
Scientific Computing
Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller,
Prof. Dr. Karsten Urban | 17. Januar 2007

Parallele Algorithmen

Page 2 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Graph

In the following let G = (V ,E) be a graph
with nodes V (vertices) and undirected edges E.

Let n = |V| and e = |E|.

Page 3 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partition of a Graph

Let π : V 7→ {1, . . . , p} be a partition of a graph G
that distributes the nodes among p clusters V1, . . . , Vp.

If p = 2, π is called bisection.

The major characteristics of a partition are its balance and its cut size.

Page 3 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partition of a Graph

Let π : V 7→ {1, . . . , p} be a partition of a graph G
that distributes the nodes among p clusters V1, . . . , Vp.

If p = 2, π is called bisection.

The major characteristics of a partition are its balance and its cut size.

Page 3 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partition of a Graph

Let π : V 7→ {1, . . . , p} be a partition of a graph G
that distributes the nodes among p clusters V1, . . . , Vp.

If p = 2, π is called bisection.

The major characteristics of a partition are its balance and its cut size.

Page 4 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition (Balance)

The balance is defined by

bal(π) := max
1≤`≤p

|V`| − min
1≤`≤p

|V`|.

If bal(π) ≤ 1, π is called a balanced partition.

balanced partition

Remark
A low balance ensures an even distribution of the
total process-work among all processors.

Page 4 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition (Balance)

The balance is defined by

bal(π) := max
1≤`≤p

|V`| − min
1≤`≤p

|V`|.

If bal(π) ≤ 1, π is called a balanced partition.

unbalanced partition

Remark
A low balance ensures an even distribution of the
total process-work among all processors.

Page 4 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition (Balance)

The balance is defined by

bal(π) := max
1≤`≤p

|V`| − min
1≤`≤p

|V`|.

If bal(π) ≤ 1, π is called a balanced partition.

unbalanced partition

Remark
A low balance ensures an even distribution of the
total process-work among all processors.

Page 5 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition (Cut Size)

Let

cut(π) := |{{v ,w} ∈ E : π(v) 6= π(w)}|

be the cut size of π.

cut size: 5

Remark
The cut size is the number of edges that are incident to nodes of
different clusters and describes the amount of
interprocessor commnunication in the application.

Page 5 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition (Cut Size)

Let

cut(π) := |{{v ,w} ∈ E : π(v) 6= π(w)}|

be the cut size of π.

cut size: 5

cut size: 4

Remark
The cut size is the number of edges that are incident to nodes of
different clusters and describes the amount of
interprocessor commnunication in the application.

Page 6 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size
while keeping the balance as low as possible.

It is called bisection problem if p = 2.

2
π

V1

V

n : 20
e : 38
cut size : 9
balance : 0

The number of possible bisections of a graph is
1
2

(
n

n/2

)
(n even) resp.

(
n

(n−1)/2

)
(n odd).

For our example we have 92.378 possible bisections.

Page 6 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size
while keeping the balance as low as possible.

It is called bisection problem if p = 2.

2
π

V1

V

n : 20
e : 38
cut size : 9
balance : 0

The number of possible bisections of a graph is
1
2

(
n

n/2

)
(n even) resp.

(
n

(n−1)/2

)
(n odd).

For our example we have 92.378 possible bisections.

Page 6 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Partitioning Problem

Find a partition π that minimizes the cut size
while keeping the balance as low as possible.

It is called bisection problem if p = 2.

2
π

V1

V

n : 20
e : 38
cut size : 9
balance : 0

The number of possible bisections of a graph is
1
2

(
n

n/2

)
(n even) resp.

(
n

(n−1)/2

)
(n odd).

For our example we have 92.378 possible bisections.

Page 7 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Definition (Bisection Width)

bw(G) := min{cut(π)|p = 2, bal(π) ≤ 1}

is the bisection width of the graph G.
1 2 k (even)

1 2 k (odd)

bw (G) = k

bw (G) = k+1

Remark
The problem of calculating the bisection width
for an abitrary graph is NP-complete.
[T.Lengauer: Cobinatorial Algorithms for Integrated Circuit Layout, B.G. Teubner, 1990]

Therefore, heuristics are used to compute in adequate time a bisection
with a cut as low as possible.

