Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Sheet 8

Due June 09, 2016.

Exercise 1 (Stability regions for multi-step methods)

Consider the linear k-step method

$$
\sum_{r=0}^{k} \alpha_{r} y_{j+r}=h \sum_{r=0}^{k} \beta_{r} f_{j+r}
$$

with the corresponding polynomials

$$
\rho(z)=\sum_{r=0}^{k} \alpha_{r} z^{r} \quad \sigma(z)=\sum_{r=0}^{k} \beta_{r} z^{r} .
$$

Then the polynomial with respect to stability of the k-step method is given by

$$
\pi(z, h \lambda)=\rho(z)-h \lambda \sigma(z)
$$

and the roots of π are denoted by $z_{i}(h \lambda)$. The set

$$
R=\left\{h \lambda:\left|z_{j}(h \lambda)\right|<1, j=0, \ldots, k\right\}
$$

is called stability region of the k-step method. For the boundary of R it can be shown that

$$
\partial R \subseteq \widehat{R}:=\{\widehat{h} \in \mathbb{C}: \widehat{h}=\rho(\exp (\mathrm{i} \phi)) / \sigma(\exp (\mathrm{i} \phi)), 0 \leq \phi \leq 2 \pi\}
$$

Plot the set \widehat{R} (with Matlab) for the following k-step-methods:

- k-step Adams-Bashforth-method $y_{i+1}=y_{i}+h \sum_{r=0}^{k} \alpha_{r} f_{r}$:

k	α_{k}			
1	1			
2	$3 / 2$	$-1 / 2$		
3	$23 / 12$	$-16 / 12$	$5 / 12$	
4	$55 / 24$	$-59 / 24$	$37 / 24$	$-9 / 24$

- k-step Adams-Moulton-method $y_{i+1}=y_{i}+h \sum_{r=0}^{k} \alpha_{r} f_{r}$:

k	α_{k}				
1	$1 / 2$	$1 / 2$			
2	$5 / 12$	$8 / 12$	$-1 / 12$		
3	$9 / 24$	$19 / 24$	$-5 / 24$	$1 / 24$	
4	$251 / 720$	$646 / 720$	$-264 / 720$	$106 / 720$	$-19 / 720$

Exercise 2 (Another Stiff Problem)

Consider the following IVP $y^{\prime}(t)=A y(t), y(0)=\binom{1}{0}$, where

$$
A=\left(\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right)
$$

(a) Determine the exact solution.
(b) Consider the scheme $y_{k}=f_{1}(h, k) v_{1}+f_{2}(h, k) v_{2}$ and formulate it explicitly for the explicit Euler-method, where v_{1} and v_{2} are the Eigenvectors of A. What are the requirements for the step-size?
(c) Consider the scheme $y_{k}=f_{1}(h, k) v_{1}+f_{2}(h, k) v_{2}$ and formulate it explicitly for the implicit Euler-method, where v_{1} and v_{2} are again the Eigenvectors of A. Why is there no restriction for the step-size?

Exercise 3 (Consistency \Rightarrow Convergence for MSM?)

Consider the following IVP

$$
\begin{equation*}
y^{\prime}(t)=0, \quad y(0)=0.1 \tag{1}
\end{equation*}
$$

We want to apply the following explicit linear multi-step method

$$
y_{\ell+2}+4 y_{\ell+1}-5 y_{\ell}=h\left(4 f\left(t_{\ell+1}, y_{\ell+1}\right)+2 f\left(t_{\ell}, y_{\ell}\right)\right) .
$$

(a) Determine the order of consistency of the above multi-step method.
(b) Solve the above IVP (1) with the multi-step method in MATLAB (with arbitrary h) on $I=[0,50]$. What do you observe and why? For the first initial values, use the exact solution of (1) or any suitable method of your choice.

Exercise 4 (Double-Pendulum)

The equation for a double-pendulum is given by

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) \ell_{1} \ddot{\varphi}_{1}+m_{2} \ell_{2} \ddot{\varphi}_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)+m_{2} \ell_{2} \dot{\varphi}_{1}^{2} \sin \left(\varphi_{1}-\varphi_{2}\right)+g\left(m_{1}+m_{2}\right) \sin \left(\varphi_{2}\right) & =0 \\
m_{2} \ell_{2} \ddot{\varphi}_{2}+m_{2} \ell_{1} \ddot{\varphi}_{1} \cos \left(\varphi_{1}-\varphi_{2}\right)-m_{2} \ell_{1} \dot{\varphi}_{1}^{2} \sin \left(\varphi_{1}-\varphi_{2}\right)+g m_{2} \sin \left(\varphi_{2}\right) & =0
\end{aligned}
$$

where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ the constant of gravitation.
(a) Rewrite the above equation into an equation of first order.
(b) Solve the equation by using a one-step- as well as a multi-step-method (of your choice!) with an appropriate step-size for $t \in[0,20]$.
(c) Plot the solution and build an animation of the movement of the pendulum for the following configuration: $m_{1}=2, m_{2}=1, \ell_{1}=1, \ell_{2}=1.732051$ and

- $\varphi_{1}(0)=-\frac{\pi}{2}, \varphi_{2}(0)=\pi, \dot{\varphi}_{1}(0)=\dot{\varphi}_{2}(0)=0$,
- $\varphi_{1}(0)=-\frac{\pi}{2}, \varphi_{2}(0)=\pi+10^{-2}, \dot{\varphi}_{1}(0)=\dot{\varphi}_{2}(0)=0$.

Hint: You can use the template on the homepage.

