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Abstract. We investigate an ultraweak variational formulation for (parameterized)
linear di�erential-algebraic equations (DAEs) w.r.t. the time variable which yields an
optimally stable system. This is used within a Petrov-Galerkin method to derive a
certi�ed detailed discretization which provides an approximate solution in an ultra-
weak setting as well as for model reduction w.r.t. time in the spirit of the Reduced
Basis Method (RBM). A computable sharp error bound is derived. Numerical experi-
ments are presented that show that this method yields a signi�cant reduction and can
be combined with well-known system theoretic methods such as Balanced Truncation
to reduce the size of the DAE.

1. Introduction

Di�erential-Algebraic Equations (DAEs) are widely used tomodel several processes
in science, engineering, medicine and other �elds. Theory and numerical approxima-
tion methods have intensively been studied in the literature, see e.g. [5, 14, 18, 29], or
[13, 24], which are the �rst two books in a forum series on DAEs. Quite often, the di-
mension of DAEsmodeling realistic problems is so large that an e�cient numerical so-
lution (in particular in realtime environments or within optimal control) is impossible.
To address this issue, Model Order Reduction (MOR) techniques have been developed
and successfully applied. There is a huge amount of literature, we just mention [3, 4,
8, 20, 25, 26].

All methods described in those references address a reduction of the dimension of
the system, whereas the temporal discretization is untouched. This paper starts at this
point. We have been working on space-time variational formulations for (parameter-
ized) partial di�erential equations (PPDEs) over the last decade. One particular issue
has been the stability of the arising discretization which admits tight error-residual
relations and thus builds the backbone for model reduction. It turns out that an ultra-
weak formulation is the right tool to achieve this goal. In [10], we have used this frame-
work for deriving an optimally stable variational formulation of linear time-invariant
systems (LTIs). In this paper, we extend the ultraweak framework to (parameterized)
DAEs and show that this can be combined with system theoretic methods such as Bal-
anced Truncation (BT, [25]) to derive a reduction in the system dimension and time
discretization size.

1.1. Di�erential-algebraic equations (DAEs). Let E,A ∈ ℝn×n, n ∈ ℕ, be two
matrices (E is typically singular), I = (0, T), T > 0, a time interval, x0 ∈ ℝn some
initial value and f ∶ I → ℝn a given right-hand side. Then, we are interested in
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the solution x ∶ I → ℝn (the state) of the following initial value problem of a linear
di�erential-algebraic equation (DAE) with constant coe�cients

Eẋ(t) − Ax(t) = f(t), ∀t ∈ I, x(0) = x0.

In order to ensure well-posedness (in an appropriate manner), we shall always assume
that the initial value x0 is consistentwith the right-hand side f, whichmeans that there
exists some x̂0 ∈ ℝn such that Ex̂0 − Ax0 = limt→0+ f(t) holds. Finally, we assume
that the matrix pencil {E,−A} is regular (i.e. det(�E − A) ≠ 0 for some � ∈ ℝ) with
index ind{E,−A} =∶ k ∈ ℕ, [12].1

1.2. Parameterized DAEs (PDAEs). We are particularly interested in the situation,
where one does not only have to solve the aboveDAEonce, but several times and highly
e�cient (e.g. in realtime, optimal control or cold computing devices) for di�erent data.
In order to describe that situation, we are considering a parameterizedDAE (PDAE) as
follows. For some parameter vector � ∈ P,P ⊂ ℝP being a compact set, we are seeking
x� ∶ I → ℝn such that

E ẋ�(t) − A� x�(t) = f�(t), ∀t ∈ I, x�(0) = x0,�,(1.1)

where A�, f� and x0,� are a parameter-dependent matrix, a right-hand side and an
initial condition, respectively, whereas E is assumed to be independent of �, see below.
In order to be able to solve such a PDAEhighly e�cient formany parameters, it is quite
standard to assume that parameters and variables can be separated, see e.g. [17]. This
is done by assuming a so-called a�ne decomposition of the data, i.e., E is (for simplicity
of exposition) assumed to be parameter-independent and

A� =
QA∑

q=1
#Aq (�) Ãq, f�(t) =

Qf∑

q=1
#fq (�) f̃q(t), x0,� =

Qx∑

q=1
#xq (�) x̃0,q.(1.2)

If such a decomposition is not given, we may produce an a�nely decomposed approx-
imation by means of the (Discrete) Empirical Interpolation Method ((D)EIM, [2, 7]; see
also [8] for a system theoretic MOR for such PDAEs). For well-posedness, we assume
that the matrix pencil {E,−A�} is regular with index ind{E,−A�} = k� for all � ∈ P.

1.3. Reduction to homogeneous initial conditions. Using some standard argu-
ments, (1.1) can be reduced to homogeneous initial conditions x�(0) = 0. To this
end, construct some smooth extension of the initial data x̄� ∈ C1(Ī)n, x̄�(0) = x0,�.
Then, let x̂� ∶ I → ℝn solve (1.1) with f� replaced by f̂� ∶= f� − E ̇̄x� + A�x̄� and
homogeneous initial condition x̂�(0) = 0. Then, x� ∶= x̂� + x̄� solves the original
problem (1.1). If the PDAE possess an a�ne decomposition (1.2), it is readily seen
that the modi�ed right-hand side f̂� also admits an a�ne decomposition. Hence, we
can always restrict ourselves to the case of homogeneous initial conditions x�(0) = 0,
keeping in mind that variable initial conditions can be realized by di�erent right-hand
sides.

1Each regular matrix pencil can be transformed intoWeierstrass-Kronecker canonical form P(�E−A)Q =
diag(�Id−W,�N− Id)with regular matrices P,Q ∈ ℂn×n , [11]. The index of a regular matrix pencil {E,−A}
is then de�ned by ind{E,−A} ∶= ind{N} ∶= min{k ∈ ℕ ∶ Nk = 0}.
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1.4. Organization of the material. The remainder of this paper is organized as fol-
lows. In Section 2, we derive an ultraweak variational formulation of (1.1) and prove
its well-posedness. Section 3 is devoted to a corresponding Petrov-Galerkin discretiza-
tion and the numerical solution, which is then used in Section 4 to derive a certi�ed
reduced model. In Section 5, we report results of our numerical experiments and end
with conclusions and an outlook in Section 6.

