Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Numerik von gewöhnlichen Differenzialgleichungen
SoSe 2016

Sheet 4

Due May 12, 2016.

Exercise 1 (Embedded RKM - RK7(8))

Consider the following embedded Runge-Kutta method:

0															
$\frac{2}{27}$	$\frac{2}{27}$														
$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{12}$													
$\frac{1}{6}$	$\frac{1}{24}$	0	$\frac{1}{8}$												
$\frac{5}{12}$	$\frac{5}{12}$	0	$-\frac{25}{16}$	$\frac{25}{16}$											
$\frac{1}{2}$	$\frac{1}{20}$	0	0	$\frac{1}{4}$	$\frac{1}{5}$										
$\frac{5}{6}$	$-\frac{25}{108}$	0	0	$\frac{125}{108}$	$-\frac{65}{27}$	$\frac{125}{54}$									
$\frac{1}{6}$	$\frac{31}{300}$	0	0	0	$\frac{61}{225}$	$-\frac{2}{9}$	$\frac{13}{900}$								
$\frac{2}{3}$	2	0	0	$-\frac{53}{6}$	$\frac{704}{45}$	$-\frac{107}{9}$	$\frac{67}{90}$	3							
$\frac{1}{3}$	$-\frac{91}{108}$	0	0	$\frac{23}{108}$	$-\frac{976}{135}$	$\frac{311}{54}$	$-\frac{19}{60}$	$\frac{17}{6}$	$-\frac{1}{12}$						
1	$\frac{2333}{4100}$	0	0	$-\frac{341}{164}$	$\frac{4496}{1025}$	$-\frac{301}{82}$	$\frac{2133}{4100}$	$\frac{45}{82}$	$\frac{45}{164}$	$\frac{18}{41}$					
0	$\frac{3}{205}$	0	0	0	0	$-\frac{6}{41}$	$-\frac{3}{205}$	$-\frac{3}{41}$	$\frac{3}{41}$	$\frac{6}{41}$	0				
1	$-\frac{1777}{4100}$	0	0	$-\frac{341}{164}$	$\frac{4496}{1025}$	$-\frac{289}{82}$	$\frac{2193}{4100}$	$-\frac{51}{82}$	$\frac{33}{164}$	$\frac{12}{41}$	0	1			
γ	$\frac{41}{840}$	0	0	0	0	$\frac{34}{105}$	$\frac{9}{35}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{9}{280}$	$\frac{41}{840}$	0	0		
$\hat{\gamma}$	0	0	0	0	0	$\frac{34}{105}$	$\frac{9}{35}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{9}{280}$	0	$\frac{41}{840}$	$\frac{41}{840}$		

Where the consistency order with respect to γ is 7 and $\hat{\gamma}$ is 8 . For a good and reasonable application of the above embedded RKM we consider the following problem:
The orbit $(x(t), y(t))$ of a satellite in the gravitation field of the earth, moon and the sun can be described by the following equations

$$
\begin{aligned}
x^{\prime \prime} & =x+2 y^{\prime}-\hat{\mu} \frac{x+\mu}{N_{1}}-\mu \frac{x-\hat{\mu}}{N_{2}} \\
y^{\prime \prime} & =y-2 x^{\prime}-\hat{\mu} \frac{y}{N_{1}}-\mu \frac{y}{N_{2}}
\end{aligned}
$$

with the relative masses

$$
\mu=\frac{m_{M}}{m_{E}+m_{M}} \quad \text { and } \quad \hat{\mu}=\frac{m_{E}}{m_{e}+m_{M}}=1-\mu
$$

where m_{E} is the mass of the earth and m_{M} of the moon. N_{1} and N_{2} are given by

$$
N_{1}=\left((x+\mu)^{2}+y^{2}\right)^{\frac{3}{2}} \quad \text { and } \quad N_{2}=\left((x-\hat{\mu})^{2}+y^{2}\right)^{\frac{3}{2}}
$$

