Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Numerik von gewöhnlichen Differenzialgleichungen
SoSe 2016

Sheet 3

Due May 12, 2016.

Exercise 1 (Consistency and Increment Function)

Consider the IVP

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in I:=[0, T] \subset \mathbb{R} \tag{1}\\
y(0) & =y_{0}
\end{align*}
$$

Let $h>0$ be the step-size. Every one-step method for determination of the grid-function $\left\{y_{m}\right\}_{m=1}^{N}$ is of the form

$$
y_{m+1}=y_{m}+h \Phi\left(t_{m}, y_{m} ; h\right), \quad m=0, \ldots, N-1
$$

where Φ is the so called increment function.
(a) Determine the increment function for the explicit and implicit Euler method.
(b) Let $y \in C^{1}(I)$ be the exact solution of the IVP (1). Show: A one-step method is consistent if and only if

$$
\lim _{h \rightarrow 0} \Phi(t, y(t) ; h)=f(t, y(t))
$$

Use this result to justify why the explicit and implicit Euler method are consistent.
(c) Let $f \in C^{2}(I \times \mathbb{R})$. Consider the increment function

$$
\Phi(t, y ; h)=\alpha_{1} f(t, y)+\alpha_{2} f\left(t+\beta_{1} h, y+\beta_{2} h f(t, y)\right)
$$

Determine $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ such that the order of convergence equals 2 . Is it possible to achieve higher order?
(d) Let $f \in C^{3}(I \times \mathbb{R})$. Consider the increment function

$$
\Phi(t, y ; h)=\frac{1}{6} \cdot\left(k_{1}+4 \cdot k_{2}+k_{3}\right)
$$

with

$$
\begin{aligned}
k_{1} & =f(t, y) \\
k_{2} & =f\left(t+\frac{h}{2}, y+\frac{h}{2} k_{1}\right) \\
k_{3} & =f\left(t+h, y+h\left(-k_{1}+2 k_{2}\right)\right)
\end{aligned}
$$

Show that the resulting one-step method is of consistency order $p=3$. Which convergence order has the method?

Exercise 2 (Integral Equation III and the classical RKM)

Consider the initial value problem (IVP) (see Exercise 1 on Sheet 1):

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)), \quad t \in I:=[0, T] \subset \mathbb{R}, \\
y(0) & =y_{0}
\end{aligned}
$$

with $f \in C^{4}(I \times \mathbb{R})$. On Sheet 1, Exercise 1, we have already shown, that

$$
\begin{equation*}
y \text { is soution of the IVP } \Leftrightarrow y(t)=K y(t):=y_{0}+\int_{0}^{t} f(s, y(s)) d s \tag{2}
\end{equation*}
$$

We discretize I equidistantly in N subintervals with stepsize $h:=\frac{T}{N}>0$, e.g.

$$
0=t_{0}<t_{1}<\ldots<t_{N}=T
$$

with $t_{k}=k \cdot h$ for $k=0,1, \ldots, N$. With (2) we obtain therefore

$$
\begin{equation*}
\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}=\frac{1}{h} \int_{t_{k}}^{t_{k+1}} f(s, y(s)) d s \quad \text { with } \quad y\left(t_{0}\right)=y_{0} . \tag{3}
\end{equation*}
$$

(a) Derive the classical Runge-Kutta method by using (3) and

- using a quadrature formula (which one?) on $\int_{t_{k}}^{t_{k+1}} f(s, y(s)) d s$,
- approximation of the function values of y by taylor formula,
- elimination of the derivatives of y.
(b) Consider the IVP

$$
\begin{aligned}
y^{\prime}(t) & =y(t), \quad t \in I:=[0, T], \\
y(0) & =\alpha,
\end{aligned}
$$

with the exact solution $y(t)=\alpha \cdot \exp t, 0 \leq t \leq T$. Formulate for this IVP the classical Runge-Kutta method and discuss your observations.

Exercise 3 (Explicit RKM)

Consider for $I:=[\mathrm{to}, \mathrm{tN}] \subset \mathbb{R}$ the IVP

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)), \quad t \in I, \\
y(\mathrm{t} 0) & =\mathrm{y} 0 .
\end{aligned}
$$

(a) Consider the classical Runge-Kutta method with the Butcher-tableau:

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	0	0	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Which consistency order has the resulting explicit Runge-Kutta method and prove your statement.
(b) Write a function $y=$ runge_kutta_exp(f,tspan, $\mathrm{y} 0, \mathrm{~N}$), which runs the classical Runge-Kutta method with the Butcher-tableau given in (a). The time interval $\mathrm{tspan}=[\mathrm{to}, \mathrm{tN}]$ shall be divided in N equidistent subintervals. f is a function handle.
(c) Apply the method on the following examples and vary $\mathrm{N} \in\{10,50,100,500,1000\}$
(i) $u^{\prime}(t)=-\lambda u(t), u(0)=1$, for $\lambda \in\{-10,-1,1,10\}$ and $t \in[0,1]$.
(ii) $u^{\prime}(t)=-t^{2} u(t)^{2}, u(0)=1$, for $t \in[0,1]$.
(iii) $u^{\prime}(t)=-2 t u(t)^{2}, u(0)=1$, for $t \in[0,1]$.
(iv) Davis-Skodje problem:

$$
\binom{u^{\prime}(t)}{v^{\prime}(t)}=\binom{-u(t)}{-\frac{1}{\varepsilon} v(t)+\frac{u(t)}{\varepsilon(1+u(t))}-\frac{u(t)}{(1+u(t))^{2}}}
$$

with the initial values

$$
\begin{gathered}
u(0)=1 \quad \text { and } \quad v(0)=1 \\
\text { for } \varepsilon \in\left\{1,10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-6}\right\} \text { and } t \in[0,4] .
\end{gathered}
$$

(d) Apply further the explicit, implicit Euler method as well as the Crank-Nicolson method on the above examples with the same discretization. Discuss and explain your observations.

Exercise 4 (Implicit RKM)

Consider for $I:=[\mathrm{to}, \mathrm{tN}] \subset \mathbb{R}$ the IVP

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)), \quad t \in I, \\
y(\mathrm{t} 0) & =\mathrm{y} 0 .
\end{aligned}
$$

(a) Consider two implicit Runge-Kutta methods, which are characterized by the following Butcher-tableaus:

Determine the coefficients α_{1}, β_{11} and γ_{2} of the left Butcher-tableau, such that the resulting implicit Runge-Kutta method is of consistency order 4.
(b) Write a function y = runge_kutta_imp(f,tspan,y0,N,alpha,gamma,A), with tspan=[t0,tN] which runs the implicit Runge-Kutta method with the Butcher-tableaus (described by alpha, gamma, A) given in (a). The time interval $\mathrm{tspan}=[\mathrm{t0} 0, \mathrm{tN}]$ shall be again divided in N equidistent subintervals. f is a function handle. Further, for solving the implicit system, use
(i) fixpoint iteration,
(ii) Newton method.

Compare and discuss the two methods.
(c) Apply the method on the Examples (i)-(iv) from Exercise 3 again with $\mathbb{N} \in\{10,50,100,500,1000\}$.

Additional remarks to Exercise 3 and 4

Create the plots in a meaningful manner! Make them as neat as possible! Plots without a title, without detailed description of the x-and y - axis or without a legend (if necessary) will not be accepted!

The following keywords could be useful:

- doc figure
- doc plot
- doc subplot
- title
- xlabel,ylabel
- legend
- axis

