

Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller, Prof. Dr. Karsten Urban | 17. Januar 2007

Scientific Computing

Parallele Algorithmen

Graph

In the following let $\mathcal{G} = (V, E)$ be a graph with nodes V (vertices) and undirected edges E.

Let $\mathbf{n} = |\mathbf{V}|$ and $\mathbf{e} = |\mathbf{E}|$.

Partition of a Graph

Let $\pi : V \mapsto \{1, \dots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_1, \dots, V_p .

Partition of a Graph

Let $\pi: V \mapsto \{1, \ldots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_1, \ldots, V_p .

If p = 2, π is called bisection.

Partition of a Graph

Let $\pi: V \mapsto \{1, \dots, p\}$ be a partition of a graph \mathcal{G} that distributes the nodes among p clusters V_1, \dots, V_p .

If p = 2, π is called bisection.

The major characteristics of a partition are its balance and its cut size.

Definition (Balance)

The **balance** is defined by

$$bal(\pi) := \max_{1 \leq \ell \leq p} |V_\ell| - \min_{1 \leq \ell \leq p} |V_\ell|.$$

If $bal(\pi) \leq 1$, π is called a **balanced partition**.

balanced partition

Definition (Balance)

The **balance** is defined by

$$bal(\pi) := \max_{1 \leq \ell \leq p} |V_\ell| - \min_{1 \leq \ell \leq p} |V_\ell|.$$

If $bal(\pi) \leq 1$, π is called a **balanced partition**.

unbalanced partition

Page 4

Definition (Balance)

The **balance** is defined by

$$bal(\pi) := \max_{1 \leq \ell \leq p} |V_\ell| - \min_{1 \leq \ell \leq p} |V_\ell|.$$

If $bal(\pi) \leq 1$, π is called a **balanced partition**.

unbalanced partition

Remark

A **low balance** ensures an **even distribution** of the total process-work among all processors.

Parallel Numerical Algorithms

Definition (Cut Size)

Let

$$cut(\pi) := |\{\{v, w\} \in E : \pi(v) \neq \pi(w)\}|$$

be the **cut size** of π .

cut size: 5

Definition (Cut Size)

Let

$$cut(\pi) := |\{\{v, w\} \in E : \pi(v) \neq \pi(w)\}|$$

be the **cut size** of π .

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.

It is called **bisection problem** if p = 2.

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.

It is called **bisection problem** if p = 2.

n	:	20
е	:	38
cut size	:	9
balance	:	0

Partitioning Problem

Find a partition π that minimizes the cut size while keeping the balance as low as possible.

It is called **bisection problem** if p = 2.

n	:	20
e	:	38
cut size	:	9
balance	:	0

The number of possible bisections of a graph is $\frac{1}{2} \binom{n}{n/2}$ (*n* even) resp. $\binom{n}{(n-1)/2}$ (*n* odd). For our example we have 92.378 possible bisections.

Definition (Bisection Width)

$$bw(\mathcal{G}) := \min\{cut(\pi)|p=2, bal(\pi) \leq 1\}$$

is the **bisection width** of the graph \mathcal{G} .

Definition (Bisection Width)

$$bw(\mathcal{G}) := \min\{cut(\pi)|p=2, bal(\pi) \leq 1\}$$

is the **bisection width** of the graph \mathcal{G} .

Remark

The problem of calculating the bisection width for an abitrary graph is *NP*-complete.

[T.Lengauer: Cobinatorial Algorithms for Integrated Circuit Layout, B.G. Teubner, 1990]

Definition (Bisection Width)

$$bw(\mathcal{G}) := \min\{cut(\pi)|p=2, bal(\pi) \leq 1\}$$

is the **bisection width** of the graph \mathcal{G} .

Remark

The problem of calculating the bisection width for an abitrary graph is *NP*-complete.

Therefore, heuristics are used to compute in adequate time a bisection with a cut as low as possible.

