Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Numerik von gewöhnlichen Differenzialgleichungen
SoSe 2016

Sheet 10

Due July 07, 2016.

Exercise 1 (Well-posedness)

Explain what is wrong in both the variational setting and the classical setting for the following BVP:

$$
\begin{array}{rlr}
-u^{\prime \prime}(x) & =f(x), \quad x \in(0,1), \\
u^{\prime}(0) & =u^{\prime}(1)=0 .
\end{array}
$$

More precise: Explain in both contexts why this problem is not well-posed with respect to $H^{1}(\Omega)$.

Exercise 2 (Graduated Grids)

Let the exact solution of a given BVP be given by $u(x)=x^{\alpha}$ for $\alpha>\frac{1}{2}$ on $\Omega=(0,1)$. Let $u_{I}(x)$ be the linear interpolant of u on a given grid $\mathcal{T}:=\left\{0=x_{0}<x_{1}<\cdots<x_{N}<x_{N+1}=1\right\}$, i.e. $u_{I} \in \mathcal{S}^{1,1}(\mathcal{T})$ and on a given element $\left(u_{i}, u_{i+1}\right), u_{I}(x)$ may be expressed by

$$
u_{I}(x)=u\left(x_{i+1}\right) \cdot \frac{x_{i+1}-x}{x_{i+1}-x_{i}}+u\left(x_{i}\right) \cdot \frac{x-x_{i}}{x_{i+1}-x_{i}}=x_{i+1}^{\alpha} \cdot \frac{x_{i+1}-x}{x_{i+1}-x_{i}}+x_{i}^{\alpha} \cdot \frac{x-x_{i}}{x_{i+1}-x_{i}} .
$$

We define the error $e(x):=u(x)-u_{I}(x)$. Compute the error in the H^{1}-semi-norm $|e(x)|_{H^{1}(\Omega)}$, in the L_{2}-norm $\|e(x)\|_{L_{2}(\Omega)}$ and in the H^{1}-norm $\|e(x)\|_{H^{1}(\Omega)}=\sqrt{\|e(x)\|_{L_{2}(\Omega)}^{2}+|e(x)|_{H^{1}(\Omega)}^{2}}$ for the following grids:
(i) $\mathcal{T}:=\left\{x_{i} \mid x_{i}:=\frac{i}{N}, \quad i=0, \ldots, N\right\}$, (equidistant grid),
(ii) $\mathcal{T}:=\left\{x_{i} \mid x_{i}:=\left(\frac{i}{N}\right)^{\beta}, \quad i=0, \ldots, N\right\}$, (graduated grid),
by choosing $\beta=\frac{1}{\alpha-\frac{1}{2}}, \beta=\frac{1}{\alpha}, \beta=\frac{1}{\alpha+\frac{1}{2}}, \beta=\frac{5}{\alpha-\frac{1}{2}}, \alpha \in\left\{\frac{3}{4}, 1,2,5\right\}$ and $N:=\left\{10^{0}, 10^{1}, 10^{2}, 10^{3}, 10^{4}, 10^{5}\right\}$. What do you observe? What have you expected? In matlab you can use the command $\mathrm{x}=$ linspace $(0,1, N+1)$ to obtain an equidistant grid. What happens if you use $\mathrm{x}=\operatorname{logspace}(0,1, \mathrm{~N}+1)$ instead and use this as another graduated grid? Plot the error for the above mentioned grids.
Hint: You can use the following equations to implement the norm of the error:

$$
\|e(x)\|_{L_{2}(\Omega)}^{2}=\int_{\Omega}\left(u(x)-u_{I}(x)\right)^{2} d x=\sum_{i=0}^{N} \int_{x_{i}}^{x_{i+1}}\left(u(x)-u_{I}(x)\right)^{2} d x .
$$

and analogously

$$
|e(x)|_{H^{1}(\Omega)}^{2}=\int_{\Omega}\left(u^{\prime}(x)-u_{I}^{\prime}(x)\right)^{2} d x=\sum_{i=0}^{N} \int_{x_{i}}^{x_{i+1}}\left(u^{\prime}(x)-u_{I}^{\prime}(x)\right)^{2} d x .
$$

Exercise 3 (FEM)

