

Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller,
Prof. Dr. Karsten Urban | 11. Januar 2007

Scientific Computing

Parallele Algorithmen

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.
3. Eliminate elements in superdiagonal blocks.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.
3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns $x_{5}, x_{10}, x_{15}, x_{20}$.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.
3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns $x_{5}, x_{10}, x_{15}, x_{20}$.

How to solve a tridiagonal system?

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.
2. Eliminate in each diagonal block superdiagonal elements from third last row on.
3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns $x_{5}, x_{10}, x_{15}, x_{20}$.
If data are stored rowwise only one communication to neighbouring processor neccessary.

Iterative Solver

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.
Consider $F(x):=\frac{1}{2} x^{\top} A x-b^{T} x$ where A is symmetric and positiv definite. Hence, $\nabla F=\frac{1}{2}\left(A+A^{T}\right) x-b=A x-b$

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$

$$
\begin{aligned}
& x^{k+1}:=x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k} \quad \% \text { Update } x^{k} \\
& r^{k+1}:=b-A x^{k+1} \quad \% \text { Compute residual }
\end{aligned}
$$

Iterative Solver

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.
Consider $F(x):=\frac{1}{2} x^{\top} A x-b^{T} x$ where A is symmetric and positiv definite. Hence, $\nabla F=\frac{1}{2}\left(A^{2}+A^{T}\right) x-b=A x-b$

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$

$$
\begin{aligned}
& x^{k+1}:=x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k} \quad \% \text { Update } x^{k} \\
& r^{k+1}:=b-A x^{k+1} \quad \% \text { Compute residual }
\end{aligned}
$$

Using $r^{k+1}=b-A x^{k+1}$

Iterative Solver

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.
Consider $F(x):=\frac{1}{2} x^{\top} A x-b^{T} x$ where A is symmetric and positiv definite. Hence, $\nabla F=\frac{1}{2}\left(A^{2}+A^{T}\right) x-b=A x-b$

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$

$$
\begin{aligned}
& x^{k+1}:=x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k} \quad \% \text { Update } x^{k} \\
& r^{k+1}:=b-A x^{k+1} \quad \% \text { Compute residual }
\end{aligned}
$$

Using $r^{k+1}=b-A x^{k+1}=b-A\left(x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k}\right)$

Iterative Solver

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.
Consider $F(x):=\frac{1}{2} x^{\top} A x-b^{T} x$ where A is symmetric and positiv definite. Hence, $\nabla F=\frac{1}{2}\left(A^{2}+A^{T}\right) x-b=A x-b$

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$

$$
\begin{aligned}
& x^{k+1}:=x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k} \quad \% \text { Update } x^{k} \\
& r^{k+1}:=b-A x^{k+1} \quad \% \text { Compute residual }
\end{aligned}
$$

Using $r^{k+1}=b-A x^{k+1}=b-A\left(x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k}\right)=r^{k}-\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) A r^{k}$ gets

Iterative Solver

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.
Consider $F(x):=\frac{1}{2} x^{\top} A x-b^{T} x$ where A is symmetric and positiv definite. Hence, $\nabla F=\frac{1}{2}\left(A^{2}+A^{T}\right) x-b=A x-b$

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$

$$
\begin{aligned}
& x^{k+1}:=x^{k}+\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) r^{k} \quad \% \text { Update } x^{k} \\
& r^{k+1}:=r^{k}-\lambda_{\text {opt }}\left(x^{k}, r^{k}\right) A r^{k} \quad \% \text { Compute residual }
\end{aligned}
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \min \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
f(\lambda)=F(x+\lambda p)
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \text { min } \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
\begin{aligned}
f(\lambda) & =F(x+\lambda p) \\
& =\frac{1}{2}\langle x+\lambda p, A(x+\lambda p)\rangle-\langle b, x+\lambda p\rangle
\end{aligned}
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \min \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
\begin{aligned}
f(\lambda) & =F(x+\lambda p) \\
& =\frac{1}{2}\langle x+\lambda p, A(x+\lambda p)\rangle-\langle b, x+\lambda p\rangle \\
& =\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle
\end{aligned}
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method:
Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \min \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
\begin{aligned}
f(\lambda) & =F(x+\lambda p) \\
& =\frac{1}{2}\langle x+\lambda p, A(x+\lambda p)\rangle-\langle b, x+\lambda p\rangle \\
& =\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle \\
& =F(x)+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle
\end{aligned}
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \min \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
f(\lambda)=F(x)+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle
$$

