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tionAdvan
es in fabri
ation te
hnology, metrology and opti
al design led to a regular use ofaspheri
 elements in opti
al systems. However, in some 
ases standard representations ofaspheri
 surfa
es turn out to be impra
ti
al. Freeform surfa
es without symmetries thatare frequently used in illumination systems may fall into this 
ategory. Another example isthe des
ription of an aspheri
 surfa
e as it is built in
luding manufa
turing errors. Tryingto represent su
h an as-built surfa
e by polynomials inevitably leads to a high number ofterms and makes ray tra
ing expensive and time-
onsuming. In addition, if lo
al stru
turesare present on the surfa
e, a large approximation error is introdu
ed despite of the highnumber of polynomial terms in a global representation of the surfa
e. Consequently there isa need for alternative surfa
e des
riptions that 
ombine high approximation a

ura
y withfast evaluation. 1



Several authors 
onsidered alternative aspheri
 representations. Greynolds [1℄ gives a briefreview of the so-
alled `super
oni
' and `sub
oni
' surfa
e des
riptions. The motivation forthe introdu
tion of these types was to produ
e steep aspheres with less terms and smoother
orre
tion. Forbes [2℄ proposed a sum of Ja
obi polynomials to represent rotationally sym-metri
 aspheres. These polynomials 
onstitute an orthonormal basis of the unit 
ir
le. Forbes'representation fa
ilitates the enfor
ement of fabri
ation 
onstraints, e.g. the deviation of theslope from a best-�t sphere. This allows the 
onsideration of the 
ost of an asphere at anearly design stage [3℄.Lerner and Sasian [4,5℄ present approa
hes that use impli
itly and parametri
ally de�nedsurfa
es for the design of imaging and illumination systems. Be
ause these surfa
e de�nitionsare more general than the standard aspheri
 de�nition, they 
an better des
ribe opti
alsurfa
es with large departures from a spheri
al or 
oni
 shape.For non-rotationally symmetri
 surfa
es, splines have been studied in the literature [6�8℄.Parametri
 
urves su
h as non-uniform rational B-splines (NURBS) have been applied to thedesign of rotationally symmetri
 aspheres [9℄ as well as to the design of freeform mirrors [10℄.Be
ause NURBS are a standard surfa
e type in CAD software, they o�er an attra
tivesurfa
e des
ription when data has to be ex
hanged between opti
al design and CAD tools.Another opti
al surfa
e representation using 2D Gaussians as radial basis fun
tions has beenintrodu
ed by Cakmak
i [11℄.Re
ently, Morita and 
o-workers [12℄ adopted the so-
alled Nagata pat
h for the repre-sentation of opti
al surfa
es in
luding form errors due to fabri
ation pro
esses. The Nagatapat
h approximates surfa
es through pie
ewise lo
al quadrati
 interpolation by using posi-tion and normal ve
tors at the nodes of a triangular mesh. Its representation di�ers fromusual des
riptions of opti
al surfa
es be
ause it is 
ontinuous but not di�erentiable. Theauthors suggest that the Nagata pat
h may be used to simulate mid-spatial frequen
ies ofsurfa
e errors.A representation of opti
al surfa
es in terms of B-splines seems promising as they are welladapted to represent both lo
al and global stru
tures and allow the in
lusion of measureddata into the surfa
e des
ription. In this paper, we propose a representation of opti
al sur-fa
es via a B-spline quasi-interpolant. The surfa
es are assumed to be non-di�ra
tive andsu�
iently smooth, i.e. twi
e di�erentiable. We have implemented the new s
heme in our
ustom opti
al design software. Numeri
al results on the approximation of surfa
es and onthe a

ura
y in a ray-tra
ing algorithm are given. Finally, we point out the 
onne
tion ofthe new surfa
e representation to wavelets.
2



2. B-Spline Representation2.A. B-SplinesWe start by reviewing basi
 fa
ts on B-splines that will be relevant in the sequel and referto [13℄ for details. There are several equivalent de�nitions of 
ardinal B-splines Nd. We usethe following re
ursive s
heme
N1(x) :=







