

Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller,
Prof. Dr. Karsten Urban | 17. Januar 2007

Scientific Computing

Parallele Algorithmen

Graph

In the following let $\mathcal{G}=(V, E)$ be a graph with nodes V (vertices) and undirected edges E .

Let $\mathbf{n}=|\mathbf{V}|$ and $\mathbf{e}=|\mathbf{E}|$.

Partition of a Graph

Let $\pi: V \mapsto\{1, \ldots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_{1}, \ldots, V_{p}.

Partition of a Graph

Let $\pi: V \mapsto\{1, \ldots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_{1}, \ldots, V_{p}.

If $p=2, \pi$ is called bisection.

Partition of a Graph

Let $\pi: V \mapsto\{1, \ldots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_{1}, \ldots, V_{p}.

If $p=2, \pi$ is called bisection.
The major characteristics of a partition are its balance and its cut size.

Definition (Balance)

The balance is defined by

$$
\operatorname{bal}(\pi):=\max _{1 \leq \ell \leq p}\left|V_{\ell}\right|-\min _{1 \leq \ell \leq p}\left|V_{\ell}\right| .
$$

If $\operatorname{bal}(\pi) \leq 1, \pi$ is called a balanced partition.

balanced partition

Definition (Balance)

The balance is defined by

$$
\operatorname{bal}(\pi):=\max _{1 \leq \ell \leq p}\left|V_{\ell}\right|-\min _{1 \leq \ell \leq p}\left|V_{\ell}\right| .
$$

If $\operatorname{bal}(\pi) \leq 1, \pi$ is called a balanced partition.

unbalanced partition

Definition (Balance)

The balance is defined by

$$
\operatorname{bal}(\pi):=\max _{1 \leq \ell \leq p}\left|V_{\ell}\right|-\min _{1 \leq \ell \leq p}\left|V_{\ell}\right|
$$

If $\operatorname{bal}(\pi) \leq 1, \pi$ is called a balanced partition.

unbalanced partition

Remark

A low balance ensures an even distribution of the total process-work among all processors.

Definition (Cut Size)
 Let
 $$
\operatorname{cut}(\pi):=|\{\{v, w\} \in E: \pi(v) \neq \pi(w)\}|
$$

be the cut size of π.

cut size: 5

Definition (Cut Size)
 Let
 $$
\operatorname{cut}(\pi):=|\{\{v, w\} \in E: \pi(v) \neq \pi(w)\}|
$$

be the cut size of π.

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.
It is called bisection problem if $p=2$.

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.

It is called bisection problem if $p=2$.

n	$:$	20
e	$:$	38
cut size	$:$	9
balance	$:$	0

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.

It is called bisection problem if $p=2$.

n	$:$	20
e	$:$	38
cut size	$:$	9
balance	$:$	0

The number of possible bisections of a graph is $\frac{1}{2}\binom{n}{n / 2}\left(n\right.$ even) resp. $\binom{n}{(n-1) / 2}$ (n odd $)$.
For our example we have 92.378 possible bisections.

Bisection Problem

Definition (Bisection Width)

$$
\operatorname{bw}(\mathcal{G}):=\min \{\operatorname{cut}(\pi) \mid p=2, \operatorname{bal}(\pi) \leq 1\}
$$

is the bisection width of the graph \mathcal{G}.

Bisection Problem

Definition (Bisection Width)

$$
\operatorname{bw}(\mathcal{G}):=\min \{\operatorname{cut}(\pi) \mid p=2, \operatorname{bal}(\pi) \leq 1\}
$$

is the bisection width of the graph \mathcal{G}.

Bisection Problem

Definition (Bisection Width)

$$
\operatorname{bw}(\mathcal{G}):=\min \{\operatorname{cut}(\pi) \mid p=2, \operatorname{bal}(\pi) \leq 1\}
$$

is the bisection width of the graph \mathcal{G}.

Therefore, heuristics are used to compute in adequate time a bisection with a cut as low as possible.

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...
- allow adaptivity,

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...
- allow adaptivity,
- partioning into $p=2^{k}$ processors, etc.

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection
-...

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection
- ...

Local methods: graph and bisection as input and try to improve the partition

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection
- ...