Page 7 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Definition (Bisection Width)

bw(G) := min{cut(π)|p = 2, bal(π) ≤ 1}

is the bisection width of the graph G.
1 2 k (even)

1 2 k (odd)

bw (G) = k

bw (G) = k+1

Remark
The problem of calculating the bisection width
for an abitrary graph is NP-complete.
[T.Lengauer: Cobinatorial Algorithms for Integrated Circuit Layout, B.G. Teubner, 1990]

Therefore, heuristics are used to compute in adequate time a bisection
with a cut as low as possible.

Page 7 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Bisection Problem

Definition (Bisection Width)

bw(G) := min{cut(π)|p = 2, bal(π) ≤ 1}

is the bisection width of the graph G.
1 2 k (even)

1 2 k (odd)

bw (G) = k

bw (G) = k+1

Remark
The problem of calculating the bisection width
for an abitrary graph is NP-complete.
[T.Lengauer: Cobinatorial Algorithms for Integrated Circuit Layout, B.G. Teubner, 1990]

Therefore, heuristics are used to compute in adequate time a bisection
with a cut as low as possible.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 8 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Partitioning Problem

The partitioning of the fe-mesh, should also take into account

I shape of the resulting subdomains (possible influence on solver),

I weaker constraint on the balance possible,

I necessary to partition in parallel,

I allow motion/deformation of the domain,

I easy data-structure/handling for solver/post-processing,...

I allow adaptivity,

I partioning into p = 2k processors, etc.

Page 9 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

I simple node-numbering bisection

I coordinate sorting

I nearest-neighbour bisection

I connectivity bisection

I greedy bisection

I inertial bisection

I spectral bisection

I ...

Local methods: graph and bisection as input and try to improve the partition

I Kerningham-Lin

I simulated annealing

I ...

Page 9 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

I simple node-numbering bisection

I coordinate sorting

I nearest-neighbour bisection

I connectivity bisection

I greedy bisection

I inertial bisection

I spectral bisection

I ...

Local methods: graph and bisection as input and try to improve the partition

I Kerningham-Lin

I simulated annealing

I ...

Page 9 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

I simple node-numbering bisection

I coordinate sorting

I nearest-neighbour bisection

I connectivity bisection

I greedy bisection

I inertial bisection

I spectral bisection

I ...

Local methods: graph and bisection as input and try to improve the partition

I Kerningham-Lin

I simulated annealing

I ...

Page 9 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Heuristics for Graph Partitioning

Global methods: graph description as input and generate a balanced bisection

I simple node-numbering bisection

I coordinate sorting

I nearest-neighbour bisection

I connectivity bisection

I greedy bisection

I inertial bisection

I spectral bisection

I ...

Local methods: graph and bisection as input and try to improve the partition

I Kerningham-Lin

I simulated annealing

I ...

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

9
2

4

3

7
6

1
8

5

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

4
9

3
8

7
6

1

5

2

linear
bisection

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Remark
I simple and fast

I produces a balanced bisection

I generally, poor cut size (no attention to adjaceny information of graph)

I special cases, succeed in good bisection

I no dimensional restriction

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Remark
I simple and fast

I produces a balanced bisection

I generally, poor cut size (no attention to adjaceny information of graph)

I special cases, succeed in good bisection

I no dimensional restriction

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Remark
I simple and fast

I produces a balanced bisection

I generally, poor cut size (no attention to adjaceny information of graph)

I special cases, succeed in good bisection

I no dimensional restriction

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Remark
I simple and fast

I produces a balanced bisection

I generally, poor cut size (no attention to adjaceny information of graph)

I special cases, succeed in good bisection

I no dimensional restriction

Page 10 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Simple Node-Numbering Bisection

Given nodes v1, . . . , vn.