The partitioning of the fe-mesh, should also take into account

shape of the resulting subdomains (possible influence on solver),

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...
- allow adaptivity,

- shape of the resulting subdomains (possible influence on solver),
- weaker constraint on the balance possible,
- necessary to partition in parallel,
- allow motion/deformation of the domain,
- easy data-structure/handling for solver/post-processing,...
- allow adaptivity,
- partioning into $p = 2^k$ processors, etc.

Global methods: graph description as input and generate a balanced bisection

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection

► ...

Page 9

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection

► ...

Local methods: graph and bisection as input and try to improve the partition

Global methods: graph description as input and generate a balanced bisection

- simple node-numbering bisection
- coordinate sorting
- nearest-neighbour bisection
- connectivity bisection
- greedy bisection
- inertial bisection
- spectral bisection

►

Local methods: graph and bisection as input and try to improve the partition

- Kerningham-Lin
- simulated annealing

Remark

simple and fast

Linear bisection:

$$\pi(v_i) = \begin{cases} 1, & i < n/2 \\ 2, & i \ge n/2 \end{cases}$$

Scattered bisection: $\pi(v_i) = \begin{cases} 1, & i \text{ even} \\ 2, & i \text{ odd} \end{cases}$

- simple and fast
- produces a balanced bisection

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)

Parallel Numerical Algorithms

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)
- special cases, succeed in good bisection

- simple and fast
- produces a balanced bisection
- generally, poor cut size (no attention to adjaceny information of graph)
- special cases, succeed in good bisection
- no dimensional restriction

Coordinate Sorting

First step: the longest expansion of any dimension is determined Second step: nodes are sorted according to their coordinates in that dimension

First step: the longest expansion of any dimension is determined Second step: nodes are sorted according to their coordinates in that dimension

Remark

simple and fast

First step: the longest expansion of any dimension is determined Second step: nodes are sorted according to their coordinates in that dimension

- simple and fast
- produces a balanced bisection

First step: the longest expansion of any dimension is determined Second step: nodes are sorted according to their coordinates in that dimension

- simple and fast
- produces a balanced bisection
- does not take advantage of adjaceny information of the graph

First step: the longest expansion of any dimension is determined Second step: nodes are sorted according to their coordinates in that dimension

- simple and fast
- produces a balanced bisection
- does not take advantage of adjaceny information of the graph
- no dimensional restriction

Parallel Numerical Algorithms

Nearest-Neighbour Bisection

i) initialize V_1 with one node from V

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$
- iv) (do not take all possible nodes in the last step!)

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$
- iv) (do not take all possible nodes in the last step!)

Remark

▶ fast, more complex data structure necessary

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$
- iv) (do not take all possible nodes in the last step!)

- ▶ fast, more complex data structure necessary
- balanced bisection only with modification iv)

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$
- iv) (do not take all possible nodes in the last step!)

- ► fast, more complex data structure necessary
- balanced bisection only with modification iv)
- direct *p*-partitioning possible (run up to size n/p)

- i) initialize V_1 with one node from V
- ii) all nodes from $V \setminus V_1$ adjacent to any node of V_1 are identified and moved to V_1
- iii) continue with i) until V_1 reaches the required size of $\lfloor \frac{n}{2} \rfloor$
- iv) (do not take all possible nodes in the last step!)

- ► fast, more complex data structure necessary
- balanced bisection only with modification iv)
- direct *p*-partitioning possible (run up to size n/p)
- building process depends on initial node

Parallel Numerical Algorithms

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

be the distance between v and w.

i) determine two vertices with a (near) maximum distance

 $\mathsf{bal}(\pi) = \mathbf{11}$

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
- iii) nodes are assigned to V_1 and V_2 according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
- iii) nodes are assigned to V_1 and V_2 according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
- iii) nodes are assigned to V_1 and V_2 according to this list

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

be the distance between v and w.

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
- iii) nodes are assigned to V_1 and V_2 according to this list

Remark

combination of coordinate sorting and nearest-neighbour bisection

Connectivity Bisection

For two nodes $v, w \in V$ let

distance(v, w) := |shortest path connecting v and w|

be the distance between v and w.