1, if x ∈ [0, 1),

0, else, Nd(x) :=

∫ 1

0

Nd−1(x− t) dt = (Nd−1 ∗N1) (x),for d ≥ 2 (d is the order of the B-spline). The following properties are well-known and willfrequently be used in the sequelsupp Nd ⊂ [0, d] (lo
ality), (1)
Nd(x) =

x

d− 1
Nd−1(x) +

d− x

d− 1
Nd−1(x− 1) (re
ursion), (2)

Nd ∈ Cd−2(R) with N ′

d(x) = Nd−1(x) −Nd−1(x− 1) (regularity). (3)Note that (2) o�ers a fast re
ursive evaluation pro
edure sin
e the evaluation is trivial for
N1. In addition (3) also allows a fast evaluation of derivatives. Another important propertyof Nd is the following re�nement equation

Nd(x) = 21−d
d

∑

k=0

(

d

k

)

Nd(2x− k), x ∈ R. (4)Hen
e, Nd is also 
alled (primal) s
aling fun
tion. It is known that shifts of Nd, i.e. Nd(·−k),
k ∈ Z, are linearly independent. These last two properties mainly enable B-splines to generatea Multiresolution Analysis, whi
h is essential for the a

ess to wavelets, see [14,15℄ for details.Let us abbreviate by ϕ := Nd and Sj := 
losL2(R) {ϕj,k : k ∈ Z}. We 
all j ∈ Z the level,where for a pie
ewise 
ontinuous fun
tion g : R → R, gj,k(x) := 2j/2g (2jx− k) denotes itss
aled and shifted variant. Two-dimensional basis fun
tions are 
onstru
ted by the bivariatetensor produ
t.2.B. Proje
tionLet us now introdu
e the des
ription of an opti
al surfa
e in terms of B-splines. Of 
ourse,su
h an approa
h is by far not new [6℄. However, we will use a more re
ent quasi-interpolations
heme in order to ensure the a

ura
y of the representation. Let f : Ω → R, f ∈ L2(Ω), be asmooth fun
tion, des
ribing the (possibly unknown) surfa
e. We use the following biorthog-onal proje
tion Pj : L2(Ω) → Sj,

Pj f :=
∑

k

cj,kϕj,k, cj,k := (f, ϕ̃j,k)L2(Ω),3



to approximate f , where (u, v)L2(Ω) denotes the inner produ
t on L2(Ω) with indu
ed norm
‖u‖L2(Ω) and ϕ̃j,k are the dual s
aling fun
tions. These fun
tions satisfy a re�nement equationsimilar to (4) and are dual in the sense (ϕj,k, ϕ̃j,m)L2(Ω) = δk,m, see [16℄ for details.Now it holds, if f is su�
iently smooth, i.e. f ∈ Hs(Ω), the following 
on
lusion about theerror is well-known [17℄

‖f − Pj f‖L2(Ω) = O(2−js), 0 ≤ s ≤ d. (5)We refer to [18℄ for the pre
ise de�nition of the Sobolev spa
e Hs(Ω).Note however, that we are fa
ing a problem for a real appli
ation. The 
oe�
ients cj,kinvolve an integral whi
h normally 
annot be 
omputed exa
tly. Of 
ourse, one 
an resortto quadrature formulae whi
h involve point values of f and ϕ̃j,k, but in most 
ases, pointvalues of ϕ̃j,k 
annot be 
omputed exa
tly, see [17℄. An alternative is o�ered by the followingquasi-interpolation s
heme.2.C. Quasi-InterpolationA quasi-interpolation s
heme produ
es an approximation of a given fun
tion f by only usingpoint values of the fun
tion. This is similar to a 
lassi
al interpolation. The di�eren
e is thata quasi-interpolation does not need to mat
h point values of f at given nodes. This allowserror estimates in L2 also with high orders of a

ura
y.We use a quasi-interpolation s
heme of the form
cj,k ≈ c̄j,k := 2−

j

2

m
∑

ℓ=−m

γd,l f
(

2−j(k + ℓ)
)with m :=

⌊

d−1
2

⌋ and weights γd,ℓ. We refer to [19℄ for the 
onstru
tion of the weights andtheir values. For the arising quasi-interpolant de�ned by
P