Linear bisection: π(vi) =

{
1, i < n/2
2, i ≥ n/2

Scattered bisection: π(vi) =

{
1, i even
2, i odd

2

1

7

4
9

5
6

3
8

scattered
bisection

Remark
I simple and fast

I produces a balanced bisection

I generally, poor cut size (no attention to adjaceny information of graph)

I special cases, succeed in good bisection

I no dimensional restriction

Page 11 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Coordinate Sorting

First step: the longest expansion
of any dimension is determined

Second step: nodes are sorted according
to their coordinates in that dimension

Page 11 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Coordinate Sorting

First step: the longest expansion
of any dimension is determined

Second step: nodes are sorted according
to their coordinates in that dimension

Remark
I simple and fast

I produces a balanced bisection

I does not take advantage of adjaceny information of the graph

I no dimensional restriction

Page 11 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Coordinate Sorting

First step: the longest expansion
of any dimension is determined

Second step: nodes are sorted according
to their coordinates in that dimension

Remark
I simple and fast

I produces a balanced bisection

I does not take advantage of adjaceny information of the graph

I no dimensional restriction

Page 11 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Coordinate Sorting

First step: the longest expansion
of any dimension is determined

Second step: nodes are sorted according
to their coordinates in that dimension

Remark
I simple and fast

I produces a balanced bisection

I does not take advantage of adjaceny information of the graph

I no dimensional restriction

Page 11 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Coordinate Sorting

First step: the longest expansion
of any dimension is determined

Second step: nodes are sorted according
to their coordinates in that dimension

Remark
I simple and fast

I produces a balanced bisection

I does not take advantage of adjaceny information of the graph

I no dimensional restriction

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!)

bal(π) = 12

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!)

bal(π) = 12

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c

iv) (do not take all possible nodes in the last step!)

bal(π) = 5

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c

iv) (do not take all possible nodes in the last step!)

bal(π) = 3

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!) bal(π) = 1

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!) bal(π) = 1

Remark
I fast, more complex data structure necessary

I balanced bisection only with modification iv)

I direct p-partitioning possible (run up to size n/p)

I building process depends on initial node

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!) bal(π) = 1

Remark
I fast, more complex data structure necessary

I balanced bisection only with modification iv)

I direct p-partitioning possible (run up to size n/p)

I building process depends on initial node

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!) bal(π) = 1

Remark
I fast, more complex data structure necessary

I balanced bisection only with modification iv)

I direct p-partitioning possible (run up to size n/p)

I building process depends on initial node

Page 12 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V1 with one node from V

ii) all nodes from V \ V1 adjacent to any node of V1

are identified and moved to V1

iii) continue with i) until V1 reaches the required size
of b n

2c
iv) (do not take all possible nodes in the last step!) bal(π) = 1

Remark
I fast, more complex data structure necessary

I balanced bisection only with modification iv)

I direct p-partitioning possible (run up to size n/p)

I building process depends on initial node

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 11

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 11

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 5

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 3

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 1

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 1

Remark
I combination of coordinate sorting and nearest-neighbour bisection

I no coordinate information necessary

Page 13 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Connectivity Bisection

For two nodes v ,w ∈ V let

distance(v ,w) := |shortest path connecting v and w |

be the distance between v and w .

i) determine two vertices with a (near) maximum
distance

ii) all other nodes are sorted in order of increasing
distance from one of the extremal nodes

iii) nodes are assigned to V1 and V2 according to
this list

bal(π) = 1

Remark
I combination of coordinate sorting and nearest-neighbour bisection

I no coordinate information necessary

Page 14 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Basic Tool for Local Rearrangements

Definition
For a node v ∈ V let

deg(v) := |{w ∈ V : (v ,w) ∈ E}| be its degree
int(v) := |{w ∈ V : (v ,w) ∈ E , π(v) = π(w)}| be its number of internal edges
ext(v) := |{w ∈ V : (v ,w) ∈ E , π(v) 6= π(w)}| be its number of external edges

Definition (diff-value)

Let v ∈ V .

diff (v) := ext(v)− int(v)

Remark

I The diff-value of a node represents the change of the cut-size if this node to
a different cluster of a bisection.