- i) determine two vertices with a (near) maximum distance
- ii) all other nodes are sorted in order of increasing distance from one of the extremal nodes
- iii) nodes are assigned to V_1 and V_2 according to this list

- combination of coordinate sorting and nearest-neighbour bisection
- no coordinate information necessary

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let

$$\begin{array}{ll} deg(v) := |\{w \in V : (v, w) \in E\}| & \text{be its degree} \\ int(v) := |\{w \in V : (v, w) \in E, \pi(v) = \pi(w)\}| & \text{be its number of internal edges} \\ ext(v) := |\{w \in V : (v, w) \in E, \pi(v) \neq \pi(w)\}| & \text{be its number of external edges} \end{array}$$

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let

$$\begin{array}{ll} deg(v) := |\{w \in V : (v, w) \in E\}| & \text{be its degree} \\ int(v) := |\{w \in V : (v, w) \in E, \pi(v) = \pi(w)\}| & \text{be its number of internal edges} \\ ext(v) := |\{w \in V : (v, w) \in E, \pi(v) \neq \pi(w)\}| & \text{be its number of external edges} \end{array}$$

Definition (diff-value)

Let $v \in V$.

diff(v) := ext(v) - int(v)

Basic Tool for Local Rearrangements

Definition

For a node $v \in V$ let

$$\begin{array}{l} deg(v) := |\{w \in V : (v, w) \in E\}| & \text{be its degree} \\ int(v) := |\{w \in V : (v, w) \in E, \pi(v) = \pi(w)\}| & \text{be its number of internal edges} \\ ext(v) := |\{w \in V : (v, w) \in E, \pi(v) \neq \pi(w)\}| & \text{be its number of external edges} \end{array}$$

Definition (diff-value)

Let $v \in V$.

diff(v) := ext(v) - int(v)

- ► The **diff-value** of a node represents the change of the **cut-size** if this node to a different cluster of a bisection.
- The diff-value is helpful for predicting the change of the cut-size if the rearrangements of the bisection are accomplished by moves of single nodes.

i) initialise
$$V_1 = \{1, ..., n\}$$
 and $V_2 = \emptyset$,
(*cutsize* = 0, *balance* = n)

 $\mathsf{bal}(\pi) = \mathbf{9}$

- i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)
- ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)

 $\mathsf{bal}(\pi) = \mathbf{9}$

- i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)
- ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)

ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)

 $\mathsf{bal}(\pi) = \mathbf{5}$

Greedy Bisection (greedy \simeq gefräßig)

i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)

ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)

 $\mathsf{bal}(\pi) = \mathbf{3}$

- i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)
- ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)
- iii) after $\lfloor \frac{n}{2} \rfloor$ moves the bisection is balanced

$$\mathsf{bal}(\pi) = \mathbf{1}$$

- i) initialise $V_1 = \{1, ..., n\}$ and $V_2 = \emptyset$, (*cutsize* = 0, *balance* = n)
- ii) move a node from V₁ to V₂ which minimally increases the cut size take node with highest diff-value (update after each move)
- iii) after $\lfloor \frac{n}{2} \rfloor$ moves the bisection is balanced

 $\mathsf{bal}(\pi) = \mathbf{1}$

- very fast
- produces bisections with reasonable cut sizes
- efficient updating of diff-value possible (using dynamical data structures)

Consider a rigid body as system of mass points.

Consider a rigid body as system of mass points.

Let $\sum m\vec{x} = 0$ (center of gravity vanishes).

Consider a **rigid body** as system of **mass points**.

Let $\sum m\vec{x} = 0$ (center of gravity vanishes).

The **principal inertia axes** are hypothetical axes, on which the center of mass is located, and around which the rigid body would spin if it were in free space unencumbered by bearing or gravitational forces.

Consider a rigid body as system of mass points.

Let $\sum m\vec{x} = 0$ (center of gravity vanishes).

The **principal inertia axes** are hypothetical axes, on which the center of mass is located, and around which the rigid body would spin if it were in free space unencumbered by bearing or gravitational forces.

