Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Numerik von gewöhnlichen Differenzialgleichungen
SoSe 2016

Sheet 6

Due June 02, 2016.

Exercise 1 (Supplement Sheet 3 - Implicit Euler Method)

Let $f \in C\left(I \times \mathbb{R}^{n}\right)$ be a global Lipschitz continuous with respect to the second argument, e.g.

$$
\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\|_{2} \leq L\left\|y_{1}-y_{2}\right\|_{2}, \quad \forall\left(t, y_{1}\right),\left(t, y_{2}\right) \in I \times \mathbb{R}^{n}
$$

and consider the fixpoint iteration

$$
y_{k+1}^{(l+1)}=y_{k}+h f\left(t_{k+1}, y_{k+1}^{(l)}\right), \quad l=0,1,2, \ldots
$$

for the computation of the unknown values y_{k+1} needed for the implicit Euler method.
(a) Show, that the fixpoint iteration converges, if the step-size $h>0$ fulfills the condition $h<1 / L$.
(b) Select a function $f \in C\left(I \times \mathbb{R}^{n}\right)$, which is global Lipschitz continuous with respect to the second argument, s.t. the resulting fixpoint iteration diverges for $h=1 / L$.
Hint: Remember Sheet 3, Exercise 3. Combine your results of Sheet 3 with this exercise.

Exercise 2 (Supplement Sheet 3 - Implicit RKM)

Let $f \in C\left(I \times \mathbb{R}^{n}\right)$ be a global Lipschitz continuous with respect to the second argument, e.g.

$$
\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\|_{\infty} \leq L\left\|y_{1}-y_{2}\right\|_{\infty}, \quad \forall\left(t, y_{1}\right),\left(t, y_{2}\right) \in I \times \mathbb{R}^{n}
$$

and consider the fixpoint iteration

$$
k_{j}^{(l+1)}=f\left(t_{k}+\alpha_{j} h, y_{k}+h \sum_{i=1}^{m} \beta_{j i} k_{i}^{(l)}\right), \quad j=1, \ldots, m, \quad l=0,1,2, \ldots
$$

for the computation of the stages k_{j} needed for the implicit RKM. Show that the fixpoint iteration converges for every initial value $k_{1}^{(0)}, \ldots, k_{m}^{(0)}$ if the step-size $h>0$ fulfills the condition

$$
q:=h L \max _{j=1, \ldots, m} \sum_{i=1}^{m}\left|\beta_{j i}\right|<1
$$

Exercise 3 (Inherent Instability)

Consider the IVP

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[0, T] \subset \mathbb{R} \\
y(0) & =y_{0} \tag{1}
\end{align*}
$$

and the disturbed problem

$$
\begin{aligned}
\hat{y}^{\prime}(t) & =f(t, \hat{y}(t))+\delta(t), \quad t \in[0, T] \subset \mathbb{R} \\
\hat{y}(0) & =y_{0}+\delta_{0}
\end{aligned}
$$

where $\delta_{0} \in \mathbb{R}$ und $\delta \in C([0, T])$. The IVP (1) is called Ljapunov-stable on $[0, T]$, if for every disturbation $\left(\delta_{0}, \delta(t)\right)$, which satisfies for $\varepsilon>0$ (small enough)

$$
\left|\delta_{0}\right|<\varepsilon, \quad|\delta(t)|<\varepsilon \quad \forall t \in[0, T]
$$

implies

$$
\exists C>0 \text { (independend of } \varepsilon), \text { such that }|y(t)-\hat{y}(t)|<C \varepsilon, \quad \forall t \in[0, T] .
$$

Note, that the Ljapunov-stability is a property of the cauchy-problem. In the following we want to consider a special class of ODE's, whose analytical solution is known. The IVP, we want to investigate, reads for $\lambda \in \mathbb{R}$ and $f \in C^{1}([0, T]):$

$$
\begin{align*}
y^{\prime}(t) & =\lambda(y(t)-f(t))+f^{\prime}(t), \quad t \in[0, T] \\
y(0) & =y_{0} \tag{2}
\end{align*}
$$

(a) Determine the analytical solution of (2) for the initial value $y_{0}=f(0)$
(b) Determine the analytical solution of (2) for the disturbed initial value $\hat{y}_{0}=f(0)+\delta_{0}$ with $\delta_{0} \in \mathbb{R}$. Discuss your results.