I The diff-value is helpful for predicting the change of the cut-size if the
rearrangements of the bisection are accomplished by moves of single nodes.

Page 14 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Basic Tool for Local Rearrangements

Definition
For a node v ∈ V let

deg(v) := |{w ∈ V : (v ,w) ∈ E}| be its degree
int(v) := |{w ∈ V : (v ,w) ∈ E , π(v) = π(w)}| be its number of internal edges
ext(v) := |{w ∈ V : (v ,w) ∈ E , π(v) 6= π(w)}| be its number of external edges

Definition (diff-value)

Let v ∈ V .

diff (v) := ext(v)− int(v)

Remark
I The diff-value of a node represents the change of the cut-size if this node to

a different cluster of a bisection.

I The diff-value is helpful for predicting the change of the cut-size if the
rearrangements of the bisection are accomplished by moves of single nodes.

Page 14 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Basic Tool for Local Rearrangements

Definition
For a node v ∈ V let

deg(v) := |{w ∈ V : (v ,w) ∈ E}| be its degree
int(v) := |{w ∈ V : (v ,w) ∈ E , π(v) = π(w)}| be its number of internal edges
ext(v) := |{w ∈ V : (v ,w) ∈ E , π(v) 6= π(w)}| be its number of external edges

Definition (diff-value)

Let v ∈ V .

diff (v) := ext(v)− int(v)

Remark
I The diff-value of a node represents the change of the cut-size if this node to

a different cluster of a bisection.

I The diff-value is helpful for predicting the change of the cut-size if the
rearrangements of the bisection are accomplished by moves of single nodes.

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−3

−3

−3

−3
−5

−2
−2

−3

−4

bal(π) = 9

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−3

−3

?

−3
−5

−2
−2

−3

−4
−3

bal(π) = 9

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−1

−3
−3

−2

−3

−4
−3

−3

bal(π) = 7

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

0

−3 −3

−4
−3

−3

−1

bal(π) = 5

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−1−3

−4
−3

−3

−1

bal(π) = 3

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−1

−3

−3

1

−2

bal(π) = 1

Page 15 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Greedy Bisection (greedy ' gefräßig)

i) initialise V1 = {1, . . . , n} and V2 = ∅,
(cutsize = 0, balance = n)

ii) move a node from V1 to V2 which minimally
increases the cut size
take node with highest diff-value
(update after each move)

iii) after b n
2c moves the bisection is balanced

−1

−3

−3

1

−2

bal(π) = 1

Remark
I very fast

I produces bisections with reasonable cut sizes

I efficient updating of diff-value possible
(using dynamical data structures)

Page 16 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertia of Moments

Consider a rigid body as system of mass points.

Let
∑

m~x = 0 (center of gravity vanishes).

The principal inertia axes are hypothetical axes, on which the center of mass is
located, and around which the rigid body would spin if it were in free space
unencumbered by bearing or gravitational forces.

The principal axes are the eigenvectors of the tensor

I :=

∑
m(y2 + x2) −

∑
mxy −

∑
mxz

−
∑

mxy
∑

m(x2 + z2) −
∑

myz
−

∑
mxz −

∑
myz

∑
m(x2 + y2)


and the principal moments (of inertia) are its eigenvalues.

Page 16 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertia of Moments

Consider a rigid body as system of mass points.

Let
∑

m~x = 0 (center of gravity vanishes).

The principal inertia axes are hypothetical axes, on which the center of mass is
located, and around which the rigid body would spin if it were in free space
unencumbered by bearing or gravitational forces.

The principal axes are the eigenvectors of the tensor

I :=

∑
m(y2 + x2) −

∑
mxy −

∑
mxz

−
∑

mxy
∑

m(x2 + z2) −
∑

myz
−

∑
mxz −

∑
myz

∑
m(x2 + y2)


and the principal moments (of inertia) are its eigenvalues.