The principal axes are the eigenvectors of the tensor

$$I := \begin{pmatrix} \sum m(y^2 + x^2) & -\sum mxy & -\sum mxz \\ -\sum mxy & \sum m(x^2 + z^2) & -\sum myz \\ -\sum mxz & -\sum myz & \sum m(x^2 + y^2) \end{pmatrix}$$

and the principal moments (of inertia) are its eigenvalues.

Inertial Bisection

Nodes will be considered as mass points,

Inertial Bisection

Nodes will be considered as mass points, principle inertia axes will be calculated,

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

Remark

► fast

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

- fast
- coordinates have to be provided

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

- fast
- coordinates have to be provided
- adjacency information is not considered

Nodes will be considered as mass points, principle inertia axes will be calculated, and the domain will be divided into two regions by a cutting plane orthogonal to the maximum inertia axis so that $bal(\pi) \leq 1$

- fast
- coordinates have to be provided
- adjacency information is not considered
- computes reasonable bisections for most applications

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let $\mathcal{G}(V, E)$ be given, n := |V|. We define $\mathcal{L}(\mathcal{G}) = (\ell_{ij})$ by

$$\ell_{ij} = \begin{cases} -1, & i \neq j \text{ and } (i,j) \in E \\ 0, & i \neq j \text{ and } (i,j) \notin E \\ deg(i), & i = j \end{cases}$$

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let $\mathcal{G}(V, E)$ be given, n := |V|. We define $L(\mathcal{G}) = (\ell_{ij})$ by

$$\ell_{ij} = \begin{cases} -1, & i \neq j \text{ and } (i,j) \in E \\ 0, & i \neq j \text{ and } (i,j) \notin E \\ deg(i), & i = j \end{cases}$$

The Laplacian matrix L is symmetric and the sum of each row and column is 0. (Hence 0 is an eigenvalue of L with eigenvector 1.)

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let $\mathcal{G}(V, E)$ be given, n := |V|. We define $L(\mathcal{G}) = (\ell_{ij})$ by

$$\ell_{ij} = \begin{cases} -1, & i \neq j \text{ and } (i,j) \in E \\ 0, & i \neq j \text{ and } (i,j) \notin E \\ deg(i), & i = j \end{cases}$$

The Laplacian matrix L is symmetric and the sum of each row and column is 0. (Hence 0 is an eigenvalue of L with eigenvector 1.)

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let $\mathcal{G}(V, E)$ be given, n := |V|. We define $L(\mathcal{G}) = (\ell_{ij})$ by

$$\ell_{ij} = \begin{cases} -1, & i \neq j \text{ and } (i,j) \in E \\ 0, & i \neq j \text{ and } (i,j) \notin E \\ deg(i), & i = j \end{cases}$$

The Laplacian matrix L is symmetric and the sum of each row and column is 0. (Hence 0 is an eigenvalue of L with eigenvector 1.)

Definition and Theorem: Fiedler Vector

The eigenvector \vec{y} of the second smallest eigenvalue λ_2 of the Laplacian matrix is called **Fiedler vector**.

Fiedler vector

Definition and Theorem: Laplacian Matrix L(G)

Let $\mathcal{G}(V, E)$ be given, n := |V|. We define $L(\mathcal{G}) = (\ell_{ij})$ by

$$\ell_{ij} = \begin{cases} -1, & i \neq j \text{ and } (i,j) \in E \\ 0, & i \neq j \text{ and } (i,j) \notin E \\ deg(i), & i = j \end{cases}$$

The Laplacian matrix L is symmetric and the sum of each row and column is 0. (Hence 0 is an eigenvalue of L with eigenvector 1.)

Definition and Theorem: Fiedler Vector

The eigenvector \vec{y} of the second smallest eigenvalue λ_2 of the Laplacian matrix is called **Fiedler vector**. Let $c \in \mathbb{R}$. If \mathcal{G} is a **connected graph**, those nodes v of \mathcal{G} with $y_v \ge c$ and those with $y_v < c$ each form a **connected subgraph** of \mathcal{G} .