Local methods: graph and bisection as input and try to improve the partition

- Kerningham-Lin
- simulated annealing

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Remark

- simple and fast

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Remark

- simple and fast
- produces a balanced bisection

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Remark

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Remark

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)
- special cases, succeed in good bisection

Simple Node-Numbering Bisection

Given nodes v_{1}, \ldots, v_{n}.
Linear bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i<n / 2 \\ 2, & i \geq n / 2\end{cases}$
Scattered bisection: $\quad \pi\left(v_{i}\right)= \begin{cases}1, & i \text { even } \\ 2, & i \text { odd }\end{cases}$

Remark

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)
- special cases, succeed in good bisection
- no dimensional restriction

Coordinate Sorting

First step: the longest expansion of any dimension is determined
Second step: nodes are sorted according to their coordinates in that dimension

Coordinate Sorting

First step: the longest expansion of any dimension is determined
Second step: nodes are sorted according to their coordinates in that dimension

Remark

- simple and fast

Coordinate Sorting

First step: the longest expansion of any dimension is determined
Second step: nodes are sorted according to their coordinates in that dimension

Remark

- simple and fast
- produces a balanced bisection

Coordinate Sorting

First step: the longest expansion of any dimension is determined
Second step: nodes are sorted according to their coordinates in that dimension

Remark

- simple and fast
- produces a balanced bisection
- does not take advantage of adjaceny information of the graph

Coordinate Sorting

First step: the longest expansion of any dimension is determined
Second step: nodes are sorted according to their coordinates in that dimension

Remark

- simple and fast
- produces a balanced bisection
- does not take advantage of adjaceny information of the graph
- no dimensional restriction

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V

$\operatorname{bal}(\pi)=12$

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}

$\operatorname{bal}(\pi)=12$

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$

$\operatorname{bal}(\pi)=\mathbf{5}$

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$

$\operatorname{bal}(\pi)=\mathbf{3}$

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$
iv) (do not take all possible nodes in the last step!)

$\operatorname{bal}(\pi)=\mathbf{1}$

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$
iv) (do not take all possible nodes in the last step!)

$\operatorname{bal}(\pi)=\mathbf{1}$

Remark

- fast, more complex data structure necessary

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$
iv) (do not take all possible nodes in the last step!)

$\operatorname{bal}(\pi)=\mathbf{1}$

Remark

- fast, more complex data structure necessary
- balanced bisection only with modification iv)

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$
iv) (do not take all possible nodes in the last step!)

$\operatorname{bal}(\pi)=1$

Remark

- fast, more complex data structure necessary
- balanced bisection only with modification iv)
- direct p-partitioning possible (run up to size n / p)

Nearest-Neighbour Bisection

i) initialize V_{1} with one node from V
ii) all nodes from $V \backslash V_{1}$ adjacent to any node of V_{1} are identified and moved to V_{1}
iii) continue with i) until V_{1} reaches the required size of $\left\lfloor\frac{n}{2}\right\rfloor$
iv) (do not take all possible nodes in the last step!)

$\operatorname{bal}(\pi)=1$

Remark

- fast, more complex data structure necessary
- balanced bisection only with modification iv)
- direct p-partitioning possible (run up to size n / p)
- building process depends on initial node

Connectivity Bisection

For two nodes $v, w \in V$ let
distance $(v, w):=\mid$ shortest path connecting v and $w \mid$
be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{1 1}$

Connectivity Bisection

For two nodes $v, w \in V$ let distance $(v, w):=\mid$ shortest path connecting v and $w \mid$ be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{1 1}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes

Connectivity Bisection

For two nodes $v, w \in V$ let distance $(v, w):=\mid$ shortest path connecting v and $w \mid$ be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{5}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
iii) nodes are assigned to V_{1} and V_{2} according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let
distance $(v, w):=\mid$ shortest path connecting v and $w \mid$
be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{3}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
iii) nodes are assigned to V_{1} and V_{2} according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let distance $(v, w):=\mid$ shortest path connecting v and $w \mid$ be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{1}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
iii) nodes are assigned to V_{1} and V_{2} according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let distance $(v, w):=\mid$ shortest path connecting v and $w \mid$ be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{1}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
iii) nodes are assigned to V_{1} and V_{2} according to this list

Remark

- combination of coordinate sorting and nearest-neighbour bisection

Connectivity Bisection

For two nodes $v, w \in V$ let distance $(v, w):=\mid$ shortest path connecting v and $w \mid$ be the distance between v and w.
i) determine two vertices with a (near) maximum distance