Page 16 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertia of Moments

Consider a rigid body as system of mass points.

Let
∑

m~x = 0 (center of gravity vanishes).

The principal inertia axes are hypothetical axes, on which the center of mass is
located, and around which the rigid body would spin if it were in free space
unencumbered by bearing or gravitational forces.

The principal axes are the eigenvectors of the tensor

I :=

∑
m(y2 + x2) −

∑
mxy −

∑
mxz

−
∑

mxy
∑

m(x2 + z2) −
∑

myz
−

∑
mxz −

∑
myz

∑
m(x2 + y2)


and the principal moments (of inertia) are its eigenvalues.

Page 16 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertia of Moments

Consider a rigid body as system of mass points.

Let
∑

m~x = 0 (center of gravity vanishes).

The principal inertia axes are hypothetical axes, on which the center of mass is
located, and around which the rigid body would spin if it were in free space
unencumbered by bearing or gravitational forces.

The principal axes are the eigenvectors of the tensor

I :=

∑
m(y2 + x2) −

∑
mxy −

∑
mxz

−
∑

mxy
∑

m(x2 + z2) −
∑

myz
−

∑
mxz −

∑
myz

∑
m(x2 + y2)


and the principal moments (of inertia) are its eigenvalues.

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,

principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated,

and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Remark
I fast

I coordinates have to be provided

I adjacency information is not considered

I computes reasonable bisections for most applications

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Remark
I fast

I coordinates have to be provided

I adjacency information is not considered

I computes reasonable bisections for most applications

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Remark
I fast

I coordinates have to be provided

I adjacency information is not considered

I computes reasonable bisections for most applications

Page 17 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Inertial Bisection
Nodes will be considered as mass points,
principle inertia axes will be calculated, and
the domain will be divided into two regions by a
cutting plane orthogonal to the maximum inertia
axis so that bal(π) ≤ 1

Remark
I fast

I coordinates have to be provided

I adjacency information is not considered

I computes reasonable bisections for most applications

Page 18 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let G(V ,E) be given, n := |V |.
We define L(G) = (`ij) by

`ij =

 −1, i 6= j and (i , j) ∈ E
0, i 6= j and (i , j) 6∈ E

deg(i), i = j

The Laplacian matrix L is symmetric and
the sum of each row and column is 0.
(Hence 0 is an eigenvalue of L with eigenvector 1.)

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Definition and Theorem: Fiedler Vector

The eigenvector ~y of the second smallest eigenvalue λ2 of the
Laplacian matrix is called Fiedler vector.
Let c ∈ R. If G is a connected graph, those nodes v of G with yv ≥ c
and those with yv < c each form a connected subgraph of G.

Page 18 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let G(V ,E) be given, n := |V |.
We define L(G) = (`ij) by

`ij =

 −1, i 6= j and (i , j) ∈ E
0, i 6= j and (i , j) 6∈ E

deg(i), i = j

The Laplacian matrix L is symmetric and
the sum of each row and column is 0.
(Hence 0 is an eigenvalue of L with eigenvector 1.)

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Definition and Theorem: Fiedler Vector

The eigenvector ~y of the second smallest eigenvalue λ2 of the
Laplacian matrix is called Fiedler vector.
Let c ∈ R. If G is a connected graph, those nodes v of G with yv ≥ c
and those with yv < c each form a connected subgraph of G.

Page 18 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let G(V ,E) be given, n := |V |.
We define L(G) = (`ij) by

`ij =

 −1, i 6= j and (i , j) ∈ E
0, i 6= j and (i , j) 6∈ E

deg(i), i = j

The Laplacian matrix L is symmetric and
the sum of each row and column is 0.
(Hence 0 is an eigenvalue of L with eigenvector 1.)

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Definition and Theorem: Fiedler Vector

The eigenvector ~y of the second smallest eigenvalue λ2 of the
Laplacian matrix is called Fiedler vector.
Let c ∈ R. If G is a connected graph, those nodes v of G with yv ≥ c
and those with yv < c each form a connected subgraph of G.

