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1. Introduction

Advances in fabrication technology, metrology and optical design led to a regular use of
aspheric elements in optical systems. However, in some cases standard representations of
aspheric surfaces turn out to be impractical. Freeform surfaces without symmetries that
are frequently used in illumination systems may fall into this category. Another example is
the description of an aspheric surface as it is built including manufacturing errors. Trying
to represent such an as-built surface by polynomials inevitably leads to a high number of
terms and makes ray tracing expensive and time-consuming. In addition, if local structures
are present on the surface, a large approximation error is introduced despite of the high
number of polynomial terms in a global representation of the surface. Consequently there is
a need for alternative surface descriptions that combine high approximation accuracy with

fast evaluation.



Several authors considered alternative aspheric representations. Greynolds [1] gives a brief
review of the so-called ‘superconic’ and ‘subconic’ surface descriptions. The motivation for
the introduction of these types was to produce steep aspheres with less terms and smoother
correction. Forbes [2] proposed a sum of Jacobi polynomials to represent rotationally sym-
metric aspheres. These polynomials constitute an orthonormal basis of the unit circle. Forbes’
representation facilitates the enforcement of fabrication constraints, e.g. the deviation of the
slope from a best-fit sphere. This allows the consideration of the cost of an asphere at an
early design stage [3].

Lerner and Sasian [4,5| present approaches that use implicitly and parametrically defined
surfaces for the design of imaging and illumination systems. Because these surface definitions
are more general than the standard aspheric definition, they can better describe optical
surfaces with large departures from a spherical or conic shape.

For non-rotationally symmetric surfaces, splines have been studied in the literature [6 §].
Parametric curves such as non-uniform rational B-splines (NURBS) have been applied to the
design of rotationally symmetric aspheres |9] as well as to the design of freeform mirrors [10].
Because NURBS are a standard surface type in CAD software, they offer an attractive
surface description when data has to be exchanged between optical design and CAD tools.
Another optical surface representation using 2D Gaussians as radial basis functions has been
introduced by Cakmakci |11].

Recently, Morita and co-workers |12| adopted the so-called Nagata patch for the repre-
sentation of optical surfaces including form errors due to fabrication processes. The Nagata
patch approximates surfaces through piecewise local quadratic interpolation by using posi-
tion and normal vectors at the nodes of a triangular mesh. Its representation differs from
usual descriptions of optical surfaces because it is continuous but not differentiable. The
authors suggest that the Nagata patch may be used to simulate mid-spatial frequencies of
surface errors.

A representation of optical surfaces in terms of B-splines seems promising as they are well
adapted to represent both local and global structures and allow the inclusion of measured
data into the surface description. In this paper, we propose a representation of optical sur-
faces via a B-spline quasi-interpolant. The surfaces are assumed to be non-diffractive and
sufficiently smooth, i.e. twice differentiable. We have implemented the new scheme in our
custom optical design software. Numerical results on the approximation of surfaces and on
the accuracy in a ray-tracing algorithm are given. Finally, we point out the connection of

the new surface representation to wavelets.



2. B-Spline Representation
2.A. B-Splines

We start by reviewing basic facts on B-splines that will be relevant in the sequel and refer
to [13] for details. There are several equivalent definitions of cardinal B-splines Ny. We use
the following recursive scheme

1, ifzel0,1), !

Ny(z) = Ny(z) = / Ny s(z—t) dt = (No_y % Ny) (2),

0, else, 0
for d > 2 (d is the order of the B-spline). The following properties are well-known and will
frequently be used in the sequel

supp Ny C [0, d] (locality), (1)

Na(@) = Ny a(@) + 225N, (- 1) (recursion),  (2)
d—1 d—1

Ny € C2(R) with N)(z) = Ny_1(x) — Ng_y(z — 1) (regularity). (3)

Note that (2) offers a fast recursive evaluation procedure since the evaluation is trivial for
Ni. In addition (3) also allows a fast evaluation of derivatives. Another important property

of Ny is the following refinement equation

Nd(ZL’) _ 21—dz (Z) Nd(QZL’ — k’), r e R. (4)