$\operatorname{bal}(\pi)=\mathbf{1}$
ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
iii) nodes are assigned to V_{1} and V_{2} according to this list

Remark

- combination of coordinate sorting and nearest-neighbour bisection
- no coordinate information necessary

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let
$\operatorname{deg}(v):=|\{w \in V:(v, w) \in E\}|$
$\operatorname{int}(v):=|\{w \in V:(v, w) \in E, \pi(v)=\pi(w)\}|$ $\operatorname{ext}(v):=|\{w \in V:(v, w) \in E, \pi(v) \neq \pi(w)\}|$
be its degree
be its number of internal edges be its number of external edges

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let
$\operatorname{deg}(v):=|\{w \in V:(v, w) \in E\}|$
$\operatorname{int}(v):=|\{w \in V:(v, w) \in E, \pi(v)=\pi(w)\}|$ be its number of internal edges $\operatorname{ext}(v):=|\{w \in V:(v, w) \in E, \pi(v) \neq \pi(w)\}|$ be its number of external edges

Definition (diff-value)

Let $v \in V$.

$$
\operatorname{diff}(v):=\operatorname{ext}(v)-\operatorname{int}(v)
$$

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let
$\operatorname{deg}(v):=|\{w \in V:(v, w) \in E\}|$
$\operatorname{int}(v):=|\{w \in V:(v, w) \in E, \pi(v)=\pi(w)\}|$ be its number of internal edges $\operatorname{ext}(v):=|\{w \in V:(v, w) \in E, \pi(v) \neq \pi(w)\}|$ be its number of external edges

Definition (diff-value)

Let $v \in V$.

$$
\operatorname{diff}(v):=\operatorname{ext}(v)-\operatorname{int}(v)
$$

Remark

- The diff-value of a node represents the change of the cut-size if this node to a different cluster of a bisection.
- The diff-value is helpful for predicting the change of the cut-size if the rearrangements of the bisection are accomplished by moves of single nodes.

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$

$\operatorname{bal}(\pi)=\mathbf{9}$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)

bal $(\pi)=\mathbf{9}$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)

$\operatorname{bal}(\pi)=7$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)

bal $(\pi)=\mathbf{5}$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)

$\operatorname{bal}(\pi)=\mathbf{3}$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)
iii) after $\left\lfloor\frac{n}{2}\right\rfloor$ moves the bisection is balanced

$\operatorname{bal}(\pi)=1$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_{1}=\{1, \ldots, n\}$ and $V_{2}=\emptyset$, $($ cutsize $=0$, balance $=n)$
ii) move a node from V_{1} to V_{2} which minimally increases the cut size take node with highest diff-value (update after each move)
iii) after $\left\lfloor\frac{n}{2}\right\rfloor$ moves the bisection is balanced

bal $(\pi)=\mathbf{1}$

Remark

- very fast
- produces bisections with reasonable cut sizes
- efficient updating of diff-value possible (using dynamical data structures)

Inertia of Moments

Consider a rigid body as system of mass points.

Inertia of Moments

Consider a rigid body as system of mass points.
Let $\sum m \vec{x}=0$ (center of gravity vanishes).

Inertia of Moments

Consider a rigid body as system of mass points.
Let $\sum m \vec{x}=0$ (center of gravity vanishes).
The principal inertia axes are hypothetical axes, on which the center of mass is located, and around which the rigid body would spin if it were in free space unencumbered by bearing or gravitational forces.

Inertia of Moments

Consider a rigid body as system of mass points.
Let $\sum m \vec{x}=0$ (center of gravity vanishes).
The principal inertia axes are hypothetical axes, on which the center of mass is located, and around which the rigid body would spin if it were in free space unencumbered by bearing or gravitational forces.
The principal axes are the eigenvectors of the tensor

$$
I:=\left(\begin{array}{ccc}
\sum m\left(y^{2}+x^{2}\right) & -\sum m x y & -\sum m x z \\
-\sum m x y & \sum m\left(x^{2}+z^{2}\right) & -\sum m y z \\
-\sum m x z & -\sum m y z & \sum m\left(x^{2}+y^{2}\right)
\end{array}\right)
$$

and the principal moments (of inertia) are its eigenvalues.