Numerical Examples / Simple 2d Geometry

Initial mesh and eigenmodes 2-6.

i) construct the Laplacian matrix

- i) construct the Laplacian matrix
- ii) compute Fiedler vector \vec{y}

- i) construct the Laplacian matrix
- ii) compute Fiedler vector \vec{y}
- iii) partition the nodes of \mathcal{G} according to the median value y_m of the components of \vec{y}

$$V_1 = \{ v \in V : y_v < y_m \}$$
 and

$$V_2 = \{v \in V : y_v > y_m\}$$

distribute $\{v \in V : y_v = y_m\}$ among V_1 , V_2 , s.t. $\mathit{bal}(\pi) \leq 1$

Page 20

Spectral Bisection

- i) construct the Laplacian matrix
- ii) compute Fiedler vector \vec{y}
- iii) partition the nodes of \mathcal{G} according to the median value y_m of the components of \vec{y}

$$V_1 = \{ v \in V : y_v < y_m \}$$
 and

$$V_2 = \{v \in V : y_v > y_m\}$$

distribute $\{v \in V : y_v = y_m\}$ among V_1 , V_2 , s.t. $bal(\pi) \leq 1$

Remark

calculation of eigenvectors is time-consuming

- i) construct the Laplacian matrix
- ii) compute Fiedler vector \vec{y}
- iii) partition the nodes of \mathcal{G} according to the median value y_m of the components of \vec{y}

$$V_1 = \{ v \in V : y_v < y_m \}$$
 and

$$V_2 = \{v \in V : y_v > y_m\}$$

distribute $\{v \in V : y_v = y_m\}$ among V_1 , V_2 , s.t. $bal(\pi) \leq 1$

- calculation of eigenvectors is time-consuming
- components have to be very correct for a correct partition according to the median component.

Local methods

Theorem:

Let $\pi: V \mapsto \{1,2\}$ be a bisection and $v \in V$.

If v moves to the other cluster, the **cut size** of the new bisection decreases by diff(v) and the diff-values of the nodes in V change in teh following way:

$$v: \quad diff(v) = -diff(v) \\ w \in V \setminus \{v\}: \quad diff(w) = \begin{cases} diff(w) + 2, & (v, w) \in E \text{ and } \pi(w) = \pi(v) \\ diff(w) - 2, & (v, w) \in E \text{ and } \pi(w) \neq \pi(v) \\ diff(w), & otherwise \end{cases}$$

Definition:

For a pair (v, w), $v \in V_1$, $w \in V_2$ of nodes let

$$gain(v, w) := diff(v) + diff(w) - \begin{cases} 2, (v, w) \in E \\ 0, otherwise \end{cases}$$

Remark:

The value of gain(v, w) describes the decrease in the **cut size** if v and w are exchanged.

It plays major role in the Kerningham-Lin algorithm.

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

step	pair	gain	cut size	
0			cut size ₀	
1	(v_1, w_1)	$gain_1$	$cut \ size_1$	
2	(v_2, w_2)	$gain_2$	$cut \ size_2$	physical
		1.1	:	exchange
- 1			:	0
х	(v_x, w_x)	$gain_x$	$cut \ size_{min}$	\Leftarrow minimum cut size
$\lfloor \frac{n}{2} \rfloor$	$(u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor})$	$gain_{\lfloor \frac{n}{2} \rfloor}$	$cutsize_{\lfloor \frac{n}{2} \rfloor}$	

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

		cut size	gain	pair	step
		$cut \ size_0$			0
		$cut \ size_1$	$gain_1$	(v_1, w_1)	1
	physical	$cut \ size_2$	$gain_2$	(v_2, w_2)	2
	exchange	:	1		:
	0				
cut	\Leftarrow minimum cut size	$cut \ size_{min}$	$gain_x$	(v_x, w_x)	x
cui					
		•			· ·
		$cutsize_{\lfloor \frac{n}{2} \rfloor}$	$gain_{\lfloor \frac{n}{2} \rfloor}$	$(u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor})$	[<u>n</u>]

