Numerical Finance - Sheet 3

(due 7.05.2018)

Exercise 1: Multivariate Normal Distribution

a) Let $X \in \mathbb{R}^{n}$ be a random vector with expectation vector $\mu_{X} \in \mathbb{R}^{n}$ and covariance matrix $\Sigma_{X} \in \mathbb{R}^{n \times n}$. Prove that for the expectation vector and the covariance matrix of a linear transformation $Z=A X \in \mathbb{R}^{m}$ with $A \in \mathbb{R}^{m \times n}$ it holds:

$$
\mu_{Z}=A \mu_{X} \quad \text { and } \quad \Sigma_{Z}=A \Sigma_{X} A^{T}
$$

b) Derive an algorithm for the generation of multivariate normal random vectors $Z \sim \mathcal{N}(\mu, C)$ $\left(Z, \mu \in \mathbb{R}^{n}, C \in \mathbb{R}^{n \times n}\right)$.

Exercise 2: Variance Reduction Techniques I (Control variates)

Consider a random variable Z with expected value $z=\mathbb{E}[Z]$ and variance $\operatorname{Var}[Z]=\sigma_{Z}^{2}$. The usual Monte-Carlo estimator for the z is the empirical mean

$$
\widehat{z}:=\frac{1}{N} \sum_{i=1}^{N} Z_{i}, \quad Z_{i} \text { independent realizations of } Z .
$$

As the convergence of Monte-Carlo behaves like $\frac{\sigma_{z}^{2}}{\sqrt{N}}$, the idea of so-called variance reduction techniques is to construct a different estimator with a lower variance.

One possibility is to consider a control variate W with known mean $\mathbb{E}[W]=w$, variance $\operatorname{Var}[W]=$ σ_{W}^{2}, and N independent copies W_{1}, \ldots, W_{N} of W, where we assume that

- $\operatorname{Cov}\left(W_{i}, Z_{i}\right)=\operatorname{Cov}(W, Z)>0$ for all $i=1, \ldots, N$.
- W_{i}, Z_{j} are independent for $i \neq j$.

Instead of \widehat{z}, one then uses the estimator $\widehat{z}_{C V}$ as approximation for z, where

$$
\widehat{z}_{C V}:=\widehat{z}+\alpha(\widehat{w}-w) \quad \text { with } \quad \widehat{w}:=\frac{1}{N} \sum_{i=1}^{N} W_{i} .
$$

a) Show that for all $\alpha \in \mathbb{R}, \mathbb{E}\left[\widehat{z}_{C V}\right]=z, \operatorname{Var}[Z+\alpha(W-w)]=\sigma_{Z}^{2}+2 \alpha \operatorname{Cov}(W, Z)+\alpha^{2} \sigma_{W}^{2}$ and $\operatorname{Var}\left[\widehat{\widehat{Z}}_{C V}\right]=\frac{1}{N}\left(\sigma_{Z}^{2}+2 \alpha \operatorname{Cov}(W, Z)+\alpha^{2} \sigma_{W}^{2}\right)$.
b) Show that $\operatorname{Var}\left[\widehat{z}_{C V}\right]$ attains a global minimum $\frac{1}{N} \sigma_{Z}^{2}\left(1-\rho^{2}\right)$ for $\alpha=-\frac{\operatorname{Cov}(W, Z)}{\sigma_{W}^{2}}$ where

$$
\rho:=\frac{\operatorname{Cov}(W, Z)}{\sqrt{\sigma_{W}^{2} \sigma_{Z}^{2}}}
$$

Exercise 3: Sparse Grids

The sequence of one-dimensional grids with $n_{i}=2^{i}-1, i=1,2, \ldots$ equidistant points $x_{1}, \ldots, x_{n_{i}}$ on $[a, b]$ forms a nested grid. We can use the (open) Newton Cotes formulas to construct a simple sparse grid. They are given by

$$
\begin{aligned}
& n_{i}=1: \quad(b-a) f\left(x_{1}\right), \\
& n_{i}=3: \quad \frac{b-a}{3}\left(2 f\left(x_{1}\right)-f\left(x_{2}\right)+2 f\left(x_{3}\right)\right) .
\end{aligned}
$$

Using these as one-dimensional quadrature formulas $Q^{(1)}$ and $Q^{(2)}$, compute the first two-dimensional Smolyak Quadrature formula $Q(1,2)$ on $[0,1]^{2}$. What does the grid look like?