Inertial Bisection

Nodes will be considered as mass points,

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated,

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Remark

- fast

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Remark

- fast
- coordinates have to be provided

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Remark

- fast
- coordinates have to be provided
- adjacency information is not considered

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia
 axis so that $\operatorname{bal}(\pi) \leq 1$

Remark

- fast
- coordinates have to be provided
- adjacency information is not considered
- computes reasonable bisections for most applications

Fiedler vector

Definition and Theorem: Laplacian Matrix $L(\mathcal{G})$

Let $\mathcal{G}(V, E)$ be given, $n:=|V|$. We define $L(\mathcal{G})=\left(\ell_{i j}\right)$ by

$$
\ell_{i j}=\left\{\begin{aligned}
-1, & i \neq j \text { and }(i, j) \in E \\
0, & i \neq j \text { and }(i, j) \notin E \\
\operatorname{deg}(i), & i=j
\end{aligned}\right.
$$

Fiedler vector

Definition and Theorem: Laplacian Matrix $L(\mathcal{G})$

Let $\mathcal{G}(V, E)$ be given, $n:=|V|$. We define $L(\mathcal{G})=\left(\ell_{i j}\right)$ by

$$
\ell_{i j}=\left\{\begin{aligned}
-1, & i \neq j \text { and }(i, j) \in E \\
0, & i \neq j \text { and }(i, j) \notin E \\
\operatorname{deg}(i), & i=j
\end{aligned}\right.
$$

The Laplacian matrix L is symmetric and the sum of each row and column is 0 .
(Hence 0 is an eigenvalue of L with eigenvector 1.)

Fiedler vector

Definition and Theorem: Laplacian Matrix $L(\mathcal{G})$

Let $\mathcal{G}(V, E)$ be given, $n:=|V|$. We define $L(\mathcal{G})=\left(\ell_{i j}\right)$ by

$$
\ell_{i j}=\left\{\begin{aligned}
-1, & i \neq j \text { and }(i, j) \in E \\
0, & i \neq j \text { and }(i, j) \notin E \\
\operatorname{deg}(i), & i=j
\end{aligned}\right.
$$

The Laplacian matrix L is symmetric and
 the sum of each row and column is 0 .
(Hence 0 is an eigenvalue of L with eigenvector 1.)

Fiedler vector

Definition and Theorem: Laplacian Matrix $L(\mathcal{G})$

Let $\mathcal{G}(V, E)$ be given, $n:=|V|$. We define $L(\mathcal{G})=\left(\ell_{i j}\right)$ by

$$
\ell_{i j}=\left\{\begin{aligned}
-1, & i \neq j \text { and }(i, j) \in E \\
0, & i \neq j \text { and }(i, j) \notin E \\
\operatorname{deg}(i), & i=j
\end{aligned}\right.
$$

The Laplacian matrix L is symmetric and
 the sum of each row and column is 0 .
(Hence 0 is an eigenvalue of L with eigenvector 1.)

Definition and Theorem: Fiedler Vector

The eigenvector \vec{y} of the second smallest eigenvalue λ_{2} of the Laplacian matrix is called Fiedler vector.

Fiedler vector

Definition and Theorem: Laplacian Matrix $L(\mathcal{G})$

Let $\mathcal{G}(V, E)$ be given, $n:=|V|$. We define $L(\mathcal{G})=\left(\ell_{i j}\right)$ by

$$
\ell_{i j}=\left\{\begin{aligned}
-1, & i \neq j \text { and }(i, j) \in E \\
0, & i \neq j \text { and }(i, j) \notin E \\
\operatorname{deg}(i), & i=j
\end{aligned}\right.
$$

The Laplacian matrix L is symmetric and
 the sum of each row and column is 0 .
(Hence 0 is an eigenvalue of L with eigenvector 1.)

Definition and Theorem: Fiedler Vector

The eigenvector \vec{y} of the second smallest eigenvalue λ_{2} of the Laplacian matrix is called Fiedler vector.
Let $c \in \mathbb{R}$. If \mathcal{G} is a connected graph, those nodes v of \mathcal{G} with $y_{v} \geq c$ and those with $y_{v}<c$ each form a connected subgraph of \mathcal{G}.

Numerical Examples / Simple 2d Geometry

Initial mesh and eigenmodes 2-6.

