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2Institute for Numerial Mathematisand Sienti� Computing Center Ulm (UZWR),University of Ulm, 89081 Ulm, GermanyWe introdue a new representation of aspheri surfaes that is based ona B-spline quasi-interpolation sheme. The sheme is implemented in a raytrae algorithm and bounds on the approximation error are established.Examples for the reprodution of aspheri surfaes in polynomial desriptionand the ray traing auray are presented. The proposed approah allowsthe spei�ation of loal and global strutures and the inlusion of measuredsurfae data. The new representation gives aess to a wavelet analysis,o�ering extended possibilities for the tolerane analysis of optial systemsontaining aspheri elements. © 2010 Optial Soiety of AmeriaOCIS odes: 000.4430, 080.0080, 080.1753, 220.1250, 240.6700.1. IntrodutionAdvanes in fabriation tehnology, metrology and optial design led to a regular use ofaspheri elements in optial systems. However, in some ases standard representations ofaspheri surfaes turn out to be impratial. Freeform surfaes without symmetries thatare frequently used in illumination systems may fall into this ategory. Another example isthe desription of an aspheri surfae as it is built inluding manufaturing errors. Tryingto represent suh an as-built surfae by polynomials inevitably leads to a high number ofterms and makes ray traing expensive and time-onsuming. In addition, if loal struturesare present on the surfae, a large approximation error is introdued despite of the highnumber of polynomial terms in a global representation of the surfae. Consequently there isa need for alternative surfae desriptions that ombine high approximation auray withfast evaluation. 1



Several authors onsidered alternative aspheri representations. Greynolds [1℄ gives a briefreview of the so-alled `superoni' and `suboni' surfae desriptions. The motivation forthe introdution of these types was to produe steep aspheres with less terms and smootherorretion. Forbes [2℄ proposed a sum of Jaobi polynomials to represent rotationally sym-metri aspheres. These polynomials onstitute an orthonormal basis of the unit irle. Forbes'representation failitates the enforement of fabriation onstraints, e.g. the deviation of theslope from a best-�t sphere. This allows the onsideration of the ost of an asphere at anearly design stage [3℄.Lerner and Sasian [4,5℄ present approahes that use impliitly and parametrially de�nedsurfaes for the design of imaging and illumination systems. Beause these surfae de�nitionsare more general than the standard aspheri de�nition, they an better desribe optialsurfaes with large departures from a spherial or oni shape.For non-rotationally symmetri surfaes, splines have been studied in the literature [6�8℄.Parametri urves suh as non-uniform rational B-splines (NURBS) have been applied to thedesign of rotationally symmetri aspheres [9℄ as well as to the design of freeform mirrors [10℄.Beause NURBS are a standard surfae type in CAD software, they o�er an attrativesurfae desription when data has to be exhanged between optial design and CAD tools.Another optial surfae representation using 2D Gaussians as radial basis funtions has beenintrodued by Cakmaki [11℄.Reently, Morita and o-workers [12℄ adopted the so-alled Nagata path for the repre-sentation of optial surfaes inluding form errors due to fabriation proesses. The Nagatapath approximates surfaes through pieewise loal quadrati interpolation by using posi-tion and normal vetors at the nodes of a triangular mesh. Its representation di�ers fromusual desriptions of optial surfaes beause it is ontinuous but not di�erentiable. Theauthors suggest that the Nagata path may be used to simulate mid-spatial frequenies ofsurfae errors.A representation of optial surfaes in terms of B-splines seems promising as they are welladapted to represent both loal and global strutures and allow the inlusion of measureddata into the surfae desription. In this paper, we propose a representation of optial sur-faes via a B-spline quasi-interpolant. The surfaes are assumed to be non-di�rative andsu�iently smooth, i.e. twie di�erentiable. We have implemented the new sheme in ourustom optial design software. Numerial results on the approximation of surfaes and onthe auray in a ray-traing algorithm are given. Finally, we point out the onnetion ofthe new surfae representation to wavelets.
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2. B-Spline Representation2.A. B-SplinesWe start by reviewing basi fats on B-splines that will be relevant in the sequel and referto [13℄ for details. There are several equivalent de�nitions of ardinal B-splines Nd. We usethe following reursive sheme
N1(x) :=







