
Prof. Dr. Karsten Urban Institute for Numerical Mathematics
Mazen Ali Ulm University

Summer Term 2018

Numerical Finance – Sheet 8
(due 18.06.2018)

Exercise 1: Black Scholes PDE and Finite Differences

Consider the Black-Scholes problem (non-dividend paying) with the corresponding backward
PDE-problem Vt(S, t) +

σ2

2
S2VSS(S, t) + rSVS(S, t)− rV (S, t) = 0, ∀S > 0, 0 ≤ t ≤ T,

V (S, T ) = g(S), ∀S > 0.

a) Use the transformations

S = Kex, t = T − τ
1
2
σ2
, q =

2r

σ2
, v(τ, x) := V

(
Kex, T − 2τ

σ2

)
y(x, τ) =

1

K
exp

(
1
2
(q − 1)x+

(
1
4
(q − 1)2 + q

)
τ
)
v(τ, x),

to show that the above problem is equivalent to the heat equation with initial condition:{
yτ (x, τ)− yxx(x, τ) = 0, x ∈ R, 0 ≤ τ ≤ 1

2
σ2T,

y(x, 0) = exp(x
2
(q − 1)) 1

K
g(K exp(x)), x ∈ R.

b) Derive the initial conditions of the transformed Black-Scholes equation when

• g is a European call, and

• g is a European put

c) Argue why the boundary conditions

y(x, τ) = r1(x, τ), x→ −∞ and y(x, τ) = r2(x, τ), x→ +∞

with

• r1(x, τ) = 0, r2(x, τ) = exp(1
2
(q + 1)x+ 1

4
(q + 1)2τ) for a call option, and

• r1(x, τ) = exp(1
2
(q − 1)x+ 1

4
(q − 1)2τ), r2(x, τ) = 0 for a put option

are reasonable. For simplicity, you might assume q ≥ 1 for the call option and q ≤ 1 for
the put option.

1



Programming Exercise 1: FD for Black Scholes – Explicit Euler (14
Points)

Consider an European Put option with σ = 0.4, r = 0.04, T = 1, K = 12. Implement the
explicit Euler method to price this option.

a) Plot the surface of all option prices for S0 ∈ [0, 20], using a discretization of N = 100 points
in space and M = 400 points in time.

b) For a fixed spatial discretization of N = 29 and time discretizations M ∈ [24, 212], compute
the error of your approximation for t = 0, S0 = K. What do you observe?

Hint: Make sure that the strike K corresponds to a discretization point.

Programming Exercise 2: FD for Black Scholes – Crank-Nicolson (24 +
8 Points)

Consider an European Put option with σ = 0.4, r = 0.04, T = 1, K = 12. Implement the
Crank-Nicolson method to price this option. In order to do so, you’ll find some material for
the solution of the arising equation systems on the homepage. You will have to

• take a look at the files densematrix.h and cg.h, where you find an implementation of a
(dense) matrix class and a cg function that is templated on arbitrary matrix and vector
types,

• implement the missing operators in the header operators.h that provides the necessary
functionality for vector-vector and matrix-vector operations.

a) Plot the surface of all option prices for S0 ∈ [0, 20], using a discretization of N = 100 points
in space and M = 400 points in time.

b) For a fixed spatial discretization of N = 29 and time discretizations M ∈ [24, 212], compute
the error of your approximation for t = 0, S0 = K. What do you observe?

Hint: Make sure that the strike K corresponds to a discretization point.

c)* Replace the dense matrix class by a sparse matrix class, that stores the values in a coordi-
nate storage scheme, i.e. it saves only the row and column indizes as well as the value for
each non-zero entry of the matrix. Of course, you also have to overload the matrix-vector
multiplication for this matrix class. Does the use of this class improve your computation
times?

Comment: Spend some time on the operators as well as the matrix classes, since we will reuse them on future

exercise sheets.

2