qi
j f :=

∑

k

c̄j,k ϕj,kwe obtain similar to Eq. (5), if f ∈ Hs(Ω),
‖f − P

qi
j f‖L2(Ω) = O(2−js), 0 ≤ s ≤ d, (6)i.e., the same order of approximation as Pj .3. Numeri
al ResultsIn this se
tion, we des
ribe numeri
al results for the approximation of opti
al surfa
es ina ray tra
e algorithm. The des
ribed s
hemes have been implemented within FLENS and4



LAWA1. In order to test the performan
e within a realisti
 framework, we 
ompare ourresults with the 
ustom opti
al design software OASE2. Further examples are des
ribedin [20℄.3.A. Approximation of Opti
al Surfa
esWe start by des
ribing numeri
al experiments for approximating given opti
al surfa
es. Fig. 1shows 
ontour-
olor plots of test surfa
es we use in the sequel. The �rst surfa
e, seen in part
(a) of Fig. 1, is a KXY asphere given by the parameterization
fKXY(x, y) :=

ρxx
2 + ρyy

2

1 + [1 − (1 + κx)(ρxx)2 − (1 + κy)(ρyy)2]1/2

+ c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + . . . ,while the others are rotationally symmetri
 KSA aspheres de�ned by

fKSA(h) :=
ρh2

1 + [1 − (1 + κ)(ρh)2]1/2
+

∞
∑

k=2

ck−1h
2k, where h2 := x2 + y2.The bounding box is de�ned by Ω = [−b, b]× [−b, b], where b and the remaining parametersare listed in Tab. 1.For �xed B-spline orders d we 
ompute the approximation by the above quasi-interpolationmethod. We vary levels j = 4, . . . , 10, where level j 
orresponds to 22j 
oe�
ients in thetwo-dimensional representation and a mesh size h = 2−j. The root mean square value of theapproximation error is 
omputed on n×n dis
rete points forming an equidistant mesh in Ω.

Ej :=
(

e(xi, yj)
)

i,j=1,...,n
, with e :=

∣

∣

∣
f − P

qi
j f

∣

∣

∣
.The following results are obtained with a �xed n = 104.For B-spline orders d = 1, . . . , 6, the errors RMS(Ej) of the �rst test surfa
e KXY aredrawn as markers in Fig. 2. Additionally, the plot shows best �t lines for every order d withexpe
ted slope 2−jd. Obviously the analyti
 rate of 
onvergen
e from Eq. (6) is rea
hed.Moreover one observes for high orders d ≥ 5 an a

ura
y better than 10−12 with a 
oarsemesh size h ≥ 1e−3.The se
ond example 
on
erns the asphere KSA1 shown in part (b) of Fig. 1. We 
hoosethis simple example in order to investigate the approximation order of the �rst derivative,where we expe
t to lose one order of approximation, see [17℄ for details. Hen
e, we 
ompute

Ej as above, where now
e :=

∣

∣

∣

∣

∂

∂x

(

f − P
qi
j f

)

∣

∣

∣

∣

.1Flexible Library for E�
ient Numeri
al Solutions and Library for AdaptiveWavelet Appli
ations,Institute for Numeri
al Mathemati
s, University Ulm.2Optis
he Analyse und Synthese, Carl Zeiss AG. 5



We obtain the 
orresponding error in Fig. 3. As mentioned, we lose one order of approxi-mation for the 
onvergen
e rates, so our best �t lines now have slope 2−j(d−1). On
e more,we observe the expe
ted behavior and while we need a high approximation a

ura
y to thenormal in a ray tra
e algorithm we re
ommend using splines with orders d ≥ 2.The last example in this se
tion shows the a

ura
y for the surfa
e KSA2 shown in part
(c) of Fig. 1. We restri
t the de�nition of the surfa
e and the 
omputation of the RMS-errorto values in the domain Θ := {(x, y) ∈ R