Spectral Bisection

i) construct the Laplacian matrix

$$
\left(\begin{array}{ccccc}
3 & -1 & & -1 & -1 \\
-1 & 3 & -1 & -1 & \\
& -1 & 3 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & & -1 & -1 & 3
\end{array}\right)
$$

Spectral Bisection

i) construct the Laplacian matrix
ii) compute Fiedler vector \vec{y}

$$
\left(\begin{array}{ccccc}
3 & -1 & & -1 & -1 \\
-1 & 3 & -1 & -1 & \\
& -1 & 3 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & & -1 & -1 & 3
\end{array}\right)
$$

Spectral Bisection

i) construct the Laplacian matrix
ii) compute Fiedler vector \vec{y}
iii) partition the nodes of \mathcal{G} according to the median value y_{m} of the components of \vec{y}

$$
\begin{aligned}
& V_{1}=\left\{v \in V: y_{v}<y_{m}\right\} \text { and } \\
& V_{2}=\left\{v \in V: y_{v}>y_{m}\right\}
\end{aligned}
$$

distribute $\left\{v \in V: y_{v}=y_{m}\right\}$ among V_{1}, V_{2}, s.t. $\operatorname{bal}(\pi) \leq 1$

Spectral Bisection

i) construct the Laplacian matrix
ii) compute Fiedler vector \vec{y}
iii) partition the nodes of \mathcal{G} according to the median value y_{m} of the components of \vec{y}

$$
\begin{aligned}
& V_{1}=\left\{v \in V: y_{v}<y_{m}\right\} \text { and } \\
& V_{2}=\left\{v \in V: y_{v}>y_{m}\right\}
\end{aligned}
$$

distribute $\left\{v \in V: y_{v}=y_{m}\right\}$ among V_{1}, V_{2}, s.t. $\operatorname{bal}(\pi) \leq 1$

Remark

- calculation of eigenvectors is time-consuming

Spectral Bisection

i) construct the Laplacian matrix
ii) compute Fiedler vector \vec{y}
iii) partition the nodes of \mathcal{G} according to the median value y_{m} of the components of \vec{y}

$$
\begin{aligned}
& V_{1}=\left\{v \in V: y_{v}<y_{m}\right\} \text { and } \\
& V_{2}=\left\{v \in V: y_{v}>y_{m}\right\}
\end{aligned}
$$

$$
\left(\begin{array}{ccccc}
3 & -1 & & -1 & -1 \\
-1 & 3 & -1 & -1 & \\
& -1 & 3 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & & -1 & -1 & 3
\end{array}\right)
$$

distribute $\left\{v \in V: y_{v}=y_{m}\right\}$ among V_{1}, V_{2}, s.t. $\operatorname{bal}(\pi) \leq 1$

Remark

- calculation of eigenvectors is time-consuming
- components have to be very correct for a correct partition according to the median component.

Local methods

Theorem:

Let $\pi: V \mapsto\{1,2\}$ be a bisection and $v \in V$.
If v moves to the other cluster, the cut size of the new bisection decreases by $\operatorname{diff}(v)$ and the diff-values of the nodes in V change in teh following way:

$$
\begin{array}{ll}
v: & \operatorname{diff}(v)=-\operatorname{diff}(v) \\
w \in V \backslash\{v\}: & \operatorname{diff}(w)= \begin{cases}\operatorname{diff}(w)+2, & (v, w) \in E \text { and } \pi(w)=\pi(v) \\
\operatorname{diff}(w)-2, & (v, w) \in E \text { and } \pi(w) \neq \pi(v) \\
\operatorname{diff}(w), & \text { otherwise }\end{cases}
\end{array}
$$

Definition:

For a pair $(v, w), v \in V_{1}, w \in V_{2}$ of nodes let $\operatorname{gain}(v, w):=\operatorname{diff}(v)+\operatorname{diff}(w)- \begin{cases}2, & (v, w) \in E \\ 0, & \text { otherwise }\end{cases}$

Definition:

For a pair $(v, w), v \in V_{1}, w \in V_{2}$ of nodes let $\operatorname{gain}(v, w):=\operatorname{diff}(v)+\operatorname{diff}(w)- \begin{cases}2, & (v, w) \in E \\ 0, & \text { otherwise }\end{cases}$

Remark:

The value of $\operatorname{gain}(\mathbf{v}, \mathbf{w})$ describes the decrease in the cut size if v and w are exchanged.
It plays major role in the Kerningham-Lin algorithm.