We consider the following BVP

$$
\begin{align*}
& -\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=f(x), \quad x \in \Omega=(0,1) \tag{1}\\
& u(0)=\alpha, \quad u(1)=\beta
\end{align*}
$$

Show, that the variational formulation (for $\alpha=\beta=0$) is given by: Find $u \in V:=H_{0}^{1}(\Omega)$, such that

$$
\int_{\Omega} a(x) u^{\prime}(x) v^{\prime}(x) d x+\int_{\Omega} b(x) u^{\prime}(x) v(x) d x+\int_{\Omega} c(x) u(x) v(x) d x=\int_{\Omega} f(x) v(x) d x
$$

for all $v \in V$. In this sheet, we want to consider another strategy for the implementation of this more general equation and a slightly different strategy for assembling the stiffness matrix. The 1 d -grid should be stored in the matrices coordinates $\in \mathbb{R}^{n_{C} \times 1}$ and elements $\in \mathbb{R}^{n_{E} \times 2}$. The matrix coordinates contains the coordinates of the grid points and elements contains the indices for the edge points of each interval. Let us at first consider the interval $(0,1)$, which is partitioned in only two elements, i.e. $E_{1}=\left(0, \frac{1}{2}\right)=\left(x_{1}, x_{2}\right)$ and $E_{2}=\left(\frac{1}{2}, 1\right)=\left(x_{2}, x_{3}\right)$. It is then clear, that the corresponding matrices are coordinates $=\left(\begin{array}{lll}0 & 0.5 & 1\end{array}\right)^{T}$ and elements $=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)^{T}$. We have already seen, that for the Laplace problem, i.e. $a(x)=1, b(x)=c(x)=0$ and with $h_{1}=x_{1}-x_{2}=\frac{1}{2}, h_{2}=x_{3}-x_{2}=\frac{1}{2}$, we obtain the very small stiffness-matrix (by using the hat functions):

$$
A=\left(\begin{array}{ccc}
2 \frac{1}{h_{1}} & -\frac{1}{h_{1}} & 0 \\
-\frac{1}{h_{1}} & \frac{1}{h_{1}}+\frac{1}{h_{2}} & -\frac{1}{h_{2}} \\
0 & -\frac{1}{h_{2}} & 2 \frac{1}{h_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
2 \frac{1}{h_{1}} & -\frac{1}{h_{1}} & 0 \\
-\frac{1}{h_{1}} & \frac{1}{h_{1}} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{h_{2}} & -\frac{1}{h_{2}} \\
0 & -\frac{1}{h_{2}} & 2 \frac{1}{h_{2}}
\end{array}\right)
$$

which is now our first motivation for assembling the stiffness matrix element-wise. As we now see above, we just need to to compute smaller 2×2-matrices and afterwards summing them up with respect to the corresponding position. The next motivation for assembling the smaller 2×2-matrices is, that we do not have to number the nodes lexicographically, i.e. $x_{1}=0, x_{3}=0.5, x_{2}=1$, which ends up in $E_{1}=\left(0, \frac{1}{2}\right)=$ $\left(x_{1}, x_{3}\right)$ and $E_{2}=\left(\frac{1}{2}, 1\right)=\left(x_{3}, x_{2}\right)$ and coordinates $=\left(\begin{array}{lll}0 & 0.5 & 1\end{array}\right)^{T}$ and elements $=\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)^{T}$. And the corresponding matrix is now given by

$$
A=\left(\begin{array}{ccc}
2 \frac{1}{h_{1}} & 0 & -\frac{1}{h_{1}} \\
0 & 2 \frac{1}{h_{2}} & -\frac{1}{h_{2}} \\
-\frac{1}{h_{1}} & -\frac{1}{h_{2}} & \frac{1}{h_{1}}+\frac{1}{h_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
2 \frac{1}{h_{1}} & 0 & -\frac{1}{h_{1}} \\
0 & 0 & 0 \\
\frac{1}{h_{1}} & 0 & \frac{1}{h_{1}}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 \frac{1}{h_{2}} & -\frac{1}{h_{2}} \\
0 & -\frac{1}{h_{2}} & \frac{1}{h_{2}}
\end{array}\right)
$$