2 : x2 + y2 ≤ 202}, so we get unde�ned values in thebounding box. In Θ the surfa
e is su�
iently smooth to meet our 
ondition f ∈ Hd(Ω). The
orresponding error plot is drawn in Fig. 4. As this asphere has a steep gradient near theboundary, more 
oe�
ients are needed to rea
h a su�
ient a

ura
y. This be
omes evidentin the deviation of the markers from the slope for spline orders d ≥ 4.3.B. Ray Tra
ing, Interse
tion and Refra
tionThe following pro
edure for ray tra
ing is based on [7℄ and is adapted to the use of ourB-spline representation. We de�ne a ray r : R → R
3 through a point p = (px, py, pz)

T ∈ R
3in a dire
tion d = (dx, dy, dz)

T ∈ R
3 as

r(α) := p + αd, α ∈ R,and des
ribe the refra
tion of su
h a ray by an opti
al surfa
e given in terms of a fun
tion g(whi
h 
ould also be an approximation e.g. determined by a quasi-interpolation). We haveto �nd the interse
tion point x = x(x, y) = (x, y, g(x, y))T ∈ R
3 of the ray with the surfa
e.The normal ve
tor of the surfa
e at x is given as

n = n(x, y) = e1 × e2 = (−∂xg(x, y),−∂yg(x, y), 1)T
, (7)where e1 and e2 are the two tangential ve
tors of the surfa
e in x, i.e., e1 = ∂xx(x, y) =

(1, 0, ∂xg)
T and e2 = ∂yx = (0, 1, ∂yg)

T . In order to obtain a unique interse
tion point, wehave to assume that the ray is not parallel to the tangential plane. Then, the 
ondition
p + αd = x for the 3 unknowns α, x and y 
an be rephrased as

F (α) := pz + αdz − g(px + αdx, py + αdy) = 0, F : R → R.This is obviously a one-dimensional nonlinear equation whi
h 
an be numeri
ally solved e.g.by Newton's method whi
h requires the derivative
F ′(α) = dz − ∂xg(px + αdx, py + αdy)dx − ∂yg(px + αdx, py + αdy)dy = n(x(α), y(α))T · d,where x(α) := px + αdx and y(α) := py + αdy.The solution of F (α) = 0 yields the interse
tion point x and the normal ve
tor n at thispoint. Let us denote by γ the in
iden
e angle of the ray and the surfa
e, i.e. cos(γ) = nT ·d,6



and by n, n′ the refra
tive indi
es of the media in front of and behind the surfa
e. We applythe Law of Refra
tion, i.e. in R
3,

cos(γ′) =

[

1 −
( n

n′

)2
(

1 − cos2(γ)
)

]
1

2

,to obtain the new in
iden
e angle γ′. Hen
e, we 
an 
al
ulate the dire
tion d′ of the ray inthe medium behind the a
tual surfa
e and pro
eed ray tra
ing with the next opti
al surfa
e.3.C. A

ura
y in a Ray Tra
e AlgorithmWe make use of the above ray tra
e method to validate our B-spline approximation in arealisti
 manner. For a given set of n rays ri we 
ompute the interse
tion points x
(j)
i and thenormals n

(j)
i depending on the level j. By x

(O)
i and n

(O)
i we indi
ate the results 
omputed byOASE for the standard representation of the surfa
e.For n = 106 rays, we report the maximal deviation of all rays

Mx,j := max
i=1,...,n

{
∥

∥

∥
x

(O)
i − x

(j)
i

∥

∥

∥

}

, Mn,j := max
i=1,...,n

{
∥

∥

∥
n

(O)
i − n

(j)
i

∥

∥

∥

}

,where ‖ · ‖ denotes the Eu
lidean norm in R
3. The error plots for the surfa
e KXY are givenin Fig. 5 and Fig. 6. The �rst one shows the maximal deviation of the interse
tion point

