
Prof. Dr. Stefan Funken Numerik von gewöhnlichen Differenzialgleichungen
M.Sc. Mladjan Radic, Stefan Hain SoSe 2016
Department of Numerical Mathematics
Ulm University

Sheet 10
Due July 07, 2016.

Exercise 1 (Well-posedness)

Explain what is wrong in both the variational setting and the classical setting for the following BVP:

−u′′(x) = f(x), x ∈ (0, 1),

u′(0) = u′(1) = 0.

More precise: Explain in both contexts why this problem is not well-posed with respect to H1(Ω).

Exercise 2 (Graduated Grids)

Let the exact solution of a given BVP be given by u(x) = xα for α > 1
2 on Ω = (0, 1). Let uI(x) be the

linear interpolant of u on a given grid T := {0 = x0 < x1 < · · · < xN < xN+1 = 1}, i.e. uI ∈ S1,1(T) and
on a given element (ui, ui+1), uI(x) may be expressed by

uI(x) = u(xi+1) · xi+1 − x
xi+1 − xi

+ u(xi) ·
x− xi
xi+1 − xi

= xαi+1 ·
xi+1 − x
xi+1 − xi

+ xαi ·
x− xi
xi+1 − xi

.

We define the error e(x) := u(x)−uI(x). Compute the error in the H1-semi-norm |e(x)|H1(Ω), in the L2-norm

‖e(x)‖L2(Ω) and in the H1-norm ‖e(x)‖H1(Ω) =
√
‖e(x)‖2L2(Ω) + |e(x)|2

H1(Ω)
for the following grids:

(i) T := {xi | xi := i
N , i = 0, . . . , N}, (equidistant grid),

(ii) T := {xi | xi :=
(
i
N

)β
, i = 0, . . . , N}, (graduated grid),

by choosing β = 1
α− 1

2

, β = 1
α , β = 1

α+ 1
2

, β = 5
α− 1

2

, α ∈ {3
4 , 1, 2, 5} and N := {100, 101, 102, 103, 104, 105}.

What do you observe? What have you expected? In matlab you can use the command x =

linspace(0,1,N+1) to obtain an equidistant grid. What happens if you use x = logspace(0,1,N+1) ins-
tead and use this as another graduated grid? Plot the error for the above mentioned grids.
Hint: You can use the following equations to implement the norm of the error:

‖e(x)‖2L2(Ω) =

∫
Ω

(u(x)− uI(x))2 dx =

N∑
i=0

∫ xi+1

xi

(u(x)− uI(x))2 dx.

and analogously

|e(x)|2H1(Ω) =

∫
Ω

(u′(x)− u′I(x))2 dx =

N∑
i=0

∫ xi+1

xi

(u′(x)− u′I(x))2 dx.

Exercise 3 (FEM)

We consider the following BVP

−
(
a(x)u′(x)

)′
+ b(x)u′(x) + c(x)u(x) = f(x), x ∈ Ω = (0, 1) (1)

u(0) = α, u(1) = β

Show, that the variational formulation (for α = β = 0) is given by: Find u ∈ V := H1
0 (Ω), such that∫

Ω
a(x)u′(x)v′(x) dx+

∫
Ω
b(x)u′(x)v(x) dx+

∫
Ω
c(x)u(x)v(x) dx =

∫
Ω
f(x)v(x) dx

for all v ∈ V . In this sheet, we want to consider another strategy for the implementation of this more
general equation and a slightly different strategy for assembling the stiffness matrix. The 1d-grid should be
stored in the matrices coordinates ∈ RnC×1 and elements ∈ RnE×2. The matrix coordinates contains the
coordinates of the grid points and elements contains the indices for the edge points of each interval. Let us
at first consider the interval (0, 1), which is partitioned in only two elements, i.e. E1 = (0, 1

2) = (x1, x2) and

E2 = (1
2 , 1) = (x2, x3). It is then clear, that the corresponding matrices are coordinates =

(
0 0.5 1

)T
and elements =

(
1 2

2 3

)T
. We have already seen, that for the Laplace problem, i.e. a(x) = 1, b(x) = c(x) = 0

and with h1 = x1 − x2 = 1
2 , h2 = x3 − x2 = 1

2 , we obtain the very small stiffness-matrix (by using the hat
functions):