2. An ultraweak variational formulation

It is well-known that, for any �xed parameter � ∈ P, the problem (1.1) admits a
unique classical solution x� ∈ Ck� (Ī)n for consistent initial conditions provided that
f� ∈ Ck�−1(Ī)n, e.g. [18, Lemma 2.8.]. This is a severe regularity assumption, which
is one of the reasons why we are interested in a variational formulation. As we shall
see, an ultraweak setting is appropriate in order to prove well-posedness, in particular
stability. It turns out that this setting is also particularly useful for model reduction of
(1.1) w.r.t. the time variable in the spirit of the reduced basis method, see §4 below.

2.1. Ultraweak formulation of PPDEs. In order to describe an ultraweak varia-
tional formulation for the above PDAE, we will review such formulations for para-
metric partial di�erential equations (PPDEs). In particular, we are going to follow [9]
in which well-posed (ultraweak) variational forms for transport problems have been
introduced, see also [6, 16, 30]. We will then transfer this framework to PDAEs in §2.2.

Let Ω ⊂ ℝn be some open and bounded domain. We consider a classical2 linear
operator B�;◦ on Ω with classical domain

D(B�;◦) = {x ∈ C(Ω) ∶ x|)Ω = 0, B�;◦x ∈ C(Ω)}

and aim at solving

B�;◦x� = f� (pointwise) on Ω, x�|)Ω
= 0.(2.1)

Note that the de�nition ofB�;◦ also incorporates essential homogeneous boundary con-
ditions (in case of a PDAE described below this is the initial condition, which is inde-
pendent of the parameter). Let {B∗�;◦, D(B∗�;◦)} denote the operator, which is adjoint
to {B�;◦, D(B�;◦)}, i.e., B∗�;◦ is de�ned as the formal adjoint of B�;◦ by (B�;◦x, y)L2(Ω) =
(x, B∗�;◦y)L2(Ω) for all x, y ∈ C∞0 (Ω) and its domain D(B∗�;◦) which includes the corre-
sponding adjoint essential boundary conditions (so that the above equation still holds
true for all x ∈ D(B�;◦), y ∈ D(B∗�;◦)). Denoting the range of an operator B by R(B),
we have B�;◦ ∶ D(B�;◦) → R(B�;◦) and B∗�;◦ ∶ D(B∗�;◦) → R(B∗�;◦). The following
assumptions3 turned out to be crucial for ensuring the well-posedness:
(B1) D(B�;◦), D(B∗�;◦), R(B∗�;◦) ⊆ L2(Ω) with all embeddings being dense;
(B2) B∗�;◦ is injective on D(B∗�;◦).

Due to (B2), the injectivity of the adjoint operator, the following quantity

⦀⋅⦀� ∶= ‖B∗�⋅‖L2(Ω)
is a norm on D(B∗�;◦), where B∗� is to be understood as the continuous extension of B∗�;◦
onto Y�, i.e., B∗� ∶ Y� → L2(Ω), where

Y� ∶= clos⦀⋅⦀� (D(B
∗
�;◦)), (v, w)Y� ∶= (B∗�v, B∗�w)L2(Ω), ‖v‖2Y� ∶= (v, v)Y� = ⦀v⦀2�,

2By classical we mean de�ned in a pointwise manner.
3The framework in [9] is slightly more general.
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is a Hilbert space. De�ning the bilinear form

b� ∶ L2(Ω) × Y� → ℝ by b�(x, y) ∶= (x, B∗�y)L2(Ω),

yields an ultraweak form of (2.1): For f ∈ Y′�
4, determine x� ∈ L2(Ω) such that

b�(x�, y�) = f�(y�) ∀y� ∈ Y�.(2.2)

Well-posedness including optimal stability is now ensured:

Lemma 2.1. Problem (2.2) has a unique solution x� ∈ L2(Ω) and is optimally stable,
i.e., 
� = �� = �∗� = 1, where the continuity constant is de�ned as


� ∶= sup
x∈L2(Ω)

sup
y�∈Y�

b�(x, y�)
‖x‖L2(Ω)‖y�‖Y�

,

and primal resp. dual inf-sup constants read

�� ∶= inf
x∈L2(Ω)

sup
y�∈Y�

b�(x, y�)
‖x‖L2(Ω)‖y�‖Y�

, �∗� ∶= inf
y�∈Y�

sup
x∈L2(Ω)

b�(x, y�)
‖x‖L2(Ω)‖y�‖Y�

.

Proof. See [9, Proposition 3.1 and Corollary 3.2]. �

2.2. An ultraweak formulation of PDAEs. We are now going to apply the frame-
work of §2.1 to the classical form (1.1) of the PDAE. Again, w.l.o.g. we restrict ourselves
to homogeneous initial conditions x�(0) = 0, as stated in §1.3.

It is immediate that we can generalize ultraweak formulations for scalar-valued
functions in L2(Ω) as above to systems, i.e., L2(Ω)n ≡ L2(Ω;ℝn). For PDAEs, we
choose L2(I)n with the inner product (⋅, ⋅)L2 ≡ (⋅, ⋅)L2(I)n , whereas (⋅, ⋅) denotes the
Euclidean inner product of vectors. The linear operator {B�;◦, D(B�;◦)} corresponding
to (1.1) reads

B�;◦ ∶= E d
dt
− A�, D(B�;◦) ∶= {x ∈ Ck� (I)n ∩ C(Ī)n ∶ x(0) = 0}.

The formal adjoint operator B∗�;◦ is easily derived by integration by parts, i.e.,

(B�;◦x, y)L2 = (Eẋ − A�x, y)L2 = (ẋ, ETy)L2 − (x,AT�y)L2
= (x(T), ETy(T)) − (x(0), ETy(0)) − (x, ETẏ)L2 − (x,AT�y)L2
= (x,−ETẏ − AT�y)L2 =∶ (x, B

∗
�;◦y)L2 ∀x, y ∈ C∞0 (I)

n,

which shows that

B∗�;◦ ∶= −ET d
dt
− AT� ,

D(B∗�;◦) ≡ C1E(I)
n ∶= {y ∈ C1(I)n ∩ C(Ī)n ∶ y(T) ∈ ker(ET)}.(2.3)

In fact, (B�;◦x, y)L2 = (x, B∗�;◦y)L2 for all x ∈ D(B�;◦) and y ∈ D(B∗�;◦) since the bound-
ary terms above still vanish thanks to x(0) = 0 and y(T) ∈ ker(ET). Moreover

R(B�;◦) = Ck�−1(I)n ∩ C(Ī)n, R(B∗�;◦) = C(Ī)n.