Page 18 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let G(V ,E) be given, n := |V |.
We define L(G) = (`ij) by

`ij =

 −1, i 6= j and (i , j) ∈ E
0, i 6= j and (i , j) 6∈ E

deg(i), i = j

The Laplacian matrix L is symmetric and
the sum of each row and column is 0.
(Hence 0 is an eigenvalue of L with eigenvector 1.)

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Definition and Theorem: Fiedler Vector

The eigenvector ~y of the second smallest eigenvalue λ2 of the
Laplacian matrix is called Fiedler vector.

Let c ∈ R. If G is a connected graph, those nodes v of G with yv ≥ c
and those with yv < c each form a connected subgraph of G.

Page 18 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let G(V ,E) be given, n := |V |.
We define L(G) = (`ij) by

`ij =

 −1, i 6= j and (i , j) ∈ E
0, i 6= j and (i , j) 6∈ E

deg(i), i = j

The Laplacian matrix L is symmetric and
the sum of each row and column is 0.
(Hence 0 is an eigenvalue of L with eigenvector 1.)

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Definition and Theorem: Fiedler Vector

The eigenvector ~y of the second smallest eigenvalue λ2 of the
Laplacian matrix is called Fiedler vector.
Let c ∈ R. If G is a connected graph, those nodes v of G with yv ≥ c
and those with yv < c each form a connected subgraph of G.

Page 19 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Numerical Examples / Simple 2d Geometry

Initial mesh and eigenmodes 2-6.

initial mesh 21.32 =λ 52.42 =λ 78.52 =λ 52.102 =λ 37.132 =λ

Page 20 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Spectral Bisection

i) construct the Laplacian matrix

ii) compute Fiedler vector ~y

iii) partition the nodes of G according to the median
value ym of the components of ~y

V1 = {v ∈ V : yv < ym} and

V2 = {v ∈ V : yv > ym}

distribute {v ∈ V : yv = ym} among V1, V2,
s.t. bal(π) ≤ 1

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Page 20 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Spectral Bisection

i) construct the Laplacian matrix

ii) compute Fiedler vector ~y

iii) partition the nodes of G according to the median
value ym of the components of ~y

V1 = {v ∈ V : yv < ym} and

V2 = {v ∈ V : yv > ym}

distribute {v ∈ V : yv = ym} among V1, V2,
s.t. bal(π) ≤ 1

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Page 20 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Spectral Bisection

i) construct the Laplacian matrix

ii) compute Fiedler vector ~y

iii) partition the nodes of G according to the median
value ym of the components of ~y

V1 = {v ∈ V : yv < ym} and

V2 = {v ∈ V : yv > ym}

distribute {v ∈ V : yv = ym} among V1, V2,
s.t. bal(π) ≤ 1

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Page 20 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Spectral Bisection

i) construct the Laplacian matrix

ii) compute Fiedler vector ~y

iii) partition the nodes of G according to the median
value ym of the components of ~y

V1 = {v ∈ V : yv < ym} and

V2 = {v ∈ V : yv > ym}

distribute {v ∈ V : yv = ym} among V1, V2,
s.t. bal(π) ≤ 1

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Remark
I calculation of eigenvectors is time-consuming

I components have to be very correct for a correct partition according
to the median component.

Page 20 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Spectral Bisection

i) construct the Laplacian matrix

ii) compute Fiedler vector ~y

iii) partition the nodes of G according to the median
value ym of the components of ~y

V1 = {v ∈ V : yv < ym} and

V2 = {v ∈ V : yv > ym}

distribute {v ∈ V : yv = ym} among V1, V2,
s.t. bal(π) ≤ 1

3

−1

3

3

4

3

1 3

5

2

4

−1 −1−1

−1 −1 −1

−1 −1 −1

−1 −1 −1−1

−1 −1

Remark
I calculation of eigenvectors is time-consuming

I components have to be very correct for a correct partition according
to the median component.