1, if x ∈ [0, 1),

0, else, Nd(x) :=

∫ 1

0

Nd−1(x− t) dt = (Nd−1 ∗N1) (x),for d ≥ 2 (d is the order of the B-spline). The following properties are well-known and willfrequently be used in the sequelsupp Nd ⊂ [0, d] (loality), (1)
Nd(x) =

x

d− 1
Nd−1(x) +

d− x

d− 1
Nd−1(x− 1) (reursion), (2)

Nd ∈ Cd−2(R) with N ′

d(x) = Nd−1(x) −Nd−1(x− 1) (regularity). (3)Note that (2) o�ers a fast reursive evaluation proedure sine the evaluation is trivial for
N1. In addition (3) also allows a fast evaluation of derivatives. Another important propertyof Nd is the following re�nement equation

Nd(x) = 21−d
d

∑

k=0

(

d

k

)

Nd(2x− k), x ∈ R. (4)Hene, Nd is also alled (primal) saling funtion. It is known that shifts of Nd, i.e. Nd(·−k),
k ∈ Z, are linearly independent. These last two properties mainly enable B-splines to generatea Multiresolution Analysis, whih is essential for the aess to wavelets, see [14,15℄ for details.Let us abbreviate by ϕ := Nd and Sj := losL2(R) {ϕj,k : k ∈ Z}. We all j ∈ Z the level,where for a pieewise ontinuous funtion g : R → R, gj,k(x) := 2j/2g (2jx− k) denotes itssaled and shifted variant. Two-dimensional basis funtions are onstruted by the bivariatetensor produt.2.B. ProjetionLet us now introdue the desription of an optial surfae in terms of B-splines. Of ourse,suh an approah is by far not new [6℄. However, we will use a more reent quasi-interpolationsheme in order to ensure the auray of the representation. Let f : Ω → R, f ∈ L2(Ω), be asmooth funtion, desribing the (possibly unknown) surfae. We use the following biorthog-onal projetion Pj : L2(Ω) → Sj,

Pj f :=
∑

k

cj,kϕj,k, cj,k := (f, ϕ̃j,k)L2(Ω),3



to approximate f , where (u, v)L2(Ω) denotes the inner produt on L2(Ω) with indued norm
‖u‖L2(Ω) and ϕ̃j,k are the dual saling funtions. These funtions satisfy a re�nement equationsimilar to (4) and are dual in the sense (ϕj,k, ϕ̃j,m)L2(Ω) = δk,m, see [16℄ for details.Now it holds, if f is su�iently smooth, i.e. f ∈ Hs(Ω), the following onlusion about theerror is well-known [17℄

‖f − Pj f‖L2(Ω) = O(2−js), 0 ≤ s ≤ d. (5)We refer to [18℄ for the preise de�nition of the Sobolev spae Hs(Ω).Note however, that we are faing a problem for a real appliation. The oe�ients cj,kinvolve an integral whih normally annot be omputed exatly. Of ourse, one an resortto quadrature formulae whih involve point values of f and ϕ̃j,k, but in most ases, pointvalues of ϕ̃j,k annot be omputed exatly, see [17℄. An alternative is o�ered by the followingquasi-interpolation sheme.2.C. Quasi-InterpolationA quasi-interpolation sheme produes an approximation of a given funtion f by only usingpoint values of the funtion. This is similar to a lassial interpolation. The di�erene is thata quasi-interpolation does not need to math point values of f at given nodes. This allowserror estimates in L2 also with high orders of auray.We use a quasi-interpolation sheme of the form
cj,k ≈ c̄j,k := 2−

j

2

m
∑

ℓ=−m

γd,l f
(

2−j(k + ℓ)
)with m :=

⌊

d−1
2

⌋ and weights γd,ℓ. We refer to [19℄ for the onstrution of the weights andtheir values. For the arising quasi-interpolant de�ned by
P

qi
j f :=

∑

k

c̄j,k ϕj,kwe obtain similar to Eq. (5), if f ∈ Hs(Ω),
‖f − P

qi
j f‖L2(Ω) = O(2−js), 0 ≤ s ≤ d, (6)i.e., the same order of approximation as Pj .3. Numerial ResultsIn this setion, we desribe numerial results for the approximation of optial surfaes ina ray trae algorithm. The desribed shemes have been implemented within FLENS and4



