Numerical Finance - Sheet 2

(due 30.04.2018)
Refer to the old script online for this exercise.

Exercise 1: Discrepancy

Prove Proposition 2.4.3. In part (b), consider only $\mathrm{m}=1$.

Exercise 2: Hardy-Krause Variation

Calculate the Hardy-Krause variation $V(f)$ for the function

$$
f\left(x_{1}, x_{2}\right)=\frac{3}{1+x_{1}+2 x_{2}} .
$$

Hint: You will first need to specify $J_{k}^{(2)}, k=1,2$ and to calculate the Vitali variations for all index sets $I \in J_{k}^{(2)}, k=1,2$.

Programming Exercise 1: Halton Sequence

a) Implement the radical inverse function $\phi_{b}(i)$, using the idea that

$$
i=\sum_{k=0}^{j} d_{k} b^{k}=\left(d_{k} b^{k-1}+\cdots+d_{1}\right) b+d_{0} .
$$

You should not need to use more than one loop in your algorithm.
b) For a d-dimensional Halton sequence

$$
x_{i}=\left(\phi_{p_{1}}(i), \ldots, \phi_{p_{d}}(i)\right), \quad i=1,2, \ldots,
$$

one usually takes p_{1}, \ldots, p_{d} to be the first d prime numbers. Generate 1000 points of the 2 -dimensional Halton sequence (i.e. $p_{1}=2, p_{2}=3$). Also generate 1000 Halton points using $p_{1}=109, p_{2}=113$ (the 29th and 30th prime number, respectively). Compare the two point sets by plotting them (Gnuplot: plot "data"). What does this tell you about the behaviour of the Halton sequence in higher dimensions?
(Hint: the second sequence corresponds to the projection of a 30 -dimensional sequence onto the last two coordinates).

Programming Exercise 2: Transformation of Random Variables Points)

Generate a set of 10000 uniformly distributed random variables using your UNIX-LCG from Sheet 1.
a) Transform these variables using

- the simple method $X:=\sum_{i=1}^{12} U_{i}-6$ into a normal distribution with mean 1 and variance 2,
- the Box-Muller algorithm into a normal distribution with mean 2 and variance 0.5 ,
- the transformation formula into an exponentially distributed random variable with $\lambda=1$.

For each distribution, plot the histogram and the probability density function into one figure.
b) Repeat (a) with the van der Corput sequence (use your program from Programming Exercise 1 with $b=2$) instead of the pseudo random numbers. Do you get the plots you have expected? Why / why not?
c) Generate 10000 2-dimensional independent normally distributed pseudo random variables using the Box-Muller algorithm. Plot them in a scatterplot. Generate 10000 2dimensional normal distributed pseudo random variables with correlation $\rho(X 1, X 2)=$ 0.9. You can generate them by constructing independent pseudo random variables U_{1}, U_{2} with the BoxMuller algorithm and then transform these variables with the formula $X_{2}=U_{1}, X_{1}=\rho U_{1}+\sqrt{1-\rho^{2}} U_{2}$. Plot these pseudo random variables in a scatterplot and verify theoretically that the above transformation indeed yields random variables with a correlation of ρ.

Programming Exercise 3: Monte Carlo Simulation of π

(5 Points)
The constant π can be approximated using Monte Carlo as follows: Consider the upper right quadrant of the unit circle.

1. Draw uniformly distributed 2D pseudo random variables X_{1}, \ldots, X_{n} on $[0,1]^{2}$.
2. Count the number c of random variables that lie within the upper right quadrant of the unit circle as well as the total number of random variables.

Then, the quantity $4 \frac{c}{n} \rightarrow \pi$ as $n \rightarrow \infty$.
a) Verify theoretically that $4 \frac{c}{n} \rightarrow \pi$ as $n \rightarrow \infty$.
b) Implement the MC Simulation and approximate π.
c) How many pseudo random variables do you have to generate (in powers of 10) to obtain an accuracy of 3 significant figures?