Hence, Ny is also called (primal) scaling function. It is known that shifts of Ny, i.e. Ny(-—k),
k € Z, are linearly independent. These last two properties mainly enable B-splines to generate
a Multiresolution Analysis, which is essential for the access to wavelets, see [14,15] for details.
Let us abbreviate by ¢ := Ny and S} := closy,m®) {@;r : k € Z}. We call j € Z the level,
where for a piecewise continuous function g : R — R, g;.(z) := 27/2g (272 — k) denotes its
scaled and shifted variant. Two-dimensional basis functions are constructed by the bivariate

tensor product.

2.B.  Projection

Let us now introduce the description of an optical surface in terms of B-splines. Of course,
such an approach is by far not new [6]. However, we will use a more recent quasi-interpolation
scheme in order to ensure the accuracy of the representation. Let f: Q — R, f € Ly(Q2), be a
smooth function, describing the (possibly unknown) surface. We use the following biorthog-

onal projection P; : Ly(2) — S,

Pif =) cinpins  CGai=(,Bix) e
k



to approximate f, where (u,v)r,) denotes the inner product on L,(€2) with induced norm
|u]| L,y and @; 1, are the dual scaling functions. These functions satisfy a refinement equation
similar to (4) and are dual in the sense (¢;x, Pjm)Lo@) = Ok,m. see [16] for details.

Now it holds, if f is sufficiently smooth, i.e. f € H*(Q2), the following conclusion about the

error is well-known [17]
1f =P fllio@ = 0(277%), 0<s<d. (5)

We refer to |18] for the precise definition of the Sobolev space H*((2).

Note however, that we are facing a problem for a real application. The coefficients c;
involve an integral which normally cannot be computed exactly. Of course, one can resort
to quadrature formulae which involve point values of f and ¢;;, but in most cases, point
values of ¢; ;, cannot be computed exactly, see [17]. An alternative is offered by the following

quasi-interpolation scheme.

2.C.  Quasi-Interpolation

A quasi-interpolation scheme produces an approximation of a given function f by only using
point values of the function. This is similar to a classical interpolation. The difference is that
a quasi-interpolation does not need to match point values of f at given nodes. This allows
error estimates in Lo also with high orders of accuracy.

We use a quasi-interpolation scheme of the form

Cjk ~ Ech = 2_% Z Yd,i f (2_](]{3 -+ f))

l=—m

with m := [%J and weights v4,. We refer to [19] for the construction of the weights and

their values. For the arising quasi-interpolant defined by
iji f= Z Cjk Pik
k
we obtain similar to Eq. (5), if f € H*(Q),
If = P flla@ = O277%), 0<s<d, (6)
i.e., the same order of approximation as P;.

3. Numerical Results

In this section, we describe numerical results for the approximation of optical surfaces in
a ray trace algorithm. The described schemes have been implemented within FLENS and



LAWA'. In order to test the performance within a realistic framework, we compare our
results with the custom optical design software OASE?. Further examples are described
in [20].

3.A.  Approzimation of Optical Surfaces

We start by describing numerical experiments for approximating given optical surfaces. Fig. 1
shows contour-color plots of test surfaces we use in the sequel. The first surface, seen in part

(a) of Fig. 1, is a KXY asphere given by the parameterization

Pat® + pyy?
L+ [1 = (14 k) () = (14 5y) (py9)?] 2
+ C1x + cy + 03:132 + cqry + c5y2 + cﬁa:?’ +...,

frxy(r,y) ==

while the others are rotationally symmetric KSA aspheres defined by

ph® 2 2 2
fi h + E cr1h®*, where h%:= 2%+ 42
ksa(h) = 1+ [1— (1+#)(ph)2]"? o

The bounding box is defined by Q = [—b, b] x [—b, b], where b and the remaining parameters
are listed in Tab. 1.