LAWA1. In order to test the performane within a realisti framework, we ompare ourresults with the ustom optial design software OASE2. Further examples are desribedin [20℄.3.A. Approximation of Optial SurfaesWe start by desribing numerial experiments for approximating given optial surfaes. Fig. 1shows ontour-olor plots of test surfaes we use in the sequel. The �rst surfae, seen in part
(a) of Fig. 1, is a KXY asphere given by the parameterization
fKXY(x, y) :=

ρxx
2 + ρyy

2

1 + [1 − (1 + κx)(ρxx)2 − (1 + κy)(ρyy)2]1/2

+ c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + . . . ,while the others are rotationally symmetri KSA aspheres de�ned by

fKSA(h) :=
ρh2

1 + [1 − (1 + κ)(ρh)2]1/2
+

∞
∑

k=2

ck−1h
2k, where h2 := x2 + y2.The bounding box is de�ned by Ω = [−b, b]× [−b, b], where b and the remaining parametersare listed in Tab. 1.For �xed B-spline orders d we ompute the approximation by the above quasi-interpolationmethod. We vary levels j = 4, . . . , 10, where level j orresponds to 22j oe�ients in thetwo-dimensional representation and a mesh size h = 2−j. The root mean square value of theapproximation error is omputed on n×n disrete points forming an equidistant mesh in Ω.

Ej :=
(

e(xi, yj)
)

i,j=1,...,n
, with e :=

∣

∣

∣
f − P

qi
j f

∣

∣

∣
.The following results are obtained with a �xed n = 104.For B-spline orders d = 1, . . . , 6, the errors RMS(Ej) of the �rst test surfae KXY aredrawn as markers in Fig. 2. Additionally, the plot shows best �t lines for every order d withexpeted slope 2−jd. Obviously the analyti rate of onvergene from Eq. (6) is reahed.Moreover one observes for high orders d ≥ 5 an auray better than 10−12 with a oarsemesh size h ≥ 1e−3.The seond example onerns the asphere KSA1 shown in part (b) of Fig. 1. We hoosethis simple example in order to investigate the approximation order of the �rst derivative,where we expet to lose one order of approximation, see [17℄ for details. Hene, we ompute

Ej as above, where now
e :=

∣

∣

∣

∣

∂

∂x

(

f − P
qi
j f

)

∣

∣

∣

∣

.1Flexible Library for E�ient Numerial Solutions and Library for AdaptiveWavelet Appliations,Institute for Numerial Mathematis, University Ulm.2Optishe Analyse und Synthese, Carl Zeiss AG. 5



We obtain the orresponding error in Fig. 3. As mentioned, we lose one order of approxi-mation for the onvergene rates, so our best �t lines now have slope 2−j(d−1). One more,we observe the expeted behavior and while we need a high approximation auray to thenormal in a ray trae algorithm we reommend using splines with orders d ≥ 2.The last example in this setion shows the auray for the surfae KSA2 shown in part
(c) of Fig. 1. We restrit the de�nition of the surfae and the omputation of the RMS-errorto values in the domain Θ := {(x, y) ∈ R

2 : x2 + y2 ≤ 202}, so we get unde�ned values in thebounding box. In Θ the surfae is su�iently smooth to meet our ondition f ∈ Hd(Ω). Theorresponding error plot is drawn in Fig. 4. As this asphere has a steep gradient near theboundary, more oe�ients are needed to reah a su�ient auray. This beomes evidentin the deviation of the markers from the slope for spline orders d ≥ 4.3.B. Ray Traing, Intersetion and RefrationThe following proedure for ray traing is based on [7℄ and is adapted to the use of ourB-spline representation. We de�ne a ray r : R → R
3 through a point p = (px, py, pz)

