

ulm university universität **UU** 

Prof. Dr. Stefan Funken M.Sc. Andreas Bantle Dipl.-Math. oec. Klaus Stolle Universität Ulm Institut für Numerische Mathematik Sommersemester 2015

## Numerische Analysis - Matlab-Blatt 4

(Besprechung in den MATLAB-Tutorien in KW 23/24)

## Hinweise:

Siehe MATLAB-Blatt 1/2.

## Aufgabe 6 (Dividierte Differenzen)

(5+5+5 Punkte)

In dieser Aufgabe wollen wir die (n+1)-te Ableitung mittels dividierter Differenzen an mehreren Stellen  $x_k$  mit

$$x_k = a + k \varepsilon, \quad k = 0, ..., N.$$

approximieren  $(N=\frac{b-a}{\varepsilon}).$  Dazu verwenden wir die Identität

$$(n+1)! [x_0, ..., x_{n+1}] f = f^{(n+1)}(\xi) \quad \text{mit} \quad \xi \in \left[ \min\{x_0, ..., x_{n+1}\}, \max\{x_0, ..., x_{n+1}\} \right].$$

Bearbeiten Sie die folgenden Aufgaben.

(i) Schreiben Sie eine MATLAB-Funktion

die die Stützstellen  $\mathbf{x} = (x_0, ..., x_N)$ , die Funktionswerte  $\mathbf{f}\mathbf{x}$  und die Ordnung der Ableitung  $\mathbf{n}$  als Eingabeparameter erhält. Die Funktion soll die dividierte Differenzen

$$(n+1)![x_k,...,x_{k+n}]f$$
,  $k=0,...,N-n$ 

als Approximationen der Ableitung  $f^{(n)}\left(\frac{x_k+x_{k+n}}{2}\right)$  berechnen und in dem Vektor val zurückgeben.

- (ii) Schreiben Sie ein Matlab-Skript main.m, in welchem Sie für eine gegebene Schrittweite eps =  $10^{-2}$  die (n+1)-te Ableitung der Funktion f auf dem Intervall [a,b] mit der Funktion aus Aufgabe (i) auswerten und zusammen mit der exakten Ableitung in ein Schaubild plotten. Implementieren Sie die folgenden Beipsiele
  - $f(x) = \cos(x), n = 3, [a, b] = [0, 2\pi]$
  - $f(x) = (\exp(1-x^2) 1)^{1/3}, n = 1, [a, b] = [-0.5, 0.5]$
- (iii) Erweitern Sie das Skript aus Aufgabenteil (ii), sodass die (n+1)-te Ableitung für die Schrittweiten

sowie der maximale Fehler auf dem Intervall [a,b] berechnet werden. Plotten Sie den maximalen Fehler über die Schrittweite eps in doppelt-logarithmischer Skala. Was stellen Sie fest?

## Aufgabe 6 (Interpolationsfehler)

(4+3+3+5 Punkte)

Der Interpolationsfehler hängt stark von der Wahl der Stützstellen ab, denn es gilt

$$|f(x) - P(f|x_0, ..., x_n)| \le \frac{|(x - x_0) \cdot ... \cdot (x - x_n)|}{(n+1)!} |f^{(n+1)}(\xi)|, \quad \xi \in [\min(x_0, ..., x_n), \max(x_0, ..., x_n)].$$

Im Folgenden wollen wir den Term

$$\omega_{n+1}(x) := (x - x_0) \cdot \dots \cdot (x - x_n)$$

für verschiedene Arten von Stützstellen numerisch untersuchen.

- (i) Schreiben Sie ein MATLAB-Skript, welches  $\omega_{n+1}(x)$  auf dem Intervall [-1,1] für
  - ein äquidistantes Gitter  $x_k = -1 + (k-1)\frac{2}{n-1}$  (k=1,...,n)
  - die Tschebyscheff-Nullstellen  $x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$  (k=1,...,n)
  - eine graduiertes Gitter  $x_k = -1 + \left(\frac{k}{\frac{n}{2}+1}\right)^{\beta}$ ,  $x_{k+\frac{n}{2}} = 1 \left(\frac{k}{\frac{n}{2}+1}\right)^{\beta}$ ,  $\beta = 2$ , n gerade,  $(k = 1, ..., \frac{n}{2})$

und n=30 plottet. Sie dürfen zur Auswertung von  $\omega_{n+1}(x)$  die Funktion hornerNewton.m aus Aufgabe 4 verwenden. Zeichnen Sie eine Legende ein. Welche Stützstellen sind am Besten? Vergleichen Sie das Ergebnis mit dem Ergebnis aus Aufgabe 5.

(ii) Erweitern Sie das Skript, sodass für  $n \in \left\{2^1,...,2^{10}\right\}$  jeweils der maximale Wert

$$M(n) := \max_{x \in [-1,1]} |\omega_{n+1}(x)|$$

bestimmt wird (Verwenden Sie dazu x=linspace(-1,1,10000)). Plotten Sie anschließend den maximalen Wert M(n) über n in einer semi-logarithmischen Skala (semilogy). Was fällt Ihnen auf?

(iii) Bestimmen Sie numerisch die Konvergenzrate für alle drei Arten von Stützstellen, d.h. bestimmen Sie die konstante 0 < C < 1 mit

$$M(n) \approx C^{n+1}$$
.

Vergleichen Sie ie Ergebnisse mit den theoretischen Aussagen, die Sie kennen.

(iv) Schreiben Sie ein MATLAB-Skript, welches den optimalen Parameter  $\beta \in [1, 2.5]$  für das graduierte Gitter besstimmt. Legen Sie sich dazu äquidistante Werte für  $\beta$  an, berechnen Sie für jedes dieser  $\beta$  den maximalen Fehler M(512) und plotten Sie M(512) über  $\beta$ . Lassen Sie sich zusätzlich den Wert von  $\beta$  ausgeben, der M(512) minimiert. Setzen Sie den optimalen Parameter von  $\beta$  in das Skript aus Augabenteil (ii) ein.