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Exercise 1: Binomial Method

a) Consider the value V (t, S) of an option in the Black-Scholes model. ∆(t, S) := ∂V (t,S)
∂S

is the so
called delta hedge parameter. Show that one can approximate the delta by the hedge parameter

∆Binom(t, S) :=
V (u) − V (d)

uS − dS
with V (u) := V (t+ ∆t, uS), V (d) := V (t+ ∆t, dS)

of the binomial model where for fixed S the error |∆(S, t)−∆Binom(S, t)| is of order O(∆t).

b) Show that V0,M → V (0, S0) by proving

(i) If we denote by E[VT ] the expectation of the payoff in the binomial model at maturity, show
that

E[VT ] =
M∑
j=α

(
M

j

)
pj(1− p)M−j(S0u

jdM−j −K),

where

α =

⌈
−

log(S0

K
) +M log(d)

log(u)− log(d)

⌉
.

(ii) Show that for p̃ := pue−r∆t

V0,M = e−rTE[VT ] = S0BM,p̃(α)− e−rTKBM,p(α)

where BM,p(j) := P[X ≥ j] for a (M, p)-binomially distributed random variable X.

(iii) Use the central limit theorem and (ii) to show that

lim
M→∞

V0,M = S0F (d1) + e−rTKF (d2)

where

d1 =
log(S0

K
) + (r + 1

2
σ2)T

σ
√
T

, d2 =
log(S0

K
) + (r − 1

2
σ2)T

σ
√
T

.

c) Derive complexity and storage estimates for the binomial method with respect to the number of
time steps M .

Hint:
Using power series expansions for ex and

√
1− x, one can show that

u = 1 + σ
√

∆t+
1

2
σ2∆t+O((∆t)3/2) = eσ

√
∆t +O((∆t)3/2),

d = 1− σ
√

∆t+
1

2
σ2∆t+O((∆t)3/2) = e−σ

√
∆t +O((∆t)3/2).
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Programming Exercise 1: Implied Volatilities (8 Points)

An option price V = V (0, S0) depends on the parameters S0, K, T , r and σ. Of these, only σ
is not observable at the market. However, one can use the observed option price Vtraded to infer
the so-called implied volatility σ by solving V (σ) = Vtraded for σ. Usually, one then finds that
σ is not constant, as assumed in the Black-Scholes model. For this reason, one often looks at the
implied volatility surface, i.e. the implied volatility as a function of strike and maturity: σ = σ(K,T ).

On November 12th, 2012, Google Inc. (GOOG) stocks were traded at 665.50$. At the same time,
European Call options on Google were priced as in Table 1. The 1-year US Treasury Bills rate was
r = 0.17%.

Maturity T
Strike K 0.0972 0.3333 0.5833 1.1667

450 248.50 233.30 221.00 227.50
550 118.40 125.99 124.50 143.00
615 52.60 66.15 95.20 136.80
650 28.63 47.10 70.18 89.03
700 6.52 25.00 37.50 64.00
800 0.49 4.83 12.66 33.30
850 0.25 1.70 10.10 19.60

Table 1: Call option prices on Google

Use this data to construct an empirical volatility surface for the Google Call option by computing
the implied volatility at the different data points. In order to do so,

• use Newton’s method to find the implied volatilities, where you

• compute the option prices V (σ) using a binomial tree,

• and the derivative ∂
∂σ
V (σ) w.r.t σ using central differences, i.e. ∂

∂σ
V (σ) ≈ V (σ+h)−V (σ−h)

2h
.

Plot the empirical volatilities σ(K,T ) in a 3D-Plot. What do you see?

Hints:

• Of course, the Newton method is very sensitive w.r.t. initial values. Using σ(0) = 0.7 should work for
all given data points. (As an alternative to Newton, Brent’s method is often used in practice.)

• On the homepage you find the data points in a text file, where the first line contains the strike values,
the second the maturities and the rest of the file the data for Vtraded as in Table 1.

• Gnuplot can plot 3D data given in the following format (note the blank line between different x-values):

x1 y1 z(x1,y1)

...

x1 yn z(x1,yn)

x2 y1 z(x2,y1)

...

x2 yn z(x2,yn)

Use splot ‘‘data.txt’’ w lp. (w lp stands for with linespoints).
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Programming Exercise 2: Simulating Wiener Processes (8 Points)

There are several methods to generate paths of a Wiener process. We will consider here the two
most common ones.

a) Random Walk:
Making use of the fact that the increments of a Wiener process W are independently distributed
with Wt −Ws ∼ N(0, t − s) for all 0 ≤ s < t ≤ T , we can simulate paths in the following way.
Let 0 = t0 < t1 < · · · < tN = T , Z1, . . . , ZN ∼ N(0, 1). Then define

W0 = 0,

Wti+1
= Wti +

√
ti+1 − ti Zi−1 for i = 1, . . . , N.

(Note that this corresponds to the Euler-Maruyama method for the PDE dXt = dWt, X0 = 0.)

b) Brownian Bridge:
One can also start by generating the endpoint WT of the process, and then fill in the other values
using the distribution of Wt conditional on the already generated points. This procedure is known
as Brownian Bridge. More precisely, consider N = 2n and ti − ti−1 = T

N
for all i = 1, . . . , N . One

then generates first WT , then WT
2

based on W0 and WT , then WT
4
, W 3T

4
based on W0, WT

2
and

WT , etc.

Suppose one has already calculated the (j−1)th refinement W0,W T

2j−1
,W 2T

2j−1
, . . . , W 2j−1T

2j−1
. Due to

the independence of the increments, the value of Ws depends only on the two nearest values Wsk :=

W kT

2j−1
< s < W (k+1)T

2j−1
=: Wsk+1

. In our construction, we always consider s = 1
2

(
kT

2j−1 + (k+1)T
2j−1

)
,

i.e., the midpoint between two already calculated time points. In that case, the conditional
distribution of Ws is given by

(Ws | Wsk = wsk ,Wsk+1
= wsk+1

) ∼ N
(
wsk + wsk+1

2
,
T

2j+1

)
.

This yields the following construction, using Z1, . . . , ZN ∼ N (0, 1):

W 0(0) = 0,W 0(T ) =
√
TZ1,

W 1(t) =

{
1
2

(
W 0(0) +W 0(T )

)
+
√

T
22
Z2, t = 1

2
,

W 0(t), t = 0, T,

W j(t) =

{
1
2

(
W j−1

(
2kT
2j

)
+W j−1

(
(2k+2)T

2j

))
+
√

T
2j+1 Z·, t = (2k+1)T

2j
, k = 0, . . . , 2j−1 − 1,

W j−1
(
kT

2n−1

)
, t = 2kT

2j
, k = 0, . . . , 2j−1,

for j = 2, . . . , n. (Note that the second line in W j(t) corresponds just to the values of W that
have already been calculated).

Generate and plot paths of {W (t), 0 ≤ t ≤ 1} using both methods for different N (for example
N = 4, 8, 32, 512, 1024).

Hint: You can use the standard library <random> to generate random numbers according to the normal

distribution (better than the random number generator we implemented in class).
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