T ∈ R
3in a diretion d = (dx, dy, dz)

T ∈ R
3 as

r(α) := p + αd, α ∈ R,and desribe the refration of suh a ray by an optial surfae given in terms of a funtion g(whih ould also be an approximation e.g. determined by a quasi-interpolation). We haveto �nd the intersetion point x = x(x, y) = (x, y, g(x, y))T ∈ R
3 of the ray with the surfae.The normal vetor of the surfae at x is given as

n = n(x, y) = e1 × e2 = (−∂xg(x, y),−∂yg(x, y), 1)T
, (7)where e1 and e2 are the two tangential vetors of the surfae in x, i.e., e1 = ∂xx(x, y) =

(1, 0, ∂xg)
T and e2 = ∂yx = (0, 1, ∂yg)

T . In order to obtain a unique intersetion point, wehave to assume that the ray is not parallel to the tangential plane. Then, the ondition
p + αd = x for the 3 unknowns α, x and y an be rephrased as

F (α) := pz + αdz − g(px + αdx, py + αdy) = 0, F : R → R.This is obviously a one-dimensional nonlinear equation whih an be numerially solved e.g.by Newton's method whih requires the derivative
F ′(α) = dz − ∂xg(px + αdx, py + αdy)dx − ∂yg(px + αdx, py + αdy)dy = n(x(α), y(α))T · d,where x(α) := px + αdx and y(α) := py + αdy.The solution of F (α) = 0 yields the intersetion point x and the normal vetor n at thispoint. Let us denote by γ the inidene angle of the ray and the surfae, i.e. cos(γ) = nT ·d,6



and by n, n′ the refrative indies of the media in front of and behind the surfae. We applythe Law of Refration, i.e. in R
3,

cos(γ′) =

[

1 −
( n

n′

)2
(

1 − cos2(γ)
)

]
1

2

,to obtain the new inidene angle γ′. Hene, we an alulate the diretion d′ of the ray inthe medium behind the atual surfae and proeed ray traing with the next optial surfae.3.C. Auray in a Ray Trae AlgorithmWe make use of the above ray trae method to validate our B-spline approximation in arealisti manner. For a given set of n rays ri we ompute the intersetion points x
(j)
i and thenormals n

(j)
i depending on the level j. By x

(O)
i and n

(O)
i we indiate the results omputed byOASE for the standard representation of the surfae.For n = 106 rays, we report the maximal deviation of all rays

Mx,j := max
i=1,...,n

{
∥

∥

∥
x

(O)
i − x

(j)
i

∥

∥

∥

}

, Mn,j := max
i=1,...,n

{
∥

∥

∥
n

(O)
i − n

(j)
i

∥

∥

∥

}

,where ‖ · ‖ denotes the Eulidean norm in R
3. The error plots for the surfae KXY are givenin Fig. 5 and Fig. 6. The �rst one shows the maximal deviation of the intersetion point

Mx,j, while the latter one shows the error Mn,j of the normal vetor. For the omputationwe use ε = 10−12 as the stopping riterion of Newton's method.We observe a similar behavior as for the RMS-error in Se. 3.A. The rate of onvergene for
Mx,j is O(2−jd). Sine the normal is based on derivatives, it is not surprising that we obtain
O(2−j(d−1)). For B-spline orders d ≥ 4, the auray is su�ient to allow the analysis ofimaging optial systems. We onlude that the B-spline quasi-interpolant sheme is usablein a ray trae algorithm and ompetes with other loal representations suh as the Nagatapath [12℄.4. Connetion to WaveletsThe loalization property of ompatly supported wavelets o�ers a unique advantage overFourier methods for deteting loal spatial strutures. In signal analysis and image proessingwavelet methods are well-established [15℄. Wavelet transforms have also been used in theanalysis of surfae data [21℄. Tien and Lyu introdued an inspetion method based on thedisrete wavelet transform [22℄.The Fast Wavelet TransformFWT : (c) 7→ (c0,d1, . . .dj−1)7