Lemma 2.2. We have D(B�;◦), D(B∗�;◦), R(B∗�;◦) ⊂ L2(I)n with dense embeddings.

4Y′� denotes the dual space of Y� w.r.t. the pivot space L2(Ω).
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Proof. By the de�nition ofH1
0(I)

n and [1, Cor. 7.24] (forH1(I)n instead ofH1(I) there,
which is a trivial extension), we have

C∞0 (I)
n ⊂ H1

0(I)
n ⊂ C(Ī)n, hence C∞0 (I)

n = C∞0 (I)
n ∩ C(Ī)n.

With that, C∞0 (I)
n ⊆ D(B�;◦), D(B∗�;◦), R(B∗◦) ⊂ L2(I)n is easy to see. Since C∞0 (I)

n is
dense in L2(I)n, its supersets D(B�;◦), D(B∗�;◦), R(B∗�;◦) are also dense in L2(I)n. �

The above lemma ensures assumption (B1). Next, we consider (B2).

Lemma 2.3. The adjoint operator {B∗�;◦, D(B∗�;◦)} is injective, i.e., for y�, z� ∈ D(B∗�;◦)
with B∗�;◦y� = B∗�;◦z� we have y� = z�.

Proof. Setting d� ∶= y� − z�, we get B∗�;◦d� = 0 and

−ETḋ�(t) − AT�d�(t) = 0, ∀t ∈ I, d�(T) = y�(T) − z�(T) ∈ ker(ET).

Due to regularity of {E,−A�} (and thus also of {−ET ,−AT� }), there are regular matrices
P�, Q� ∈ ℂn×n, which allow us to transform the problem into Weierstrass-Kronecker
normal form, [14, 18], i.e.,

P�ETQ� = (Idm 0
0 N�

) , P�AT�Q� = (R� 0
0 Idn−m

) , Q−1� d�(t) = (u�(t)v�(t)
) ,

where Idn ∈ ℝn×n is the identity and N� is a nilpotent matrix with nilpotency index
k�. This yields the equivalent representation

u̇�(t) + R�u�(t) = 0, ∀t ∈ I,(2.4a)
N�v̇�(t) + v�(t) = 0, ∀t ∈ I,(2.4b)

Q� (u�(T)v�(T)
) ∈ ker(ET).(2.4c)

The ODE (2.4a) has the general solution u�(t) = u�(T) e−R�(T−t). By (2.4c) we get

ETQ� (u�(T)v�(T)
) = 0 = P�ETQ� (u�(T)v�(T)

) = (Idm 0
0 N�

) (u�(T)v�(T)
) = ( u�(T)

N�v�(T)
) ,

so that u�(T) = 0 and hence u�(t) = u�(T) e−R�(T−t) = 0 for all t ∈ I.
The initial value problem N�v̇�(t) + v�(t) = q�(t), t ∈ I, v�(T) = v�,T with some

q� ∈ Ck�−1(Ī)n−m has the unique solution v�(t) =
∑k�−1

i=0 (−1)iNi
�q

(i)
� , if the initial

value v�,T is consistent, see e.g. [5]. We apply this for q� ≡ 0 ∈ Ck�−1(Ī)n−m. Then,
by the solution formula, we get v� ≡ 0, since the initial value in (2.4c) is by de�nition
trivially consistent. This yields d� ≡ 0, i.e., y� = z�. �

Hence, we set ⦀⋅⦀� ∶= ‖B∗�⋅‖L2 and choose trial and test spaces as

X ∶= L2(I)n, Y� ∶= clos⦀⋅⦀�
(
C1E(I)

n), b�(x, y) ∶= (x, B∗�y)L2 ,(2.5)

see (2.3) and obtain the following result.

Lemma 2.4. Under the above assumptions, we have for all � ∈ P that Y� ≡ Y, where

Y ∶= H1
E(I)

n ∶= {v ∈ H1(I)n ∶ v(T) ∈ ker(ET)}.
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Proof. Clearly C1E(I)
n ⊂ H1

E(I)
n, so that Y� ⊆ Y for all � ∈ P. Now, let y ∈

Y = H1
E(I)

n, then, by density, there is a sequence (yl)l∈ℕ ⊂ C1E(I)
n such that

‖yl − y‖H1(I)n → 0 as l→ 0. Since P is compact, we have that

⦀yl − y⦀� = ‖ET(ẏl − ẏ) + AT�(yl − y)‖L2 ≤ max{‖E‖, ‖A�‖} ‖yl − y‖H1(I)n → 0

as l→∞. Hence, y ∈ clos⦀⋅⦀�
(
C1E(I)

n) = Y�, i.e. Y ⊆ Y�. �

The latter result must be properly interpreted. It says thatY� andY coincide as sets.
However, the norm ⦀⋅⦀� (and thus the topology) still depends on the parameter. The
same holds true for the dual spaceY′ ofY induced by the L2-inner product and normed
by

⦀f⦀′� ∶= sup
y∈Y

(f, y)L2
⦀y⦀�

.

In particular, we have a generalized Cauchy-Schwarz inequality (f, y)L2 ≤ ⦀f⦀′� ⦀y⦀�.

Lemma 2.5. Let f� ∈ Y′. Then, there exists a unique weak solution x� ∈ X of

b�(x�, y) = f�(y), ∀y ∈ Y.(2.6)

If (1.1) admits a classical solution, then it coincides with x�. Moreover, 
� = �� = �∗� = 1
for the constants de�ned in Lemma 2.1.

Proof. The existence of a unique solution x� ∈ X (as well as 
� = �� = �∗� = 1) is
an immediate consequence of Lemma 2.1. It only remains to show that x� satisfying
(2.6) is a weak solution of (1.1). To this end, let f̃� ∈ C(I)n be given such that there
exists a classical solution x̃� ∈ C1(Ī)n with B�;◦x̃�(t) = f̃�(t),∀t ∈ I and x̃�(0) =
0. Then, de�ne f� ∈ Y′ by f�(y) ∶= (f̃�, y)L2 . We need to show that the classical
solution x̃� of (1.1) is also the unique solution of (2.6). First, for y ∈ C1E(I)

n, integration
by parts yields b�(x̃�, y) − f�(y) = (x̃�, B∗�y)L2 − f�(y) = (B�;◦x̃� − f̃�, y)L2 = 0.
Second, let y ∈ Y ⧵ C1E(I)

n, then there is (ỹl)l∈ℕ ⊂ C1E(I)
n converging to y in Y, i.e.,

liml→∞⦀y − ỹl⦀� = 0. Then, by the generalized Cauchy-Schwarz inequality

|b�(x̃�, y) − f�(y)| = |b�(x̃�, y) − f�(y) − b�(x̃�, ỹl) + f�(ỹl)|
= |(x̃�, B∗�(y − ỹl))L2 − f�(y − ỹl)|
≤ ‖x̃�‖L2‖B