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT $\lfloor n/2 \rfloor$ times

choose unlocked nodes $v \in V_1$ and $w \in V_2$ with gain(v, w) maximal

step 0 1 2	pair (v_1, w_1)	gain gain ₁	cut size cut size ₀ cut size ₁		cut size	
$\begin{array}{c} 2\\ \cdot\\ \cdot\\ x\\ \end{array}$	(v_2, w_2) \vdots (v_x, w_x) \vdots $(u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor})$	$\begin{array}{c} gain_2 \\ \vdots \\ gain_x \\ \vdots \\ gain_{\lfloor \frac{n}{2} \rfloor} \end{array}$	$cut size_2$ $cut size_{min}$ \vdots $cut size_{\lfloor \frac{n}{2} \rfloor}$	physical exchange ⇐ minimum cut size	cut size 0	o x n/2
					cut size min	

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked **REPEAT** |n/2| times

choose unlocked nodes $v \in V_1$ and $w \in V_2$ with gain(v, w) maximal

exchange v and w logically and lock them;

step 0	pair	gain	cut size cut size ₀]	cut size	
$\begin{bmatrix} 0 \\ 1 \\ 2 \\ \vdots \\ x \\ \vdots \\ \begin{bmatrix} \frac{n}{2} \end{bmatrix} \end{bmatrix}$	(v_1, w_1) (v_2, w_2) \vdots (v_x, w_x) \vdots $(u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor})$	$\begin{array}{c} gain_1\\ gain_2\\ \vdots\\ gain_x\\ \vdots\\ gain_x\\ \vdots\\ gain_{\lfloor \frac{n}{2} \rfloor} \end{array}$	cut size ₁ cut size ₂	physical exchange ← minimum cut size	cut size ₀	step
					cut size min	\mathcal{V}

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT $\lfloor n/2 \rfloor$ times

choose unlocked nodes $v \in V_1$ and $w \in V_2$ with gain(v, w) maximal

exchange v and w logically and lock them;

update the *diff*-values of the neighbors;

step 0	pair	gain	cut size cut size ₀]	cut size	
$\begin{bmatrix} 0\\ 1\\ 2\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} (v_1,w_1) \\ (v_2,w_2) \\ \vdots \\ (v_x,w_x) \\ \vdots \\ (u_{\lfloor \frac{n}{2} \rfloor},v_{\lfloor \frac{n}{2} \rfloor}) \end{array}$	$\begin{array}{c} gain_1\\ gain_2\\ \vdots\\ gain_x\\ \vdots\\ gain_{\lfloor \frac{n}{2} \rfloor} \end{array}$	$\begin{array}{c} cut\ size_0\\ cut\ size_1\\ cut\ size_2\\ \vdots\\ cut\ size_{min}\\ \vdots\\ cut\ size_{\lfloor\frac{n}{2}\rfloor}\end{array}$	physical exchange ⇐ minimum cut size	cut size ₀ cut size _{min}	o x n/2

Let π a partition, s.t. $bal(\pi) \leq 1$.

REPEAT

compute the diff-values of all nodes, initialise all nodes as unlocked

REPEAT $\lfloor n/2 \rfloor$ times

choose unlocked nodes $v \in V_1$ and $w \in V_2$ with gain(v, w) maximal

exchange v and w logically and lock them;

update the *diff*-values of the neighbors;

interchange physically up to the minimal cut size

step 0	pair	gain	cut size cut size ₀		cut size	
$\begin{array}{c}1\\2\\\cdot\\\cdot\\\mathbf{x}\\\cdot\\\cdot\\\lfloor\frac{n}{2}\rfloor\end{array}$	$\begin{array}{c} (v_1, w_1) \\ (v_2, w_2) \\ \vdots \\ (v_x, w_x) \\ \vdots \\ (u_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor}) \end{array}$	$\begin{array}{c} gain_1\\gain_2\\\vdots\\gain_x\\\vdots\\gain_{\lfloor\frac{n}{2}\rfloor}\end{array}$	$cut size_1$ $cut size_2$ $cut size_{min}$ $cut size_{\lfloor \frac{n}{2} \rfloor}$	physical exchange ⇐ minimum cut size	cut size ₀	o x n/2
					cut size min	

Numerical Examples / Test Graphs I

The graphs brack2 and wave are provided with 3-dimensional coordinates and only the outer contours of the physicals bodies are shown.