A =


2 1
h1

− 1
h1

0

− 1
h1

1
h1

+ 1
h2
− 1
h2

0 − 1
h2

2 1
h2

 =


2 1
h1
− 1
h1

0

− 1
h1

1
h1

0

0 0 0

+


0 0 0

0 1
h2

− 1
h2

0 − 1
h2

2 1
h2


which is now our first motivation for assembling the stiffness matrix element-wise. As we now see above,
we just need to to compute smaller 2 × 2-matrices and afterwards summing them up with respect to the
corresponding position. The next motivation for assembling the smaller 2 × 2-matrices is, that we do not
have to number the nodes lexicographically, i.e. x1 = 0, x3 = 0.5, x2 = 1, which ends up in E1 = (0, 1

2) =

(x1, x3) and E2 = (1
2 , 1) = (x3, x2) and coordinates =

(
0 0.5 1

)T
and elements =

(
1 3

3 2

)T
. And the

corresponding matrix is now given by

A =


2 1
h1

0 − 1
h1

0 2 1
h2

− 1
h2

− 1
h1
− 1
h2

1
h1

+ 1
h2

 =


2 1
h1

0 − 1
h1

0 0 0
1
h1

0 1
h1

+


0 0 0

0 2 1
h2
− 1
h2

0 − 1
h2

1
h2


This demonstrates, that we have to compute 4 entries on each element and afterwards just summing them
up with respect to their position. This will be now discussed in more detail.

(a) Draw the grid for

coordinates =
(

0 0.5 0.3 0.6 1.0 0.9
)T

elements =

(
1 3 2 4 6

3 2 4 6 5

)T

The vector dirichlet contains the indices for the Dirichlet nodes, in our case this vector is given by

dirichlet=
(

1 5
)T

.

We want to consider now the uniformly refinement of the grid. Each element will be halved. The procedure
is then as follows:

(1) For each element compute the midpoint and store the coordinate of these midpoints at the end of the
vector. In the above example, where we have considered the tow elements E1 = (0, 1

2) = (x1, x2) and
E2 = (1

2 , 1) = (x2, x3), we compute the new midpoints x4 = 0.25 and x5 = 0.75. Therefore we obtain

coordinates =
(

0 0.5 1 0.25 0.75
)T

(2) Compute the new elements. In our example, we would obtain elements =

(
1 4 2 5

4 2 5 3

)
.

With the help of Matlab, this procedure can be realized very efficient.

(b) Compute the matrices coordinates and elements for the refined grid in (a). Implement a function

[coordinates,elements] = function refineMesh(coordinates,elements)

which realized the refinement of a given grid as described above.

The next step is the assemblation of the stiffness matrix and this will be done element-wise, as we already
tried to describe above. Consider the j-th element Tj = [xj , xj+1] of the given grid. On Tj we only have to
consider ϕj and ϕj+1, because all other functions vanish. For the j-th element we compute the small 2× 2
matrix ∫

Tj
a(x) · ϕ′j(x) · ϕ′j(x)dx

∫
Tj
a(x) · ϕ′j(x) · ϕ′j+1(x)dx∫

Tj
a(x) · ϕ′j+1(x) · ϕ′j(x)dx

∫
Tj
a(x) · ϕ′j+1(x) · ϕ′j+1(x)dx

 .

This 2× 2 matrix will then be added on the corresponding position. Note, that we have set b(x) = c(x) = 0.

(c) Visualize this procedure on a sheet of paper with (a).

The right-hand side of the equation will also be computed element-wise.

(d) Write a function [A,B,C,b] = assemble(coordinates,elements,f), which assembles the matrices
A, B and C and the right-hand side b element-wise. f is a function-handle for the right-hand side of
the equation. Note, that A is the matrix associated to the diffusion-term

∫
Ω a(x)u′(x)v′(x) dx, B is

the matrix associated to the convection term
∫

Ω b(x)u′(x)v(x) dx and C is the matrix associated to
the reaction term

∫
Ω c(x)u(x)v(x) dx.

(e) Complete the script main.m, which is given on the home-page. In this script, the grid is loaded and
the BVP (1) is solved numerically. It is assumed, that a(x), b(x), c(x) are constant in Ω = (0, 1). Test
your implementation with the following BVPs

(i) a = 1, b = 0, c = 0, f = 1 and u(0) = u(1) = 0,

(ii) a = 1, b = 0, c = 0, f = 1 and u(0) = 0,u(1) = 1,

(iii) a = 1, b = 0, c = 0, f = x and u(0) = u(1) = 0,

(iv) a = 1, b = 0, c = 1/100, f = 1 and u(0) = u(1) = 0,

(v) a = 1, b = 1/10, c = 0, f = 1 and u(0) = u(1) = 0.