∗
�(y − ỹl)‖L2 + ⦀f�⦀′� ⦀y − ỹl⦀�

=
(
‖x̃�‖L2 + ⦀f�⦀′�

)
⦀y − ỹl⦀� → 0 as l→∞,

so that (2.6) holds for x̃�. �

For the ultraweak PDAE (2.6), we need a right-hand side f� ∈ Y′. However, typ-
ically, the right-hand side is given within context of (1.1) as a function of time, i.e.,
g� ∶ I → ℝn. Then, we simply de�ne f� ∈ Y′ by

f�(y) ∶= (g�, y)L2 = ∫
I
(g�(t), y(t)) dt, y ∈ Y.(2.7)
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3. Petrov-Galerkin discretization

The next step towards a numerical method for solving an ultraweak operator equa-
tion is to introduce �nite-dimensional trial and test spaces yielding a Petrov-Galerkin
discretization. In this section, we shall �rst review Petrov-Galerkinmethods in general
terms and then detail the speci�cation for PDAEs.

3.1. Petrov-Galerkinmethod. In order to determine anumerical approximation, we
are going to construct an appropriate �nite-dimensional trial space XN

� ⊂ X = L2(I)n

and a parameter-independent test space YN ⊂ Y of �nite (but possibly large) dimen-
sionN ∈ ℕ. Then, we are seeking xN� ∈ XN

� such that

b�(xN� , yN) = f�(yN), ∀yN ∈ YN ,(3.1)

which leads to solving a linear system of equations BN� xN� = fN� in ℝN .

Remark 3.1. (a) If one would choose a discretization with dim(YN) > dim(XN
� ), one

would need to solve a least squares problem ‖BN� xN� − fN� ‖2 → min.
(b) If one de�nes the trial space according to XN

� ∶= B∗�YN , then it is easily seen that
the discrete problem (3.1) is well-posed and optimally conditioned, [6], i.e.,


N� ∶= sup
x∈XN�

sup
y∈YN

b�(x, y)
‖x‖L2 ⦀y⦀�

= 1,

�N� ∶= inf
x∈XN�

sup
y∈YN

b�(x, y)
‖x‖L2 ⦀y⦀�

= 1, �∗,N� ∶= inf
y∈YN

sup
x∈XN�

b�(x, y)
‖x‖L2 ⦀y⦀�

= 1.

(c) The Xu-Zikatanov lemma ([31]) ensures that the Petrov-Galerkin error is compa-
rable with the error of the best approximation, namely

‖x� − xN� ‖L2 ≤

�
�N�

inf
vN∈XN�

‖x� − vN‖L2 ,(3.2)

so that the Petrov-Galerkin approximation is the best approximation (i.e., an iden-
tity) for 
� = �N� = 1.

The Petrov-Galerkin framework induces a residual-based error estimation in a
straightforward manner. To describe it, let us recall that the residual is de�ned for
some x̃ ∈ L2(I)n as

r(x̃) ∈ Y′, r(x̃)[y] ∶= f�(y) − b�(x̃, y), y ∈ Y.

Then, it is a standard estimate that

‖x� − xN� ‖L2 ≤
1
��

sup
y∈Y

b�(x� − xN� , y)
⦀y⦀�

= 1
��

⦀r(xN� )⦀′� =∶ ∆N�(3.3)

and ∆N� is a residual-based error estimator. Note that for �� = 1 we have a error-
residual identity ‖x� − xN� ‖L2 = ⦀r(xN� )⦀′� = ∆N� .
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Figure 1. Piecewise linear temporal discretization (hat functions).

3.2. PDAE Petrov-Galerkin Discretization. We are now going to specify the above
general framework to PDAEs. This means that we need to introduce a suitable dis-
cretization in time. We �x a constant time step size ∆t ∶= T∕K (i.e., K ∈ ℕ is the
number of time intervals) and choose for simplicity equidistant nodes tk ∶= k∆t, k =
0, ..., K in I. Denote by �k, k = 0, ..., K piecewise linear splines corresponding to the
nodes tk−1, tk and tk+1, see Figure 1. For k ∈ {0, K}, the hat functions are restricted
to the interval Ī. For realizing a discretization of higher order, one could simply use
splines of higher degree.

As in [6], we start by de�ning the test space and then construct inf-sup optimal trial
spaces. To this end, let d ∶= dim(kerET) and assume that we have a basis {v1,… , vd}
of kerET at hand5 and form a matrix V ∶= (v1, ..., vd) ∈ ℝn×d by arranging the vectors
as columns of V. Then, we construct YN ⊂ Y = H1

E(I)
n independent of the parameter

and choose the trial space as XN
� ∶= B∗�YN , which will then guarantee that �N� = 1.

We suggest a piecewise linear discretization by

YN ∶= span
{
ei�k ∶ k = 0, ..., K − 1, i = 1, ..., n

}
⊕ span

{
vi�K ∶ i = 1,… , d

}
⊂ Y,

where ei ∈ ℝn denotes i-th canonical vector. Then, we set

XN
� ∶= B∗�YN =span

{
−ETei�̇k − AT�ei�k ∶ k = 0, ..., K − 1, i = 1, ..., n

}

⊕ span
{
−ETvi�̇K − AT�vi�K ∶ i = 1,… , d

}
⊂ X = L2(I)n,

with dimensions N ∶= dim(XN) = dim(YN) = nK + d. Then, Lemma 2.5 and
Remark 3.1 ensure �N� = �� = 
� = 1 and thus

‖x� − xN� ‖L2 = inf
vN∈XN�

‖x� − vN‖L2 = ⦀r(xN� )⦀′� = ∆N� .(3.4)

3.2.1. The linear system. To construct the discrete linear system BN� xN� = fN� we
need bases {�1(�),… , �N(�)} of XN

� and { 1,… ,  N} of YN . The sti�ness matrix BN� ∈
ℝN×N can be computed by [BN� ]j,i ∶= b�(�i(�),  j) = (�i(�), B∗� j)L2 . We recall that
XN
� = B∗�YN , which implies that �i(�) = B∗� i , so that [BN� ]j,i = (B∗� i , B∗� j)L2 and

BN� is in fact symmetric positive de�nite.
The right-hand side fN� ∈ ℝN reads [fN� ]j ∶= f�( j). The discrete solution then

reads xN� ∶=
∑N

i=1[x
N
� ]i �i(�).