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \text { min } \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
f(\lambda)=F(x)+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle
$$

If $p \neq 0,\langle p, A p\rangle>0$.

Steepest Descent Method

Let $x, p \in \mathbb{R}^{n}$. What is the optimal $\lambda_{\text {opt }}(x, p)$ in steepest descent method:
Consider the following minimization problem:

$$
f(\lambda) \stackrel{!}{=} \text { min } \quad \text { with } \quad f(\lambda):=F(x+\lambda p)
$$

Then, with $F(x)=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle$ we get

$$
f(\lambda)=F(x)+\lambda\langle p, A x-b\rangle+\frac{1}{2} \lambda^{2}\langle p, A p\rangle
$$

If $p \neq 0,\langle p, A p\rangle>0$.
Hence, from $0 \stackrel{!}{=} f^{\prime}(\lambda)=\langle p, A x-b\rangle+\lambda\langle p, A p\rangle$ we obtain

$$
\lambda_{\text {opt }}(x, p)=\frac{\langle p, b-A x\rangle}{\langle p, A p\rangle} .
$$

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Numerical Example

2D Problem

- $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- $b=\binom{-1}{1}$
- $x^{0}=\binom{8}{-3}$
- 5 iterations

Iterative Solver

Steepest Descent

Input: Initial guess x^{0}

$$
r^{0}:=b-A x^{0}
$$

Iteration: $k=0,1, \ldots$
$\lambda_{\text {opt }}:=\frac{\left\langle r^{k}, r^{k}\right\rangle}{\left\langle r^{k}, A r^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} r^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} A r^{k}$

2 matrix-vector-products, 2 inner products, and 2 saxpy's per iteration

Is it possible save one matrix-vector-product?

Iterative Solver

Steepest Descent

Input: Initial guess x^{0}
$r^{0}:=b-A x^{0}$
Iteration: $k=0,1, \ldots$
$a^{k}:=A r^{k}$
$\lambda_{\text {opt }}:=\frac{\left\langle r^{k}, r^{k}\right\rangle}{\left\langle r^{k}, a^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} r^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$

1 matrix-vector-products, 2 inner products, and 2 saxpy's per iteration

Numbering

How can vectors be given?

Numbering

How can vectors be given?

- Full value at each node, e.g. given

$$
u_{\ell}=(1,1,1,1)^{T} \quad u_{r}=(1,1,1,1)^{T} .
$$

Numbering

How can vectors be given?

- Full value at each node, e.g. given

$$
u_{\ell}=(1,1,1,1)^{T} \quad u_{r}=(1,1,1,1)^{T} .
$$

Using incidence matrices C_{ℓ} and C_{r}.

$$
C_{\ell}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad C_{r}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Numbering

How can vectors be given?

- Full value at each node, e.g. given

$$
u_{\ell}=(1,1,1,1)^{T} \quad u_{r}=(1,1,1,1)^{T}
$$

Using incidence matrices C_{ℓ} and C_{r}.

$$
C_{\ell}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad C_{r}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Note

$$
u_{\ell}:\left(\begin{array}{l}
1 \\
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Numbering

How can vectors be given?

