Prof. Dr. Karsten Urban Institute for Numerical Mathematics
Mazen Ali Ulm University
Summer Term 2018

Numerical Finance — Sheet 8
(due 18.06.2018)

Exercise 1: Black Scholes PDE and Finite Differences

Consider the Black-Scholes problem (non-dividend paying) with the corresponding backward
PDE-problem

2
Vi(S, 1) + %SQVSS(S, £) +rSVs(S,t) —rV(S,t) =0, ¥S>0,0<t<T,
V(S,T) = g(S), VS >0.

a) Use the transformations

T 2r

_ x — _
S—Ke, t—T—1—27 q_g’

ylx,7) = %exp (%(q — Dz + (i(q —1)%+ q) 7') v(T, z),

to show that the above problem is equivalent to the heat equation with initial condition:

1
{ y7($77)_yxx($,7'):0, ZEGR,OSTS EO'QT,
y(2,0) = exp(%(¢ — 1)) £9(K exp(z)), z€R.

b) Derive the initial conditions of the transformed Black-Scholes equation when
e ¢ is a European call, and

e ¢ is a European put
¢) Argue why the boundary conditions
y(x,7) =ri(x,7), © — —oc0 and y(z,7)=ro(z,7), T = 0
with
o ri(z,7) =0, ro(z,7) = exp(3(¢+ 1)z + 1(¢ + 1)*7) for a call option, and

o ri(z,7) = exp(i(q — 1)z + 3(q¢ — 1)*7), r2(z,7) = 0 for a put option

are reasonable. For simplicity, you might assume ¢ > 1 for the call option and ¢ < 1 for
the put option.

Programming Exercise 1: FD for Black Scholes — Explicit Euler (14
Points)

Consider an European Put option with ¢ = 0.4, r = 0.04, T = 1, K = 12. Implement the
explicit Euler method to price this option.

a) Plot the surface of all option prices for Sy € [0, 20|, using a discretization of N = 100 points
in space and M = 400 points in time.

b) For a fixed spatial discretization of N = 2% and time discretizations M € [24,2'?], compute
the error of your approximation for t = 0, Sy = K. What do you observe?

Hint: Make sure that the strike K corresponds to a discretization point.

Programming Exercise 2: FD for Black Scholes — Crank-Nicolson (24 +
8 Points)

Consider an European Put option with ¢ = 0.4, » = 0.04, T' = 1, K = 12. Implement the
Crank-Nicolson method to price this option. In order to do so, you’ll find some material for
the solution of the arising equation systems on the homepage. You will have to

e take a look at the files densematriz.h and cg.h, where you find an implementation of a
(dense) matrix class and a cg function that is templated on arbitrary matrix and vector

types,

e implement the missing operators in the header operators.h that provides the necessary
functionality for vector-vector and matrix-vector operations.

a) Plot the surface of all option prices for Sy € [0, 20], using a discretization of N = 100 points
in space and M = 400 points in time.

b) For a fixed spatial discretization of N = 2% and time discretizations M € [24,2'?], compute
the error of your approximation for t = 0, Sy = K. What do you observe?

Hint: Make sure that the strike K corresponds to a discretization point.

c)* Replace the dense matrix class by a sparse matrix class, that stores the values in a coordi-
nate storage scheme, i.e. it saves only the row and column indizes as well as the value for
each non-zero entry of the matrix. Of course, you also have to overload the matrix-vector
multiplication for this matrix class. Does the use of this class improve your computation
times?

Comment: Spend some time on the operators as well as the matrix classes, since we will reuse them on future

exercise sheets.