maps the oe�ients c := (cj,k)(j,k) to a multisale representation
Pj f =

∑

j

∑

k

dj,kψj,k,where ψj,k are wavelets. Thus, the B-spline quasi-interpolant representation an be useddiretly for a wavelet analysis. Some examples on error detetion and frequeny separationby wavelets are desribed in [16℄.5. Conlusion and OutlookA highly aurate approximation of optial surfaes in terms of a B-spline quasi-interpolationsheme has been introdued. The error bounds on the approximation have been veri�edthrough the reprodution of aspheri surfaes given by polynomial expansions. The newsurfae desription has been implemented within our ustom optial design software. Ourresults on�rm that the desired auray of 10−12 is reahed in the ray traing. This enablesthe use of the new representation in the analysis of optial systems for imaging appliations.Beause B-spline-Wavelets o�er the possibility to speify loal and global strutures simul-taneously, they an be used to desribe as-built optial surfaes inluding metrologial data.This failitates the tolerane analysis of optial systems ontaining aspheri elements.Furthermore, the new sheme gives aess to wavelet analysis methods for aspheri sur-faes. The loalization in spae and time of ompatly supported wavelets o�ers a uniqueadvantage over Fourier methods for the detetion of loal spatial strutures. This opens abroad �eld of appliations in toleraning and manufaturing and will be the fous of futureinvestigations.Referenes1. A. W. Greynolds, �Superoni and suboni surfae desriptions in optial design,� (Pro.SPIE, 2002), vol. 4832, pp. 1�9.2. G. W. Forbes, �Shape spei�ation for axially symmetri optial surfaes,� Opt. Express15, 5218�5226 (2007).3. K. P. Thompson, F. Fournier, J. P. Rolland, and G. W. Forbes, �The Forbes polynomial:A more preditable surfae for fabriators,� in �Optial Fabriation and Testing,� (OptialSoiety of Ameria, 2010), p. OTuA6.4. S. A. Lerner and J. M. Sasian, �Use of impliitly de�ned optial surfaes for the designof imaging and illumination systems,� Optial Engineering 39, 1796�1801 (2000).5. S. A. Lerner and J. M. Sasian, �Optial design with parametrially de�ned aspherisurfaes,� Appl. Opt. 39, 5205�5213 (2000).6. G. G. Gregory, E. R. Freniere, and L. R. Gardner, �Using spline surfaes in optial designsoftware,� (Pro. SPIE, 2002), vol. 4769, pp. 75�83.8
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Fig. 2. RMS-error of the approximation of surfae KXY. jester-f2.eps.

12



10
−3

10
−2

10
−1

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Mesh size h

R
M

S
-e

r
r
o
r

 

 

d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

Fig. 3. RMS-error of the approximation of the partial derivative ∂xPjfKSA1
.jester-f3.eps.
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Fig. 4. RMS-error of the approximation of surfae KSA2 with unde�ned valuesin the bounding box. jester-f4.eps.
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Fig. 5. Maximal deviation Mx,j of the intersetion point. jester-f5.eps.
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Fig. 6. Maximal deviation of the normalMn,j of the intersetion point. jester-f6.eps.
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Table 1. Parameters of the test surfaes KXY, KSA1 and KSA2.
KXY KSA1 KSA2

b 5.0 b 1.0 b 20.0

ρx −2.15e−1 ρ 1.00 ρ −3.87e−2

ρy 1.22e−1

κx −1.00 κ −1.00 κ 0.00

κy −1.00

c10 −4.05e−4 c1 1.50 c1 −4.17e−6

c12 −8.13e−4 c2 −7.00e−1 c2 4.71e−9

c14 5.73e−4 c3 5.00e−1 c3 −4.94e−12

c21 −4.59e−6 c4 −5.00e−1 c4 −5.42e−15

c23 1.14e−5 c5 −4.98e−18

c25 9.64e−6 c6 −1.22e−20

c27 4.45e−7

c36 −2.69e−9

c38 −7.96e−8

c40 −8.79e−8

c42 −9.16e−8

c44 2.43e−8
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