
Prof. Dr. Stefan Funken Numerik von gewöhnlichen Differenzialgleichungen
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Introduction Finite Element Method:

Consider the Boundary-Value-Problem (BVP)

−u′′(x) = f(x), x ∈ (−1, 1), (1)

u(−1) = u(1) = 0, (2)

with the classical solution u ∈ C2((−1, 1)) ∩ C([−1, 1]). To derive the so called weak formulation of the
BVP, we proceed as follows: Multiplying equation (1) with any test-function v ∈ X with the property
v(−1) = v(1) = 0 (X is a suitable space. Choosing the space X = H1

0 ((−1, 1))) and integrating the
equation, one gets

−
∫ 1

−1
u′′(x)v(x) dx =

∫ 1

−1
f(x)v(x) dx, ∀v ∈ X.

Integration by parts and the use of [u′(x)v(x)]1−1 = 0 because of the property v(−1) = v(1) = 0 yields∫ 1

−1
u′(x)v′(x) dx =

∫ 1

−1
f(x)v(x) dx, ∀v ∈ X. (3)

Equation (3) is the so called weak formulation of the BVP. In order to obtain a discrete problem, we choose
u and v from a suitable finite dimensional subspace Xh := span{ϕ1, . . . , ϕN} of X. Therefore any element
of Xh can be formulated as linear combination of the basis functions ϕ1, . . . , ϕN of Xh, e.g.

uh(x) =
N∑
j=1

ujϕj(x).

Due to the linearity of the problem it is sufficient to use the basis functions ϕ1, . . . , ϕN as test functions
instead of any vh ∈ Xh. Applying these ideas to equation (3) we get:∫ 1

−1
u′h(x)ϕ′i(x) dx =

∫ 1

−1
f(x)ϕi(x) dx, i = 1, . . . , N

⇐⇒
N∑
j=1

uj

∫ 1

−1
ϕ′j(x)ϕ′i(x) dx =

∫ 1

−1
f(x)ϕi(x) dx, i = 1, . . . , N.

Thus we obtain a system of linear equations of the form Auh = f , where the so called stiffness-matrix
A = (ai,j)

N
i,j=1 ∈ RN×N is given by

aij =

∫ 1

−1
ϕ′j(x)ϕ′i(x) dx, 1 ≤ i, j ≤ N

and the right hand side f = (fi)
N
i=1 ∈ RN is given by

fi =

∫ 1

−1
f(x)ϕi(x) dx, 1 ≤ i ≤ N.

Solving this system of linear equations yields the vector uh = (u1, . . . , uN )T ∈ RN , which is representing
(together with the basis functions of Xh) the solution of the BVP.



Exercise 1 (FDM vs. FEM)

Consider the BVP

−u′′(x) = f(x), x ∈ Ω := (a, b),

u(a) = u(b) = 0.
(4)

The aim of this task is to study the some distinctions between the FDM/FEM and the effect of using
different basis functions for the finite dimensional subspace Xh, which fullfills the condition Xh ⊂ X, used
in the FEM. For the FEM we consider the following basis functions for the subspace Xh:

• Hat-functions: We discretize the interval [a, b] in N subintervals, which are not necessarily equidistant.
Then for the resulting mesh a = x0 < x1 < . . . < xN = xN+1 = b we define the hat-functions

ϕi(x) =


x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

, x ∈ (xi, xi+1],

0, else,

, i = 1, . . . , N.

For simplicity we will choose an equidistant mesh, e.g. xi+1 − xi = h for all i = 1, . . . , N and h > 0.

• Trigonometric-functions:

ϕk(x) = sin

(
kπ
x− a
b− a

)
, k = 1, . . . , N.

(a) Determine the entries of the stiffness-matrix of the FEM using

(i) hat-functions as basis functions for the discrete space Xh,

(ii) trigonometric-functions as basis functions for the discrete space Xh.

Consider now the BVP (4) with a = −1 and b = 1, e.g.

−u′′(x) = f(x), x ∈ Ω := (−1, 1),

u(−1) = u(1) = 0.
(5)

(b) Determine the exact solution of the BVP (4) using

(i) f(x) = 1 for x ∈ [−1, 1],

(ii) f(x) = |x| for x ∈ [−1, 1].

(c) Write a function uh = fem hat(f,tspan,N), which computes the FEM-solution of this BVP, using
the hat-functions as basis functions for the discrete space Xh. f is a function handle describing the
right-hand side of the BVP, tspan is the interval on which the BVP has to be solved, in our case
tspan=[-1,1], and N is the number of basis functions.
For a given function f compute the right-hand side of the weak formulation by a quadrature formula.
Use the Matlab-function quad for this task.

(d) Consider again the BVP (5). Write a function uh = fem sin(f,tspan,N), which computes the FEM-
solution of this BVP, using the trigonometric-functions as basis functions for the discrete space Xh.
f is a function handle describing the right-hand side of the BVP, tspan is the interval on which the
BVP has to be solved, in our case tspan=[-1,1], and N is the number of basis functions.
For a given function f compute the right-hand side of the weak formulation by a quadrature formula.
Use a Gauss-quadrature formula for this task. Use the file gauss.m, which can be found on the
homepage.

(e) Test your functions fem hat.m and fem sin.m using the BVP (5) with the right-hand-side

(i) f(x) = 1 for x ∈ [−1, 1],



(ii) f(x) = |x| for x ∈ [−1, 1],

for N ∈ {10 · i : i = 1, . . . , 10} and plot your solutions together with the exact solution. Furthermore
create a plot, which shows the L2-error between the exact solution u determined in (b) and the
numerical solution uh. To do this use a suitable quadrature-formula (Matlab-function quad for hat-
functions and gauss-quadrature-formula for the trigonometric-functions).

(f) It is known that for the 1D-case the stiffness-matrix of the FEM using hat-functions and the matrix
produced by the FDM, are almost (up to a factor h) the same for the BVP (5). Modify your code from
Exercise 2(e) in such a way, that the plot additionally shows the FDM-solution. Discuss your results.
Note: Pay attention to the right-hand-side!


