Prof. Dr. Stefan Funken M.Sc. Attila Klimmek Institut für Numerische Mathematik Universität Ulm

Übungsblatt 1 (Besprechung Do. 27.04. 2017.)

Allgemeine Vorgaben:

- Zum Bestehen der Vorleistung sind 50 Prozent der Übungspunkte notwendig (Votiersystem). Zudem muss mindestens ein Mal vorgerechnet werden.
- Es besteht Anwesenheitspflicht.
- Wird eine Aufgabe fälschlicherweise als bearbeitet angekreuzt, wird das gesamte Übungsblatt mit 0 Punkten bewertet.
- Die Programmieraufgaben sollen bis 18:00 Uhr am Vortag der Übung abgegeben werden. Die Benennung des zip-files ist BlattXName1Name2.zip.
- Programmieraufgaben können einzeln oder zu zweit abgegeben werden.

Aufgabe 1 (3+7)

Für $d \in \mathbb{N}$ betrachten wir die inkompressible Navier-Stokes-Gleichung ohne äußere Kraft \mathbf{f} und mit Viskosität $\nu = 1$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \Delta \mathbf{u}$$

$$\operatorname{div} \mathbf{u} = 0.$$
(1)

Hierbei sind $\mathbf{u}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ und $p: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ (hinreichend glatt) die gesuchten Lösungen.

(a) Zeige: Sind **u** und p Lösungen von (1), so auch $\tilde{\mathbf{u}}$ und \tilde{p} , wobei

$$\tilde{\mathbf{u}}(t, \mathbf{x}) = \mathbf{u}(t, \mathbf{x} - \mathbf{z}t) + \mathbf{z}, \ \tilde{p}(t, \mathbf{x}) = p(t, \mathbf{x} - \mathbf{z}t), \quad \mathbf{z} \in \mathbb{R}^{d.1}$$

(b) Sei $\lambda > 0$ und seien **u** und p Lösungen von (1). Finde Zahlen $a, b, c, e \in \mathbb{R}$, sodass

$$\mathbf{u}^{(\lambda)}(t, \mathbf{x}) = \lambda^a \mathbf{u}(\lambda^b t, \lambda^c \mathbf{x})$$
$$p^{(\lambda)}(t, \mathbf{x}) = \lambda^e p(\lambda^b t, \lambda^c \mathbf{x})$$

ebenfalls Lösungen von (1) sind.

Aufgabe 2 (10)

Sei $\Omega=(0,1)^2$ mit Rand $\Gamma=\partial\Omega, \beta=\begin{pmatrix}1\\1\end{pmatrix}\in\mathbb{R}^2$ und sei $f\in C(\Omega).$ Wir suchen eine Funktion $u\in C^2(\Omega)\cap C(\overline{\Omega}),$ die das Dirichlet-Problem

$$\begin{cases} -\Delta u + \beta \cdot \nabla u + 2u = f & \text{in } \Omega \\ u = 0 & \text{auf } \Gamma \end{cases}$$

löst. Diese soll näherungsweise mit der FDM² berechnet werden. Gehe hierzu wie folgt vor:

• Definiere ein äquidistantes Gitter auf $\overline{\Omega}$ mit $N^2 \in \mathbb{N}$ inneren Punkten und Gitterweite $h = \frac{1}{N+1}$ und setze

$$(x_i, y_j) = (ih, jh), \quad i, j = 0, \dots, N+1.$$

- Überlege, wie die FDM-Matrizen für die Terme $\beta \cdot \nabla u$ und 2u aussehen. Gehe hierzu analog zur Herleitung der Matrix für den Laplace-Operator (Satz von Taylor) vor. Überlege dir, welche Konvergenzordnung der FDM sich aus der Herleitung ergeben sollte.
- (a) Schreibe ein Skript, das die obige Gleichung mit der FDM löst.
- (b) Sei die exakte Lösung $u(x,y) = \sin(2\pi x)\sin(2\pi y)$. Berechne in Abhängigkeit der Maschenweise h den Fehler zwischen der exakten und numerischen Lösung in der Supremums-Norm und stelle den Fehler graphisch dar.

 $^{^1\}mathrm{In}$ der Physik wird diese Eigenschaft Galilei-Invarianz genannt.

²Wir nehmen an, dass sogar $u \in C^4(\Omega)$ gilt.