- Full value at each node, e.g. given

$$
u_{\ell}=(1,1,1,1)^{T} \quad u_{r}=(1,1,1,1)^{T}
$$

Hence

$$
\begin{aligned}
u & =C_{\ell}(1,1,1,1)^{T}+C_{r}(1,1,1,1)^{T} \\
& =(1,0,1,1,1,0)^{T}+(0,1,1,1,0,1)^{T} \\
& =(1,1,2,2,1,1)^{T} \neq(1,1,1,1,1,1)^{T}
\end{aligned}
$$

resp.

$$
u=C_{\ell} u_{\ell}+C_{r} u_{r}
$$

Numbering

How can vectors be given?

- Full value at each node be given.
- Value is given after assembling all data, e.g. given

$$
u_{\ell}=\left(1, \frac{1}{2}, 1, \frac{1}{2}\right)^{T} \quad u_{r}=\left(1, \frac{1}{2}, \frac{1}{2}, 1\right)^{T}
$$

results in

$$
\begin{aligned}
u & =C_{\ell} u_{\ell}+C_{r} u_{r} \\
& =\left(1,0, \frac{1}{2}, \frac{1}{2}, 1,0\right)^{T}+\left(0,1, \frac{1}{2}, \frac{1}{2}, 0,1\right)^{T} \\
& =(1,1,1,1,1,1)^{T}
\end{aligned}
$$

Types of Vectors

Two types of vectors, depending on the storage type:
type I: \bar{u} is stored on P_{k} as restriction $\bar{u}_{k}=C_{k} \bar{u}$.
'Complete' value accessable on P_{k}.
type II: $\quad \underline{r}$ is stored on P_{k} as \underline{r}_{k}, s.t.
$\underline{r}=\sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k}$.
Nodes on the interface have only a part of the full value.

Numbering

local numbering

Let matrices on both subdomains be given, for example:

$$
A_{\ell}=\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right) \quad A_{r}=\left(\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 3 & -7 & 2 \\
-2 & -9 & 4 & 0 \\
3 & 7 & 1 & 5
\end{array}\right)
$$

Numbering

local numbering

Let matrices on both subdomains be given, for example:

$$
A_{\ell}=\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right) \quad A_{r}=\left(\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 3 & -7 & 2 \\
-2 & -9 & 4 & 0 \\
3 & 7 & 1 & 5
\end{array}\right)
$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_{r} ?

Numbering

local numbering

Let matrices on both subdomains be given, for example:

$$
A_{\ell}=\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right) \quad A_{r}=\left(\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 3 & -7 & 2 \\
-2 & -9 & 4 & 0 \\
3 & 7 & 1 & 5
\end{array}\right)
$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_{r} ?
Use incidence matrices C_{ℓ} and C_{r}.

$$
C_{\ell}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad C_{r}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Numbering

local numbering

Let matrices on both subdomains be given, for example:

$$
A_{\ell}=\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right) \quad A_{r}=\left(\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 3 & -7 & 2 \\
-2 & -9 & 4 & 0 \\
3 & 7 & 1 & 5
\end{array}\right)
$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_{r} ?
Use incidence matrices C_{ℓ} and C_{r}.

$$
C_{\ell}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad C_{r}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now we get $A=C_{\ell} A_{\ell} C_{\ell}^{T}+C_{r} A_{r} C_{r}^{T}$.

Numbering

Numbering

$$
\begin{aligned}
A & =C_{\ell} A_{\ell} C_{\ell}^{T}+C_{r} A_{r} C_{r}^{T} \\
& =\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right)\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)+\ldots
\end{aligned}
$$

Numbering

local numbering

$$
\begin{aligned}
A & =C_{\ell} A_{\ell} C_{\ell}^{T}+C_{r} A_{r} C_{r}^{T} \\
& =\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right)\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)+\ldots \\
& =\left(\begin{array}{ccccccc}
6 & 0 & 3 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-7 & 0 & 4 & 3 & -3 & 0 \\
1 & 0 & -2 & 2 & 5 & 0 \\
3 & 0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & -2 & 4 & -9 & 0 & 0 \\
0 & 1 & -7 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 7 & 0 & 5
\end{array}\right)
\end{aligned}
$$

