

Prof. Dr. Stefan Funken M.Sc. Mladjan Radic, Stefan Hain Department of Numerical Mathematics Ulm University Numerik von gewöhnlichen Differenzialgleichungen SoSe 2016

Sheet 8

Due June 09, 2016.

Exercise 1 (Stability regions for multi-step methods)

Consider the linear k-step method

$$\sum_{r=0}^{k} \alpha_r y_{j+r} = h \sum_{r=0}^{k} \beta_r f_{j+r}$$

with the corresponding polynomials

$$\rho(z) = \sum_{r=0}^k \alpha_r z^r \quad \sigma(z) = \sum_{r=0}^k \beta_r z^r.$$

Then the polynomial with respect to stability of the k-step method is given by

$$\pi(z,h\lambda) = \rho(z) - h\lambda\sigma(z)$$

and the roots of π are denoted by $z_i(h\lambda)$. The set

$$R = \{h\lambda : |z_j(h\lambda)| < 1, j = 0, \dots, k\}$$

is called stability region of the k-step method. For the boundary of R it can be shown that

$$\partial R \subseteq \widehat{R} := \{ \widehat{h} \in \mathbb{C} : \widehat{h} = \rho(\exp(\mathrm{i}\phi)) / \sigma(\exp(\mathrm{i}\phi)), \ 0 \le \phi \le 2\pi \}.$$

Plot the set \widehat{R} (with Matlab) for the following k-step-methods:

- k-step Adams-Bashforth-method $y_{i+1} = y_i + h \sum_{r=0}^k \alpha_r f_r$: $\frac{k \quad \alpha_k}{1 \quad 1}$ 2 3/2 -1/2
 3 23/12 -16/12 5/12
 - 4 55/24 -59/24 37/24 -9/24
- k-step Adams-Moulton-method $y_{i+1} = y_i + h \sum_{r=0}^k \alpha_r f_r$:

k	$lpha_k$				
1	1/2	1/2			
2	5/12 9/24	8/12	-1/12		
3	9/24	19/24	-5/24	1/24	
4	251/720	646/720	-264/720	106/720	-19/720

Exercise 2 (Another Stiff Problem)

Consider the following IVP $y'(t) = Ay(t), y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, where

$$A = \begin{pmatrix} 998 & 1998 \\ -999 & -1999 \end{pmatrix}.$$

- (a) Determine the exact solution.
- (b) Consider the scheme $y_k = f_1(h, k)v_1 + f_2(h, k)v_2$ and formulate it explicitly for the explicit Euler-method, where v_1 and v_2 are the Eigenvectors of A. What are the requirements for the step-size?
- (c) Consider the scheme $y_k = f_1(h, k)v_1 + f_2(h, k)v_2$ and formulate it explicitly for the implicit Euler-method, where v_1 and v_2 are again the Eigenvectors of A. Why is there no restriction for the step-size?

Exercise 3 (Consistency \Rightarrow Convergence for MSM?)

Consider the following IVP

$$y'(t) = 0, \qquad y(0) = 0.1.$$
 (1)

We want to apply the following explicit linear multi-step method

$$y_{\ell+2} + 4y_{\ell+1} - 5y_{\ell} = h(4f(t_{\ell+1}, y_{\ell+1}) + 2f(t_{\ell}, y_{\ell}))$$

- (a) Determine the order of consistency of the above multi-step method.
- (b) Solve the above IVP (1) with the multi-step method in MATLAB (with arbitrary h) on I = [0, 50]. What do you observe and why? For the first initial values, use the exact solution of (1) or any suitable method of your choice.

Exercise 4 (Double-Pendulum)

The equation for a double-pendulum is given by

$$(m_1 + m_2)\ell_1\ddot{\varphi}_1 + m_2\ell_2\ddot{\varphi}_2\cos(\varphi_1 - \varphi_2) + m_2\ell_2\dot{\varphi}_1^2\sin(\varphi_1 - \varphi_2) + g(m_1 + m_2)\sin(\varphi_2) = 0, m_2\ell_2\ddot{\varphi}_2 + m_2\ell_1\ddot{\varphi}_1\cos(\varphi_1 - \varphi_2) - m_2\ell_1\dot{\varphi}_1^2\sin(\varphi_1 - \varphi_2) + gm_2\sin(\varphi_2) = 0.$$

where $g = 9.81 m/s^2$ the constant of gravitation.

- (a) Rewrite the above equation into an equation of first order.
- (b) Solve the equation by using a one-step- as well as a multi-step-method (of your choice!) with an appropriate step-size for $t \in [0, 20]$.
- (c) Plot the solution and build an animation of the movement of the pendulum for the following configuration: $m_1 = 2, m_2 = 1, \ell_1 = 1, \ell_2 = 1.732051$ and

•
$$\varphi_1(0) = -\frac{\pi}{2}, \ \varphi_2(0) = \pi, \ \dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0,$$

• $\varphi_1(0) = -\frac{\pi}{2}, \, \varphi_2(0) = \pi + 10^{-2}, \, \dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0.$

Hint: You can use the template on the homepage.