5This is in fact the reason why we restricted ourselves to parameter-independent matrices E instead of
E� . We would then need to have a parameter-dependent basis for kerET� , which is of course possible, but
causes a quite heavy notation.
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Recalling the �nite element functions �k in Figure 1, we de�ne the inner product
matrices for k,l = 0, ..., K by

[K∆t]k,l ∶= (�̇k, �̇l)L2(I), [L∆t]k,l ∶= (�k, �l)L2(I), [O∆t]k,l ∶= (�̇k, �l)L2(I),

and subdivide the matrices�∆t ∈ ℝ(K+1)×(K+1) for�∆t ∈ {K∆t,L∆t,O∆t} according to

�∆t =
⎛
⎜
⎝

�1,1
∆t �1,2

∆t

�2,1
∆t �2,2

∆t

⎞
⎟
⎠
,

�1,1
∆t ∈ ℝK×K , �1,2

∆t ∈ ℝK×1,

�2,1
∆t ∈ ℝ1×K , �2,2

∆t ∈ ℝ.

Then, the sti�ness matrix also has block structure

BN� =
⎛
⎜
⎝

B1,1� B1,2�
B2,1� B2,2�

⎞
⎟
⎠
∈ ℝN×N

in form of Kronecker products of matrices, i.e. (withV = (v1,… , vd) ∈ ℝn×d as above),

B1,1� = K1,1
∆t ⊗EET + O1,1∆t ⊗EAT� + (O1,1∆t )

T ⊗A�ET + L
1,1
∆t ⊗A�AT� ∈ ℝnK×nK ,

B1,2� = O1,2∆t ⊗EAT�V + L1,2∆t ⊗A�AT�V ∈ ℝnK×d,

B2,1� = (O1,2∆t )
T ⊗VTA�ET + L

2,1
∆t ⊗VTA�AT� ∈ ℝd×nK ,

B2,2� = L2,2∆t ⊗VTA�AT�V ∈ ℝd×d.

For the right-hand side, given some function f� ∶ Ī → ℝn, we obtain a discretiza-
tion fN� ∈ ℝN in the sense of (2.7) by [fN� ]j =

∑K
k=0(f�(tk)�k,  j)L2 , j = 1, ...,N.

This means that we discretize f� in time by means of piecewise linears. Collecting the

sample values of f� in one vector, i.e., f�,∆t ∶=
(
f�(t0),… , f�(tK)

)T
∈ ℝn(K+1) we get

that

fN� = FT∆tf�,∆t where F∆t ∶=
⎛
⎜
⎝

Idn ⊗ L1,1∆t V ⊗ L1,2∆t
Idn ⊗ L2,1∆t V ⊗ L2,2∆t

⎞
⎟
⎠
∈ ℝn(K+1)×N

and Idn ∈ ℝn×n again denoting the n-dimensional identity matrix.
As already noted above, of course, one could use di�erent discretizations (e.g. higher

order or di�erent discretizations for f� and the test functions) and we choose the de-
scribed one just for simplicity.

The e�cient numerical solution of this linear system requires a solver that takes
the speci�c structure into account. For similar systems arising from space-time (ul-
traweak) variational formulations of heat, transport and wave equations, such speci�c
e�cient solvers have been introduced in [15, 16]. The structure of the system above is
di�erent and we will consider the development of e�cient solvers in future research,
see Section 6.

3.2.2. Special case: Linear DAEs. We are going to specify the above general setting to
the special case of fully linear DAEs, namely

Eẋ(t) − Ax(t) = Bu(t) + g�2(t), t ∈ I, x(0) = 0,(3.5)

in which the right-hand side is given in terms of a matrix B ∈ ℝn×m, a control u ∶ Ī →
ℝm, m denoting some input dimension and a function g�2 ∶ Ī → ℝn, which arises
from the reduction to homogeneous initial conditions, see §1.3. The initial condition
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is assumed to be parameterized through g�2 by �2 ∈ P2 ⊂ ℝP2 , P2 ∈ ℕ. In view of
(1.2) and §1.3, we get

g�2(t) =
Qx∑

q=1
#xq (�2)

(
Ax̄q(t) − E ̇̄xq(t)

)
=∶

Qx∑

q=1
#xq (�2) zq(t),

where x̄q ∈ C1(Ī)n are smooth extensions of x̃0,q, i.e., x̄q(0) = x̃0,q, q = 1, ..., Qx.
We view the control and the initial condition (via g�2) as parameters, i.e., f�(t) =

B�1(t) + g�2(t), � = (�1, �2), which means that the parameter set would be in�nite-
dimensional and needs to be discretized. Using the same kind of discretization as
above, we can use the samples of the control as parameter, i.e.,

�1 ∶=
(
u(t0), ..., u(tK)

)T
∈ P1 = ℝP1 , P1 = m(K + 1),

and similar for the initial condition zq ∶=
(
zq(t0), ..., zq(tK)

)T
∈ ℝn(K+1), q = 1, ..., Qx.

Then, we get

fN� = FT∆t(B ⊗ IdK+1)�1 +
Qx∑

q=1
#xq (�2)FT∆tzq,

so that the parameter dimension is P = P1+P2 = m(K+1)+P2, whichmight be large.
The right-hand sidefN� thus also admits an a�ne decomposition withQf = P1+Qx =
m(K + 1) + Qx terms. However, this number might be an issue concerning e�ciency
if K is large. Nevertheless, ifm ≪ n, we still have Qf ≪N.

Moreover, in the linear case, the matrix A� ≡ A is independent of the parameter,
whichmeans (among other facts) that trial and test spaces are parameter-independent,
as sets and also w.r.t. their topology. Note that this is the most common case for system
theoretic MORmethods (like BT), which are often even restricted to this case, [20, 25],
with the exception [8]. Our setting seems more �exible in this regard and fully linear
DAEs are just a special case.

4. Model order reduction: The Reduced Basis Method

The Reduced Basis Method (RBM) is a model order reduction technique which has
originally been constructed for parameterized partial di�erential equations (PPDEs),
see e.g. [3, 17, 22]. In an o�ine training phase, a reduced basis of size N ≪ N is
constructed (typically in a greedy manner, see Algorithm 1 below) from su�ciently
detailed approximations for certain parameter samples (also called “truth” approxima-
tions or snapshots), which are computed e.g. by a Petrov-Galerkinmethod as described
above. In particular,N is assumed to be su�ciently large in order to ensure that xN�
is (at least numerically) indistinguishable from the exact state x�, which explains the
name “truth”. As long as an e�cient solver for the detailed problem is available, we
may assume that the snapshots can be computed in O(N) complexity.