Page 21 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Local methods

Theorem:

Let π : V 7→ {1, 2} be a bisection and v ∈ V .
If v moves to the other cluster, the cut size of the new bisection decreases by
diff (v) and the diff-values of the nodes in V change in teh following way:

v : diff (v) = −diff (v)

w ∈ V \ {v} : diff (w) =

 diff (w) + 2, (v ,w) ∈ E and π(w) = π(v)
diff (w)− 2, (v ,w) ∈ E and π(w) 6= π(v)
diff (w), otherwise

0

−1+2

1

0

−2

0

−1

1−2

−1 −1−2

−(1)1

0

−2

Page 22 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition:

For a pair (v ,w), v ∈ V1, w ∈ V2 of nodes let

gain(v ,w) := diff (v)+diff (w)−
{

2, (v ,w) ∈ E
0, otherwise

−1

−1

1

0
cut size = 4

cut size = 6 cut size = 6

1

−2

0

Remark:

The value of gain(v,w) describes the decrease in the cut size if v and w
are exchanged.
It plays major role in the Kerningham-Lin algorithm.

Page 22 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Definition:

For a pair (v ,w), v ∈ V1, w ∈ V2 of nodes let

gain(v ,w) := diff (v)+diff (w)−
{

2, (v ,w) ∈ E
0, otherwise

−1

−1

1

0
cut size = 4

cut size = 6 cut size = 6

1

−2

0

Remark:

The value of gain(v,w) describes the decrease in the cut size if v and w
are exchanged.
It plays major role in the Kerningham-Lin algorithm.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 23 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Kerningham-Lin Algorithm to Improve Bisection

Let π a partition, s.t. bal(π) ≤ 1.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT bn/2c times

choose unlocked nodes v ∈ V1 and w ∈ V2 with gain(v ,w) maximal

exchange v and w logically and lock them;

update the diff -values of the neighbors;

interchange physically up to the minimal cut size

REPEAT cut size is not improved

.

Page 24 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Numerical Examples / Test Graphs I

grid1_dual

netz4504_dual ukerbe1_dual

grid2_dual brack2

wave

The graphs brack2 and wave are provided with 3-dimensional coordinates and only the outer contours of the physicals bodies are shown.

Page 25 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Numerical Examples / Test Graphs II

3elt big airfoil1

Page 26 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Properties of Test Graphs

Original test-graphs from different FEM-applications in 2d and 3d.
[ftp riacs.edu, directory /pub/grids]

Page 27 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Results for Test Graphs

[Robert Preis: Efficient Partitioning of Very Large Graphs with the New and Powerful Helpful-Set Heuristic]

LIN SCA GRE IN SP LIN SCA GRE IN SP
+KL

grid1_dual 152 210 26 20 20 26 16 26 16 16
- - - - 0.45 0.03 0.03 - 0.03 0.40

netz4504_dual 38 657 39 30 23 22 27 35 22 20
- - - 0.01 0.65 0.06 0.09 - 0.04 0.74

ukerbe1_dual 22 2048 82 22 27 22 31 21 22 22
- - - 0.01 1.84 0.08 0.28 0.04 0.09 1.98

grid2_dual 1862 3376 194 32 34 48 32 83 32 32
- - 0.02 0.02 1.58 0.43 0.41 0.05 0.12 1.65

airfoil 94 6321 121 94 138 83 91 102 83 98
- - 0.03 0.03 2.22 0.12 0.42 0.09 0.11 2.36

3elt 223 7018 251 209 115 90 190 110 121 94
- - 0.03 0.05 3.10 0.15 0.62 0.19 0.27 3.41

big 812 23276 248 245 162 148 228 205 200 145
0.02 0.01 0.19 0.13 7.98 0.62 2.65 0.47 0.56 8.44

brack2 75974 192827 1083 817 827 2176 6473 734 783 747
0.06 0.03 1.47 0.28 65.66 7.2 9.23 3.77 2.32 67.30

wave 40620 569226 16703 9834 9886 16855 11629 9402 9667 9611
0.14 0.06 4.15 0.79 1430.52 11.92 23.08 15.87 7.49 1427.47

Page 28 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Conclusion

I The simple global methods (simple node-numbering bisection, coordinate
sorting nearest-neighbour bisection, connectivity bisection) need only a very
low amount of time, generally result in very high cut size.