The movement of the satellite in \mathbb{R}^{2} with coordinates $(x(t), y(t))$ is a coordinate system, which rotates around the centre of gravitation (origin). The earth is assumed fix in the point $(-\mu, 0)$ and the moon in $(\hat{\mu}, 0)$ respectively. For the following initial values

$$
x(0)=0.994, \quad x^{\prime}(0)=0, \quad y(0)=0, \quad y^{\prime}(0)=-2.0015851063790825
$$

and for $\mu=0.012277471$ we recieve the solution of a s called (four leaved) Arenstorf-Orbit with period $T=17.06521656015796255889$ (months).
(a) Transform the system into a system of first order of the form

$$
u^{\prime}=f(t, u) \quad \text { with } \quad u(t)=\left(x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)^{T}
$$

(b) Complete the function $[t, y]=R K 78(f, t s p a n, y 0, t o l)$, which you can find on the homepage. f is a function handle describing the right-hand side of the ODE, tspan is the interval on which the ODE has to be solved, in our case $\mathrm{tspan}=[0, \mathrm{~T}]$ and y0 is the initial value. tol is the desired tolerance. The output parameter are t and y , which contain the time discretization $t_{0}, t_{1}, t_{2}, \ldots, t_{N}$ and the corresponding computed values $y_{0}, y_{1}, y_{2}, \ldots, y_{N}$ respectively. Note, that we don't have an equidistant discretization. Apply the function on the above IVP. What do you observe?
(c) Apply the explicit Euler method on the above IVP with $N \in\left\{10,10^{2}, 10^{3}, 10^{4}, 10^{6}\right\}$.
(d) Apply the RK7 (8) method on the Davis-Skodje model, see Sheet 3, Exercise 3, Example (iv) with $\varepsilon \in\left\{10^{-2}, 10^{-3}, 10^{-4}\right\}$. Compare your results with Sheet 3, Exercise 3 and 4.

Exercise 2 (Adams-Bashforth)

Consider the IVP

$$
\begin{aligned}
& y^{\prime}(t)=-2 t y(t)^{2}, \quad t \in I:=[0,1] \\
& y(0)=1
\end{aligned}
$$

We want to solve the IVP with the Adams-Bashforth-method

$$
y_{m+4}-y_{m+3}=\frac{h}{24} \cdot\left(55 \cdot f\left(t_{m+3}, y_{m+3}\right)-59 \cdot f\left(t_{m+2}, y_{m+2}\right)+37 \cdot f\left(t_{m+1}, y_{m+1}\right)-9 \cdot f\left(t_{m}, y_{m}\right)\right)
$$

where h denotes the step size for an equidistant mesh.
(a) Determine the exact solution of the IVP.
(b) Write a function $[y, t]=$ adams_bashforth (f,tspan, y0,N,type), in which the initial values y_{1}, y_{2}, y_{3}
(i) are the exact values (type $=1$).
(ii) are calculated with the classical Runge-Kutta-method of order 4 with step size $\mathrm{h}=1 / \mathrm{N}$ (type $=2$).
(iii) are calculated with the explicit Euler-method with step size $\mathrm{h}=1 / \mathrm{N}($ type $=3)$.
f is a function handle describing the right-hand side of the ODE, tspan is the time interval on which the ODE has to be solved, in oure case tspan $=[0,1]$, y0 the initial value of the IVP and N the number of iterations.
(c) Create a plot with the solutions of Exercise 2(b) and discuss your results. Use and complete the file aufgabe $2 . \mathrm{m}$, which can be found on the homepage.
(d) Modify your code from Exercise 2(b) in such a way, that the explicit Euler-method uses the step sizes $H=h / 2^{i}$ for $i=0,1,2, \ldots$ and plot the solutions. For which stepsize do we reach the same convergence order as for exact initial values?

Remark: Which values do you have to choose for obtaining y_{1}, y_{2} and y_{3} ?

