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Exercise 1: Higher Order Schemes

Derive the following higher order Taylor scheme:
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Consider only the terms that are not already in the Milstein scheme. Use the fact that one can
replace the integral

It0,t :=

∫ t

t0

(Ws −Wt)ds

by its conditional expectation

E [It0,t | Wt0 ,Wt −Wt0 ] =
1

2
(t− t0) (Wt −Wt0).

Exercise 2: Multidimensional Schemes

Consider a d-dimensional Itô process X(t) = (X1(t), . . . , Xd(t))
T , driven by an m-dimensional Brow-

nian motion W (t) = (W1(t), . . . ,Wm(t))T , i.e. Xt = X0 +
t∫
0

a(s,Xs)ds +
t∫
0

b(s,Xs)dW (s) with

a : [0, T ]× Rd → Rd, b : [0, T ]× Rd → Rd×m.

Use the multidimensional Itô formula to derive the appropriate Euler and Milstein schemes.

Hint:

• Consider each component Xi separately, proceed as in Section 6.7 and keep in mind that we neglect
almost all double integrals.

• Integrals I
[k,l]
t0,t

:=
∫ t
t0

∫ s
t0
dWk(z)dWl(s) with k 6= l can be approximated by

I
[k,l]
t0,t
≈ 1

2
[(Wk(t)−Wk(t0))(Wl(t)−Wl(t0))− Vkl] ,

where Vkl is a random variable with Vkl = −Vlk for l > k and Vkl = ±∆n with probability 1
2 for l < k.
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• Multidimensional Itô Formula: For a d-dim. Itô process X, f : [0, T ]×Rd → R with appropriate
partial derivatives, Σ := b · bT and Y (t) := f(t,X(t)), it holds with bi,· the i-th row of b

Y (t)− Y (t0) =

∫ t

t0

∂f
∂t

(s,X(s)) +
d∑

i=1

∂f

∂xi
(s,X(s))ai(s,X(s)) +

1

2

d∑
i,j=1

∂f

∂xi∂xj
(s,X(s))Σi,j(s,X(s))

 ds

+

∫ t

t0

d∑
i=1

∂f

∂xi
(s,X(s))bi,·(s,X(s))dW (s).

Programming Exercise 1: Higher Order Schemes (13 + 2 Points)

Consider (again) the European Put from Programming Exercise 2, Sheet 4. For the three methods

• Euler-Maruyama,

• Milstein,

• the scheme from (1),

compute

(i) the strong errors,

(ii) the weak errors w.r.t. the option payoff function,

(iii) the error w.r.t the Black-Scholes option price.

Compare the convergence rates of the errors w.r.t the time discretization, using e.g. M = 105 Monte-
Carlo simulations. What do you see? What is the strong (weak) convergence order of the Taylor
scheme (1)?

*Compare your results for the error of the option price with those obtained for significantly more
MC simulations runs, e.g. M = 106, M = 107 (note that this may take some time!). What do you
see? What does this imply for the relation between Monte-Carlo and SDE discretization error?

Programming Exercise 2: Heston Model (11 Points)

As the assumption of constant volatility in the Black-Scholes framework is often not consistent with
market option prices, many models use local or stochastic volatility functions. One example for a
stochastic volatility model is the Heston model, which models the volatility as a mean reverting
square-root diffusion process and in its simplest form looks as follows:

dS(t) = rS(t)dt+
√
V (t)S(t)dW1(t),

dV (t) = α(θ − V (t))dt+
√
V (t)σdW2(t).

Compute the price of a European call with parameters T = 1, K = 100, r = 0.05, σ = 0.3, α = 1.2,
θ = 0.04 and initial values S0 = 100, V0 = 0.04 in this model,

a) with the Euler scheme,

b) with Milstein.

Hint: W1 and W2 are assumed to be independent. This simplifies the multidimensional schemes signifi-

cantly!
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