuous and always # 0, showing that we can
use x to parametrize our solution. Since

. 2
y'(x) = b = Z =Y £—2—, we have 1+ y'(x)Z = @ and
dc X u p D
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yr(x)zl.@g:&,

p o px (36)

But (33) and (34) imply thatx = P T/TT); , and then Equations (35)
p

” |p|2 2
S0 2y = —EL = (147,
2 y}/ P (1+5%)

andthen 1 + y’2 + 2yy” =0, which is exactly Equation (9). As we
explained before, this leads to the cycloids, with no “spurious so-
lutions.” Notice that this argument does not involve any discreti-
zation or any use of refraction of light across boundaries.

Notice also that in our control argument we have not postu-
lated that the solution curves could be represented as graphs of
Junctions y(x). We have proved it! (In the calculus of variations
case this was an extra assumption, cf. “Bernoulli’s Solution of
the Brachystochrone Problem” above.)

This is one example showing that, for the brachystochrone
problem, the optimal control method gives better results than the
classical calculus of variations.

All the above considerations apply to the computation of opti-
mal trajectories that are entirely above the x axis, as in Bernoul-
li’s brachystochrone problem. However, the natural
mathematical setting for the minimum time control problem cor-

responding to (33) is the whole plane, which is why we wrote\/m

and (36) yield y(x) = 17

rather that

more general problem, i.e., to try to find the light rays when the
medium is the whole plane, and the speed of light is \/E . Notice

y in (33). It is natural, therefore, to try to solve this

that this problem is “completely controllable,” in the sense that
any two points A, B of R?, even if they lie on opposite sides of the
x axis, can be joined by a feasible path. The right-hand side of
(33) vanishes along the x axis, but this does not prevent the exis-
tence of feasible paths crossing the x-axis, because the function

|3 is not Lipschitz near the x axis. (If the function was Lip-

schitz, then by the usual uniqueness theorem of ordinary
differential equations, every solution going through a point on
the x axis would have to be a constant curve.) However the same
non-Lipschitz feature that makes the system controllable also
renders the maximum principle inapplicable, in its classical and
nonsmooth versions, including the Lojasiewicz version, since all
these require a Lipschitz reference vector field.

Suppose, for example, that we want to find an optimal trajec-
tory from A to B, where A lies in the upper half-plane and Bisin the
lower half-plane. Then one can show, first of all, that an optimal
trajectory & exists, using Ascoli’s theorem. Next, using the usual
necessary conditions for optimality, e.g., the Euler-Lagrange
equation or the classical version of the maximum principle, one
shows that any portion of an optimal curve which is entirely con-
tained in the closed upper half plane or in the closed lower half
plane is a cycloid given by (5), or a reflection of such a cycloid
with respect to the x axis. Next, one sees that & cannot traverse the x
axis more than once. (This requires an elementary qualitative
lemma that we leave as exercise.) So we know that & consists of a
cycloid going from A to a point X in the x axis, followed by a re-
flected cycloid going from X to B. It remains to find X.

It turns out that the version of [12] applies, since this result
does not require Lipschitz continuity——or even continuity—of
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the right-hand side, and works as long as the reference trajectory
arises from a semidifferentiable flow. We refer the reader to [12]
for the details.

We conclude with one more example showing the superiority
of the optimal control method for the brachystrochrone problem,
by discussing the question of the rigorous proof of the optimality
of Bernoulli’s cycloids. Clearly, no argument based only on nec-
essary conditions for optimality will ever prove that a trajectory
is optimal. If we really want to prove the optimality of Bernoul-
1i’s cycloids, an extra step is needed. For example, it would suf-
fice to prove existence of an optimal trajectory joining A and B.
(Once this is established, it follows that the optimal trajectory is
Bernoulli’s cycloid, because this curve is the unique path joining
A and B that satisfies the necessary conditions. The complete
proofis a bit more complicated, because one needs an extra argu-
ment to exclude the possibility of cycloids that touch the x axis
more than once before reaching B.) From the perspective of the
classical calculus of variations, this is a hard problem,8 because
the Lagrangian given by (8) has a singularity at y = 0. In optimal
control, however, the existence problem is trivial, since it suf-
fices to apply Ascoli’s theorem to the system (33) to obtain the
desired result.

Would Bernoulli have liked this way of looking at his prob-
lem? Would he have appreciated the elegance with which opti-
mal control can handle it? Would he have liked this approach
better than the calculus of variations method? We let the reader
be the judge.
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