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$. REPEAT

REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
$\begin{aligned} & 1 \\ & 2 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \left(v_{1}, w_{1}\right) \\ \left(v_{2}, w_{2}\right) \\ : \\ \left(v_{x}, w_{x}\right) \end{gathered}$	gain $_{1}$ gain $_{2}$ gain_{x}	$\begin{gathered} \text { cut } \text { size }_{1} \\ \text { cut } \text { size }_{2} \\ \vdots \\ \text { cut } \text { size }_{\min } \end{gathered}$	physical exchange \Leftarrow minimum cut size
$\left\lfloor\frac{n}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left\lfloor\frac{\pi}{2}\right\rfloor}$	$\text { cutsize }_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size
cut size ${ }_{0}$

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
$\begin{aligned} & 1 \\ & 2 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} \left(v_{1}, w_{1}\right) \\ \left(v_{2}, w_{2}\right) \\ \vdots \\ \left(v_{x}, w_{x}\right) \end{gathered}$	gain_{1} gain $_{2}$ gain_{x}	$\begin{gathered} \text { cut } \text { size }_{1} \\ \text { cut } \text { size }_{2} \\ \vdots \\ \text { cut size } \min \end{gathered}$	physical exchange $\Leftarrow \text { minimum cut size }$
$\left\lfloor\frac{\pi}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left\lfloor\frac{\pi}{2}\right\rfloor}$	$\text { cutsize }_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked REPEAT $\lfloor n / 2\rfloor$ times
choose unlocked nodes $v \in V_{1}$ and $w \in V_{2}$ with gain (v, w) maximal

REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
$\begin{aligned} & 1 \\ & 2 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \left(v_{1}, w_{1}\right) \\ \left(v_{2}, w_{2}\right) \\ : \\ \left(v_{x}, w_{x}\right) \end{gathered}$	gain $_{1}$ gain $_{2}$ gain_{x}	cut size $_{1}$ cut size $_{2}$ \vdots cut size $_{\min }$	physical exchange \Leftarrow minimum cut size
$\left\lfloor\frac{n}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left\lfloor\frac{\pi}{2}\right\rfloor}$	cutsize $_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size
cut size ${ }_{0}$

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked REPEAT $\lfloor n / 2\rfloor$ times
choose unlocked nodes $v \in V_{1}$ and $w \in V_{2}$ with gain (v, w) maximal
exchange v and w logically and lock them;

REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
1	$\left(v_{1}, w_{1}\right)$	gain_{1}	cut size ${ }_{1}$	
2	$\left(v_{2}, w_{2}\right)$	gain_{2}	cut size 2	physical
:				exchange
x	$\left(v_{x}, w_{x}\right)$	gain_{x}	cut size $_{\min }$	\Leftarrow minimum cut size
	$\left(v_{x}, w_{x}\right)$	gaix	cut ${ }^{\text {min }}$	
:	:	.	.	
-	-	.	.	
$\left\lfloor\frac{n}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left\lfloor\frac{n}{2}\right\rfloor}$	cutsize $_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked REPEAT $\lfloor n / 2\rfloor$ times
choose unlocked nodes $v \in V_{1}$ and $w \in V_{2}$ with gain (v, w) maximal
exchange v and w logically and lock them;
update the diff-values of the neighbors;

REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
1	$\left(v_{1}, w_{1}\right)$	gain_{1}	cut size ${ }_{1}$	
2	$\left(v_{2}, w_{2}\right)$	gain_{2}	cut size 2	physical
-				exchange
-			cut size ${ }_{\text {min }}$	\Leftarrow minimum cut size
X	$\left(v_{x}, w_{x}\right)$	gain_{x}	cut size \min	\Leftarrow minimum cut size
-	,	+	-	
-	$\stackrel{ }{*}$	-		
$\left\lfloor\frac{n}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left[\frac{\pi}{2}\right\rfloor}$	cutsize $_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size
cut size ${ }_{0}$