Numbering

local numbering

$$
A=C_{\ell} A_{\ell} C_{\ell}^{T}+C_{r} A_{r} C_{r}^{T}
$$

$$
=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
2 & 1 & 3 & -2 \\
-3 & 4 & -7 & 3 \\
4 & 3 & 6 & 0 \\
5 & -2 & 1 & 2
\end{array}\right)\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)+\ldots
$$

$$
=\left(\begin{array}{cccccc}
6 & 0 & 3 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-7 & 0 & 4 & 3 & -3 & 0 \\
1 & 0 & -2 & 2 & 5 & 0 \\
3 & 0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & -2 & 4 & -9 & 0 & 0 \\
0 & 1 & -7 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 7 & 0 & 5
\end{array}\right)
$$

$$
=\left(\begin{array}{cccccc}
6 & 0 & 3 & 0 & 4 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
-7 & -2 & 4+4 & -9+3 & -3 & 0 \\
1 & 1 & -7-2 & 3+2 & 5 & 2 \\
3 & 0 & 1 & -2 & 2 & 0 \\
0 & 3 & 1 & 7 & 0 & 5
\end{array}\right)
$$

Types of Matrices

There are two types of matrices:
type I: 'Complete' (but not all) entries are accessable on P_{k}.
type II: The matrix is stored in a distrubuted manner similiar to type II.

$$
A=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T}
$$

where A_{k} belongs to processor P_{k}, resp. to the subdomain Ω_{i}.

Converting Type

Obviously, addition, subtraction (and similiar operations) of vectors can be done without communication, if they are of the same type.

- Converting from type I to type II needs communication. Mapping is not unique, e.g.

$$
\underline{u}_{i}=C_{i}\left(\sum_{k=1}^{p} C_{k} C_{k}^{T}\right)^{-1} C_{k}^{T} \bar{u}_{k}
$$

- Converting from type II to type I needs communication.

$$
\bar{r}_{i}=C_{i} \sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k}
$$

Inner Product

The inner product of two vectors \bar{u}, \underline{r} of different type needs only one reduce-communication.

$$
\langle\bar{u}, \underline{r}\rangle
$$

Inner Product

The inner product of two vectors \bar{u}, \underline{r} of different type needs only one reduce-communication.

$$
\begin{aligned}
& \langle\bar{u}, \underline{r}\rangle \\
= & \bar{u}^{T} \sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k}
\end{aligned}
$$

Inner Product

The inner product of two vectors \bar{u}, \underline{r} of different type needs only one reduce-communication.

$$
\begin{aligned}
& \langle\bar{u}, \underline{r}\rangle \\
= & \bar{u}^{T} \sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k} \\
= & \sum_{k=1}^{p} \bar{u}^{T} C_{k}^{T} \underline{r}_{k}
\end{aligned}
$$

Inner Product

The inner product of two vectors \bar{u}, \underline{r} of different type needs only one reduce-communication.

$$
\begin{aligned}
& \langle\bar{u}, \underline{r}\rangle \\
= & \bar{u}^{T} \sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k} \\
= & \sum_{k=1}^{p} \bar{u}^{T} C_{k}^{T} \underline{r}_{k} \\
= & \sum_{k=1}^{p}\left\langle C_{k} \bar{u}, \underline{r}_{k}\right\rangle
\end{aligned}
$$

Inner Product

The inner product of two vectors \bar{u}, \underline{r} of different type needs only one reduce-communication.

$$
\begin{aligned}
& \langle\bar{u}, \underline{r}\rangle \\
= & \bar{u}^{T} \sum_{k=1}^{p} C_{k}^{T} \underline{r}_{k} \\
= & \sum_{k=1}^{p} \bar{u}^{T} C_{k}^{T} \underline{r}_{k} \\
= & \sum_{k=1}^{p}\left\langle C_{k} \bar{u}, \underline{r}_{k}\right\rangle \\
= & \sum_{k=1}^{p}\left\langle\bar{u}_{k}, \underline{r}_{k}\right\rangle
\end{aligned}
$$

Matrix-Vector Multiplications

- type II - matrix \times type I - vector result is a type II vector, no communication!!!
Consider $A=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T}$.