Given some parameter value�, the reduced approximation xN(�)6 is then computed
by solving a reduced system of dimensionN. Thanks to the a�ne decomposition (1.2),
several quantities for the reduced system can be precomputed and stored so that a re-
duced approximation is determined in O(N3) operations, independent ofN (which is
called online e�cient). Moreover, an a posteriori error estimator ∆N(�) guarantees a

6For all quantities of the reduced system, we write the parameter � as an argument in order to clearly
distinguish the detailed approximation xN� from the reduced approximation xN(�) for the same parameter.
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certi�cation in terms of an online e�ciently computable upper bound for the error,
i.e., ‖xN� − xN(�)‖L2 ≤ ∆N(�).

We are going to use this framework for PDAEs of the form (1.1). Model reduction
of (1.1) may be concerned (at least) with the following quantities

∙ size n of the system,
∙ dimension K of the temporal discretization,

where we have in mind to solve (1.1) extremely fast for several values of the parameter
�. As mentioned earlier, the �rst issue has extensively been studied in the literature
e.g. by system theoretic methods, in particular for fully linear DAEs (3.5). This can
be done independently from the subsequent reduction w.r.t.K (both for parameterized
andnon-parameterized versions), so thatwe evenmight assume that suchModelOrder
Reduction (MOR) techniques have already been applied in a preprocessing step. We
mention [8] for a system theoretic MOR for parameter-dependent DAEs. Here, we are
going to consider the reduction w.r.t. time using the RBM based upon a variational
formulation w.r.t. the time variable.

We restrict ourselves to the reduction of the fully linear case of (3.5) as it easily
shows how the RBM-inspired model reduction can be combined with existing system
theoretic approaches to reduce the size of the system (e.g. in a preprocessing step). In
the fully linear case, the matrix A� ≡ A and hence all operators and bilinear forms
on the left-hand side are parameter-independent. This implies in addition that the
ansatz space XN

� ≡ XN and the norm ⦀⋅⦀� ≡ ⦀⋅⦀ inducing the topology on the test
space are parameter-independent as well, which of course simpli�es the framework.
However, parameter-dependent matrices A� can be treated similar to the RBM for ul-
traweak formulations of PPDEs as described e.g. in [6, 16, 30]. However, we note that
the RB approach also allows the treatment of more general PDAEs and is not restricted
to fully linear systems (3.5), in particular w.r.t. the right-hand side.

The idea of the RBM can be described as follows: One determines sample values

SN ∶= {�(1), ..., �(N)} ⊂ P

of the parameters in an o�ine training phase by a greedy procedure described in Algo-
rithm 1 below. Then, for each � ∈ SN , we determine a su�ciently detailed “snapshot”
xN� ∈ XN by the ultraweak Petrov-Galerkin discretization as in §3.2 and obtain a re-
duced space of dimension N by setting

XN ∶= span{xN� ∶ � ∈ SN} =∶ span{�1, ..., �N} ⊂ XN .

We also need a reduced test space for the Petrov-Galerkin method. Recalling that the
operator is parameter-independent here (B� ≡ B) and also the trial space XN is inde-
pendent of �, we can easily identify the optimal test space. In fact, for each snapshot
there exists a unique yN� ∈ YN such that xN� = B∗yN� . Then, we de�ne

YN ∶= span{yN� ∶ � ∈ SN} =∶ span{�1, ..., �N} ⊂ YN .7

Then, given a new parameter value � ∈ P, one determines the reduced approximation
xN(�) ∈ XN by solving (recall that here b� ≡ b)

b(xN(�), yN) = f�(yN) for all yN ∈ YN .

If N ≪ N = nK + d, we can compute a reduced approximation with signi�cantly
less e�ort as compared to the Petrov-Galerkin (or a time-stepping) method. To deter-
mine the reduced approximation xN(�), we have to solve a linear system of the form

7For e�ciency reasons, in fact, we �rst determine �i and then simply set �i ∶= B∗�i .
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BNxN(�) = fN(�), where the sti�ness matrix is given by [BN]j,i = b(�i , �j), i, j =
1, ..., N, recalling that the bilinear form is parameter-independent. Hence,BN ∈ ℝN×N

can be computed and stored in the o�ine phase. For the right-hand side, we use the
a�ne decomposition (1.2) and get [fN(�)]j =

∑Qf
q=1 #

f
g (�) (f̃q, �j)L2 . The quantities

(f̃q, �j)L2 can be precomputed and stored in the o�ine phase, so that fN(�) is com-
puted online e�cient in O(QfN) operations. Obtaining the coe�cient vector xN(�),
the reduced approximation results in xN(�) =

∑N
i=1[xN(�)]i �i . Note that the matrix

BN is typically densely populated so that the numerical solution requires in general
O(N3) operations.

The announced greedy selection of the samples is based upon the residual error esti-
mate (here identity) ∆N� in (3.3) resp. (3.4) for the reduced system described as follows:
In a similar manner as deriving ∆N� in (3.3) we get a residual based error estimator for
the reduced approximation

‖xN� − xN(�)‖L2 ≤
1
�N

sup
y∈YN

b(xN� − xN(�), y)
⦀y⦀

= 1
�N

⦀r(xN(�))⦀′ =∶ ∆N(�),

since the bilinear form and the norm in Y are parameter-independent here. Hence,
the inf-sup constant is parameter-independent as well, i.e., �N� ≡ �N and it is unity by
Remark 3.1, so that

‖xN� − xN(�)‖L2 = ⦀r(xN(�))⦀′ = ∆N(�).(4.1)

Its computation can be done in an online e�cient manner in O(N) operations by de-
termining Riesz representations in the o�ine phase, see [3, 17, 22]. We use this error
identity in the greedy method in Algorithm 1 below.