I The greedy algorithm computes is still very fast and computes better cut
sizes than the node numbering methods.

I The inertial method is very fast, bur its results are not convincing if applied
without any local heuristic. With KL cut-sizes are not more than 20% over
the known optimum.

I Spectral methods are very expensive but combined with KL in most cases
produce partitions with a cut size of not more than 10% over the known
optimum.

I The Kerningham-Lin algorithm improves the cut size significantly, while
leading to a much higher running time.

Page 28 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Conclusion

I The simple global methods (simple node-numbering bisection, coordinate
sorting nearest-neighbour bisection, connectivity bisection) need only a very
low amount of time, generally result in very high cut size.

I The greedy algorithm computes is still very fast and computes better cut
sizes than the node numbering methods.

I The inertial method is very fast, bur its results are not convincing if applied
without any local heuristic. With KL cut-sizes are not more than 20% over
the known optimum.

I Spectral methods are very expensive but combined with KL in most cases
produce partitions with a cut size of not more than 10% over the known
optimum.

I The Kerningham-Lin algorithm improves the cut size significantly, while
leading to a much higher running time.

Page 28 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Conclusion

I The simple global methods (simple node-numbering bisection, coordinate
sorting nearest-neighbour bisection, connectivity bisection) need only a very
low amount of time, generally result in very high cut size.

I The greedy algorithm computes is still very fast and computes better cut
sizes than the node numbering methods.

I The inertial method is very fast, bur its results are not convincing if applied
without any local heuristic. With KL cut-sizes are not more than 20% over
the known optimum.

I Spectral methods are very expensive but combined with KL in most cases
produce partitions with a cut size of not more than 10% over the known
optimum.

I The Kerningham-Lin algorithm improves the cut size significantly, while
leading to a much higher running time.

Page 28 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Conclusion

I The simple global methods (simple node-numbering bisection, coordinate
sorting nearest-neighbour bisection, connectivity bisection) need only a very
low amount of time, generally result in very high cut size.

I The greedy algorithm computes is still very fast and computes better cut
sizes than the node numbering methods.

I The inertial method is very fast, bur its results are not convincing if applied
without any local heuristic. With KL cut-sizes are not more than 20% over
the known optimum.

I Spectral methods are very expensive but combined with KL in most cases
produce partitions with a cut size of not more than 10% over the known
optimum.

I The Kerningham-Lin algorithm improves the cut size significantly, while
leading to a much higher running time.

Page 28 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Conclusion

I The simple global methods (simple node-numbering bisection, coordinate
sorting nearest-neighbour bisection, connectivity bisection) need only a very
low amount of time, generally result in very high cut size.

I The greedy algorithm computes is still very fast and computes better cut
sizes than the node numbering methods.

I The inertial method is very fast, bur its results are not convincing if applied
without any local heuristic. With KL cut-sizes are not more than 20% over
the known optimum.

I Spectral methods are very expensive but combined with KL in most cases
produce partitions with a cut size of not more than 10% over the known
optimum.

I The Kerningham-Lin algorithm improves the cut size significantly, while
leading to a much higher running time.

Page 29 Scientific Computing | 17. Januar 2007 | Funken / Keller / Urban Parallel Numerical Algorithms

Available Test Codes

Matlab Mesh Partitioning and Graph Separator Toolbox

It contains Matlab code for several graph and mesh partitioning methods,
including geometric, spectral, geometric spectral, and coordinate bisection.

Graph Partitioning Software (GNU open source license)

CHACO Leland and Hendrickson
METIS Karypis and Kumar
PARTY Preis
JOSTLE Walshaw
SCOTCH Pellegrini

	Parallel Numerical Algorithms
	