Matrix-Vector Multiplications

- type II - matrix \times type I - vector result is a type II vector, no communication!!! Consider $A=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T}$.

$$
A \bar{u}=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T} \bar{u}
$$

Matrix-Vector Multiplications

- type II - matrix \times type I - vector result is a type II vector, no communication!!! Consider $A=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T}$.

$$
A \bar{u}=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T} \bar{u}=\sum_{k=1}^{p} C_{k} \underbrace{A_{k} \bar{u}_{k}}_{\underline{r}_{k}}
$$

Matrix-Vector Multiplications

- type II - matrix \times type I - vector result is a type II vector, no communication!!!
Consider $A=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T}$.

$$
A \bar{u}=\sum_{k=1}^{p} C_{k} A_{k} C_{k}^{T} \bar{u}=\sum_{k=1}^{p} C_{k} \underbrace{A_{k} \bar{u}_{k}}_{\underline{r}_{k}}=\underline{r}
$$

- type II - matrix \times type II - vector type conversion neccessary, needs communication

Steepest Descent

Parallel Version

Input: Initial guess \bar{x}^{0}
$\underline{r}^{0}:=\underline{b}-A \bar{x}^{0}$
$\bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}$
Iteration: $k=0,1, \ldots$
$\underline{a}^{k}:=A \bar{w}^{k}$
$\lambda:=\frac{\left\langle\bar{w}^{k}, r^{k}\right\rangle}{\left\langle\bar{w}^{k}, \underline{a}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda \bar{w}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda \underline{a}^{k}$
$\bar{w}^{k}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k}$

Only two allreduce-communications and one vector accumulation per iteration necessary!

Non-overlapping Subdomains

Different Indizes

Non-overlapping Subdomains

Different Indizes

Non-overlapping Subdomains

Different Indizes

1. I nodes in interior of subdomains $\left[N_{l}=\sum_{j=1}^{p} N_{I, j}\right]$.

Non-overlapping Subdomains

Different Indizes

1. I nodes in interior of subdomains [$\left.N_{I}=\sum_{j=1}^{p} N_{l, j}\right]$.
2. \mathbf{E} nodes in interior of subdomains-edges [$N_{E}=\sum_{j=1}^{n_{e}} N_{E, j}$]. (n_{e} number of subdomain-edges)

Non-overlapping Subdomains

Different Indizes

1. I nodes in interior of subdomains [$\left.N_{I}=\sum_{j=1}^{p} N_{I, j}\right]$.
2. E nodes in interior of subdomains-edges [$N_{E}=\sum_{j=1}^{n_{e}} N_{E, j}$]. (n_{e} number of subdomain-edges)
3. \mathbf{V} crosspoints, i.e. endpoints of subdomain-edges [N_{V}]

Non-overlapping Subdomains

Different Indizes

1. I nodes in interior of subdomains [$\left.N_{I}=\sum_{j=1}^{p} N_{I, j}\right]$.
2. \mathbf{E} nodes in interior of subdomains-edges [$N_{E}=\sum_{j=1}^{n_{e}} N_{E, j}$]. (n_{e} number of subdomain-edges)
3. \mathbf{V} crosspoints, i.e. endpoints of subdomain-edges [N_{V}]
4. \mathbf{E} and \mathbf{V} are often denoted as coupling nodes with index $\mathbf{C}\left[N_{C}=N_{E}+N_{V}\right]$

Non-overlapping Subdomains

Communication

1. Communication only neccessary for nodes on the coupling boundaries.

Non-overlapping Subdomains

Communication

1. Communication only neccessary for nodes on the coupling boundaries.
2. Global communication for crosspoints.

Non-overlapping Subdomains

Communication

1. Communication only neccessary for nodes on the coupling boundaries.
2. Global communication for crosspoints.
3. Only communication to the neighbouring subdomain for edge-nodes.