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. $\operatorname{bal}(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked REPEAT $\lfloor n / 2\rfloor$ times
choose unlocked nodes $v \in V_{1}$ and $w \in V_{2}$ with gain (v, w) maximal
exchange v and w logically and lock them;
update the diff-values of the neighbors;
interchange physically up to the minimal cut size
REPEAT cut size is not improved

step	pair	gain	cut size	
0			cut size ${ }_{0}$	
1	$\left(v_{1}, w_{1}\right)$	gain_{1}	cut size ${ }_{1}$	
2	$\left(v_{2}, w_{2}\right)$	gain_{2}	cut size 2	physical
:				exchange
-	$\left(v_{x}, w_{x}\right)$	gain_{x}	cut size $_{\min }$	\Leftarrow minimum cut size
	$\left(v_{x}, w_{x}\right)$	gaix	cut ${ }^{\text {min }}$	
:	:	.		
-	-	.	.	
$\left\lfloor\frac{n}{2}\right\rfloor$	$\left(u_{\left\lfloor\frac{n}{2}\right\rfloor}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$	$\operatorname{gain}_{\left\lfloor\frac{n}{2}\right\rfloor}$	cutsize $_{\left\lfloor\frac{n}{2}\right\rfloor}$	

cut size
cut size ${ }_{0}$

Numerical Examples / Test Graphs I

Numerical Examples / Test Graphs II

3elt

big

airfoil1

Properties of Test Graphs

Original test-graphs from different FEM-applications in 2d and 3d.
[ftp riacs.edu, directory /pub/grids]

	dimension	\mathbf{n}	\mathbf{e}	lowest cut known
grid1_dual	2	224	420	16
netz4504_dual	2	615	1171	19
ukerbe1_dual	2	1866	3538	21
grid2_dual	2	3136	6112	32
airfoil	2	4253	12289	74
3elt	2	4720	13722	90
big	2	15606	45878	139
brack2	3	62631	366559	731
wave	3	156317	10559331	9503

Results for Test Graphs

[Robert Preis: Efficient Partitioning of Very Large Graphs with the New and Powerful Helpful-Set Heuristic]

LIN	SCA	GRE	IN	SP	LIN	SCA	GRE	IN	SP

grid1_dual	152	210	26	20	20 0.45	26 0.03	16 0.03	26	16 0.03	16 0.40
netz4504_dual	38	657	39	30	23	22	27	35	22	20
ukerbe1_dual	$\underline{22}$	2048	82	$\underline{22}$	27	$\underline{22}$	31	21	22	22
				0.01	1.84	0.08	0.28	0.04	0.09	1.98
grid2_dual	1862	3376	194	32	34	48	32	83	32	32
			0.02	0.02	1.58	0.43	0.41	0.05	0.12	1.65
airfoil	94	6321	121 0.03	94 0.03	138 2.22	$\frac{83}{0.12}$	91 0.42	102 0.09	$\stackrel{83}{0.11}$	98 2.36
3 elt	223	7018	251	209	115	90	190	110	121	$\underline{94}$
			0.03	0.05	3.10	0.15	0.62	0.19	0.27	3.41
big	812	23276	248	245	162	148	228	205	200	145
	0.02	0.01	0.19	0.13	7.98	0.62	2.65	0.47	0.56	8.44
brack2	75974	192827	1083	817	827	2176	6473	734	783	747
	0.06	0.03	1.47	0.28	65.66	7.2	9.23	3.77	2.32	67.30
wave	40620	569226	16703	$\underline{9834}$	9886	16855	11629	9402	$\underline{9667}$	9611
	0.14	0.06	4.15	0.79	1430.52	11.92	23.08	15.87	7.49	1427.47

Conclusion

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.

Conclusion

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.

Conclusion

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.

Conclusion

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.
- Spectral methods are very expensive but combined with KL in most cases produce partitions with a cut size of not more than 10% over the known optimum.

Conclusion

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.
- Spectral methods are very expensive but combined with KL in most cases produce partitions with a cut size of not more than 10% over the known optimum.
- The Kerningham-Lin algorithm improves the cut size significantly, while leading to a much higher running time.

Available Test Codes

Matlab Mesh Partitioning and Graph Separator Toolbox
It contains Matlab code for several graph and mesh partitioning methods, including geometric, spectral, geometric spectral, and coordinate bisection.

Graph Partitioning Software (GNU open source license)
CHACO Leland and Hendrickson
METIS Karypis and Kumar
PARTY Preis
JOSTLE Walshaw
SCOTCH Pellegrini