Algorithm 1 (Weak) Greedy method
input: training sample Ptrain ⊆ P, tolerance " > 0, max. dimension Nmax ∈ ℕ

1: choose �(1) ∈ Ptrain, compute snapshot �1 ∶= xN
�(1)

and optimal test function �1 with �1 = B∗�1
2: Initialize S1 ← {�(1)}, X1 ∶= span{�1}, Y1 ∶= span{�1}, N ∶= 1
3: while N < Nmax do
4: if max

�∈Ptrain
∆N(�) ≤ " then return

5: �(N+1) ← arg max
�∈Ptrain

∆N(�)

6: compute snapshot �N+1 ∶= xN
�(N+1)

and optimal test function �N+1
7: SN+1 ← SN ∪ {�(N+1)}, XN+1 ∶= XN ⊕ span{�N+1}, YN+1 ∶= YN ⊕ span{�N+1}
8: N ← N + 1
9: end while

output: set of chosen parameters SN , reduced spaces XN , YN

5. Numerical experiments

In this section, we report on results of some of our numerical experiments. Our
main focus is on the numerical solution of the ultraweak form of the PDAE, the error
estimation and the quantitative reduction. We solve the arising linear systems for the



AN ULTRAWEAK VARIATIONAL METHOD FOR LINEAR PDAES 13

Petrov-Galerkin and the reduced system byMatlab’s backslash operator, see also our
remarks in Section 6 below. The codes for producing the subsequent results is available
via https://github.com/mfeuerle/Ultraweak_PDAE.

5.1. SerialRLCcircuit. We start by a standard problemwhich (in some cases) admits
a closed formula for the analytical solution. This allows us to monitor the exact error
and a comparison with standard time-stepping methods. Our particular interest is the
approximation property of the ultraweak approach, which is an L2-approximation.

The serial RLC circuit consists of a resistor with resistance R, an inductor with in-
ductance L, a capacitor with capacity C and a voltage source fed by a voltage curve
fVS ∶ Ī → ℝ. Kirchho�’s circuit and further laws from electrical engineering yield a
DAE with the data

E =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎠

, A =
⎛
⎜
⎜
⎝

0 0 L−1 0
C−1 0 0 0
R 0 0 −1
0 1 1 1

⎞
⎟
⎟
⎠

, x =
⎛
⎜
⎜
⎝

xI
xVC
xVL
xVR

⎞
⎟
⎟
⎠

, f =
⎛
⎜
⎜
⎝

0
0
0

−fVS

⎞
⎟
⎟
⎠

,

whose index is k = 1. The solution x consists of the electric current xI and the voltages
at the capacitor xVC , at the inductor xVL and at the resistor xVR .

Convergence of the Petrov-Galerkin scheme. In Figure 2, we compare the exact solution
with approximations generated by a standard time-stepping scheme (usingMatlab’s
fully implicit variable order solver with adaptive step size control ode15i, [19]) and by
our ultraweak formulation from§3.2. We choose two speci�c examples forfVS , namely
a smooth and a discontinuous one,

fsmooth
VS

(t) ∶= sin
(4�
T t

)
, fdiscVS

(t) ∶= sign
(
cos

(4�
T t

))
.

For the smooth right-hand side (left graph in Figure 2), both ode15i and the ultraweak
method give good results. Concerning the deviations for the ultraweak approach at the
start and end time, we recall that the ultraweak form yields an approximation in L2, so
that pointwise comparisons are not necessarily meaningful.

In the discontinuous case, existence of a classical solution cannot be guaranteed by
the above arguments. In particular, there is no closed solution formula. As we see in
the right graph in Figure 2, ode15i stops at the �rst jump. This is to be expected, since
fdiscVS

∉ C0(Ī), so that the solution lacks su�cient regularity to guarantee convergence
of a time-stepping scheme like ode15i (even though it is an adaptive variable order
method). We could resolve the jumps even better by choosingmore time stepsK, while
ode15i still fails. We conclude that the ultraweak method also converges for problems
lacking regularity.

Convergence rate. Next, we investigate the rate of convergence for the ultraweak form.
To that end, we use fsmooth

VS
, since the analytical solution x∗ is known and we can thus

compute the relative error ‖x∗ − xN‖L2∕‖x
∗‖L2 . Using the lowest order discretization

as mentioned above (namely piecewise linear test functions  j , which yield discontin-
uous trial functions B∗ i), we can only hope for �rst order (w.r.t. the number of time
steps K), which we see in Figure 3 and was observed in all cases we considered. We
obtain higher order convergence by choosing test functions of higher order, provided
the solution has su�cient smoothness.

https://github.com/mfeuerle/Ultraweak_PDAE
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Figure 2. Serial RLC circuit, exact voltage at the inductor; compari-
son of time-stepping (ode15i – blue) and ultraweak (red) approxima-
tion for smooth fsmooth
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continuous fdiscVS
(right) right-hand side.

Moreover, we compare the exact relative error with our error estimator (see §3.1).
Figure 3 shows a perfect matching con�rming the error-residual identity (3.4) also for
the numerically computed error estimator.
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Figure 3. Relative error ‖x∗ − xN‖L2∕‖x
∗‖L2 and relative error es-

timator ∆N∕‖x∗‖L2 w.r.t. to the analytical solution x∗ for increasing
numbers of time steps K.

5.2. Time dependent Stokes problem. In order to investigate the quantitative per-
formance of the model reduction, we consider a problem, which has often been used
as a benchmark, [21, 23, 27, 28], namely the time-dependent Stokes problem on the
unit square (0, 1)2, discretized by a �nite volume method on a uniform, staggered grid
for the spatial variables with n unknowns, [28], where we choose n = 644. The arising
homogeneous fully linear DAE with output function y ∶ I → ℝ takes the form (3.5),

Eẋ(t) − Ax(t) = Bu(t) + g(t), t ∈ I, x(0) = 0,(5.1a)
y(t) = Cx(t),(5.1b)

where C ∈ ℝ1×n is an output matrix, B ∈ ℝn×1 is the control matrix, and u ∶ I → ℝ
is a control, which serves as a parameter � ≡ u as described in §3.2.2 above.8 We use a
parameter-independent initial condition, so that g� ≡ g and Qx = 1.

8We could also choose larger input/output-dimensions.
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In order to combine system theoretic model reduction with the Reduced Basis
Method from §4, we use the system theoretic model order reduction package [21]. In
particular, we use Balanced Truncation (BT) from [27] during a preprocessing step to
reduce the above system of dimension n to a system

Ê ̇̂x(t) − Âx̂(t) = B̂u(t) + ĝ(t), t ∈ I, x̂(0) = 0,(5.2a)

y(t) = Ĉx̂(t),(5.2b)

with Ê, Â ∈ ℝn̂×n̂, B̂ ∈ ℝn̂×1, Ĉ ∈ ℝ1×n̂ as well as x̂, ĝ ∶ Ī → ℝn̂ and n̂ ≪ n. We
note that the resulting reduced system typically provides regular matrices Ê, Â. Then,
the reduced system is a linear time-invariant system (LTI), which is an easier problem
than a DAE and in fact a special case. Hence, our presented approach is still valid, even
though designed for PDAEs. For an ultraweak formulation of LTI systems, we refer to
[10].