Non-overlapping Subdomains

Communication

1. Communication only neccessary for nodes on the coupling boundaries.
2. Global communication for crosspoints.
3. Only communication to the neighbouring subdomain for edge-nodes.
4. Not all nodes have to be 'touched' for a vector accumulation

$$
\bar{w}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}
$$

Non-overlapping Subdomains

Communication

1. Communication only neccessary for nodes on the coupling boundaries.
2. Global communication for crosspoints.
3. Only communication to the neighbouring subdomain for edge-nodes.
4. Not all nodes have to be 'touched' for a vector accumulation

$$
\bar{w}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}
$$

5. Split into communication between neighbouring subdomains and one global communication for all crosspoints.

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

resp.

$$
\left\langle r^{m}, r^{m+1}\right\rangle
$$

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

resp.

$$
\left\langle r^{m}, r^{m+1}\right\rangle=\left\langle r^{m}, r^{m}\right\rangle-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle}\left\langle r^{m}, A r^{m}\right\rangle=0
$$

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

resp.

$$
\left\langle r^{m}, r^{m+1}\right\rangle=\left\langle r^{m}, r^{m}\right\rangle-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle}\left\langle r^{m}, A r^{m}\right\rangle=0
$$

but not $r^{m} \perp r^{m+2}$.

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

resp.

$$
\left\langle r^{m}, r^{m+1}\right\rangle=\left\langle r^{m}, r^{m}\right\rangle-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle}\left\langle r^{m}, A r^{m}\right\rangle=0
$$

but not $r^{m} \perp r^{m+2}$. We loose all our information!!!
There exists a better algorithm for symmetric and positive definite matrices, as they arise in the finite element method!!!

Numerical Example

Notice the following properties of the algorithm

$$
r^{m} \perp r^{m+1}=r^{m}-\lambda_{\text {opt }}\left(x^{m}, r^{m}\right) A r^{m}=r^{m}-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle} A r^{m}
$$

resp.

$$
\left\langle r^{m}, r^{m+1}\right\rangle=\left\langle r^{m}, r^{m}\right\rangle-\frac{\left\langle r^{m}, b-A x^{m}\right\rangle}{\left\langle r^{m}, A r^{m}\right\rangle}\left\langle r^{m}, A r^{m}\right\rangle=0
$$

but not $r^{m} \perp r^{m+2}$. We loose all our information!!!
There exists a better algorithm for symmetric and positive definite matrices, as they arise in the finite element method!!! The CG-algorithm.

Preconditioned Conjugate Gradient Method

Solve $A x=b(A, W$ sym, + def $), W^{-1}$ 'easy' to compute, s.t. $W^{-1} A \approx I$ (e.g. $W^{-1}=I, W^{-1}=k$-iterations of Jacobi/Gauss-Seidel)

Input: Initial guess x^{0}

$$
\begin{aligned}
r^{0} & :=b-A x^{0} \\
p^{0} & :=W^{-1} r^{0} \\
\sigma_{0} & :=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}$
$\lambda_{o p t}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} r^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}$
$\sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{m+1}:=q^{m+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess x^{0}

$$
\begin{aligned}
r^{0} & :=b-A x^{0} \\
p^{0} & :=W^{-1} r^{0} \\
\sigma_{0} & :=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
r^{0} & :=b-A x^{0} \\
p^{0} & :=W^{-1} r^{0} \\
\sigma_{0} & :=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& r^{0}:=\underline{b}-A \bar{x}^{0} \\
& p^{0}:=W^{-1} r^{0} \\
& \sigma_{0}:=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& p^{0}:=W^{-1} r^{0} \\
& \sigma_{0}:=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)