Mx,j, while the latter one shows the error Mn,j of the normal ve
tor. For the 
omputationwe use ε = 10−12 as the stopping 
riterion of Newton's method.We observe a similar behavior as for the RMS-error in Se
. 3.A. The rate of 
onvergen
e for
Mx,j is O(2−jd). Sin
e the normal is based on derivatives, it is not surprising that we obtain
O(2−j(d−1)). For B-spline orders d ≥ 4, the a

ura
y is su�
ient to allow the analysis ofimaging opti
al systems. We 
on
lude that the B-spline quasi-interpolant s
heme is usablein a ray tra
e algorithm and 
ompetes with other lo
al representations su
h as the Nagatapat
h [12℄.4. Conne
tion to WaveletsThe lo
alization property of 
ompa
tly supported wavelets o�ers a unique advantage overFourier methods for dete
ting lo
al spatial stru
tures. In signal analysis and image pro
essingwavelet methods are well-established [15℄. Wavelet transforms have also been used in theanalysis of surfa
e data [21℄. Tien and Lyu introdu
ed an inspe
tion method based on thedis
rete wavelet transform [22℄.The Fast Wavelet TransformFWT : (c) 7→ (c0,d1, . . .dj−1)7



maps the 
oe�
ients c := (cj,k)(j,k) to a multis
ale representation
Pj f =

∑

j

∑

k

dj,kψj,k,where ψj,k are wavelets. Thus, the B-spline quasi-interpolant representation 
an be useddire
tly for a wavelet analysis. Some examples on error dete
tion and frequen
y separationby wavelets are des
ribed in [16℄.5. Con
lusion and OutlookA highly a

urate approximation of opti
al surfa
es in terms of a B-spline quasi-interpolations
heme has been introdu
ed. The error bounds on the approximation have been veri�edthrough the reprodu
tion of aspheri
 surfa
es given by polynomial expansions. The newsurfa
e des
ription has been implemented within our 
ustom opti
al design software. Ourresults 
on�rm that the desired a

ura
y of 10−12 is rea
hed in the ray tra
ing. This enablesthe use of the new representation in the analysis of opti
al systems for imaging appli
ations.Be
ause B-spline-Wavelets o�er the possibility to spe
ify lo
al and global stru
tures simul-taneously, they 
an be used to des
ribe as-built opti
al surfa
es in
luding metrologi
al data.This fa
ilitates the toleran
e analysis of opti
al systems 
ontaining aspheri
 elements.Furthermore, the new s
heme gives a

ess to wavelet analysis methods for aspheri
 sur-fa
es. The lo
alization in spa
e and time of 
ompa
tly supported wavelets o�ers a uniqueadvantage over Fourier methods for the dete
tion of lo
al spatial stru
tures. This opens abroad �eld of appli
ations in toleran
ing and manufa
turing and will be the fo
us of futureinvestigations.Referen
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Fig. 2. RMS-error of the approximation of surfa
e KXY. jester-f2.eps.
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Fig. 3. RMS-error of the approximation of the partial derivative ∂xPjfKSA1
.jester-f3.eps.
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Fig. 4. RMS-error of the approximation of surfa
e KSA2 with unde�ned valuesin the bounding box. jester-f4.eps.
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Fig. 5. Maximal deviation Mx,j of the interse
tion point. jester-f5.eps.
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Fig. 6. Maximal deviation of the normalMn,j of the interse
tion point. jester-f6.eps.
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Table 1. Parameters of the test surfa
es KXY, KSA1 and KSA2.
KXY KSA1 KSA2

b 5.0 b 1.0 b 20.0

ρx −2.15e−1 ρ 1.00 ρ −3.87e−2

ρy 1.22e−1

κx −1.00 κ −1.00 κ 0.00

κy −1.00

c10 −4.05e−4 c1 1.50 c1 −4.17e−6

c12 −8.13e−4 c2 −7.00e−1 c2 4.71e−9

c14 5.73e−4 c3 5.00e−1 c3 −4.94e−12

c21 −4.59e−6 c4 −5.00e−1 c4 −5.42e−15

c23 1.14e−5 c5 −4.98e−18

c25 9.64e−6 c6 −1.22e−20

c27 4.45e−7

c36 −2.69e−9

c38 −7.96e−8

c40 −8.79e−8

c42 −9.16e−8

c44 2.43e−8
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