Problems such as (2), which identify themselves by a high sensitivity to their initial conditions are called inherently-instable. Consider the concrete IVP

$$
\begin{align*}
& y^{\prime}(t)=10\left(y(t)-\frac{t^{2}}{t^{2}+1}\right)+\frac{2 t}{\left(t^{2}+1\right)^{2}}, \quad t \in[0,3] \tag{3}\\
& y(0)=0
\end{align*}
$$

which is of the form (2) and inherently-instable.
(c) Show, that the IVP (3) is Ljapunov-stable on $[0,3]$. To do this use the lemma of Gronwall.
(d) Solve the IVP (3) with the implicit RKM, treated on sheet 3, with the Adams-Bashforth-Method (initial values calculated with the RKM) and the embedded RKM, both treated on sheet 4 . Discuss your results.

Use for every method $N=1000$, where N is the number of iterations. Plot all your solutions together with the analytical solutions $y(t)=\frac{t^{2}}{1+t^{2}}, t \in[0,3]$ in a common plot. Use the command ylim $([-1.5,1.5])$.

Exercise 4 (Predictor-Corrector Method)

We consider the following test problem

$$
\begin{aligned}
& y^{\prime}(t)=\lambda y(t), \quad t \in[0,15] \\
& y(0)=1
\end{aligned}
$$

with $\lambda=-1$ and $\lambda=1$. We want to solve this problem with the following two predictor-corrector methods
(a) Milne:

$$
\begin{aligned}
& y_{\ell+4}^{(0)}=y_{\ell}+\frac{4}{3} h\left(2 f_{\ell+3}-f_{\ell+2}+2 f_{\ell+1}\right) \\
& y_{\ell+4}^{(\nu+1)}=y_{\ell+2}+\frac{1}{3} h\left(f_{\ell+4}^{(\nu)}+4 f_{\ell+3}+f_{\ell+2}\right), \quad \nu=0,1, \ldots
\end{aligned}
$$

(b) Hamming:

$$
\begin{aligned}
& y_{\ell+4}^{(0)}=y_{\ell}+\frac{4}{3} h\left(2 f_{\ell+3}-f_{\ell+2}+2 f_{\ell+1}\right) \\
& y_{\ell+4}^{(\nu+1)}-\frac{9}{8} y_{\ell+3}+\frac{1}{8} y_{\ell+1}=\frac{3}{8} h\left(f_{\ell+4}^{(\nu)}+2 f_{\ell+3}-f_{\ell+2}\right), \quad \nu=0,1, \ldots
\end{aligned}
$$

where $f_{\ell}=f\left(t_{\ell}, y_{\ell}\right)$ and $f_{\ell}^{(\nu)}=f\left(t_{\ell}, y_{\ell}^{(\nu)}\right)$ respectively. Computing the first initial values for the multystep method we use the classical Runge-Kutta method and as a criterion for termination for the corrector iteration we consider

$$
\frac{\left|y_{\ell+4}^{(\nu+1)}-y_{\ell+4}^{(\nu)}\right|}{\left|y_{\ell+4}^{(\nu)}\right|} \leq 10^{-5} .
$$

For the step-size h, we consider $h=0.1$ and we compute in a tabular for $t=0.1,0.2, \ldots, 15$ the exact solution $y^{*}(t)$ and the numerical solution $y_{h}(t)$ and the error $e_{h}(t)=y^{*}(t)-y_{h}(t)$ and the number of iterations. Vary now h in a meaningful manner. Plot the corresponding error e_{h} also in a meaningful manner. May you verify the following statement (which you have already seen in the lecture):

Satz. If f is regular enough and Lipschitz continuous with respect to y, then the order of consisteny of the predictor-corrector method is $\min \left\{p, m_{0}+p^{*}\right\}$, where p^{*} and p are the order of consistency of the predictor and corrector respectively and m_{0} is the number of iterations (or number of corrector steps respectively).