$$
a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}
$$

$$
x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}
$$

$$
r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}
$$

$$
q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle
$$

$$
p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}
$$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \sigma_{0}:=\left\langle p^{0}, r^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$a^{k}:=A p^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, p^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle a^{k}, \bar{s}^{k}\right\rangle}$
$x^{k+1}:=x^{k}+\lambda_{\text {opt }} p^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$r^{k+1}:=r^{k}-\lambda_{\text {opt }} a^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}$
$\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}$
$q^{k+1}:=W^{-1} r^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{\underline{a}}^{k}$
$\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}$
$q^{k+1}:=W^{-1} \bar{w}^{k+1}, \quad \sigma_{k+1}:=\left\langle q^{k+1}, r^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad\left(\right.$ as long as $\left.k<n, r^{k} \neq 0\right)$
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}$
$\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}$
$\underline{q}^{k+1}:=W^{-1} \bar{w}^{k+1}, \quad \sigma_{k+1}:=\left\langle\underline{q}^{k+1}, \bar{w}^{k+1}\right\rangle$
$p^{k+1}:=q^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} p^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)
$\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}$
$\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}$
$\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}$
$\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}$
$\underline{q}^{k+1}:=W^{-1} \bar{w}^{k+1}, \quad \sigma_{k+1}:=\left\langle\underline{q}^{k+1}, \bar{w}^{k+1}\right\rangle$
$\underline{p}^{k+1}:=\underline{q}^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} \underline{p}^{k}$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad$ (as long as $k<n, r^{k} \neq 0$)

$$
\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}
$$

$$
\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}
$$

$$
\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}
$$

$$
\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}
$$

$$
\underline{q}^{k+1}:=W^{-1} \bar{w}^{k+1}, \quad \sigma_{k+1}:=\left\langle\underline{q}^{k+1}, \bar{w}^{k+1}\right\rangle
$$

$$
\underline{p}^{k+1}:=\underline{q}^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} \underline{p}^{k}
$$

$$
\bar{s}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{k+1}
$$

Parallel Preconditioned Conjugate Gradient Method

Input: Initial guess \bar{x}^{0}

$$
\begin{aligned}
& \underline{r}^{0}:=\underline{b}-A \bar{x}^{0} \\
& \bar{w}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0} \\
& \underline{p}^{0}:=W^{-1} \bar{w}^{0} \\
& \bar{s}^{0}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0} \\
& \sigma_{0}:=\left\langle\bar{w}^{0}, \underline{p}^{0}\right\rangle
\end{aligned}
$$

Iteration: $k=0,1, \ldots \quad\left(\right.$ as long as $\left.k<n, r^{k} \neq 0\right)$

$$
\underline{a}^{k}:=A \bar{s}^{k}, \quad \lambda_{\text {opt }}:=\frac{\sigma_{k}}{\left\langle\underline{a}^{k}, \bar{s}^{k}\right\rangle}
$$

$$
\bar{x}^{k+1}:=\bar{x}^{k}+\lambda_{\text {opt }} \bar{s}^{k}
$$

$$
\underline{r}^{k+1}:=\underline{r}^{k}-\lambda_{\text {opt }} \underline{a}^{k}
$$

$$
\bar{w}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}
$$

$$
\underline{q}^{k+1}:=W^{-1} \bar{w}^{k+1}, \quad \sigma_{k+1}:=\left\langle\underline{q}^{k+1}, \bar{w}^{k+1}\right\rangle
$$

$$
\underline{p}^{k+1}:=\underline{q}^{k+1}+\frac{\sigma_{k+1}}{\sigma_{k}} \underline{p}^{k}
$$

$$
\bar{s}^{k+1}:=\sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{k+1}
$$

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- 2 allreduce-operations

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- 2 allreduce-operations
- 1 'local' application of A and W^{-1}

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- 2 allreduce-operations
- 1 'local' application of A and W^{-1}
- 2 inner products and 3 saxpy-operations

Parallel Preconditioned Conjugate Gradient Method

A and W^{-1} are given as type II 'matrices'.

- storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- 2 allreduce-operations
- 1 'local' application of A and W^{-1}
- 2 inner products and 3 saxpy-operations

How should we choose W^{-1} ???

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024
- use 'printf'-debugger

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024
- use 'printf'-debugger
- put fflush(stdout); after every printf

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- for point-to-point communication, print data being sent and received

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- for point-to-point communication, print data being sent and received
- prefix each message with the process rank, sort by rank! messages received from different processes do not necessarily arrive in chronological order

Debugging MPI Programs

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes, or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4×4-system is the same as 1024×1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- for point-to-point communication, print data being sent and received
- prefix each message with the process rank, sort by rank! messages received from different processes do not necessarily arrive in chronological order
- make sure that all the data structures have been set up correctly

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)

Parallel programming

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)
2. pointer and dynamical memory management

Parallel programming

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)
2. pointer and dynamical memory management
3. logical and algorithmic bugs

Parallel programming

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)
2. pointer and dynamical memory management
3. logical and algorithmic bugs

Parallel programming

1. communication

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)
2. pointer and dynamical memory management
3. logical and algorithmic bugs

Parallel programming

1. communication
2. races

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)
2. pointer and dynamical memory management
3. logical and algorithmic bugs

Parallel programming

1. communication
2. races
3. deadlocks

Races

Definition: A race produces an unpredictable program state and behavior due to un-synchronized concurrent executions.
Most often data races occur, which are caused by unordered concurrent accesses of the same memory location from multiple processes.

Example: 'triangle inequality'

Effect: non-deterministic, non-reproducable program running

Communication with MPI

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $=0$	local work
2	MPI_Send to B, tag $=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	MPI_Recv from A, tag $=0$

Communication with MPI

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $=0$	local work
2	MPI_Send to B, tag $=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	MPI_Recv from A, tag $=0$

- The program will deadlock, if system provides no buffer.

Communication with MPI

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $=0$	local work
2	MPI_Send to B, tag $=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	MPI_Recv from A, tag $=0$

- The program will deadlock, if system provides no buffer.
- Process A is not able to send message with tag=0.

Communication with MPI

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $=0$	local work
2	MPI_Send to B, tag $=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	MPI_Recv from A, tag $=0$

- The program will deadlock, if system provides no buffer.
- Process A is not able to send message with tag=0.
- Process B is not able to receive message with tag=1.

Communication with MPI

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

Communication with MPI

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

- The program will deadlock, if system provides no buffer.

Communication with MPI

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

- The program will deadlock, if system provides no buffer.
- Process A and Process B are not able to send messages.

Communication with MPI

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

- The program will deadlock, if system provides no buffer.
- Process A and Process B are not able to send messages.
- Order communications in the right way!

Communication with MPI

```
Example: Exchange of messages
if (myrank == 0) {
    MPI_Send( sendbuf, 20, MPI_INT, 1, tag, communicator);
    MPI_Recv( recvbuf, 20, MPI_INT, 1, tag, communicator, &status);
}
else if (myrank == 1) {
    MPI_Recv( recvbuf, 20, MPI_INT, 0, tag, communicator, &status);
    MPI_Send( sendbuf, 20, MPI_INT, 0, tag, communicator);
}
```

- This code succeeds even with no buffer space at all !!!
- Important note: Code which relies on buffering is considered unsafe !!!

Performance Visualization for Parallel Programs

- MPE is a software package for MPI programmers.
- useful tools for MPI programs, mainly performance visualization
- latest version is called MPE2
- current tools are:

1. profiling libraries to create logfiles
2. postmortem visualization of logfiles when program is executed
3. shared-display parallel X graphics library
4. . . .

Performance Visualization for Parallel Programs

Performance Visualization for Parallel Programs

Performance Visualization for Parallel Programs