This demonstrates, that we have to compute 4 entries on each element and afterwards just summing them up with respect to their position. This will be now discussed in more detail.
(a) Draw the grid for

$$
\begin{aligned}
& \text { coordinates }=\left(\begin{array}{llllll}
0 & 0.5 & 0.3 & 0.6 & 1.0 & 0.9
\end{array}\right)^{T} \\
& \text { elements }=\left(\begin{array}{lllll}
1 & 3 & 2 & 4 & 6 \\
3 & 2 & 4 & 6 & 5
\end{array}\right)^{T}
\end{aligned}
$$

The vector dirichlet contains the indices for the Dirichlet nodes, in our case this vector is given by dirichlet $=\left(\begin{array}{ll}1 & 5\end{array}\right)^{T}$.
We want to consider now the uniformly refinement of the grid. Each element will be halved. The procedure is then as follows:
(1) For each element compute the midpoint and store the coordinate of these midpoints at the end of the vector. In the above example, where we have considered the tow elements $E_{1}=\left(0, \frac{1}{2}\right)=\left(x_{1}, x_{2}\right)$ and $E_{2}=\left(\frac{1}{2}, 1\right)=\left(x_{2}, x_{3}\right)$, we compute the new midpoints $x_{4}=0.25$ and $x_{5}=0.75$. Therefore we obtain coordinates $=\left(\begin{array}{lllll}0 & 0.5 & 1 & 0.25 & 0.75\end{array}\right)^{T}$
(2) Compute the new elements. In our example, we would obtain elements $=\left(\begin{array}{cccc}1 & 4 & 2 & 5 \\ 4 & 2 & 5 & 3\end{array}\right)$.

With the help of Matlab, this procedure can be realized very efficient.
(b) Compute the matrices coordinates and elements for the refined grid in (a). Implement a function
[coordinates,elements] = function refineMesh(coordinates,elements)
which realized the refinement of a given grid as described above.
The next step is the assemblation of the stiffness matrix and this will be done element-wise, as we already tried to describe above. Consider the j-th element $T_{j}=\left[x_{j}, x_{j+1}\right]$ of the given grid. On T_{j} we only have to consider φ_{j} and φ_{j+1}, because all other functions vanish. For the j-th element we compute the small 2×2 matrix

$$
\left(\begin{array}{cc}
\int_{T_{j}} a(x) \cdot \varphi_{j}^{\prime}(x) \cdot \varphi_{j}^{\prime}(x) d x & \int_{T_{j}} a(x) \cdot \varphi_{j}^{\prime}(x) \cdot \varphi_{j+1}^{\prime}(x) d x \\
\int_{T_{j}} a(x) \cdot \varphi_{j+1}^{\prime}(x) \cdot \varphi_{j}^{\prime}(x) d x & \int_{T_{j}} a(x) \cdot \varphi_{j+1}^{\prime}(x) \cdot \varphi_{j+1}^{\prime}(x) d x
\end{array}\right)
$$

This 2×2 matrix will then be added on the corresponding position. Note, that we have set $b(x)=c(x)=0$.
(c) Visualize this procedure on a sheet of paper with (a).

The right-hand side of the equation will also be computed element-wise.
(d) Write a function [A, B , C, b] = assemble(coordinates, elements,f), which assembles the matrices A, B and C and the right-hand side b element-wise. f is a function-handle for the right-hand side of the equation. Note, that A is the matrix associated to the diffusion-term $\int_{\Omega} a(x) u^{\prime}(x) v^{\prime}(x) d x, B$ is the matrix associated to the convection term $\int_{\Omega} b(x) u^{\prime}(x) v(x) d x$ and C is the matrix associated to the reaction term $\int_{\Omega} c(x) u(x) v(x) d x$.
(e) Complete the script main.m, which is given on the home-page. In this script, the grid is loaded and the BVP (1) is solved numerically. It is assumed, that $a(x), b(x), c(x)$ are constant in $\Omega=(0,1)$. Test your implementation with the following BVPs
(i) $a=1, b=0, c=0, f=1$ and $u(0)=u(1)=0$,
(ii) $a=1, b=0, c=0, f=1$ and $u(0)=0, u(1)=1$,
(iii) $a=1, b=0, c=0, f=x$ and $u(0)=u(1)=0$,
(iv) $a=1, b=0, c=1 / 100, f=1$ and $u(0)=u(1)=0$,
(v) $a=1, b=1 / 10, c=0, f=1$ and $u(0)=u(1)=0$.