Programming Exercise 1: Variance Reduction Techniques II

a) Antithetic variables

Antithetic variables use the fact that if $u \sim U[0,1]$ then also $\tilde{u}:=1-u \sim U[0,1]$. Using $u_{1}, \tilde{u_{1}}, u_{2}, \tilde{u_{2}}, \ldots$ in a simulation might reduce the variance σ_{F} if $\operatorname{Cov}(F(u), F(\tilde{u}))<0$, as is the case for example for monotone functions F.
Compute the integral

$$
\int_{0}^{1}(x-b)^{3} \mathrm{~d} x
$$

by Monte Carlo integration for $b=0.55$ and $b=0.5$ with and without the use of antithetic variables and compare the error and the convergence rates.
b) Control variates

Consider the estimator $Z:=\mathbf{1}_{\left\{U_{1}^{2}+U_{2}^{2} \leq 1\right\}}$ of $\frac{\pi}{4}$ where U_{1}, U_{2} are independent and uniformly distributed on $[0,1]$. As a control variate, consider $W:=1_{\left\{U_{1}+U_{2} \geq \sqrt{2}\right\}}$ with $\mathbb{E}[W]=\frac{1}{2}(2-\sqrt{2})^{2}$.
(i) Give a geometrical interpretation for Z and W. Are there even better choices for W ?
(ii) Estimate π via Monte-Carlo simulation with and without the use of the control variate W. Compare the error and the convergence rates. As $\sigma_{Z}^{2}, \sigma_{W}^{2}$ and $\operatorname{Cov}(W, Z)$ are not given, use their empirical estimators to get an approximation for α.

Programming Exercise 2: MC vs QMC

Compute the integral

$$
I_{3}[f]=\int_{[0,1]^{3}} x_{1}^{2} x_{2}^{2} x_{3}^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}
$$

using
a) Monte Carlo integration,
b) Quasi-Monte Carlo integration, using the Halton sequence.
c) Quasi-Monte Carlo integration, using Sobol numbers (a (t, s)-sequence). You can find a text file with three-dimensional Sobol numbers on the homepage.
*(It is often recommended to skip the first Sobol numbers, since they are not as evenly distributed as later ones. One (heuristic) rule is e.g. to skip the first 2^{n-1} numbers if one uses 2^{n} numbers in the simulation. Try this for the above example.)

Visually compare all methods by plotting their integration errors and their theoretical convergence rates.

Gnuplot hints:

- You can use logarithmic scaling for one or both axes: set logscale xy
- You can define functions in Gnuplot, e.g. $f(x)=1 . / x$ and plot them using e.g. plot[1:100][0:1] $f(x)$.
(The square brackets define the x-range and the y-range of the plot.)
- You can plot several datasets in one plot: plot "data1", "data2".
- If you have several columns in your data file (e.g. N MC-Error(N) QMC-Error(N)), you can tell Gnuplot which columns to use:

```
plot "data" using 1:2 with lines, "data" using 1:3 with lines.
```

- You can label the graphs:

```
plot "data" using 1:2 title "MC", "data" using 1:3 title "QMC".
```

- You can label the x - and y-axes and set a title: set xlabel "Sample Size", set ylabel "Error", set title "Plot title".
- You can save your plot in ps, pdf or other formats (use help terminal for more information):

```
> set terminal pdf enhanced color
> set output "myplot.pdf"
> plot
> set output
> set terminal wxt
```

This creates a file "myplot.pdf" with the plot. If you don't change back to terminal wxt, subsequent plots will be added to this file.

