Prof. Dr. Stefan Funken
M.Sc. Mladjan Radic, Stefan Hain

Department of Numerical Mathematics
Ulm University

Numerik von gewöhnlichen Differenzialgleichungen

Sheet 9

Due June 23, 2016.

Introduction Finite Element Method:

Consider the Boundary-Value-Problem (BVP)

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x), \quad x \in(-1,1) \tag{1}\\
u(-1) & =u(1)=0, \tag{2}
\end{align*}
$$

with the classical solution $u \in C^{2}((-1,1)) \cap C([-1,1])$. To derive the so called weak formulation of the BVP, we proceed as follows: Multiplying equation (1) with any test-function $v \in X$ with the property $v(-1)=v(1)=0\left(X\right.$ is a suitable space. Choosing the space $\left.X=H_{0}^{1}((-1,1))\right)$ and integrating the equation, one gets

$$
-\int_{-1}^{1} u^{\prime \prime}(x) v(x) d x=\int_{-1}^{1} f(x) v(x) d x, \quad \forall v \in X
$$

Integration by parts and the use of $\left[u^{\prime}(x) v(x)\right]_{-1}^{1}=0$ because of the property $v(-1)=v(1)=0$ yields

$$
\begin{equation*}
\int_{-1}^{1} u^{\prime}(x) v^{\prime}(x) d x=\int_{-1}^{1} f(x) v(x) d x, \quad \forall v \in X \tag{3}
\end{equation*}
$$

Equation (3) is the so called weak formulation of the BVP. In order to obtain a discrete problem, we choose u and v from a suitable finite dimensional subspace $X_{h}:=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ of X. Therefore any element of X_{h} can be formulated as linear combination of the basis functions $\varphi_{1}, \ldots, \varphi_{N}$ of X_{h}, e.g.

$$
u_{h}(x)=\sum_{j=1}^{N} u_{j} \varphi_{j}(x)
$$

Due to the linearity of the problem it is sufficient to use the basis functions $\varphi_{1}, \ldots, \varphi_{N}$ as test functions instead of any $v_{h} \in X_{h}$. Applying these ideas to equation (3) we get:

$$
\begin{aligned}
& \int_{-1}^{1} u_{h}^{\prime}(x) \varphi_{i}^{\prime}(x) d x=\int_{-1}^{1} f(x) \varphi_{i}(x) d x, \quad i=1, \ldots, N \\
& \quad \Longleftrightarrow \sum_{j=1}^{N} u_{j} \int_{-1}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) d x=\int_{-1}^{1} f(x) \varphi_{i}(x) d x, \quad i=1, \ldots, N
\end{aligned}
$$

Thus we obtain a system of linear equations of the form $\mathbf{A} \mathbf{u}_{\mathbf{h}}=\mathbf{f}$, where the so called stiffness-matrix $\mathbf{A}=\left(a_{i, j}\right)_{i, j=1}^{N} \in \mathbb{R}^{N \times N}$ is given by

$$
a_{i j}=\int_{-1}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) d x, \quad 1 \leq i, j \leq N
$$

and the right hand side $\mathbf{f}=\left(f_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}$ is given by

$$
f_{i}=\int_{-1}^{1} f(x) \varphi_{i}(x) d x, \quad 1 \leq i \leq N
$$

Solving this system of linear equations yields the vector $\mathbf{u}_{\mathbf{h}}=\left(u_{1}, \ldots, u_{N}\right)^{T} \in \mathbb{R}^{N}$, which is representing (together with the basis functions of X_{h}) the solution of the BVP.

Exercise 1 (FDM vs. FEM)

Consider the BVP

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x), \quad x \in \Omega:=(a, b), \tag{4}\\
u(a) & =u(b)=0
\end{align*}
$$

The aim of this task is to study the some distinctions between the FDM/FEM and the effect of using different basis functions for the finite dimensional subspace X_{h}, which fullfills the condition $X_{h} \subset X$, used in the FEM. For the FEM we consider the following basis functions for the subspace X_{h} :

- Hat-functions: We discretize the interval $[a, b]$ in N subintervals, which are not necessarily equidistant.

Then for the resulting mesh $a=x_{0}<x_{1}<\ldots<x_{N}=x_{N+1}=b$ we define the hat-functions

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & x \in\left[x_{i-1}, x_{i}\right], \\ x_{i+1}-x \\ x_{i+1}-x_{i} & x \in\left(x_{i}, x_{i+1}\right], \quad, \quad i=1, \ldots, N . \\ 0, & \text { else },\end{cases}
$$

For simplicity we will choose an equidistant mesh, e.g. $x_{i+1}-x_{i}=h$ for all $i=1, \ldots, N$ and $h>0$.

- Trigonometric-functions:

$$
\varphi_{k}(x)=\sin \left(k \pi \frac{x-a}{b-a}\right), \quad k=1, \ldots, N .
$$

(a) Determine the entries of the stiffness-matrix of the FEM using
(i) hat-functions as basis functions for the discrete space X_{h},
(ii) trigonometric-functions as basis functions for the discrete space X_{h}.

Consider now the BVP (4) with $a=-1$ and $b=1$, e.g.

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x), \quad x \in \Omega:=(-1,1), \\
u(-1) & =u(1)=0 \tag{5}
\end{align*}
$$

(b) Determine the exact solution of the BVP (4) using
(i) $f(x)=1$ for $x \in[-1,1]$,
(ii) $f(x)=|x|$ for $x \in[-1,1]$.
(c) Write a function uh = fem_hat (f,tspan, N), which computes the FEM-solution of this BVP, using the hat-functions as basis functions for the discrete space $X_{h} . \mathrm{f}$ is a function handle describing the right-hand side of the BVP, tspan is the interval on which the BVP has to be solved, in our case tspan $=[-1,1]$, and N is the number of basis functions.
For a given function f compute the right-hand side of the weak formulation by a quadrature formula. Use the Matlab-function quad for this task.
(d) Consider again the BVP (5). Write a function $u h=f e m _s i n(f, t s p a n, N)$, which computes the FEMsolution of this BVP, using the trigonometric-functions as basis functions for the discrete space X_{h}. f is a function handle describing the right-hand side of the BVP, tspan is the interval on which the BVP has to be solved, in our case tspan $=[-1,1]$, and N is the number of basis functions.
For a given function f compute the right-hand side of the weak formulation by a quadrature formula. Use a Gauss-quadrature formula for this task. Use the file gauss.m, which can be found on the homepage.
(e) Test your functions fem_hat.m and fem_sin.m using the BVP (5) with the right-hand-side
(i) $f(x)=1$ for $x \in[-1,1]$,
(ii) $f(x)=|x|$ for $x \in[-1,1]$,
for $N \in\{10 \cdot i: i=1, \ldots, 10\}$ and plot your solutions together with the exact solution. Furthermore create a plot, which shows the L_{2}-error between the exact solution u determined in (b) and the numerical solution u_{h}. To do this use a suitable quadrature-formula (Matlab-function quad for hatfunctions and gauss-quadrature-formula for the trigonometric-functions).
(f) It is known that for the 1D-case the stiffness-matrix of the FEM using hat-functions and the matrix produced by the FDM, are almost (up to a factor h) the same for the BVP (5). Modify your code from Exercise 2(e) in such a way, that the plot additionally shows the FDM-solution. Discuss your results. Note: Pay attention to the right-hand-side!