Numerical Examples / Test Graphs II

Properties of Test Graphs

Original test-graphs from different FEM-applications in 2d and 3d. [ftp *riacs.edu*, directory */pub/grids*]

	dimension	n	е	lowest cut known
grid1_dual	2	224	420	16
netz4504_dual	2	615	1171	19
ukerbe1_dual	2	1866	3538	21
grid2_dual	2	3136	6112	32
airfoil	2	4253	12289	74
3elt	2	4720	13722	90
big	2	15606	45878	139
brack2	3	62631	366559	731
wave	3	156317	10559331	9503

Results for Test Graphs

[Robert Preis: Efficient Partitioning of Very Large Graphs with the New and Powerful Helpful-Set Heuristic]

	LIN	SCA	GRE	IN	SP	LIN	SCA	GRE	IN	SP
								+KL		
grid1_dual	152	210	26	20	20 0.45	26 0.03	16 0.03	26	16 0.03	16 0.40
netz4504_dual	38	657	39	30 0.01	23 0.65	22 0.06	27 0.09	35	22 0.04	<u>20</u> 0.74
ukerbe1_dual	<u>22</u>	2048	82	<u>22</u> 0.01	27 1.84	<u>22</u> 0.08	31 0.28	<u>21</u> 0.04	<u>22</u> 0.09	<u>22</u> 1.98
grid2_dual	1862 -	3376	194 0.02	32 0.02	<u>34</u> 1.58	48 0.43		83 0.05	32 0.12	<mark>32</mark> 1.65
airfoil	94 -	6321	121 0.03	94 0.03	138 2.22	<u>83</u> 0.12	91 0.42	102 0.09	<u>83</u> 0.11	98 2.36
3elt	223	7018	251 0.03	209 0.05	115 3.10		190 0.62	110 0.19		<u>94</u> 3.41
big	812 0.02		248 0.19	245 0.13		<u>148</u> 0.62	228 2.65	205 0.47	200 0.56	<u>145</u> 8.44
brack2	75974 0.06		1083 1.47	817 0.28	827 65.66	2176 7.2	6473 9.23	734 3.77	<u>783</u> 2.32	<u>747</u> 67.30
wave	40620 0.14	569226 0.06	16703 4.15	<u>9834</u> 0.79	<u>9886</u> 1430.52	16855 11.92		<u>9402</u> 15.87	<u>9667</u> 7.49	<u>9611</u> 1427.47

The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.
- Spectral methods are very expensive but combined with KL in most cases produce partitions with a cut size of not more than 10% over the known optimum.

- The simple global methods (simple node-numbering bisection, coordinate sorting nearest-neighbour bisection, connectivity bisection) need only a very low amount of time, generally result in very high cut size.
- The greedy algorithm computes is still very fast and computes better cut sizes than the node numbering methods.
- The inertial method is very fast, bur its results are not convincing if applied without any local heuristic. With KL cut-sizes are not more than 20% over the known optimum.
- Spectral methods are very expensive but combined with KL in most cases produce partitions with a cut size of not more than 10% over the known optimum.
- The Kerningham-Lin algorithm improves the cut size significantly, while leading to a much higher running time.

Available Test Codes

Matlab Mesh Partitioning and Graph Separator Toolbox

It contains **Matlab code** for several graph and mesh partitioning methods, including geometric, spectral, geometric spectral, and coordinate bisection.

Graph Partitioning Software (GNU open source license)

- CHACO Leland and Hendrickson
- METIS Karypis and Kumar
- PARTY Preis
- JOSTLE Walshaw
- SCOTCH Pellegrini