Remark 5.1. We use the RBM here for deriving a certi�ed reduced approximation of
the state x. If we would want to control the output y along with a corresponding error
estimator ∆yN , it is fairly standard in the theory of RBM to use a primal-dual approach
with a second (dual) reduced basis, e.g. [17, 22]. For simplicity of exposition, we leave
this to future work and compute the output from the state by Ĉx̂(t), resp. Cx(t). ⋄

Discretization of the control within the RBM. Since we use a variational approach, we
are in principle free to choose any discretization for the control (we only need to com-
pute inner products with the test basis functions). We tested piecewise linear dis-
cretizations as described in §3.2 for di�erent step sizesKu∕T, whereKu might be di�er-
ent from K, which we choose for discretizing the state. Doing so, the parameter reads
� = (u(t0),… , u(tKu ))

T ∈ P ≡ ℝKu+1, i.e., the parameter dimension is P = Ku + 1,
which might be large. Large parameter dimensions are potentially an issue for the
RBM since the curse of dimension occurs. Hence, we investigate if we can reduce Ku
within the RBM.

In order to answer this question, we applyAlgorithm1 to the time-dependent Stokes
problem (5.1a) (without BT) setting " = 0, Nmax = Qf from (1.2) (i.e., Qf = P + 1 for
the fully linear system with parameter-independent initial value) and Ptrain consisting
of 500 random vectors for Ku ≡ K ∈ {75, 150, 300}, i.e., N = 48 524, 96 824, 193 424,
where d = 224. For these three cases, we investigate the max greedy training error,
i.e., max�∈Ptrain ∆N(�). The results in Figure 4 show an exponential decay w.r.t. the
dimensionN of the reduced systemwith slower decay asK grows. This is to be expected
as the discretized control space is much richer for growing Ku and the reduced model
has to be able to represent this variety. However, in relative terms (i.e., reduced size
N compared with full size K), we see that the compression rates are almost the same.
This shows that the RBM can e�ectively reduce the system no matter how strong the
in�uence of the control on the state is. It is expected that this potential is even more
pronounced if a primal-dual RBM is used for the output.

Next, we note that for A ≡ A� as (5.1a), the reduced model is always exact for N ≥
Qf , which explains the drop o� of the curves in Figure 4. For fully linear DAEs, a
reduced model with N ≥ Qf = Ku + 2 is always exact. Hence, if m ≪ n (here m =
1 ≪ 644 = n), we obtain an exact reduced model of dimension N = Qf = P + Qx =
m(Ku + 1) + 1 ≪ nK + d =∶ N. Even though this seems to be attractive for low-
dimensional outputs, we stress the fact that the reduced dimension still depends on
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the temporal dimension Ku, which might be large. Hence, a combination of a possibly
small discretization of the control and a RBM seems necessary.
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Figure 4. Maximal greedy training error max�∈Ptrain ∆N(�) for dif-
ferent time resolutions Ku = K ∈ {75, 150, 300} over the reduced
dimension N.

Let us comment on the error decay of the RBM produced by the greedy method
using the error estimator derived from the ultraweak formulation of the PDAE. We
obtain exponential decay of the error, which in fact shows the potential of the RBM.
The question if a given PDAE permits a fast decay of the greedy RBM error is well-
known to be linked to the decay of the Kolmogorov N-width, [3, 17, 30], which is a
property only of the problem at hand. In other words, if a PDAE can be reduced w.r.t.
time, the greedy method will detect this.

The results in Figure 4 use Ku = K. The next question is how the error behaves
for Ku < K. To this end, we determine the error in the state w.r.t. the full resolution,
i.e., we compare the state derived from the control with Ku degrees of freedom with
the state of the fully resolved control. In Figure 5, we display errors for di�erent values
for K. We obtain fast convergence, which again shows the signi�cant potential for a
reduced temporal discretization of the control.
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Figure 5. Max error for control dimensions of size Ku < K.
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Combination with BT / RBM error decay. Next, we wish to investigate if a combination
of a system theoretic MOR (here BT) and an RBM-like reduction w.r.t. time can be
combined. To this end, we �x the temporal resolution (i.e., the number of time steps,
here K = Ku = 100) and determine the RBM error using Algorithm 1 for the full and
the BT-reduced system. We use [21] to compute the BT from [27] and obtain a LTI
system of dimension n̂ = 5.

The results are shown in Figure 6, where we again show themaximal training error.
As we see, the error for the BT-reduced system is smaller than the original one, which
in fact indicates that we can combine both methods. We got similar results for other
choices of K. This shows that there is as much “reduction potential” in the reduced
system (5.2a) as in the original system (5.1a). In other words, a combination of BT and
RBM shows signi�cant compression potential.
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Figure 6. Maximal RBM relative error decay over the reduced di-
mensionN for the full system (5.1a) (blue) and for the reduced system
(5.2a) with K = 100 (red).

6. Conclusions and outlook

In this paper, we introduced a well-posed ultraweak formulation for DAEs and an
optimally stable Petrov-Galerkin discretization, which admits a sharp error bound. The
scheme shows the expected order of convergence depending on the regularity of the
solution and the smoothness of the trial functions. The scheme also converges in low-
regularity cases, where classical standard time-stepping schemes fail. Moreover, the
stability of the Petrov-Galerkin scheme allows us to choose any temporal discretization
without satisfying other stability criteria like a CFL condition.

Based upon the ultraweak framework, we introduced a model order reduction in
terms of the Reduced Basis Method with an error/residual identity. We have obtained
fast convergence and the possibility to combine the RBM for a reduction w.r.t. time
with system theoretic methods such as Balanced Truncation to reduce the size of the
system.

There are several open issues for future research. We already mentioned a primal-
dual RBM for an e�cient reduction of the output, the generalization to parameter-
dependent matrices A� and more general DAEs (not only fully linear). We also men-
tioned that the systemmatrix is a sum of Kronecker products of high dimension, which
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calls for speci�c solvers as in [16] for the (parameterized) wave equation. Another is-
sue in that direction is the need for a basis of ker(ET), which might be an issue for
high-dimensional problems.
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