For fixed B-spline orders d we compute the approximation by the above quasi-interpolation
method. We vary levels j = 4,...,10, where level j corresponds to 2% coefficients in the
two-dimensional representation and a mesh size h = 277. The root mean square value of the
approximation error is computed on n X n discrete points forming an equidistant mesh in €.

E; = (e(%,%)), . , with e:=|f— P;‘i f’ :

i,J=1,...,n

The following results are obtained with a fixed n = 10

For B-spline orders d = 1,...,6, the errors RMS(£}) of the first test surface KXY are
drawn as markers in Fig. 2. Additionally, the plot shows best fit lines for every order d with
expected slope 2774, Obviously the analytic rate of convergence from Eq. (6) is reached.
Moreover one observes for high orders d > 5 an accuracy better than 1072 with a coarse
mesh size h > le 3.

The second example concerns the asphere KSA; shown in part (b) of Fig. 1. We choose
this simple example in order to investigate the approximation order of the first derivative,
where we expect to lose one order of approximation, see [17| for details. Hence, we compute

E; as above, where now

e:= %(f—ijif>'.
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We obtain the corresponding error in Fig. 3. As mentioned, we lose one order of approxi-

(@=1) " Once more,

mation for the convergence rates, so our best fit lines now have slope 277
we observe the expected behavior and while we need a high approximation accuracy to the
normal in a ray trace algorithm we recommend using splines with orders d > 2.

The last example in this section shows the accuracy for the surface KSA; shown in part
(c) of Fig. 1. We restrict the definition of the surface and the computation of the RMS-error
to values in the domain © := {(z,y) € R? : 22+ y? < 20%}, so we get undefined values in the
bounding box. In © the surface is sufficiently smooth to meet our condition f € H%(Q). The
corresponding error plot is drawn in Fig. 4. As this asphere has a steep gradient near the
boundary, more coefficients are needed to reach a sufficient accuracy. This becomes evident

in the deviation of the markers from the slope for spline orders d > 4.

3.B.  Ray Tracing, Intersection and Refraction

The following procedure for ray tracing is based on |7| and is adapted to the use of our
B-spline representation. We define a ray r : R — R? through a point p = (p,, py,p.)" € R?
in a direction d = (d,,d,,d,)" € R® as

r(a) :=p+ ad, a € R,

and describe the refraction of such a ray by an optical surface given in terms of a function ¢
(which could also be an approximation e.g. determined by a quasi-interpolation). We have
to find the intersection point x = x(z,y) = (z,v, g(z,y))" € R? of the ray with the surface.

The normal vector of the surface at x is given as

n=n(z,y) = e1 x ez = (—0ug(,y), —Oy9(z,y),1)", (7)

where e; and ey are the two tangential vectors of the surface in x, i.e., e; = 0,x(x,y) =
(1,0,0,9)" and €3 = 9,x = (0,1,9,9)". In order to obtain a unique intersection point, we
have to assume that the ray is not parallel to the tangential plane. Then, the condition

p + ad = x for the 3 unknowns «,  and y can be rephrased as
F(a) :=p, +ad, — g(p, + ady, p, + ad,) = 0, F:R—R

This is obviously a one-dimensional nonlinear equation which can be numerically solved e.g.

by Newton’s method which requires the derivative
F'(a) =d, — 0,9(ps + ady, p, + ady)d, — 0,9(p. + ady, p, + ad,)d, = n(x(a),y(a))’ - d,

where z(«) := p, + ad, and y(«a) := p, + ad,.
The solution of F'(a) = 0 yields the intersection point x and the normal vector n at this

point. Let us denote by 7 the incidence angle of the ray and the surface, i.e. cos(y) = n’ -d,
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and by n, n’ the refractive indices of the media in front of and behind the surface. We apply
the Law of Refraction, i.e. in R3,

1

/ n\2 2 B

cos(v") = |1 — <ﬁ> (1—cos*(7))|

to obtain the new incidence angle 4/. Hence, we can calculate the direction d’ of the ray in

the medium behind the actual surface and proceed ray tracing with the next optical surface.

3.C.  Accuracy in a Ray Trace Algorithm

We make use of the above ray trace method to validate our B-spline approximation in a

realistic manner. For a given set of n rays r; we compute the intersection points ng) and the
() (0) (0)

normals n;”’ depending on the level 5. By x;’ and n;”’ we indicate the results computed by

OASE for the standard representation of the surface.

For n = 10° rays, we report the maximal deviation of all rays

= () s )
where || - || denotes the Euclidean norm in R3. The error plots for the surface KXY are given

in Fig. 5 and Fig. 6. The first one shows the maximal deviation of the intersection point
M ;, while the latter one shows the error M, ; of the normal vector. For the computation
we use € = 10712 as the stopping criterion of Newton’s method.

We observe a similar behavior as for the RMS-error in Sec. 3.A. The rate of convergence for
M, j is O(279). Since the normal is based on derivatives, it is not surprising that we obtain
O(277=V). For B-spline orders d > 4, the accuracy is sufficient to allow the analysis of
imaging optical systems. We conclude that the B-spline quasi-interpolant scheme is usable
in a ray trace algorithm and competes with other local representations such as the Nagata
patch [12].

4. Connection to Wavelets

The localization property of compactly supported wavelets offers a unique advantage over
Fourier methods for detecting local spatial structures. In signal analysis and image processing
wavelet methods are well-established [15]. Wavelet transforms have also been used in the
analysis of surface data [21]. Tien and Lyu introduced an inspection method based on the
discrete wavelet transform [22].

The Fast Wavelet Transform

FWT : (C) — (Co,dl, .. -dj—l)



maps the coefficients ¢ := (¢; ;) (jr) to a multiscale representation
Pif= > disti,
ik

where 1);; are wavelets. Thus, the B-spline quasi-interpolant representation can be used
directly for a wavelet analysis. Some examples on error detection and frequency separation
by wavelets are described in [16].

5. Conclusion and Outlook

A highly accurate approximation of optical surfaces in terms of a B-spline quasi-interpolation
scheme has been introduced. The error bounds on the approximation have been verified
through the reproduction of aspheric surfaces given by polynomial expansions. The new
surface description has been implemented within our custom optical design software. Our
results confirm that the desired accuracy of 107'2 is reached in the ray tracing. This enables
the use of the new representation in the analysis of optical systems for imaging applications.
Because B-spline-Wavelets offer the possibility to specify local and global structures simul-
taneously, they can be used to describe as-built optical surfaces including metrological data.
This facilitates the tolerance analysis of optical systems containing aspheric elements.
Furthermore, the new scheme gives access to wavelet analysis methods for aspheric sur-
faces. The localization in space and time of compactly supported wavelets offers a unique
advantage over Fourier methods for the detection of local spatial structures. This opens a
broad field of applications in tolerancing and manufacturing and will be the focus of future

investigations.
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Fig. 1. Contour-color plot of the test surfaces KXY (a), KSA; (b) and KSA,
(c). jester-fl.eps.
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Fig. 2. RMS-error of the approximation of surface KXY. jester-f2.eps.
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Table 1. Parameters of the test surfaces KXY, KSA; and KSA,.

KXY KSA, KSA,

b 5.0 b 1.0 b 20.0

P —2.15¢7! p 1.00 p —3.87¢7?2
Py 1.22¢71

K —1.00 K —1.00 K 0.00

Ky —1.00
c10 —4.05¢ 4 c1 1.50 c1 —4.17e76
C12 —8.13¢74 Co —7.00e! Co 4.71e7?
Cl4 5.73¢~4 c3 5.00e~1 c3 —4.94¢"12
C21 —4.59¢6 Cq —5.00e! Cq —5.42¢ 15
Co3 1.14e7° cs —4.98¢~18
C25 9.64¢~6 Cg —1.22¢=20
Co7 4.45¢~7
C36 —2.69¢79
C38 —7.96e78
C40 —8.79¢8
C42 —9.16e~8
Ca4 2.43¢~8
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